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Chapter 3: Machine learning models for 

predictive genomics: from variant 

interpretation to early risk stratification 

3.1 Introduction  

There is a growing focus on how to translate genomic data into new clinical applications. 

While the increased availability of genomic data allows the identification of genetic 

mutation carriers in their early years, the heterogeneity of genetic background makes it 

hard to understand the relationship between genetic variants and phenotypes. Machine 

learning models have proven to be a promising approach for a broader and highly 

worthwhile prediction of genetic-related genomic data. Some of the studies focused on 

variant interpretation for Mendelian diseases, subsetting input at first, and training a 

model for the mutation impact classification, because they interpret the variants of 

unclear significance and this could narrow down a significant percentage of SNV in most 

individuals. 

Early risk stratification of chronic diseases has shown to be more effective for 

therapeutic and reversible intervention. One approach is analyzing gene sets and 

constructing a proxy SNP set, focusing on genes that are meaningful for a specific 

disease. Another is using SNP features directly. Studies creating a predictive feature of 

SNP data focused on early-stage diseases, where it is hard to determine affected genes 

beforehand. Those can be useful for various polygenic diseases, complex traits, and 

common disease susceptibility as well. Early risk stratification studies have been 

conducted primarily on retrospectively collected case-control data, using prevalent 

cases, with most studies just reporting the AUC. To apply these models in real world 

clinical practice, it is desirable to conduct a prospective cohort study, possibly utilizing 

cohort consortium data from multi-centers or countries, examining incident cases, and 

showing more comprehensive evaluation studies. With the trends towards preventative 

precision medicine, such prediction models could become prerequisites for participation 
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in chronic disease preventative programs or for initiation of preventative medication. In 

this direction, there are some studies that have started with drug repurposing on at-risk 

individuals. 

 

Fig 3.1: Integrating AI/ML Models for Patient Stratification 

3.1.1. Background and Significance 

Rule-based methods and scoring algorithms are used in increasing frequency to predict 

the effects of single variants. Furthermore, as a first step toward modeling variant 

interactions, functional networks, random forests and rule-based models propose 

relevant questions for the context of complex genetic disorders. High-quality ground-

truth data are still lacking for the interpretation of non-coding mutations and for 

population-level variant consequences. Well-established modeling and validation 

strategies from other machine learning driven research fields may provide valuable 

guidance for the improvement of predictive genomics methodology and its wide-spread 

application in healthcare and biotechnology. Machine learning (ML) will likely be a 

cornerstone of biology and medicine in the 21st century. ML-based approaches are 

powerful mathematical tools that can be used to analyze and model complex datasets, 

such as those generated in genomics and medicine. Traditionally, ML algorithms have 

been used in bioinformatics to handle large volumes of molecular biological data, extract 
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patterns and relationships from those data, and make predictions— such as classification, 

regression, or clustering workflows—based on these learnt patterns. The on-going 

revolution in DNA sequencing technology has greatly increased the scale of genomics 

and has led to an ever-growing demand for ML applications in this field. This is 

especially so in the context of the new initiatives and large-scale genome projects. 

Machine learning-based predictive models range from variant interpretation and 

gene/protein function prediction through drug-target interaction prediction and clinical 

patient stratification up to population-wide early-risk prediction. Variant interpretation, 

risk gene prediction, polygenic risk scores, gene expression, splicing, DNA methylation, 

histone modification, transcription factor binding, chromatin accessibility, allele-

specific binding and expression. Much work has also gone into understanding the 

comparative performance of these features for the family of methods configuring 

feature-based machine learning risk prediction. 

3.2. Model Development 

Machine learning SNP based prediction of individual risks of prominent chronic diseases 

such as type II diabetes, ischemic stroke and some malignant tumors will be highly 

beneficial not only in drafting a strategy for minimizing genetic vulnerability through 

lifestyle, but also from a perspective of optimizing the efficiency of the health care 

resources. Methodologically, as the clinical applicability of machine learning models, 

the focus is on the characterized effects of common genetic variants with moderate to 

small impact on the disease risk and the elaboration of a framework for early risk 

stratification in a time perspective longer than what is currently practiced. Bioinformatic 

feature selection methodologies enhancing the sensitivity in predictive modeling and 

novel experimental verification of case-control seed SNPs with potential mediating link 

to more widespread targets in the cellular response to genome damage are described. It 

encompasses the construction of suitable custom epidemiologic databases, including 

harmonization of the inter-study data and extensive literature review on the functional 

SNP effects, as well as the computational modeling of dose dependent transcription 

factor occupancy by genotype specific enhancers. Subsequently delineated effective 

connectivity pathways involving the top prioritized SNPs are presently assessed by a 

dedicated laboratory experiment. The paper is expected to assist the future 

implementation of the personalized genome information in a new generation of public 

health supportive prevention strategies. 

 

 



40 
 

3.2.1. Training and Testing Datasets 

In the predictive genomics research domain, a numerous number of training and testing 

datasets is of interest, both for single-nucleotide polymorphism (SNP) related 

phenotypes (e.g., diseases, drug responses) and also for “classical” phenotypes (e.g., eye 

color, height) related to a given genotype. Analyses workflows and solutions on 

modeling injustices in predictive biomarkers for early detection of high-grade serous 

ovarian cancer (HGSOC). The former represents the main goals of different machine 

learning models, independently from the used techniques and methodologies. Surveys 

on related articles and scientific contributions on the used datasets are also provided to 

aid the scientific community in exploring novel research ideas and results. Finally, 

overall insights, future leads and challenges on prospective research directions are 

discussed. 

In the fast-evolving era of data science, there is a growing integration of different 

disciplines such as biostatistics, computer science, mathematics, and also business 

intelligence, offering enhanced decision-making, biomarkers discovery, risk 

management, and more. In this perspective, machine learning approaches are widely 

spreading in the predictive genomics research domain, focusing on to highlight potential 

driver interactions in the breast cancer subtypes context, sensitive to the hormone 

estrogen and to the growth factor receptor HER2. Supplying the best knowledge, no 

previous works have attempted to implement such models. Nevertheless, in the study of, 

the authors focus on a comprehensive analysis comparing 20 selected methods between 

ensembles and novel deep learning approaches, in the prediction and interpretation of 

the impact of over 9,000,000 possible SNVs on gene expression levels. 

3.2.2. Cross-Validation Techniques 

Cross-validation is a statistical method useful in estimating the field efficacy of a 

predictive model. Many different methods have been proposed to perform cross-

validation and, second, the forgetting factor in a long pattern. When the forgetting factor 

is equal to one (form of the leave-N-out cross-validation) the efficiency of cross-

validation strongly depends on the choice of the subsequence of points used for training 

and for validation. The most used methods are the leave-one-out, the leave-p-out, and 

the K-fold. In some other papers the designed approach of cross-validation leads to better 

results in terms of generalization than the mentioned approaches: for this reason, the 

simplest method—a holdout technique with the results of small improvement—has been 

mainly considered in this and in what follows. 

Genomic and proteomic technologies have recently led to an increase in the size and 

complexity of datasets, so that it can identify a function relating the Clinical and 
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Genomic variables to the Risk of Disease. Due to the high dimensionality of such 

datasets and the limited sample size, the variable selection process is a difficult task, so 

they have proved the importance of performing variable selection within resampling 

methods like cross-validation (CV). However, it has been objected that CV can be overly 

optimistic as a tool to select the most significant variables since the same selection 

process is repeated several times. A point of view based on deviations from automation. 

Overly optimistic interpretation of the performances obtained in several simulated 

experiments is also taken in this paper. Two recently proposed methods for selection of 

the optimal set of variables are (1) a reformulation of the ordinary least squares approach 

by a modification of the multiple correlation index; such a reformulation was made to 

be well-suited for the error estimation and (2) a new proposal admitting the use of CV 

both for coefficient estimation and for the choice of the set of variables . 

3.3. Machine Learning Fundamentals 

In the past decade, genetic data have become more complex. Researchers now have 

access to whole-genome sequence (WGS), whole-exome sequence (WES), RNA 

sequencing (RNA-seq), and other forms of gene expression and proteomics data. As the 

data size has increased, the questions geneticists have begun to answer have increased. 

For example, researchers now want to know whether disease risk is caused by gene–

gene interactions between genetic variants or what effect a single missense variant might 

have on the function of a protein. Geneticists have begun to turn to machine learning 

(ML) techniques (Burugulla, 2022; Challa, 2023; Kumar et al., 2025). 

 

Fig 3.2: Fundamentals of machine learning 
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Machine learning methods can be broadly defined as the algorithms that can learn from 

data to make predictions or identify patterns. Given a set of features, ML can learn a 

function that maximizes prediction accuracy or identifies underlying patterns within the 

data. Similar to GWAS, ML uses a training set to construct the prediction model. There 

are multiple types of ML techniques that have been adapted to genetic data, including 

linear regression, support vector machines, neural networks, and random forests. The 

majority of ML algorithms in genetic analysis are used in prediction, using input data to 

predict an outcome. In genetic data, this could be using SNP genotypes to predict 

whether a subject is a case or control. For example, different signatures of gene 

expression in relevant tissues can be used to classify different tumor types. Importantly, 

ML algorithms are able to model complex interactions between input features, which 

enables detection of the non-additive effects that current methods may be missing. 

Historically and currently, the implementation of precision medicine in the clinical 

setting has been defined by the analysis of an individual’s genetic details. In this setting, 

one genome sequence with extensive clinical records or family histories is profiled as 

the standard clinical endpoint. With the exponential increase in sample sizes and breadth 

of phenotyping coverage, the information available for a given patient is likely to 

exponentially increase before the complexity of the disease and clinical action required 

for the action go down. Thus, there is an urgent need to develop efficient modeling 

frameworks that can be easily scaled to interpret the current volume data, deliver 

actionable results to both healthy providers and patients, and can be readily integrated 

into current clinical practice. 

3.3.1. Types of Machine Learning 

In precision medicine, predictive models of health outcomes from the genome is one key 

for integrating a standard clinical workflow that will be compatible with existing 

practice. This is a tough challenge, as it requires new developments in estimating risk 

from the genome, diverse data sources beyond genotypes, and new approaches for 

delivering risk stratification. 

Machine learning methods offer accurate and potentially efficient disease risk prediction 

models that operate directly on genotypic information. Such models are an active 

development area in the pursuit of methods that will allow for the efficient identification 

of patients at high risk of disease. A key to these developments is the use of clinical 

outcome data and large predictive models of genetic data. Early meetings of data and 

method developers from many centers and hospitals will be necessary to agree on 

standards for the specification of cohort data and the continuing assessment of risk 

simulation. These collaborations will provide estimates of the portability of disease risk 

models across the population and the true ability of models to improve patient outcomes. 
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Platform development is underway for carrying these models into use in the clinic, 

including the incorporation of results with the electronic term record, the creation of an 

approach to support patient counseling, and testing of models for responding care 

providers and patient education. 

Disease risk modeling within the precision medicine paradigm stands at a remarkable 

transition point, providing enormous potential to transform generalized prediction of an 

individual’s risk of disease.  

3.3.2. Common Algorithms Used in Genomics 

Machine learning (ML)-based approaches can be an effective way of predicting an 

individual’s risk of disease. Unlike other popular predictive models in genomics, there 

is potential for ML to account for complex interactions between features. ML algorithms 

utilize a set of advanced function-approximation algorithms to create a model that 

accurately maps the association between a set of risk single nucleotide polymorphisms 

(SNPs) and a particular phenotype. The genotype data of a patient can be used as an 

input to the predictive ML algorithm to predict their risk of developing a disease. The 

prediction of disease risk using SNP genotype data can be considered as a binary 

classification problem within the discipline of supervised learning. The approach can be 

broken down into several steps. In the first instance, the data are pre-processed by 

applying quality control and feature selection. The high-dimensional pre-processed data 

are fed into a specific learning algorithm, along with algorithm-specific settings. The 

pipeline then learns an association between the features and class labels, stores the 

trained model parameters, and validates the predictive performance of the model using 

unseen data. The output of the entire process is a binary classifier that classifies the input 

into different classes, along with the model’s associated performance metrics. The model 

and its trained parameters can then be used to predict the mutation’s effect size. Within 

the model building process, the application between the features and class labels is 

trained probabilistically. There are also hyperparameters that are specific to each 

algorithm. The set of algorithm hyperparameters impacts the potency of the pipeline 

functioning, so it is important to pick their values in an informed way. Given a fixed set 

of hyperparameters, 10-fold cross-validation is used to partition the dataset into ten 

equally-sized parts. The training and validation process is repeated on the partitions 

iteratively, with the learning occurring on nine of the partitions and the performance 

being evaluated on the tenth. This process is referred to as a ‘fold’. The outputs of the 

process are ten models, along with their ten sets of parameters.  
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3.4. Genomic Data Types 

Structural genomic variation is largely confined to deletions and insertions. Deletions 

and insertions are rarely observed in human genes, and different forms of insertions and 

deletions can produce similar phenotypes (such as a frameshift in a downstream open 

reading frame). This often makes phenotypic impact of insertions and deletions 

unpredictable, as such do not have much clinical utility. Instead, medical geneticists have 

spent their time on other forms of DNA variant, in particular single nucleotide variants 

(SNVs). At this level, advances in gene expression and epigenetic assays suggest that 

most genetic effects (outside of simple monogenic disorders) involve regulatory activity, 

usually mediated by DNA accessibility and the presence of transcription factor binding 

sites. 

From the medical perspective, researchers would all like to be able to intervene at the 

first presentation of a disorder, but particularly in some specialties (e.g. neurology; 

cancer) earlier diagnosis is not necessarily very helpful. For neurodegenerative 

conditions, most of the damage is thought to be set in decades before the condition is 

first noticed by the patient. The first signs of many kinds of tumours are when a stage-4 

cancer has already formed. Even where early stage interventions are possible, the cost–

benefit analysis of aggressive action on a patient with no apparent illness will often look 

poor, particularly when viewed through a population lens. 

Each sickness has a particular list of genomic data and in this manner it is being looked 

into each one in turn. This dataset incorporates treatment approaches for every one of 

the disorders. Similarly as with the advancement in the identification of sicknesses, a 

considerable lot of the sickness treatment processes are being used for sickness healing, 

as it were, diminish or remove the symptoms and not really kill. Meds are regularly 

endorsed for sickness mending that have not been put through FDA-approval for that 

specific sickness. From a researcher’s viewpoint, the clinical goal is the discovery of an 

efficient treatment for any of the sicknesses. It is also expected to have an in-depth 

exploration of multiple aspects of the treatment. From a machine learner stand-point, the 

goal includes assessing the effectiveness of various treatment approaches and the 

modeling process of the treatment. 

3.4.1. Genomic Variants 

The sequence of the human genome in 2001 has paved the way for new technologies and 

information in biology, medicine, and beyond. The ability to collect, store and analyse 

nucleotide sequences is growing at an exponential rate. Encouraged by large-scale 

collaborative projects, aggregated genomic data releases have reached a petabyte size. 

Availability of this goldmine of information was one of the cornerstones in the 
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advancement and popularisation of personalised medicine. According to the “disease 

triangle” concept, individual health and well-being are influenced by the genetic make-

up and lifestyle of a person. Late- and post-genomic research has made staggering 

progress in the identification and understanding of genetic variants, that is, the first 

corner of the triangle. Until now, tens of millions of single nucleotide polymorphisms 

(SNPs) and small insertions and deletions have been associated with human traits and 

disorders. However, identifying a genetic link to a certain condition is only a small step 

in the grand scheme of things. In order to comprehend and ultimately treat complex 

traits, failure of this third corner is considered to have a profound negative impact on 

public health, especially in high-income countries. Subjecting large amounts of data to 

machine learning algorithms is currently regarded as holding the greatest promise in 

many fields, including bioinformatics. 

3.4.2. Transcriptomic Data 

Great strides have recently been made in understanding the molecular fingerprint of 

diseases such as cancer. The increased availability of high-throughput "omics" data such 

as genomics, epigenomics, and transcriptomics, has given researchers the possibility to 

directly observe and interpret different levels of biological information. Among the 

molecular "omics" data, transcriptomics is used to describe the landscape of transcription 

within individual cells and tissue types. Changes in the transcriptome profile can reflect 

the state of underlying disease and inform diagnosis and prognosis. This has led to a 

considerable effort to collect and study large-scale transcriptomic profiles across 

different diseases and healthy controls. (Pamisetty, A., 2022; Pamisetty, V., 2023) 

Transcriptomic data can be measured using different experimental protocols like RNA-

seq and expression microarrays. With the advent of high-throughput technology, the 

generation of large amounts of the transcriptomic data has enabled the development of 

predictive models based on machine learning. A recent review of the currently ongoing 

projects in this field discusses how transcriptomic-based models have a variety of 

applications in the context of health management: starting from the development of the 

new predictive methods on epidemics scalability and general safety, remote monitoring 

of chronically ill patients (e.g., anxiousness, epilepsy, and cardiac weaknesses), 

development of transformative technologies enabling early disease detection ancestral 

to advanced (plus personalized) restorative interventions, and (ideally) the prevention of 

untimely death. While these predictive approaches have traditionally been linked to 

biometric or diagnostic data (e.g., temperature, glucose levels or heart-rate), genomics 

data has opened up new opportunities for predictive models based on genetic 

predisposition. In this context, the same work provides the results of a large scale and 

complex project on the development of predictive models based on genomic data that 
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aims to help patients to better understand different types of genetic information and its 

potential impact on health, predict their disease susceptibility (e.g., with respect to 

Alzheimer, Type 2 Diabetes or some specific forms of cancer), and provide actionable 

advice towards lifestyle changes to reduce risk. 

3.4.3. Proteomic Data 

We report a study that involved building multi-layer classifier models to automate the 

translation of healthy human genome data into useful medical information. The models 

were trained to predict quantitative traits, such as gene expression or neutrophil count, 

from germline clinical variants. The same models can also be interpreted in their ability 

to rapidly stratify patients early in life to identify those at high risk of later developing 

diseases or disorders. Risk assessment was performed by translating genotypes at 

individual positions within the genome into positional scores equal to the model-

predicted change in a clinical QT value. The scores are combined across a subset of 

genomic positions into a single risk percentage. The top 10% of individuals under twenty 

years of age, ranked by this risk percentage, were subdivided into five equal groups. 

Over a lifetime, individuals in the top category have, on average, a 4-fold higher risk of 

being diagnosed with the associated disease compared to those in the bottom fifth. 

Stratification models are presented for obesity, anemia, neutropenia, thrombocytopenia, 

and gene expression in thirty healthy tissues. Many potentially clinically useful scores 

are reported, including for associations, loci. All scores and risk percentiles on all traits 

are posted so that the results can be explored interactively using a datastore. The 

stratification models, and the large set of scores and risk percentiles, are intended to 

serve as an initial resource and foundation for the development of more advanced 

predictive biology approaches and the study of related ethical, clinical, and legal 

considerations.  

3.5. Variant Interpretation 

The dramatic proliferation of genome-wide genotyping and sequencing data presents 

many challenges to variant interpretation, from the association of specific variants to 

their effects on biological functions, health and complex traits. Much information can 

support variant interpretation, including population allele frequency, conservation 

parameters, gene region annotation, variant curation and disease knowledge bases. The 

interpretation of the wealth of information can both face methodological difficulties and 

is expected to involve considerable subjectivity. Early ability to predict the functional 

impact engendered by genetic variants could obviate such constraints and conundrums 



47 
 

and greatly expedite knowledge conveyance between research and practical applications 

such as medicine, genetic counseling, pharmaco-genomics and bio-industry. 

Traditionally researchers have employed association tests in clinical genetics and 

genome-wide association study fields, and molecular biologists have used cellular and 

biochemical screens to discover how genetic variation influences particular molecular 

events. A central goal of these diverse efforts has been to identify the subset of all genetic 

variants that alter gene functions and phenotype. In view of the landmark of the Human 

Genome Project and the recent deluge of genomic data there lies an unprecedented 

opportunity to transition from such correlative approaches to the identification and 

characterization of the sub-set of genetic events that are causally associated with specific 

phenotypes. Remarkably these goals are considered formulation closed, with pretty 

much all causal variants having already been identified, at least in humans. 

Prediction of the functional effects of genetic variants is an essential and challenging 

task for the successful discovery of the downstream processes connecting genotype and 

phenotype. The rapidly increasing amount and diversity of genomic variation have 

highlighted the central role of elucidating the impact of mutations on gene expression 

regulation in the functional interpretation of genetic variants. Efforts to characterize the 

impact of genetic variation have, therefore, expanded from the traditional association 

setting to the development of novel hypothesis-driven and data-driven approaches that 

uncover the mechanistic basis of allelic influences on gene expression, often through the 

mediation of chromatin interaction and modifying protein affinity. 

 

Fig : Trends of Machine Learning in Genomics 
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3.5.1. Clinical Significance of Variants 

Since the completion of the Human Genome Project in 2001, the DNA of many 

individuals and other species have been sequenced, yielding many new natural genome 

sequences. Numerous genetic studies have been published on the genetic variants of 

different human populations. The clinical significance of genetic variations relies on the 

traits they underpin. Some genetic variations, such as non-synonymous single-nucleotide 

polymorphisms (nsSNPs) that alter the amino-acid sequence of an encoded protein, are 

more likely to be linked to the traits of an organism and are consequently more frequently 

reported in the scientific literature. In a study of the human DNA sequence from 650 

randomly selected individuals across the globe, 20 million genetic variants were 

identified, including 3 million nsSNPs. Among those nsSNPs, 123,843 were reported to 

be associated with 3,078 traits. Clinical significance of human variants has been 

highlighted by the strong association of pathogenic variants previously identified in 

patients with cardiomyopathy. 

An interpretation of a relationship between individual genetic variations or overall 

genetic profiles of patients and the manifestation or severity of a disorder can lead to the 

practice of personalized medicine using genetic testing and non-invasive risk 

stratification. Here, a method and system is described for the early risk stratification of 

health conditions, in particular, disorders manifested in facial features, forms, and 

malformations of an individual. The method starts with determining a loss of function 

genetic variant associated with facial features. Thereafter potential mutation is 

determined based on the loss of function genetic variant associated with facial features. 

Finally, the phenotype facial profile of an individual pertaining to the facial features is 

evaluated to determine a manifestation of the potential mutation. It is shown that the 

early stratification of conditions manifested in facial features can be practiced years 

before the development of the symptoms. 

3.5.2. Tools for Variant Annotation 

Recently, significant resources have been allocated to large-scale sequencing 

studies to identify genetic polymorphisms that may be linked to a variety of 

diseases and health conditions. Many of these polymorphisms affect non-coding 

regions and are of a regulatory nature. Computational analysis of these 

polymorphisms is hence crucial for prioritizing them for further experimental 

screening. However, extracting meaningful information from these 

polymorphisms is challenging due to the lack of robust functional annotations. In 

addition, the polymorphisms in regulatory regions, unlike the missense ones, do 

not have a strong in silico discernible effect and are not subject to any simple 
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nomenclature. Here, a new framework, called PredictSNP2, is presented that is capable 

of accurately evaluating the effect of single nucleotide variants and has been developed. 

This is a one-stop source that is able to address the different characteristics of a variant 

that are dictated by its location in distinct genomic regions, accounting for the effect of 

the surrounding sequence context. 

3.6. Data Preprocessing Techniques 

As a new field of healthcare analytics that merges advanced analytics and genomics, 

predictive genomics has an indispensable need for interpreting extensive genomic data 

to predict clinical phenotypes. Specifically, given a new genetic variant, the prediction 

task is to reveal potential associations between the variant and important clinical 

phenotypes of interest such as disease risk, stage or progression of a disease, treatment 

response, etc. Variant–trait associations are commonly estimated using “predictive 

features” as an intermediate representation. Generic machine learning models can then 

be built to predict these features, followed by interpreting them into human-interpretable 

knowledge, such as functional impact and causal effects underlying key genetic and 

genomic components using appropriate tools and databases developed in biology and 

bioinformatics. This workflow of variant interpretation is at the core to accelerate 

numerous efforts including but not limited to biomarker discovery and development, 

pharmacogenomics, gene editing, and identification of personalized treatment and 

therapy. 

Looking into the workflow, extant studies have established the machine learning models 

and tools to predict general or generic predictive features. Nevertheless, the quality of 

genomics data has an essential impact on the prediction performance. Various issues like 

noise and batch effects are caused by subtle bias in the experimental design and data 

acquisition process. Although the prediction and interpretation workflow is designed as 

a framework of Bayesian decision graph such that it is more robust to address noise 

influences in raw data, subtler bias is however hard to model directly from raw data. For 

this purpose, a series of data preprocessing techniques and tools for addressing batch 

effects, a specific type of bias, are critically needed in the biological community. 

3.6.1. Normalization Methods 

There are three normalization methods. There are quantile normalization (QN), median 

normalization (Med), and variance stabilizing normalization (VSN). QN is regarded as 

a popular non-parametric statistical method that ensures the same distribution of 

observation in the sample by aligning the corresponding preprocessed raw counts with 

an empirical cumulative distribution function, often in the form of matched quantiles. 
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On the other hand, Med annotates a normalization method that strikes the whole data 

distribution to focus on the gene-expression levels’ changes, ensuring that the median 

expression preserves for all the samples in the processed data by adjusting the non-steady 

and/or edge effect bias. Med is known to better predict two-sample Welch’s t-statistic 

test or hallmark gene-set enrichment score than all other random non-redundant 

comparison methods in the absence of truncated genes’ edges. Finally, VSN is a 

parameterized normalization embedment. VSN may achieve comparable risk prediction 

performance to the new normalization method after survival-based risk prediction, but 

its underlying biology method is more sophisticated with no tuning parameter or intuitive 

interpretation in its gene-expression fitting process, while it may have no superiority on 

the biological outcomes compared with the new normalization method when the study 

population is stratified by an external biological group. 

3.6.2. Feature Selection and Extraction 

Feature selection techniques find out the most useful variables or features defining the 

underlying trait to be predicted in machine learning models. Those variables can belong 

to different sources such as genetics, epigenetics, proteomics, metabolomics and 

environment, among others. In the context of genomics, thousands of genetic variants 

such as SNPs can be measured. Gaining biological insight from genome-wide 

association studies is an area of interest in predictive genomics, especially in complex 

diseases such as cancer. On the other hand, as medical costs are increasing, detecting 

individuals with high risk in early stages is becoming more relevant. Therefore, a new 

methodology is proposed to automatically search the most relevant genetic signatures, 

measured with a single-nucleotide polymorphism (SNP) panel, associated with a given 

clinical variable of interest. To do it, six classification methods have been selected after 

studying the impact of diverse configuration parameters on performance. Classification 

methods are a general set of approaches used to learn how to predict a binary or 

multinomial clinical outcome from genomic data. To search the most relevant genetic 

signatures, a large-scale empirical evaluation is carried out using 8 publicly available 

clinical SNP datasets. Two appropriate methodologies are described to produce 

generalizable results rather than to being trapped in a specific cohort. 

Genomic data and 200 clinical datasets were obtained from the catalog of SNPs 

associated with cancer and public repositories. To find out the most relevant genetic 

signatures in clinical context with a high degree of performance, 200 real SNP datasets 

have been selected. To assess any algorithm (classifier and/or signature search engine) 

properly in the context of genomic analysis, a suitable methodology is proposed. 

Additionally, this methodology is also designed to provide generalizable results in 

independent cohorts. This methodology is therefore strongly recommended to be 
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followed by any researcher who endeavours to get relevant results. Moreover, some 

recommendations are offered to bring to light any defects that the methodologies may 

have, in order to get more reliable and generalizable results. 

3.7. Conclusion 

Early adopter examples indicate that Systems Medicine initiatives will primarily focus 

on Machine Learning models developed for Predictive Genomics tasks defined in 

narrower application scopes. Despite the rapid development of these models and 

methodologies, adequate consideration of the overarching System landscape they will 

be integrated into is currently missing. There are emerging endeavours of utilizing 

Machine Learning models for Predictive Genomics in large and integrated Systems 

Medicine workflows targeting early Risk Stratification of multifactorial, chronic 

pathologies, in which they have been spotlighted here. Similarly, from a broader view 

of application, Feature Selection methods that address Multi-Omics settings were 

entertained. Feature Engineering is crucial for the effectiveness of Machine and Deep 

Learning models. Here, pertinent background and simple illustrative examples in the 

form of a narrative served to catalyze a Systems view as a source of motivation for the 

development of Machine Learning models. Substantial attention, dedication and 

cognisance of relevant research gaps and challenges that must be embraced by the 

endeavours aimed at further advancing the field. 

3.7.1. Future Trends 

Firstly, the prediction of the risk of common diseases using single nucleotide 

polymorphism (SNP) genotyping data is introduced. This is a form of early risk 

stratification that abnormal tissue of future cases may be found at cancer initiation. Using 

SNP genotyping data, machine learning (ML) models can be built for the accurate 

prediction of the disease risk. Interpretation of hundreds of common variants as 

predicting the risk of a complex disease based on ML models built from genotype 

measurements of the known risk variants is then seen. Finally, I discuss possible future 

trends in the machine learning models for predictive genomics emerged. The concept of 

predicting an individual’s risk of disease is increasingly discussed. When atypical 

histology is considered as the beginning of cancer, abnormal tissue of future cases may 

have been detected at cancer initiation. Feature measurements of such abnormal tissues 

can be made, and computational models have been built to predict the future risk of 

cancer by learners. The model proposed, however, considers the case that abnormal 

tissues of future cases have not been observed or cannot be easily obtained. In this case, 

one alternative approach is that one might expect to predict an individual’s risk of disease 
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based on some easily measurable data, such as blood samples, which would not be 

affected by the presence of the future abnormal tissues. The most promising approaches 

include the prediction of the risk of a few common diseases, possibly using a patient’s 

prior family history and other known risk factors. The prediction of the risk of common 

diseases can be considered as an early risk stratification, and early detection is expected 

to improve the prognosis. The deviated tissue under the early risk stratification concept 

is not yet tumorous, but the patient biopsy is performed at the cancer initiation time. A 

comprehensive understanding of gene mutation and gene copy number changes based 

on the feature measurement of biopsy is required. Based on such multi-omics data, early 

risk stratification may be made between the indolent and threatening nascent cancer, 

which may guide personalized medicine. Nevertheless, it is still of interest to predict the 

risk of a complex disease based on single data. In particular, the interpretation of 

hundreds of common variants may lead to the prediction of risk as low, average, and 

high value. Various machine learning (ML) models built to interpret the hundreds of 

common variants as accurately predicting the risk of a complex disease based on ML 

models built from the genotype measurements of the known risk variants are discussed. 
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