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Chapter 5: Real-time integration of 

multi-omics data: Leveraging big data 

pipelines for holistic health insights 

5.1 Introduction  

With rapid technological advancements, unprecedented data availability, and intrinsic 

interactivity among different levels of molecular data, the real-time integration of multi-

omics data has now promised big potentials for a better understanding of individual 

health profiles and subsequently an early provision of precise and cost-efficient 

preventative and care interventions. Enhanced systematic and computational methods 

coupled with ultra-fast big data pipelines provide the essential power for meaningful 

health insights, ultimately translating into improved healthcare outcomes. In the next 

few years, integrated multi-omics data and enhanced big data pipelines are expected to 

be a significant and essential driving force of holistic insights into individual human 

health and wellbeing. Real-time integration of multi-omics data has recently provided a 

paradigm to dissect human diseases. A diverse range of health traits can be characterized 

more thoroughly through multi-omics data integration, generating a comprehensive 

profile of health status that facilitates the early detection of potential ailments. 

Between 2013 and 2018, the global volume of collected data increased from half to up 

to 33 zettabytes. Individuals are wearing devices that monitor their health-generated data 

in real-time, and AI algorithms are being utilized to provide diagnoses and to suggest 

treatments. These advances derive primarily from the advent of big data pipelines, along 

with the growing ubiquity of sensors and devices. As a result, real-time health insights 

are now more accessible than ever before. The goal of multi-omics data is to provide a 

comprehensive holistic view of the different levels of molecules jointly involved in the 

regulation of a biological system. Even more, an integrated data-analysis is hard to be 

performed in real-time, owing to the characteristic high dimensionality of multi-omics 

data. However, even in the absence of integration, each single level of omics data is 
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informative on its own, providing a partial view of health status. In many conditions, the 

molecular changes that occur at a particular level of the omics cascade are followed by 

downstream modifications. As a consequence, the monitoring of intermediate or affected 

molecular levels with respect to the pathological start might offer better prevention or 

treatment opportunities. Thus, a device equipped with a fast omics data readout should 

be able to run in real-time analytical methods to convert the data into insights, 

anticipating the possible occurrence of the disease and suggesting possible treatments. 

 

Fig 5.1: Real-Time Integration of Multi-Omics Data 

5.2. Understanding Multi-Omics 

Imagine a world where big data pipelines leverage advanced algorithmic methods and 

novel sequence-based technologies for the real-time and comprehensive analyses of an 

individual’s whole genome, epigenome, transcriptome, proteome, and metabolome. In 

this world, clinical doctors interpret these analyses on a browser-based platform that 

seamlessly reads and stores all necessary information with powerful visualizations 

provided automatically. With a simple blood test, millions of measurements are taken 

within minutes and stored in a cloud infrastructure for an automated pipeline analysis. 

With these results, millions of possible disparities from diseased population-specific data 

are queried and a live report provides a few prioritized, easy-to-understand graphics. 

These graphics highlight the disparities and their association with disease symptoms, as 

well as recommendations for preventative steps based on the trivial pharmacological 
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impact of small metabolite deficiency compensations. An appointment call is placed to 

the next available health consultant who has instant access to this report, and these results 

drive a shared decision-making conversation that aims to discover deeper sub-clinical 

concerns. This imaginative reality, lying only slightly beyond the current forefront of the 

available technology, is enabled by recently developed and fully open-source software 

infrastructure for the real-time integration and interpretation of multi-omics, an approach 

characterized by the holistic and dynamical study of multiple data layers and across 

different types of omics using high-throughput analytical technologies. The field of 

genomic health research has long been driving significant advancements in collection, 

storage, analysis, and interpretation techniques of genetic information. Genomic data is 

the foundation of biological data and provides a Window to the most static representation 

of biological functions: the biomolecules encoded by the genome, mainly the proteins 

and RNA. However, only understanding the genome is limiting because it is a more 

generic blueprint describing the potentiality of a biological entity. To fully unveil the 

components and dynamics of biological systems (including healthy and diseased states) 

one typically requires so-called readouts from additional, interlinked layers that can 

either be produced by the genome or have a reverse, regulatory impact on it. The latter 

is the motivating theme of this topic, discussing the field of multi-omics through a 

comprehensive understanding of the term, its relevance to larger health outcomes as 

opposed to genetic ones, an overview of the diversity of omics types understanding 

biological systems, and recent advances in genomic technologies and informatics 

currently reshaping the collection and integration methodology of such data. 

5.2.1. Definition and Scope 

The term multi-omics refers to the comprehensive analysis of an individual’s multiple 

omics data layers. A variety of distinct omics disciplines have emerged in the study of 

complex biological systems. These include, but are not limited to, gene- or 

transcriptomics, protein- or proteomics, and metabolite- or metabolomics. Each 

individual set of data provides a view of intricate biological processes but lacks context 

outside of its own domain. Although the majority of health analytic research has sought 

to leverage one particular omics discipline at a time, these various data layers are tightly 

linked and exert a larger influence on health outcomes when integrated. Due to 

technological advances, different layers feed into one another; proteins are encoded by 

genes, and metabolites are products of proteins, etc. Different omics disciplines are thus 

interdependent, and health insights are much more accurate and informative when based 

on this integration. Additionally, newly-developed omics approaches, such as the study 

of epitranscriptomics or glycomics, can be quite powerful, providing more 

comprehensive insight into the human health component. It is necessary, therefore, to 

put a sufficient focus on the emerging methodologies that facilitate the integration and 
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joint analysis of these various data types, which currently span a multitude of standard 

and cutting-edge technologies (Kaulwar, 2023; Koppolu, 2022). 

This work is limited to the collection of multi-omics data, paying inquiring attention to 

methods of integrative and post-integrative analyses. It aims to fully grasp the scope and 

complexity of the topic as a means of sharing the findings with a wider community of 

health researchers and practitioners. The separate sections define multi-omics and take 

a closer look at its position within the broader health research landscape. A concrete 

definition of multi-omics is a nascent field, and it follows that the convergence of 

different multi-omics methodologies must be classified as well. 

5.2.2. Types of Omics Data 

Health research technologies have come a long way over the years. New research fields 

will contribute to a better understanding of what happens in our bodies and enable many 

illnesses to be diagnosed and treated at a much earlier stage. Some of these technologies 

have already been around for a few years but, with the advent of big data processing 

frameworks they can be leveraged for the analysis of big data in health research. This 

not only refers to each “omics” - genomics, transcriptomics, proteomics, metabolomics, 

etc. but also to multi-omics integration, for instance. 

The genomics discipline examines the structure, function, and variations of genes, 

providing a foundation for the understanding of genetic influences on health. 

Traditionally, a genome refers to an individual’s DNA sequence, which contains genetic 

information in the form of the combination of the four nucleotides - adenine (A), cytosine 

(C), guanine (G), and thymine (T). However, the significance of a single genetic 

variation is often limited to particular gene products. This variation across genotypes, 

cells, tissues, individuals, and life stages can contribute to the complex phenotypic 

variability in populations. Hence, the structural and functional annotations of the genome 

are vital. The discipline that studies the genome organization and annotation, and its 

interaction with environmental factors is genomics. 

Transcriptomics is the comprehensive study of RNA entities transcribed from the genes 

of an organism. RNA entities are intermediary molecules in the flow of the genetic 

information between the DNA sequences and the amino acid sequences. They form 

functionally diverse classes of molecules, and are abundantly produced in the human 

cell. During the process of transcription a segment of nuclear DNA is copied into RNA 

molecules. There are several types of RNA molecules, including messenger RNAs 

(mRNAs), transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), as well as other non-

coding RNA molecules, serving important transportation and regulatory functions. The 

discipline that studies all RNA entities, their levels, structure and function, following 
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differential protein encoding over time and under different conditions, is termed 

transcriptomics. 

5.3. Real-Time Integration of Multi-Omics Data 

In the age of big data, the world is generating information on an unprecedented scale. 

This includes health data, with trends pointing towards the generation of x-bytes of 

genomics, proteomics and other health-related data. But simply generating data is not 

enough – it must be accessible in real-time and in a convenient, immediately usable 

format for maximum effectiveness. Real-time accessibility of data and the novel 

information given is the quintessence of big data in applications resulting from or 

concerning dealing with data. The rationale for this is obvious: there is an advantage to 

having all possible information at the time of making decisions. For example, in the 

clinical case, data-driven clinical decision support systems can only be built on the basis 

of all clinical and biological data accessible at a given time. In the case of predictive 

modeling, the ability to use streamed data comes from the desire to make non-intrusive 

and early interventions. It is recognized that having easier access to data can improve 

existing pipelines and in some noisy cases even replace expert analytics. Finally, in the 

more specific case of health monitoring, more efficient and potential life-saving 

analytical procedures can be established if abnormalities detected by algorithms are 

given proper interpretations or even seen in the context of other available data. 

5.3.1. Current Trends in Health Data 

The paper gives an outline of state-of-the-art in the evolution of health data landscapes 

and the increased complexity and number of data sources characterizing their present 

form. With the proliferation of electronic health records (EHRs), confidential research 

initiatives, and big data applications, the near future availability to researchers of the 

enormous amount of sensitive, de-identified health and healthcare data en masse, opens 

unprecedented opportunities for the implementation of cutting-edge methods and 

algorithms to shift the paradigm of healthcare delivery and medical research. It provides 

an overview of the shift towards patient-generated health data (PGHD), including, 

among the others, the recent diffusion of wearable devices and the early initiatives 

launched by the major pharmaceutical companies. The result of the simultaneous 

increase in health data awareness in the general public and the rapid developments in the 

field of ‘-omics’ technologies, is the new data-rich landscape of health and healthcare in 

the beginning of the twenty-first century. In the framework of the envisioned paradigm 

shift, data accumulation unveils new challenges concerning the underlying methods and 

technologies for data collection, storage, transfer, quality control, analysis, and display. 
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For instance, here is the emerging evidence on the effectiveness of digitally delivered 

interventions for numerous conditions including asthma, type 2 diabetes, smoking 

cessation, ischemic heart disease and depression. Although a full development of big 

data applications is still pending, currently these have become a buzz-term in economy 

and research paradigms, and this is poignantly true for clinical and healthcare settings. 

Technologies based on advanced analytics – in the form of machine learning (ML) and 

artificial intelligence (AI) – will play an important role in handling and drawing insights 

from these large data sets. Importantly, such methods have been shown to significantly 

improve the predictive performances of the models. Similarly, it allows real-time 

monitoring of health data to generate suggestions and acts as a facilitator for action-

based interventions and will subsequently improve the patient outcome. Technological 

advancements can significantly accelerate this evolution. 

 

Fig 5.2: Current Trends in Health Data 

5.3.2. Challenges in Real-Time Integration 

Introduction of multi-omics approaches adds new opportunities to investigate health 

status holistically, as reflected by individual molecular profiles such as genomics, 

epigenomics, proteomics, transcriptomics, and metabolomics. However, integration of 

multi-omics types and data formats as well as connection of clinical information, 

lifestyle data, or environmental data requires advanced analytic technology, as data 

acquisition, generation, handling, and interpretation is complex, time sensitive, and 

resource intensive (Singireddy, J., 2024; Singireddy, S., 2024). 
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Recent technological developments such as big data IT arrangements, fast and robust 

data processing, and analysis methods in combination with increasing computer 

resources provide new opportunities to analyze such large datasets. Novel approaches to 

analyze patterns in large-scale data in the context of holistic research are discussed. Real-

time data integration technologies in health research and care are addressed. The 

partnership of academia with healthcare facilities and industry data research units has 

increased, as reflected in an increase in the number of national activities and international 

alliances in the field. It is expected that robust ethical, legal, and social frameworks and 

standards will become established for smooth data integration and high-level analytics 

providing balance of safety and data integrity between security agencies, services, 

technology providers, and research institutions. 

Health research and clinical practice require effective infrastructure and appropriate 

methodology for the real-time analysis and interpretation of big and complex multi-

variety datasets. Modern hospitals are customized for professional work, but the rigid 

slow processes and the red tape of traditional governance do not allow the quick 

implementation of rapidly changing technologies including new IT solutions, fast 

communication, and large file safe data sharing. On the other hand, a lot of sensitive data 

are produced by variables that can be measured in the care process; this data is usually 

stored in proprietary electronic clinical databases, separated from the outside world. 

Thus, a huge amount of data are not usable or are underused. The utilisation of 

administrative databases is complicated by the various structures, different data order, 

data collection processes, and meanings across patient groups or locations. 

 5.4. Big Data Pipelines in Health Research 

Health research is at a historical pinnacle because of the ability to collect and store orders 

of magnitude more data than in decades past. This explosion of information goes hand 

in hand with an onslaught of new analytic techniques, meaning that the right data, when 

processed appropriately, can yield life-saving information never before accessible. 

Taking full advantage of this wealth of data starts with efficient tools for data 

management. In the age of cloud computing, huge numbers of processors can be scaled 

up in seconds, and cheap, near-infinite storage is available to anyone with a web browser. 

But how does one effectively use these tools to store, analyze, and ultimately provide 

insight on massive multi-omics datasets? Big data technologies have emerged to meet 

this challenge. Fueled by the aforementioned advances in computing power and storage, 

big data technologies have revolutionized data management through data storage and 

computational processing solutions capable of managing datasets exceeding the limits 

of traditional data processing systems. 
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Structured data processing frameworks represent the backbone of big data technologies 

and are essential for the effective integration and analysis of large datasets. By defining 

the format of macroscopic data analysis, these frameworks are a core component of big 

data technologies. They allow immense datasets to be dissected and analyzed in very 

specific ways, for defining patterns and obtaining insights altogether impossible with 

manual investigation. The transformation from raw data into, ostensibly more valuable, 

processed data, involves data processing frameworks as a necessary middle man. Data 

processing frameworks define the macroscopic interaction with the data, as well as the 

means and method of analysis. Only by defining how to ingest, store, and transform the 

data via the structured framework, can the data truly be analyzed, and insights derived. 

This section serves to describe, at a high level, the components of a data processing 

framework, with the intention of providing a big picture of the chain of events allowing 

data to seamlessly flow from the point of data collection to the derivation of insights. 

Big data pipelines represent a means of orchestrating the sequence of events by which 

data is transformed into consumable insights. To better convey the utility of big data 

pipelines, and facilitate a high-level BPOLDMA-based understanding, the chain of 

events defining data processing frameworks are described within the context of a big 

data pipeline. The necessity of big data pipelines is accentuated by the comprehensive 

coordination and implementation of data ingestion, storage, processing and analysis 

solutions. These aligned backends are vital to ensure any dataset collected has a clear 

path to analysis, thus conferring an immense advantage for the proper, and efficient, 

interrogation of extensive multi-omics datasets. Conceptual depth is added by detailing 

commonly used data pipeline solutions, historically rooted in the bioinformatics realm, 

giving an idea of the adaptations necessary for biomedical applications. Additionally, an 

argument is made detailing the potential benefits from employing big data pipelines for 

health research as promoting improved data accuracy and the capacity for efficient 

scaling are overarching goals. The practical utility and importance of big data pipelines 

for conducting holistic analyses in medical applications are clearly demonstrated by 

detailing one “pseudo-real” case study, showcasing the algorithmic advantages, as 

compared to common biomedical paradigms, gleaned from the implementation of big 

data pipelines. 

5.4.1. Overview of Big Data Technologies 

Over the past 20 years, the size of genetic information has grown from megabytes to 

gigabytes, and with the advent of high-throughput technology, a terabyte of data can be 

easily produced in a single measurement. It is expected that a single genome/exome 

BWA alignment will yield gigabytes of data. This brings on two challenges. The first is 

the need to store these huge datasets on an infrastructure that can be managed. The 
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second challenge relates to a sustainable scientific elaboration of these data through 

skilled and trained personnel. The four characteristics of big data are volume, velocity, 

variety and value. Volume refers to the extremely large amounts of data with sizes 

ranging from a few terabytes to thousands of petabytes; so large that it is not possible to 

manage or process them by using the traditional tools. Velocity is the fast rate of growth 

of big data. Values and challenges related to big data were reviewed, and six data mining 

tasks for big data were highlighted: text mining, sentiment analysis, recommendation, 

classification, clustering, and outlier detection. Variety relates to the different forms of 

big data, including time series, images, text, videos, voice, and social data that are used 

in many big data applications. The goal of prospective health research is to understand 

the underpinning mechanisms leading to disease and health improvement. The 

technologies of Big Data architecture are Data capture, Curation, Storage, Search, 

Sharing, Transfer, Analysis, and Visualization. Database systems are designed to 

simplify the process of storing, retrieving and managing structured information. 

Different types of database-management systems have been developed over the years, 

which differ in the representations they use for the different forms of data and the 

operations they can efficiently support. Cloud computing allows for on-request 

architecture, which enables users to pay based on their use. The goal of cloud computing 

is moving data to large data centers where it can be easily collected, and the useful 

resources derived accordingly. Big Data analytics are the newest, yet the most promising 

in terms of handling health data, generating new insights and creating a new way for 

health discovery. Thus the examples and the context focus on the data capture, storage 

and analysis of health big data. For scientific elaboration multi-classification tools are 

used with architectures of scoring optimizers of the best performing run, which allows 

the non-expert user to execute these processes in a user-friendly manner. 

5.4.2. Components of a Big Data Pipeline 

The earlier tremendous progress in biotechnologies has made large-scale and 

comprehensive molecular data, so-called big molecular data. Big molecular data can 

describe and measure the experimentally observable molecular mechanisms or 

characteristics of a biological system in multiple omics levels, such as genomics, 

transcriptomics, proteomics, and metabolomics. Big molecular data has stretched the 

interdisciplinary frontier and revolutionized biological research. There are a few grand 

challenges in biological research that could be addressed through analysis of big 

molecular data, which in turn triggers and fuels numerous computational methods and 

tools developments. The most outstanding grand challenge expects to The data pipeline 

comprises so many components that have been classified into four categories. A grand 

challenge in systems biology is to predict the system-level response of a biological 

system to perturbation. 
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The first stage of the big data pipeline regarding big molecular data is data collection, 

including but not limited to modeling of sampling processes, measurement and detection 

principles, and sample pre-processes. Big molecular data is generated via various high-

throughput measurement platforms and devices, by which quantitative data of multiple 

molecules in a biological system is acquired in a high-throughput, large-scale, global, 

and comprehensive manner. The biological system undergoing the measurement process 

should be properly sampled at given conditions and contexts. The sampling process and 

conditions of the biological system should be documented for further analysis. The 

sampling device or method and its characteristic is modeled to facilitate data collection 

procedure in a computational way. Data collected through the measurement platform 

and device might have inherent noise, deviation, and missing values due to various 

protocols and detection principles. Pre-process (clean and process) the raw measurement 

data is commonly conducted prior to the downstream data analysis. The quality of the 

big molecular data should be assessed after sampling and measurement. It is non-trivial 

to decide the quality assessment and thresholding criterion of big molecular data. The 

raw measurement data might be too big to be stored in memory or disk. It is necessary 

to develop a file format and storage for large scale big molecular data.  

5.5. Methodologies for Integrating Multi-Omics Data 

Most recent technological advancements have enabled high-throughput omics data 

generation from various biological samples. Researchers have generated vast amounts 

of data regarding nucleic acids, proteins, methylome, and metabolites, among others. 

Data heterogeneity and the large scale of omics data bring about challenges both in 

achieving data scalability. Numerous methodologies have been developed for the 

analysis of each type of omics data individually, while only a few methods have been 

produced for a simultaneous analysis of two or more types of omics data. However, such 

analysis is required to leverage integration of multi-omics data generation of new 

insights and knowledge. This section aims to delineate, for researchers and technologists, 

the methodologies that may be employed for the processing of multi-omics data through 

suggesting big data pipelines. A narrative of these methodologies will be followed by a 

description of the collaboration with other research and technology organizations and a 

call to action for more systematic study. Since the origination of PCR, many 

methodologies have been developed for the analysis of each type of omics data 

individually. With the use of these methodologies, researchers have vastly increased 

knowledge about diseases and phenotypic traits through the analysis of genomics, 

transcriptomics, epigenomics, and other types of omics data. However, part of the 

distinctive function and connection mechanism of biomolecules in cells might only be 

understood through a simultaneous analysis of several types of omics data. A few 

methodologies have been developed for such a simultaneous analysis of two or more 
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types of omics data, but challenges remain in the availability and usability of such 

methodologies. 

 

Fig : Spatial transformation of multi-omics data 

5.5.1. Data Preprocessing Techniques 

The first-step advanced statistical analysis is data preprocessing, to ensure that the data 

inputted is of optimal quality. Preprocessing is an intermediate or initial step in which 

raw data are transformed into standardized formats to ensure quality and consistency 

before initiating an analysis. Even though omics data can provide insights into complex 

biological phenomena, each omics layer has biases in its measurements. Multi-omics 

data, specifically, differ in biases and discrepancies across data layers. Due to these 

biases and discrepancies, it is necessary to perform common preprocessing techniques 

such as normalization, imputation, and transformation, using statistical algorithms to 

correct for biases and ensure that the datasets are comparable across the different omics 

layers. In addition, missing values and outliers often occur in omics data and directly 

impact the results of integration analysis. Therefore, thorough data preprocessing is 
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essential to remove or reduce these issues. The treatment of these missing values and 

outliers is a crucial part in preparing the data for further analysis (integrating, clustering, 

classifying). This protocol suggests best practices for handling missing data and outliers 

in omics data to ensure efficient and accurate analysis, as well as reproducibility and 

comparability of results across different datasets. The proposed preprocessing steps have 

been performed using omics data analysis tools, wherein R is a powerful statistical 

computing programming language for the analysis of omics data that is widely used these 

days due to the presence of numerous packages for handling and analyzing omics data. 

In addition to that, tools may also be cited that have GUI form to facilitate the omics 

preprocessing procedure. This non-exhaustive list aims to provide a starting point for 

leveraging big data pipelines in omics data research. 

 

5.5.2. Statistical Methods for Integration 

Multi-omics data sets include, without limitation, genomics, transcriptomics, 

epigenomics, proteomics, and metabolomics, and other regulated entities. Substantial 

growth is foreseen in the holistic study of biological systems in order to promote health. 

However, accounting for the highly multi-dimensional and large data is difficult. This 

article reviews central needs and issues with such research and identifies advances that 

urgently occur. To simplify exploration and investigation of complex and big data in 

general and multi-omics large data in particular, it is recommended that the study and 

use of big data pipelines should be leveraged efficiently. 

Statistical methods are the cornerstone of multi-omics data integration. Strategies for the 

integration of several forms of example data are shown, and the factors are discussed in 

picking the appropriate methodology while accounting for the study context. The 

integration of multi-omics data is a difficult problem that has contributed to a growing 

body of literature. Various forms of techniques can be used to sum up and derive 

information from the dataset while also reflecting relationships and signals. Principal 

component analysis (PCA) is a basic strategy to achieve this, and network-based 

strategies continue to increase in popularity. Cluster-based and other unsupervised 

procedure types will also be used to identify common functions and data formats within 

the input or to group the output results. Together, those approaches are either 

conceptualised or computationally modelled, and a comprehensive range of 

methodologies have been created and tested. 

Applied workflows differ in complexity in multi-omics data integration despite the many 

techniques that exist and considering the data blankness, privacy policy, and goals of the 

research as well as the different aspects of the multi-omics data being researched. 
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Different datasets contribute various formats of data: single omics wide, single omics 

dense, numerous omics wide, and numerous omics dense. Each of these forms of data 

therefore keeps correspondence to specific variations of the model preparation and 

completion. Sample datasets are not appropriate for all network-based strategies, and the 

model distribution has to be taken into consideration in using certain modelling 

strategies. Nevertheless, both of these integration strategies are pliable to many various 

types of studies and data. Further, the results of these methodologies must be rigorously 

tested and validated.  

5.6. Applications of Integrated Multi-Omics Data 

Integrated analysis of multi-omics has the transformative potential for health research 

with the influx of high-dimensional omics datasets, recent advancements in 

computational tools and frameworks, and the emergence of big data pipelines tailored to 

processing such data. A focus on some of the successes and implications of current 

approaches prevails from this perspective: precise prediction medicine; disease 

prediction models; and case studies drawn from more recent literature. However, a 

broader overview of application in the literature is also provided that spans population-

scale assessments of linked multi-omics features; wearable multiple sensor data 

integration; and holistic patient monitoring, analysis, and behavior profiling for public 

healthcare management. These applications are shown to have far-reaching implications 

for a recontextualized ‘omics’ era and advocate for a pivot towards data-driven public 

health policy. 

Precision medicine is the most pervasive modern application for integrated omics. 

Precision medicine aims to tailor treatments to individual patients based on their biology 

as manifested through omics. By discovering the biological markers that relate to the 

clinical response of a patient, treatment can be targeted to those patient populations most 

likely to have a beneficial clinical effect, efficacy, whilst minimizing adverse effects, 

safety. In this sense, clinical decisions ultimately become data-driven, based on the 

biological profile of each patient’s disease. This simultaneous relationship of multiple 

variables is most effectively captured in a multi-omics framework. Multi-omics uses 

various types of genomic data that fit within biological applications that, when taken 

together, give information about the biological state of a patient: here, mutations, gene 

expression, and proteomes of tumors are integrated, and inturn, correlated with a 

patient’s clinical outcomes, thereby enhancing the personalization of therapy. Early 

success in this application has shown that multi-omics data driven approaches 

outperform other types of classifiers, which use only individual omics modalities. 

Application-ready big data pipelines that integrate machine learning tools with multi-

omics data preprocessing steps are also open source and increasingly accessible, and 
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successful applications of this type of method in the literature. For ease of illustration 

and wider impact, intensive focus is directed on three case-studies and the growing 

repertoire of disease indicating models, with an acknowledgment to the broader success 

and nuance of other applications. A more current perspective on the successful use of 

integrated multi-omics to characterize the emergent properties of complex diseases is 

water. 

5.6.1. Precision Medicine 

Precision medicine, also known as personalized medicine, is an approach that aims to 

provide the most suitable healthcare solution to a patient, considering his/her individual 

genetic, environmental, and lifestyle factors. It focuses on tailoring a therapeutic and 

preventive strategy that best suits the unique features characterizing a person. Given the 

large amount of information characterizing the biological makeup of an individual, the 

successful clinical application of a tailored therapeutic solution requires a deep and 

comprehensive characterization of the biological profile. The profile consists of multiple 

levels of information: genetic variants, together with the epigenetic modifications 

regulating gene expression, control the possible structural traits of an organism and its 

potential responses; the gene expression and pathway regulation; the metabolism profile 

and its regulation of environmental and diet interaction; disease-related proteins and 

markers; and, at the level of the environment, microbiota and other multi-omics related 

factors. The success of precision medicine mostly derives from linking this complex 

profile with the real clinical outcome of interest. The integration and interpretation of 

such a large and diverse amount of information proved to be a challenging task, tackled 

in recent years by leveraging some advances in the big data analytics field, with special 

focus on machine learning methodologies. Many successful stories have been witnessed 

in recent years in improving the patients’ responses to a particular treatment. 

But the full introduction of precision medicine in health care practices still faces several 

open challenges. The main problems currently limiting the full exploitation of omics 

data for personalized health are related to the privacy of data, the standardization of 

clinical omics procedures, and the reimbursement of omics technologies. Since a large 

variety of -omics technologies is available, each focusing on different specific biological 

traits, the big data analytics field has applied a variety of approaches to effectively model 

the extracted information. Big data analytics are widely based on network theory, which 

is traditionally used to represent and analyze complex systems. The general idea behind 

most of these models is the representation of biologic structures and processes 

characterizing the omics data as network structures (biological networks) modeling the 

interactions between the entities related to the multi-omics data of interest. A first set of 

methods on the market reuses the generated network structures to interpret the extracted 
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information, serving as biological knowledge bases. Alternatively, other approaches 

characterize the resulting networks underlying the -omics profiles. Several case studies 

highlighted in the section may show a number of successful applications of precision 

oncology that exploit the integration with multi-omics data. A separate paragraph finally 

discusses the future perspectives in the field, outlining how the technological advances 

and novel big data models may further leverage the application of the integrated multi-

omics strategies in precision health. 

5.6.2. Disease Prediction Models 

Early detection and preventative strategies can significantly reduce the burden of various 

diseases on individuals and health systems. To develop reliable strategies, risk factors 

and symptoms associated with particular diseases need to be identified, so that 

individuals at risk can take appropriate action. A variety of studies have investigated 

factors associated with different diseases using clinical data, genome-wide association 

studies, and animal models, among other approaches. However, predicting disease 

likelihood remains challenging because many influential factors are unknown, complex, 

or stochastic, and the predictive accuracy of models developed so far is limited. Multi-

omics data is now widely available, reflecting a variety of biological layers that are 

correlated with each other. The strength and nature of these correlations are often altered 

in pathways or networks upon perturbation of biological systems. By leveraging these 

correlations, disease prediction models can be informed by multiple layers of data or 

predictions obtained from other models. These correlations can be at the peak of gene 

expression from an animal model and be captured by knowledge-guided feature 

selection before fitting the model. Since these correlations are not captured directly by 

the model, they provide efficient communication and improve the understanding of 

biological systems. Both machine learning and statistical techniques can be employed to 

construct disease prediction models that can consider the complicated interaction 

between different omics and clinical/symptomatic data. These techniques can be 

formalized to generate estimates, expectations, or inferences in a more rigorous process, 

better managing the challenge of heterogeneous and large datasets well for high-

dimensional and noisy data, which is typical for bulk omics datasets. 

 5.5. Conclusion 

Modern healthcare practices are evolving. The era of ‘one-size-fits-all’ is being replaced 

with precision medicine where each patient will receive optimized healthcare based on 

their genetic, environmental, and lifestyle factors. A plethora of health determinants have 

been discovered that contribute to individual health, such as air quality, social-economic 
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status, diet, bacteria, viruses, land-use, genomics etc. With current technological 

advancements, it is now possible to monitor such health determinants in real-time. 

The integration of multi-omics data in modern health research is discussed. Highlights 

from the new health research methodology to generate holistic health insights are shared. 

Furthermore, the immediate health determinants and the expected real-time monitoring 

are discussed. Healthcare as-a-service is being transformed to personalized medicine. 

However, current health research practitioners are not capable of deciphering this wave 

due to various factors. A new evolution based on the integration of modern technologies 

in omics data will be discussed, aiming to ease the day-to-day practices of health research 

and health professionals. Similarly, continuous advancements and usage of various 

technology standards from sensor manufacturing companies will also be shared. In order 

to translate the holistic insights to actionable health results, big data pipelines will be 

discussed. Throughout this journey, challenges faced since they are evolving with 

technology and the ways to reduce or avoid them are also shared. Finally, potential future 

directions of this new evolution are shared, ultimately the goal of this awakening 

discourse is to pass a wave to the health research community in order to adapt and evolve 

with the technological advancements. The eon of precision medicine is upon us – the 

time to get ready is now! 

5.7.1. Future Trends 

Understanding of the human body has come a long way since Hippocrates first described 

his influence on health or disease as the notion of the ‘four humours’ working together 

to achieve ‘humoral balance’ over 2,000 years ago. Although other external factors were 

considered, at the core of everything were four balanced elements, or humours (blood, 

phlegm, yellow bile, and black bile). Imagine a world where the philosophy is replaced 

by a physics approach on analysis or observation of a noisy recording of the noisy body, 

exploiting the important elements such as measurement, signal processing and networks, 

as if the body is just another form of signal recording devices. Separately, they may not 

deliver full insights for the whole disease mechanism; but appreciate the fasciculating 

interactions among those elements that supply holistic and enriched knowledge. ‘Multi-

omics’ as a concept consists of multiple data types including clinical, environmental, 

and omics features. Acceleration of technologies along with reduction in price in the last 

10 years has also led to a dramatic increase in multi-omics data availability. At the top 

level, population-level ‘big data’ can be analyzed at the same time as utilizing the big 

data for individual participants. Naturally a critical part is the biology: the way things 

are working together, the networks and the biomolecular pattern, how the metabolism 

affect the way a person is presenting (or the other way around), and so on; there is a need 

to be the bridge between biologists and data scientists, uni-discipline research seems 
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likely fell short to impact real real-world science. In near future, something called 

passive omics can be found hanging above hippocratic heads for the multi-omics 

reading. When the data is analyzed in real-time by considering patient felt in a machine 

learning model, they never thought that any inherent potential in the aura of a care 

provider could push predictive modeling in holistic health, ultimately converting the 

obsolete intervention. Plus, new omics technologies have paved the ways in deciphering 

the non-invasive humours to better understand the health status of the body; and making 

the analysis is just a matter of sensing needs to surface the whole sickness humours. 

However, interpretation by onlookers belonging to current/parallel visions may differ; 

some may understand the early potential before its maturity like that big bang in the 40s, 

while others keep uttering words of doubt and indifference. Nonetheless, this big “multi-

omics” bang is happening, and its wave is propagating across every aspect of health. 

Ideally, this needs to be handled by a leveraged real-time distributed big data pipeline 

that may guarantee like what is achieved in dark matter research scenarios that multi-

omics data becomes a common entity or routine measurement in precision health. 
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