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Chapter 6: Deep learning algorithms in 

rare disease identification: Enhancing 

diagnostic yield from genetic testing 

6.1 Introduction  

Although not specifically acknowledged as such, approximately 80% of rare diseases 

are genetic and may have a great impact on either patient or family. Rare disease, often 

referred to as an orphan disease, may have yet unclear cause and could have various 

signs and symptoms in its different time course. Sometimes, it takes a longer time for 

the right diagnosis to be made due to the rareness of the condition, given that most 

physicians are often unfamiliar with rare diseases. This leads to the misguidance on 

therapy selection. Genetic testing is usually employed to support the diagnosis, or to find 

out some part of the trigger, by assisting the specialist in narrowing down the diagnostic 

possibilities. However, the diagnostic yield of the genetic test is not always 100%. There 

are some challenges in diagnosing the rare disease, namely the variability in presenting 

symptoms, the scarcity of physicians who are familiar with rare conditions, and the lack 

of access to the proper medical facilities required for the necessary diagnostic tests. 

Regarding the genetic causation of certain conditions, for example, genetic 

predispositions to complex diseases, genetic influences on drug response, or different 

genetic profiles between patients, the rare diseases can perhaps now be better diagnosed. 

More widespread availability of genetic testing has made it easier to identify a better 

treatment. Various genetic aspects could be obtained from the patient’s genetic data, 

ranging from the simplest one, such as the type of variant, and the type of effects brought 

by the variant, up to more complex profiles, like the pathway involved or the possible 

associations with other diseases. Traditional algorithms, however, failed to take into 

account the complexity of the genetic profile, and instead mostly only involved a 

simplistic binary decision-making process. To enhance the diagnostic yield, more 

advanced algorithms may be required to assist the specialist in exploiting the genetic 

profile. In recent years, the rapid technical advances in artificial intelligence have made 
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it possible to use deep learning techniques to improve diagnostic capabilities. This has 

resulted in saving some lives for patients whose disease remains undiagnosed for years 

or until it is too late. Moreover, the utilization of these algorithms may also help reduce 

the stress experienced by both patient and family and potentially lower the cost burden. 

 

                              Fig 6.1: Genetic Testing in Rare Diseases 

6.2. Background on Rare Diseases 

A rare disease, as defined by the United States Orphan Drug Act, is one that affects fewer 

than 200,000 individuals in the country. In other words, approximately 1 out of 2000 

people are diagnosed with a rare disease. Since the development of personalized 

medicine, rare disease prevalence is expected to be raised from the low 1% to around 

7%. This raises the estimated lower limit of the prevalence of rare diseases from 75 to 

around 500 per 100,000 population in Western, industrialized countries. Currently, on 

the RD-Connect platform, around 8400 rare diseases are recognized. Rare diseases can 

be classified into a range of countries. Moreover, the spectrum of rare diseases is wide; 

they include genetic, infectious, and autoimmune diseases, along with a long tail of other 

conditions. Particularly, the population comprises undiagnosed and complex cases due 

to, for example, overlapping phenotypes and multiple etiologies. Nonetheless, because 

of the relatively large count of diseases, and there being very few cases per disease, hand 

research of possible diseases and treatments are limited. New diagnostic methods can 
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help reduce the time from symptom onset to the first treatment as well as reduce the 

number of misdiagnoses. Nor would people no longer face years of searching for an 

explanation for their symptoms, with limited access to the appropriate services, i.e., 

knowledge and expertise, such as doctors, tests, support groups and equipment. Despite 

the urgency for improvement, diagnostic testing is less efficient for rare diseases. Many 

patients either never obtain a diagnosis or do so after a delay of more than five years post 

initial consultation. Even in cases with a diagnosis, patients still have a 25% probability 

of misdiagnosis, and this may result in inappropriate treatments, while common 

symptoms remain untreated. It is imperative that the impact of rare diseases is re-

engineered. One particular need is for new methods that would better utilize the 

information contained in the large volume of patient data generated by existing 

healthcare systems. It is believed that deep learning algorithms that incorporate broad 

medical expertise are particularly promising. 

6.2.1. Definition and Classification 

Rare diseases are characterized as conditions that affect only a small fraction of the 

population. For the majority of nations worldwide, the number cited most frequently is 

a prevalence threshold of 1 per 2000 individuals. Alongside the exact prevalence, this 

definition is usually accompanied by a range of additional criteria. Rare diseases can 

have inherent risks which cause altered biological, developmental, or cognitive 

mechanisms for survival. Careful collection and interpretation of data might be 

necessary to distinguish a rare disease from common diseases manifesting through 

common variations, or diseases of environmental cause. Moreover, a rare disease 

diagnosis for one patient does not necessarily mean a rare diagnosis for other patients 

with similar characteristics. As in the case of Bochdalek diaphragmatic hernia, 

Dolichocephaly and various other conditions, many disorders adversely but indirectly 

affect their body mechanisms. Epidemiological data about these diseases have been 

collected for years, particularly concerning their phenotypical protuberances. 

Nevertheless, such diseases are most challenging from a hidden data perspective because 

no obvious genotypes are available and they are inconsistently listed on death 

certificates. 

Rare disease classification is a means of categorizing diseases into related entities, 

enabling a distinction between a wide range of different diseases. These schemes help to 

extract demographics and evidence along the unique symptoms and illness of the 

population. Broad classifications also influence health decision-making, integrating data 

about several patients to establish a comprehensive likelihood of exposure or best 

procedures for treating similar patients. Rare disease classification can be done based on 

etiology, heredity and manifestation. Upon known information, rare diseases are often 
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classified based on the causality of the conditions. This can be genetic or acquired, and 

may comprise diseases for which no origin is identified and mapped (though complex 

diseases usually feature a known etiology). Meanwhile, several rare diseases are not 

wholly genetic or sporadic in their etiology, with a mixture of biological, environmental, 

and societal factors adding to the danger. Scientists classify these diseases separately, 

often with further sub-categorizations specifying the relative contribution of the 

elements in a multifactorial simulation. Finally, some rare diseases are wholly ignored 

due to the multiple insufficiencies of medical science, understanding of environmental 

factors, and general understanding of the disease. Consulting the sum of all the 

underlying biological components of a disease will be extensive and take years of 

research (Koppolu et al., 2022; Kaulwar, 2023) 

 6.3. Overview of Genetic Testing 

Genetic testing is defined as the testing of human tissues and/or bodily fluids in order to 

identify changes or mutations in a patient’s genome. These mutations are then assessed 

to determine the patient’s risk of developing certain inherited diseases. The purpose of 

genetic testing is to provide clinical diagnosis and prognosis to patients with diseases 

that are caused by alterations in specific genes. The medical significance of genetic 

testing has been increasing since the completion of the human genome project, and it 

plays an essential role in the diagnosis and understanding of a wide range of phenotypes. 

Clinical application of genetic testing may include confirmation of a suspected 

diagnosis, identification of at-risk family members for disease predisposition, guidance 

for specific treatment, etc. Genetic testing has been recognized as an indispensable tool 

in the diagnosis and understanding of rare monogenic diseases. This has long been an 

area of effort by medical researchers in the hope of identifying new drugs, vaccines, and 

therapeutic responses. 

Over the years, the effort has obtained limited success with merely 5% of more than 

7,000 rare diseases with associated genotype information. The main methods of genetic 

testing include Sanger sequencing, custom arrays, whole genome sequencing (WGS), 

and whole exome sequencing (WES). Sanger sequencing and custom arrays are used in 

DNA sequencing and genotyping of certain regions of the genome, while WGS and WES 

refer to sequencing the entire genome and the exons of genes. The vast majority of genes 

encode proteins that form the building blocks of cells. Exons are the parts of a gene that 

contain the coding information for proteins. Alterations can and frequently do occur in 

the genome of healthy individuals, collectively referred to as single-nucleotide 

polymorphism (SNP), insertion, or deletion. A change can interfere with the DNA 

replication process or lead to disruption of the normal coding sequence of genes resulting 

in different diseases. Mutations have been categorized broadly into three classes, where, 
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in general, the genetic sequence: gains, losses, or modifies gene function. Consistent 

with this hypothesis, there have appeared matching studies with gene level and protein 

diseases. The translation of the genetic code, perhaps not surprisingly, can cause either 

gain-of-function or loss-of-function of the translated species. Also, frequently, multiple 

mutations are needed to produce a disease state. 

 

                             Fig 6.2: Overview of Genetic Testing 

6.3.1. Types of Genetic Tests 

Genetic testing has become an essential component in the diagnosis and management of 

a wide range of clinical conditions. The advent of new technologies, such as next-

generation sequencing, has enabled the generation of high-throughput genomic data, 

thus offering hope for clinically relevant findings. Advances in genetic tests include 

diagnostic tests to detect genetic mutations that give rise to a clinical phenotype, carrier 

tests to identify genetic lesions in individuals who are asymptomatic but still have an 

increased risk of transmitting the disease, prenatal tests of pregnancies in affected 

families, and newborn screening. In the clinical-genetic field for rare diseases with ultra 

low prevalence, the development of these tests that complement deep learning models 

have expedited numerous relevant, eligible, and network assistance-based findings for 

accurate rare disease diagnosis. Despite the promise of high-throughput screening 

technologies, the massive expansion of genetic testing has led to an unmet interpretation 
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bottleneck in a myriad of fields such as cancer genomics, pharmacogenomics, and rare 

genetic diseases (Singireddy, J., 2024; Singireddy, S. et al., 2024). 

Advancements in genetic testing technologies have made it possible to use a variety of 

tests to identify genetic variations linked to rare diseases. Genetic tests can be developed 

for a variety of purposes to identify genetic mutations responsible for phenotypes. It is 

possible to note a subset of DNA alterations that have a strong causal relationship with 

the condition and accurately screen the variant on a randomized search of the fantastic 

roster at the right amount of times. If screening is conducted exhaustively hard, the 

number of candidate genes (or variants of standing) will still be returned for any 

phenotype and unaccomplished. With declining costs, the widespread adoption of the 

approach, particularly in population-based strategies, has fuelled new development. 

Deep-learning models have had success in a variety of applications across various 

biomedically-related tasks. Efforts to identify rare phenotype-associated variants have 

largely been focused on those that are PTVs, as they can be linked to a change in the 

stability, accumulation, or expression of messenger RNA; they are also more efficiently 

screened, because they typify a majority of the disease-causing mutations. This is 

particularly advantageous for single-gene disorders amenable to treatment that is 

efficacious only when initiated early in the disease course. Such a model does not 

currently exist in the clinical perception field. However, as genetic data in the human 

population accumulates, concerns about the phenotypic meaning of genetic variants will 

increase and machine learning methods will need to be developed to address these 

concerns to a greater degree. 

New gene variants likely underlie Mendelian diseases with an unknown etiology each 

year. However, the diagnostic yield continues to be less than 25% on average in studies 

involving sequencing of the entire genome or exome. Data collected across 5 research 

initiatives worldwide showed that a modest 7.7% of unsolved probands could benefit 

from appropriate treatment when mutations in the candidate gene were finally identified. 

This compares to only 1% in the entire unsolved sys-4 cohort. Ongoing analyses on over 

42,000 novel gene-disease relationships discovered through 6.454 studies have shown 

that across 5 major disease groups, a typical Mendelian disease now traces to nearly 20 

genes. Deep-learning algorithms have achieved outstanding progress in a range of 

biomedical applications. Inaccuracies in the genetic testing procedure led to grievous 

tragedy in the discovery and decline of protein-coding genes. Efforts to seal the 

candidate cpDNA (or novel nuclear gene) were made considerably harder by the 

involvement of two female offspring as a sibling pair. Profiling the entire shared ups of 

parental and offspring mitochondrial variants using either the approach or meta-analysis 

would have immediately narrowed down the genomic scope of interpretation. In data 

from a suitably powered deep learning algorithm, it would be within the reach of a 

candidate discovery screen by amplification akin to those used in previous studies on the 
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genetic transmission of mitochondrial disease. However, similar knowledge of the actual 

mutation’s prior probability could easily have caused a review of the tragic loss of time.  

6.4. Deep Learning Fundamentals 

This part aims to introduce the basic and new concepts such as deep learning methods 

on medical data and the motivation. In addition, it explains the progression of machine 

learning methods and the foundation of deep learning. Ahead of the hope of support, a 

reader can easily understand the following parts along with those descriptions. 

The ability of computers to autonomously learn patterns from data has revolutionized 

many aspects of life as well as clinical practice, notably in diagnostic testing. Deep 

learning is a subset of machine learning methods that has demonstrated particular 

promise in medical diagnostics of rare diseases. Most deep learning methods build upon 

neural networks, which are computer algorithms inspired by the arrangement of 

connections in biological systems. Traditional neural networks are relatively shallow, 

consisting of 1-2 “hidden layers” of neurons that modulate the relationship between input 

data and target outputs. Deep learning methods, in contrast, consist of more complex 

neural network architectures with many layers that capture intricate nuances in the data 

more effectively. 

In a clinical context, deep learning is often used for either supervised or unsupervised 

learning. In supervised learning, the input data and target values are used to train a model 

to predict those targets from a new data set. In the case of diagnosing rarity disease 

patients, a very large collection of features on many examples from different patients is 

used to train the algorithm. The trained algorithm can later be applied to a new patient’s 

data to predict a diagnosis. Because deep learning models are able to handle very large 

datasets very efficiently, this approach is particularly well suited to the unique challenges 

of rare disease identification tasks in the healthcare sector. 

6.4.1. Introduction to Deep Learning 

Deep learning is a significant area of machine learning and is based on artificial neural 

networks, i.e., a set of algorithms designed to detect patterns – in this case, patterns from 

genetic data. The breakthrough of deep learning is primarily due to big data, increased 

computational power, and the innovation of some techniques. Neurons are the building 

blocks of artificial neural networks. Each neuron is connected with other neurons 

through synapses. Every connection is associated with a weight, signifying the 

importance of the input. Neurons sum up all the inputs and produce one output. 

Generally, neural networks have an input layer, one or more hidden layers, and output 
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layers. Hidden layers boost the ability of neural networks to learn the representations of 

input feature spaces. When there are two or more hidden layers, the network is known 

as a deep neural network. Complex series of transformations are made by deep neural 

networks on input data to learn and represent the underlying distribution effectively, 

which greatly distinguishes them from traditional predictive models. Capacity is boosted 

by adding more hidden layers, and the network can automatically extract hierarchical 

features through these hidden layers. Deep learning architectures can gain insights at 

different levels of abstraction or timescales from data. The feature space of data will be 

transformed with the mechanisms integrated in the network before it is delivered into 

each layer. In this way, traditional methods heavily rely on a priori knowledge of data, 

whereas deep learning architectures can automatically learn feature spaces and data 

representation. According to the network structure and the mode of information 

propagations, there are many specialized types of neural networks. Feedforward 

networks are the simplest type of neural networks where information is only propagated 

forward. Recurrent networks are capable of managing time series data generated in 

sequencing times, which can be interpreted as cyclic graphs.  

6.5. Deep Learning Algorithms in Medical Diagnostics 

With the increasing availability of medical data, traditional analytical methods often 

reach their limits when analyzing large datasets with a high level of complexity. Deep 

learning algorithms provide new opportunities to detect patterns in such datasets, which 

are hardly recognizable by humans or traditional analytical methods. Essentially, deep 

learning algorithms learn to model high-dimensional relationships from data, often 

without the need for prior knowledge or a precisely defined algorithm. The applications 

of deep learning algorithms are manifold, especially in the field of medical diagnostics. 

They are classified into two categories: First, there are classification algorithms. They 

are trained to assign data to certain groups. On the other hand, regression algorithms are 

used, which can determine certain continuous values on the basis of the data. When used 

correctly, both types of algorithms have the potential to increase diagnostic accuracy by 

leveraging large amounts of medical data. In recent years, many scientific studies have 

shown that the performance of deep learning algorithms in several tasks even exceeds 

the capabilities of experts. The results obtained in healthcare are particularly promising. 

Time-consuming diagnostic processes can be automated by deep learning algorithms, 

thereby improving both diagnostic yield and patient care. Despite this, experts continue 

to face challenges in transferring deep learning research results from academia to the 

healthcare sector. Special challenges in the medical field relate to the quality of the data 

or the interpretability of the algorithms used.Challenges pertaining to the application of 

CNNs to rare disease diagnostics are also present. They include the requirement of vast 

datasets, as well as a need for flawless data labelling. Moreover, a considerable number 
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of fine-tuning experiments is needed before the model may be considered effective. In 

conjunction, this increases the complexity and time of the whole process. Due to the 

scarce prevalence of these illnesses, the data quality is often subpar. Furthermore, using 

raw results from genetic or biochemical analysis is either too cumbersome due to the 

size of data or impossible to utilize as is in the case of brain signals. 

 

Fig : Rare-disease genetics in the era of next-generation sequencing 

6.5.1. Convolutional Neural Networks (CNNs) 

Relatively Untapped Potential In Healthcare: Advanced Deep Learning Algorithms - As 

a result of a sharp increase in the number of research papers and large companies taking 

interest in the topic, a multitude of approaches to rare disease identification have been 

proposed. Nevertheless, significant potential remains relatively untapped, especially 

regarding the application of advanced deep learning algorithms to multidimensional 

data, such as gene expression profiles or brain signals. This project sets out to examine 

a broad range of approaches implying the implementation of rare disease diagnostics and 

employing convolutional neural networks (CNNs). In this regard 2 projects are specified. 

The former entails the development of an application relying on a CNN to detect traces 

of rare diseases in medical imaging diagnostics reports. The latter focuses on combining 

multiple bioinformatics containers containing deep neural networks suitable for 

classification of gene expression data and screening them against several rare diseases. 
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Convolutional Neural Networks (CNNs) are an application of neural networks utilized 

primarily for processing multidimensional data, such as images. They usually consist of 

multiple layers modulating primarily convolutions and pooling. Owing to the specific 

structure of convolutional layers, CNNs are able to identify features within data. These 

features are not predefined as opposed to subsequent image processing technique 

applications. They consist of patterns characteristic for a specific set of training data. 

CNNs have shown significant performance in medical imaging diagnostics and have 

been applied, among others, in diabetic retinopathy detection, pathological pulmonary 

nodule detection in chest x-ray files, and breast cancer diagnostics based on 

mammography results.  

6.6. Application of Deep Learning in Rare Disease Identification 

In this rapidly evolving scientific and technological landscape, this paper and the 

interactive diagnostic platform presented within it aim to assist academics and clinicians 

in understanding the practical application and translation of deep learning algorithms in 

the time-efficient identification of rare diseases (RDs) and other conditions of underlying 

genetic origin. By using genetic and clinical phenotypes, six different types of deep 

learning approaches can be used to enhance the diagnostic yield of genetic testing panels 

and other genetic health tests. Genomic and phenotypic sentence encoders are 

introduced, the former derived from novel sequence-to-sequence architectures for 

genetic variants and the latter from the modification/rescaling of a publicly available 

clinical sentence encoder. 

There is mounting evidence of the significant contribution of deep learning algorithms 

to the field of precision medicine, through improving the interpretation of integrated 

genomic and medically-derived patient information. Affecting a considerable number of 

people, tens of millions in the US and hundreds of millions globally, RDs can be 

categorized as a form of precision medicine. Importantly, this type of condition is caused 

by genetic alterations, so the underlying genetic cause can be identified following the 

performance of next-generation sequencing technologies to sequentially read off a 

person’s DNA at single-base resolution. Moreover, many RDs have specific or highly 

specific clinical manifestations, so clinical characteristics may also suggest genetic 

analyses for suspected patients. In this way, beyond appreciating the advantages of 

precise treatment decisions taking advantage of genetic and phenotypic information, 

there is a strong academic interest in understanding the practical impact of different 

machine learning methodologies on real-world diagnostic yield increment after utilising 

pan-genomic and, particularly, clinical seq-data. In what follows, at first, as background 

information necessary to understanding the practical application of learned 

methodologies and the design and descriptions of the presented interactive tool, a 
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discussion will be done on the fundamentals and current approaches in the mathematical 

formulation of the RD identification problem and a review of the relevant literature on 

the topic. 

6.6.1. Data Sources and Preprocessing 

Rare diseases, by definition, indicate medical conditions with very low prevalence in the 

population. However, due to the numerosity of uncommon diseases, it is estimated that 

up to 300 million people worldwide are at the same time affected by a rare disease. The 

early identification of rare diseases is still a primary need, but it is often more complex 

and often involves a longer time span compared to pathologies with higher prevalence. 

Deep learning-based tools hold great potential to help clinicians. One of the factors that 

mainly limits the performance of such tools is the reduced size of labelled datasets. 

Several factors are impeding the generation of these sets, including privacy concerns, 

complex data access issues, and non-rigorous data governance. Several case studies are 

discussed that showcase the effectiveness of the designed data sources and 

methodologies as well as current practice pointers to significantly enhance strategies for 

sourcing or generating data. 

When using deep learning algorithms to train predictive or generative models for rare 

diseases, it is crucial to provide data sets composed of genetic data, if available, together 

with clinical and demographic information. Optimal data quality and the balanced 

representation of different groups will affect the success of training algorithms. Barcode 

data generated by or commercially available sequencing becomes ubiquitous in research 

and healthcare. This data is portable and can be codified as images, which is ideal for 

the application of recent computer vision techniques. However, such data is also 

challenging for reliable deep learning-based bioinformatics analyses because of its high 

dimensionality, and also often leads to biased models, thus further limiting its diagnostic 

value. 

Based on a common set of DNA samples, a non-targeted deep learning study is employed 

here to underline the biases found in the genetic data, and to subsequently discuss their 

consequences on the analytical results. In addition, on-target sequencing studies are 

discussed and recommendations are made that might allow to minimize the biases 

described here while fostering a better understanding of the underlying biology, and 

eventually realizing the full potential of DNA data to study and diagnose rare diseases. 

It is highlighted that improved data sourcing and preprocessing can contribute 

significantly to the success of deep learning-based initiatives. When using effectively 

preprocessed, shared and commonly cited benchmarks, generated by large datasets, 

algorithms can achieve F1-scores that are comparable or even exceed those of other 

healthcare applications. On the other hand, initial explorations with heterogeneous, 
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unprocessed datasets often lead to models with very poor performance. Therefore, before 

embarking on deep learning technologies, strict protocols for the collection, curation and 

sharing of the data tailored to the intended applications should be considered. Addressing 

all of the above issues typically requires interdisciplinary collaboration between 

computational, life, social and medical scientists, as well as legal and privacy experts.  

6.7. Conclusion 

Artificial intelligence (AI) has become increasingly important in improving the 

diagnostics of knowing rare diseases. For hospitals and private health care providers, the 

improved diagnostic validity of deep learning algorithms are transforming the genetic 

testing market. In recent years, the global adoption and integration of AI networks in 

assorted sectors, most notably in healthcare and life sciences, has expanded swiftly. In 

the area of genetic disease diagnostics, this has had a substantial impact. With the support 

of deep learning networks, genetics technicians and medical professionals are able to 

diagnose illnesses much more precisely and successfully. This is of particular interest 

when it comes to rare disease diagnosis. 

Provided that deep learning methodologies are integrated into the customary diagnostic 

practice, they repay the variegated difficulties in the genetic diagnostics of rare diseases. 

A total of 8% of genetic diseases affect people. Since mutations in the DNA occur, the 

majority of genetic disorders lead to a disease pattern that is handed down from parent 

to kid. In addition to frequent genetic diseases, there are also uncommon genetic 

disorders, generally referred to as rare diseases. The number of individuals with rare 

diseases totals 400 million worldwide, and more than half of rare maladies affect 

children. The demographically significant quantity demonstrates the demand for deep 

learning diagnostics in the field of rare disease diagnosis. It is anticipated that because 

of these circumstances approximately 29 million Americans are affected by a rare 

genetic disorder. In order to accurately diagnose a rare genetic disease, a next-generation 

sequencer must be done before a geneticist can examine the results. However, 

distinguishing between disease and non-disease mutation might be difficult even then. 

The final method, the third implementation, develops a deep learn-based model for 

genetic diagnostics. The NGS cohort is divided by deep neural nets that train groups 

composed of disease-full and self-trained, insurance-free datathon inspections. By using 

the model learned over the self-trained data, the clinical geneticist can determine whether 

a novel NGS positive genetic variant is related to the medical condition of the patient by 

comparing it with the insurance-free data of the positive sets learned. The method behind 

the recommendations section to inspect genetic variance and deploy recommendations 

gradually. There are so many research studies which have been attempted to improve the 

genomic and genetic methods for the identification of rare diseases. 
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6.7.1. Future Trends 

This paper has examined a few use cases for deep learning applications in the genetic 

testing process for rare diseases. By analyzing the most successful applications, and the 

few that are not, future trends in technology, methodology, and challenges to tackle have 

been identified. Data processing will play a key role in continuing to improve the use of 

AI in this domain, as the arrival of more organized and refined datasets opens the door 

to more extensive applications of deep learning. On the clinical side, opportunities to 

facilitate the delivery of rare disease interpretation services by healthcare providers have 

been identified. Partnering with patients and increasing their preparedness for DNA 

testing has the potential to significantly increase the diagnostic yield from the sequenced 

genetic data. Finally, future efforts are discussed that will be necessary to further 

investigate how compliance with professional practice guidelines can be better supported 

and fostered by the use of AI tools. The development of artificial intelligence (AI) takes 

on a multitude of, often novel abilities. A field of AI, machine learning (ML), further 

drills down to create deep learning, whose DCNN format is herein succinctly referred to 

as just deep learning. Beyond improved diagnostics, with the potential of expanded 

telehealth, this methodology has application to the realization of cutting-edge therapies 

that had no prior feasible pathway. AI is not constrained by paradigm, permitting 

reconsideration of how complex diseases might be approached in favor of novel, 

potentially more viable solutions. For instance, thalidomide-induced disease had been 

viewed as irreversible due to extensive limb damage; however, AI found promise in 

epothilone. Historic instances of malign bias underscore the need to prevent a repeat 

outcome. Emerging AI-based diagnostics of rare disease may soon surpass abilities to 

maintain a pace with subsequent drug availability. Without advanced intervention, AI 

has potential to widen the gulf serving as an eventual detriment to afflicted individuals. 
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