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Chapter 8: Population-scale genomic 

initiatives: Harnessing artificial 

intelligence to understand heritability, 

risk factors, and intervention windows 

8.1 Introduction  

As genetic research accelerates, the prominence of understanding heritability and its 

underlying risk factors grows rapidly. With the application of artificial intelligence (AI), 

population-scale genomic initiatives can be exploited to gain insights into genetic 

architectures and associated risk factors, paving the way to craft evidence-based public 

health strategies. These strategies, predominantly pharmacological and behavioral 

interventions, allow for the discerning of potential therapeutic or preventive intervention 

windows. On these grounds, a multidisciplinary framework combining genetics, data 

analysis, and public health is outlined to exemplify the potency of a risk-factor-aware 

approach in unveiling genetic insights and devising personalized public health strategies. 

Enabling timely public health intervention is contingent upon the early identification of 

individuals at higher genetic susceptibility, demanding a delicate characterization of 

inherited risk factors probing diverse biological pathways. Heritability studies aim to 

delineate genetic underpinnings embedded in demographic structures; moreover, to 

fulfill this mission, a battery of genetic and phenotype data needs to be collected and 

analyzed consequently. Given the scaling issue with the analysis of big data in a complex 

non-heuristic space, the burgeoning sophistication of AI emerges as an imminent 

solution to facilitate modeling and analysis. However, the overall risk of a disease or 

trait is determined by a legion of genetic and environmental factors interacting in a 

dynamically stochastic fashion; hence, there is a pressing need to consider the effects of 

polygenic and risk-factor-mediated susceptibility conjointly in a parallel scalable 

approach for public health planning.  
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Against this backdrop, a population-scale genome initiative is highlighted, which 

undertakes a timely analysis on the most extensive genome-wide association study 

(GWAS) to unravel demographic structures across the entire trait spectrum. To articulate 

public health implications upon the identified genetic insights, a novel risk-factor-aware 

framework is postulated, and an analytic model is tailored to project cognitive functions 

by integrating distinct types of genetic and environmental risk factors into a coherent 

biological understanding. Substantive results across diverse health outcomes are 

presented to exhibit the potency in revealing clinical risk factors, discerning genetic 

insights, and crafting precision public health guidelines. 

 

Fig 8.1: Integrative genomics 

8.2. Background and Significance 

A number of varied breakthroughs in human genomic and phenotypic research over the 

past decades have progressively enriched the understanding of genetics, from analyzing 

the basis of single-gene mendelian diseases to deciphering mosaic and clonal mutations, 

and exploring population-scale genomic studies. Through the lens of heredity to 
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phenotype, more details about the effect size distribution, the conditional dependence 

structure, the non-linear effects, and the temporal characteristics become available with 

publicly disseminated insights and tools, so as to facilitate the research. Regardless of 

the diversified kind of phenotypic traits across different scientific domains, they are all 

suitable to be formulated as the huge but sparse group of heritable traits at molecular 

level. 

Based on this thread of thought, a collection of population-scale genomic initiatives aim 

to unravel the implicative patterns of genetic variation on the broad array of heritable 

traits across the human population, targeting the comprehensive survey of heritability 

and other simplified genetic features. Additionally, a much broader scope of research 

questions and tailored topics is explored, extending from the spherical perception of the 

“(Omni)cs” of phenotypic traits and the mitigation strategies in data visualization, to the 

identifiability analysis on the signatures of different risk factors as well as the inferential 

investigations on the timely windows for the corresponding interventions. 

Great expectations have been placed on the actions in facilitating the understanding for 

the genetic basis of traits and to promote personalized, preventative, and evidence-

guided healthcare, so new challenges in the data availability, the methodology, and the 

policy-making can also be reasonably anticipated. 

8.3. Overview of Genomic Initiatives 

Since the first completed human genome sequence was announced two decades ago, a 

variety of large-scale genomic initiatives have been established across the globe. 

Ranging from large multinational consortia to smaller national projects, the objectives 

and methodologies of these initiatives are diverse. Many projects aim to undertake large-

scale sequencing of currently underrepresented and under-researched populations for the 

first time. Such efforts have also led to the establishment of biobank and database 

research infrastructures that facilitate the collection and sharing of diverse genomic data. 

Quite different are those national projects focused on disease-associated genetic 

determinants which rely on extensive international collaboration to enable statistical 

power to detect modest genetic effects. Entirely new methodologies have been 

developed to collect and analyze genomic data on a population-scale, addressing issues 

of privacy and security, consent, and data governance in a way that is exemplary for 

other potentially similar interventions. These differences have (or will have) a profound 

impact not only on individual health but also on the broader societal aspects of public 

health (Challa, 2022; Gadi et al., 2023; Burugulla, 2025). 
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Substantial efforts are currently underway to identify the genetic determinants of a large 

number of complex traits and common diseases. For some of the more easily defined 

and detectable genetic risks, there exist at least possibilities for effective intervention. A 

recent approach, termed genomic measure risk profiling (GMRP), integrates genotype 

data into simple non-laboratory demographic risk profiles providing a new window of 

opportunity for the targeted early initiation of evidence-based intervention programs. 

Given widespread and unrestricted social media access, the effectiveness of such 

programs could potentially extend to the majority of the population. 

 

Fig 8.2: Overview of Genomic Initiatives8.4. Artificial Intelligence in Genomics 

Artificial Intelligence (AI) is revolutionizing several domains, including medicine where 

applications of AI, such as image analysis, are now surpassing human performance. 

Large language models have shown potential and are reshaping the landscape of the 

field. Yet, despite common discussions of polygenetic complex traits and direct-to-

consumer testing, the potential of AI for genomic discovery is not as widely discussed. 

This potential is of great interest and on the horizon as biology’s ability to collect, 

process, and understand growing amounts of data far outstrips growth in tools and 

theory. Despite expansive bioinformatics research into machine learning and deep 

learning, the genomics community is still in the early stages of applying these tools to 

the gamete-to-gamete human genome. There is substantial promise for AI-based 
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predictions including faster and more accurate scaling analysis of loci-by-loci functional 

impact and polygenic risk. These predictions could shape new findings, hypotheses, and 

the development of novel medicine. However, the inherent complexities of genomic data 

present major technical challenges. As this multidisciplinary and resource-intensive field 

grows, it is important for practitioners to be prepared and have frameworks for working 

with big data (Pamisetty et al., 2024; Gadi et al., 2023). 

8.4 ML and Data Processing  

8.4.1. Machine Learning Algorithms 

In order to understand the genetic basis of complex traits, machine learning has been 

used quite successfully in genomic transformer research, revealing new insights related 

to the heritability of difficult-to-predict traits. There is considerable heterogeneity among 

machine learning research articles, though most rely primarily on shallow models, often 

referred to as the current state-of-the-art benchmark models, to triage risk loci of genes 

for more traditional downstream analyses. However, modern machine learning methods 

allow for intricate non-linear patterns to be automatically detected, creating new 

opportunities for interpretable models, hinting at the underlying genetic architecture. 

Many studies nevertheless reported a lack of improvement over standard algorithms due 

to inappropriate or hyperparameter-overloaded modelling; deployment of an ad hoc, 

black-box model framework; or the use of opaque and complex models lacking in 

biological interpretability. Though improved performance metrics were frequently 

reported, it was often through a breakdown of the bias-variance tradeoff. Sometimes, 

models were tuned to the validation set in the presence of substantial syndrome 

predictors, which were subsequently taken as targets for the test set, artificially inflating 

predictive accuracy. With the bias towards shallow models grounded in rudimentary 

representations resulting in performance degradation in complex tasks, recent 

sophisticated advances in biologically-informed machine learning models have not been 

thoroughly applied to genomic transformer research tasks. Given the ascertainment and 

population stratification biases present in most genome-wide association studies 

datasets, it is realistic to assume that spurious associations with broad heritability 

estimates could be identified, complicating the interpretation of training genomic-risk 

models. And while numerous works were careful to examine the impact of confounders, 

leading to a precise estimate of the association between a risk locus or gene and a 

particular disease or trait, other articles reported mostly missing information about the 

approach to data analysis and thus results difficult to be interpreted in the context of 

understanding the underlying assumptions of the predictor. 
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8.4.2. Data Processing Techniques 

For the advancement of genomic science, data must be linked to generate deep 

knowledge and interpretation. However, the amount of sequencing data produced by 

consumers, patients, individuals, and scientific studies is currently scattered in silos 

thereby hindering this potentially rich source of information. Here selected data 

processing techniques, following brief coverage of data cleaning, normalisation and 

integration methods are reported. Software, as well as self-made algorithms, is 

described. These are selected using a criterion of providing an actual service 

(performance or other type) with the aim of linking both data and biologists. However, 

software such as ; databases like ; web-based tools included  is mentioned. Microarray 

technology has shown its potential to measure the expression levels of a huge amount of 

genes in parallel. High-throughput tasks usually raise a lot of issues about handling data, 

and so microarray datasets also do. Some of these data tuning problems are usually 

referred to as data manipulation issues. 

After that step, the proposed ways for data normalisation such as cross-platform and 

within-platform normalisation, and techniques taken into account, are presented. 

Additionally, a number of software and algorithms are described. Although many drugs 

act transgressing their usual protein or gene pathway, various drug focus only studies 

have run based on the influence of drugs on gene expression. For such studies about 

cross-platform datasets, one must normalise all of them to a common basis. The 

aforementioned topics so far covered are well-utilised issues about genomic data. But 

more than that, it is far possible to work on them exactly before or in parallel with 

running any analysis. Before linking transcripts and SNPs, a widely held practice is to 

prune data via techniques known as dimensionality reduction (PCs, genes, or SNPs), or 

selection of the most important signal (genes or SNPs) is performed.  

8.5. Understanding Heritability 

Harper and RK is a scorebar functional mirong deoxy bromic constant simulation of 

college students. Rich diet causes poor salt state. College students bite salt and rice over 

time. Salt states. Salt state as a phone is a state of organic changes and functional 

disorders arising from people biting rough food. Although college students have dental 

equipment, rich tuition can also cause a salt state. These organic changes, such as non-

carious lesions, gum degradation, tooth polishing, and tooth sharpness, make it easy for 

partial particles and bacteria to adhere and accumulate in the tooth recess or the edge of 

the tooth slot, further damaging the tooth gloss enamel. Over time, the biological 

diversity becomes an aggregation plaQUA, eroding the tooth form structure and further 

destroying the strength of the teeth. Also, these impurities when biting, may adhere to 

the gengase mucosa, resulting in chronic diseases such as gingivitis, periodontitis, and 
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even cancer after a long time. The ripe cotton material and roast material consisting of 

70% crude fiber, coarse protein, and coarse fat will be mixed and cut into approximately 

25% powder fertility feed, which is the fixed dose. College students have five Rhesus 

monkeys, respectively: feng p, nasha with chis a stack, zizio, tung chin and census. 

 

Fig : Genomic and Personalized Medicine Approaches for Substance Use Disorders 

(SUDs) 

8.5.1. Genetic vs. Environmental Factors 

Phenotypic traits are the product of an incompletely understood interplay between 

genetic and environmental factors. Economists, biologists, physicians, and lawyers alike 

increasingly seek to understand the respective roles of nature (genomic inheritance) and 

nurture (molecular environment). According to one class of evidence, any given 

individual faces a genetically influenced probability of succumbing to a particular set of 

discrete diseases. Although health outcomes are heterogeneous, genotypic 

inheritability—a continuous measure—is also likely to be relevant. Moreover, the 

biology underlying genotypic inheritability is increasingly understood. Finally, the shape 

of latent genotypic vulnerability risk is also of interest. 
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Various environmental influences such as diet, physical exertion, exposure to microbes 

and toxins, affect health through biochemical, biomechanical, and genetic pathways. 

Consequently, genetic control is likely to make a significant difference in an individual's 

susceptibility to disease. As one example, with the rise of personalized medicine, 

knowledge of genotype-specific information sheds light on exactly how individual 

health outcomes might be impacted by internecine factors—such as the timing of drug 

or radiotherapy administration. As another, environmental influences can modify genetic 

expression—such as in the case of lifestyle changes that affect the genetic risk posed by 

type 2 diabetes. Similarly, the presence of a particular genetic factor, such as copy 

number variations at the SCN1A locus, can dictate alterations in salt intake that perturb 

an individual’s health. 

In the other direction, genetic risks can also be modified by the environment. In 

particular, the environment is often “upstream” of genetic factors. That is, premature 

death is likely to be driven by a medical decision such as refraining from surgery or 

treatment, which in turn are particularly acute after genetic factors have already been 

incorporated in the educational or professional development of a legal-mind. 

Furthermore, measurement error is pervasive in detecting environmental influences such 

as deaths from other physicians, most lifestyle metrics or the correlation of employment, 

pre-existing health status, exposure to toxins, and so forth. Nonetheless, heritability rates 

substantially increase after accounting for measurement bias when using a standard 

epigenetic research design. That said, a full discussion of these complexities is best 

relegated to the somber science. 

8.5.2. Quantitative Trait Loci (QTL) Mapping 

Quantitative trait loci (QTL) mapping is a set of analytical methods that can be used to 

identify the genetic influences on quantitatively varying phenotypic traits. Traits can be 

thought of as arising from the action of a few genes of large effect or from the additive 

effects of many genes. Additionally, QTL mapping can be used to help identify specific 

regions of the genome that influence these traits. Many different approaches have been 

developed to estimate the probability of association between a marker genotype and a 

quantitative trait. In the mapping populations, marker and quantitative trait data are used 

to calculate the association between a quantitative trait and each location on the genome. 

The use of support intervals in QTL analysis has been suggested as a means to maintain 

accurate type I error rates. Linkage analysis methods are used to estimate the association 

between the quantitative trait and each point on the genome conditioned on the other 

points in the genome using the data from the entire genome. 

Genome-wide association studies are a much higher resolution than linkage analysis; a 

study comparing linkage analysis and two commonly used statistics for genome-wide 
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association studies. These statistics are the Mantel test and the score statistic; they found 

that linkage analysis and the Mantel test gave similar performance in terms of power. 

There is no technology available to identify all or even most of the polymorphisms in 

the genome, and the markers of interest in QTL mapping studies are the polymorphisms 

that are responsible for the QTL. The use of diverse populations, which do not 

necessarily mirror the genetic structure of populations that are the ultimate target of QTL 

findings, can increase the accuracy and relevance of the QTL results. However, it is 

known that the technologies used for the development of genetic mapping projects tend 

to preferentially select for polymorphisms that are then used in the genotyping studies. 

Because of this and other sources of bias in modelling, it is thought to be important to 

compare model-based QTL mapping results obtained with real data to ‘null’ results. 

Evidence for linkage on chromosome 4 using the Mantel test was found when this 

chromosome is near the gene but only weak evidence was found using Score. In these 

studies, there are no other chromosomal regions that show evidence of a position effect. 

There are a number of environmental factors measured in the mapping population that 

could potentially interact with blends. Additionally, there are no formal tests to identify 

gene-environment interactions or correlations on the genome. Passingham proposes that 

there are at least four ways in which this mapping of the physical to the genetic map can 

occur—overdominance, divergence in recombination rate, and amplification of 

inversions or deletions.  

8.6. Identifying Risk Factors 

Why do some people get sick and others do not? This simple question has challenged 

philosophers, physicians, and epidemiologists for centuries. From the black bile of the 

Greeks to the fauna of Van Leeuwenhoek and the yeast of Pasteur, the focus has 

oscillated between humor, germs and, more recently, cost and potential of social 

systems. It is true, of course, that the sum of all risks for disease can never be completely 

identified-finding such risks-promises?: Some suggest that exposure to a specific 

mixture of cobweb, sand and ice is avoided; Grime Swedes never benefit of heavy vote; 

Causes: Delayed marriage decreases the risk of quick divorce; Avoids: Cases are hunted 

down in all countries, whilst controls are immune from relevant diseases. The logical 

extreme combining risk aversion with the belief in genetics would be the activity 

described in the US magazine for insurance professionals. Outside commerce, however, 

the answer remains merely to reduce the risks of disease through animal barriers of 

lifestyle, screening and medical guidance. 

To a large community of medical geneticists, the question posed by GxE now seems 

entirely plausible and the concern shifts towards the exact identity of the Xs instead of 

the old-fashioned ones described by their simple Mendelian tree. During the last decade, 
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great strides have been made in developing laboratory methods for the analysis of such 

Xs, laying down the infrastructure for a population scale endeavors with the “P” attached 

to Y and the “X” signifying data obtained from 450K single-nucleotide polymorphisms 

arrays. Sorting out causal Xs from correlated Xs is, however, a complex and challenging 

task even when dissecting the question for a single trait. Such an increment in covariates 

not only increases the number of joint hypotheses but also offers a multitude of 

mechanisms by which a trait is influenced-mediators. Beyond that, the identification of 

causal mechanisms for Xs partly rooted in the early onset of a disease must draw upon 

more subtle and speculative hypotheses. Considering a large number complex and 

possibly interacting Xs in the light of their dynamic influence across life seems then 

extremely ambitious. 

8.6.1. Genomic Risk Prediction Models 

This subsection presents a brief overview of genomic risk prediction models. When 

genetic data are integrated, these models assess one’s health risk with respect to a 

particular condition based on his/her genotype and environment. Genomic predictions 

can involve the absolute risk for an individual of developing a particular condition, the 

relative risk for developing the condition compared to other members of the population, 

and the effect of genomic data on the likelihood of the condition all together. It is 

important to continuously discuss genomic risk prediction through the life of the Journal, 

because as this field of science rapidly advances, risk models, counseling approaches, 

and medical strategies are constantly updated and in need of discussion. 

Genomic prediction of a condition typically involves the predicted risk of developing 

the condition over a fixed time period. Genomic risk prediction models have become an 

important aspect of making personalized health decisions, and as such these models have 

become an important area of research focus. Such models have been developing for 

major clinical conditions and are inherently multivariate combining the small, but 

prevalent, effects of a vast number of loci with individual genotype measurements. 

Machine Learning methodologies will be explained in this section because they are now 

an intuitive candidate solution to the complexity, and some of the challenges in modeling 

these datasets are implicit. 

The first risk prediction model for genetically complex traits was described by the 

International Breast Cancer Intervention study, which included genotype data from a 

model of 77 variants known to be associated with increased risks for breast cancer. More 

similar models for a different range of conditions are now more common. While overall 

risk is important there is also interest in the timing of risk, as intervention at an earlier 

time has a better chance of avoiding or ameliorating effects of the condition. An example 

of preventative medication intervention, where a detailed exploration of the robustness 
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of the model to new genetic architecture was included, modeling this epoch was always 

interesting to them to understand the stability of the model. 

8.6.2. Environmental Interactions 

Advances in AI and the accumulation of data promise a rich knowledge base to inform 

new societal structures. Many questions remain with the magnitude and distribution of 

genomic initiation. Unique information across all mice genomes presents a significant 

challenge. Genomic initiatives need to rapidly mature at the outset of initial studies to 

yield timely decision points on overall trajectories, and value opportunities missed are 

not likely to be revisited. 

Scientists are increasingly peering into a tangled web of potential risk factors, trying to 

understand how genetic predispositions can be exacerbated or mitigated by 

environmental factors. The interplay between lifestyle choices, exposure to pollutants 

and genetics is emerging as an intriguing field of interest, from diet to smoking habits to 

noise, all manner of characteristics and experiences are shaped by a mix of genes and 

environmental exposures. For the field of environmental health, understanding this 

complex interplay is a fundamental challenge at the heart of devising the essential 

questions to be addressed in managing gene-environment interactions. It is noted that a 

mix of lifestyle and genetic heritabilities is uncertain and influenced by a large and 

largely unknowable set of genes, environmental and social factors. It’s also uncertain 

how much knowledge is new, controversial or simply wrong, and as a result, no 

consensus is the best way to manage many issues at hand. 

Here begins the search on the key issues, modeling and observational frameworks that 

can provide the best chance of meaningful answers. A diversity of examples is given to 

illustrate the tremendous complexities and unintended consequences of what might seem 

like straightforward goals. The claims of environmental causes of disease vastly 

outnumber scenarios in which evidence of true underlying causation has been 

convincingly demonstrated. Some specific methodological approaches are then 

proposed for investigating gene-environment interactions, alongside earnest cautions on 

the interpretation of results.  

8.7. Conclusion 

Population-scale genomic initiatives are a powerful approach to elucidate underlying 

heritability of common traits and diseases. Technologies have matured to afford global 

interrogation of the exposome and human biology. Artificial intelligence that leverages 

information from diverse data types will become central, including surface-large-scale 
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imaging for intermediate phenotypes. Pervasive electronic quantification of physical and 

cognitive performance will offer new understanding of advanced aging. Information will 

also be revealed about dietary, toxin, infectious, nutrient, physical activity, and 

psychosocial determinants associated with risk factors of diseases. This will open a 

broader window for intervention in the genesis of complex health issues. A summary of 

a workshop, its motivating questions, what is known of current opportunities and needs 

that might be targeted, and five ideas are described. Finally, insights regarding the 

translational research investments that may be necessary to realize the potential of these 

developments to substantially affect societal health are given. 

Advances in data generation and storage have made this an era of big data in genomics. 

Population initiatives around the world have characterized genetic variation of hundreds 

of thousands of individuals and have made the data available to the research community. 

These initiatives have discovered thousands of trait-associated genetic variants, 

providing extraordinary insight into the underlying biology. Most detailed traits offer 

great potential to advance the link between genotype and phenotype, yet the transfer 

from effortful exposure to aggregated storage of past data is not. Transcription events 

are common in nucleic acid diagnostics, but protein and metabolite biosensing exist. 

Inspired by advances in glycaemic control, continuous exposure biosensing optimization 

and expanding of related treatment options are promising avenues for research. Uneven 

rates of psychoactive drug occurrence and degradability after cessation inspire broad 

metabolic effects across the population. These drug effects are largely untracked and are 

exploited to yield inferences on metabolism. Major investments in the healthcare 

infrastructure have preceded widespread digital prescribing of psychoactive medicine, 

increasing nutritionally relevant metabolite change tracking. Broadside observation of 

metabolism focuses on the declines of compounds undergrowth. 

8.7.1. Future Trends 

As precision medicine continues to revolutionize health care, the impact on genomics 

research will continue gathering strength. Technological advancements, like the 

discovery of the CRISPR-Cas9 system, will reshape the field and provide novel 

capabilities and insights. It is now possible to initiate targeted editings on DNA 

molecules within eukaryotic cellular systems, advancing progress in genetic function 

studies. The development of new assays, technologies, and software methodologies 

capable of making sense of the petabyte-scale biological data generated from a biological 

system will be the driving forces of discoveries in genomics. Undoubtedly, AI will play 

a crucial role in achieving this goal as the confluence of large-scale learning data, 

machine learning algorithms, and high-performance computing provide the ability to 

learn predictive models from data. As more comprehensive functional annotations 
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become available, including from human-derived data and model systems, many 

previous attempts to understand genetic variants may prove fruitful, therefore directly 

impacting the unsolved heritability gap. While AI models become more accurate at 

discerning informative patterns in the genomics data, they will largely guide therapies 

and preventive interventions allowing the implementation of robust and scientifically 

supported public health strategies. Public awareness and an ethical frame are essential in 

order for large-scale genomic initiatives to reach their full potential without undermining 

personal privacy and autonomy. Likewise, an educational strategy in genomic literacy 

for health professionals, akin to the campaigns of statistical education throughout the 

20th century in medicine, will be necessary to cover the gap between rapid research 

advances and the slow changes of the medical curriculum. As polygenic predictors in 

precision medicine considerably fortify their clinical safety, they will likely become a 

standard for public health policy and management of various diseases. However, the 

broader scope of polygenic predictors will dramatically increase the volume of patients 

undergoing targeted interventions, straining the healthcare system. Thus, a coordinated 

effort between scientists, health policymakers, and other stakeholders within the 

healthcare ecosystem will be necessary to anticipate and adapt to these changes. 
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