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Chapter 8: Intelligent vehicle health 

monitoring through engine data, 

artificial intelligence, and machine 

learning 

8.1. Introduction                                                        
Modern supply chains regularly move products and services from suppliers to 

manufacturers, wholesalers, logistics providers, and then retailers and finally customers. 

Performing these operations becomes increasingly difficult as the number of suppliers 

increases and supply sources are more sheared. In competitive environments, justice and 

speed determine most of the success of any of the companies involved in such networks. 

Reliability and low cost more recently became of similar importance. The services 

provided by a single company are never enough in these cases. This is why companies 

can cooperate and create a supply chain. While some companies own competing supply 

chains regardless of how they tried to cooperate, the most dominant platforms are public, 

and loosely controlled with minimal single-control points. A new way of communicating 

and transferring material is required that can equally level the playing ground of 

suppliers and its performers while preserving privacy and trading tactics. Selecting best-

of-breed new ways is not enough, such methods should be automated on a large scale 

and mutually operated on existing platforms. Such new invisible third-party networks 

reconfigure, i.e. acting on a larger scheduling problem than the existing supply chains, 

are required to integrate and consume the existing supply chain platforms. In such 

networks, pricing and the inter-company calendar of events are agreed upon behind a 

semi-secrecy and left between the parties a choice to actively join and mutually operate 

on a supply chain without ever leaking the supply chain or candidate parties. 

Most of the Operating System concepts such as queues and micro-time divisions are 

probably present in computer networking but are insufficient to direct countless 
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communicating IP addresses. Alternative incentive schemes such as multi-level theft and 

automatic stock buying probably exist for cooperative corporations. A real-time and 

synchronous environment on the Networking is required to quantize time and selectively 

disperse animate and inanimate processing on behalf of other peers. Robust voting and 

reporting methods, verifiable cryptographic rails are forfeited on the current salvage 

spectered networks. Infrastructure-as-Code, or machine-readable code, allows declaring 

configuration layouts, monitoring tools, policies, etc. It provides a new approach for data 

analysts to verify the correct construction or maintenance of Data lakes, which arguably 

is an important milestone of Contemporary Analytics. Continuous 

Integration/Deployment techniques became necessary to mitigate human errors and to 

comply with Auditors and Data Protection Authorities. 

 

                                  Fig 8.1: Car health monitoring system 

8.1.1. Background and Significance 

On-premises IT operation and management relies more on analogue and semi-digital 

practices  involving a multitude of human controls. While it is changing toward more 

automated and on-demand Management with the adoption of well-defined interfaces/ 

standards, it is yet to achieve the level of DevOps automation that renowned cloud 

service providers (CSPs) have accomplished. The situation does not improve for 

companies moving to a hybrid cloud/ multi-cloud situation. The situation worsens as 

companies deal with multiple public off-premises hybrid clouds and on-premises 

infrastructures with little homogeneity in different on-premises environments. The 

environments are heterogeneous, multi-vendor, and appliance-oriented architecture. 

However, misuse of advanced infrastructure-as-code (IaC) and on-demand approach 

might lead to many security and compliance issues. 

The announced infrastructure might not be ready on arrival, or the new infrastructure 

might need other configurations before it serves the purpose. There are also differences 
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in regions with regard to regulation compliance, legal hold of data, availability of 

resources, and geographic/ political considerations. The perception was that all resources 

under the control of the company during the onboarding were under direct ownership. 

The readiness of the infrastructure will be answered by how knowledge acquired from 

the on-premises data center will be applied to use in the hybrid environments. Cloud-

native toolkit will be used to re-apply the past knowledge in setting up a hybrid/ multi-

cloud infrastructure with open standards. How the own environment is made cloud-

native is a cloud-native platform that allows the configuration as a code. Snippets of 

configuration code will be adopted from various open-source templates of cloud-native. 

8.2. Understanding Supply Chain Infrastructure 

Understanding Supply Chain Infrastructure, Architecture, and Operations. Supply chains 

are omnipresent in economies (Dhawan, 2024; Rowe, 2024; Cyriac et al., 2025). They 

consist of many goods that provide sources of raw materials for several products’ 

external suppliers. Products are delivered from an original customer, through several 

distributors to local stores, vending machines and eventually customers. Products’ 

suppliers, distributors, and retailers observe several novelties, including higher 

requirements on observable expensive processes of consolidation for monumental items 

like large buildings, but also smaller items requiring shorter lead times urgency rather 

with lower uncertainty like equipment parts.  

Observations include the absence of cross-modular connections for level two supply 

chains that communicate and exchange information independently from module 

management systems. Cross-modular connections would align levels of visibility, 

observability and observability of the assembly line. General overview, separate 

overview of modules or sub-modules, and sub-separate observations of sensors could be 

aligned through devices performing adaptively reticulated compressions of supplies’ 

decision variables. Control capabilities shifting from the modular operators ignoring the 

operation system, towards processes tracing physical entities if observability is 

insufficient for manufactures and batch aggregators. Employed protocols impose 

obstacles for this enhancement, which could be solved by a lighter operation system 

based on information representation. In this imprint, modern service automation creates 

variables of newer distributed business processes in specific memories that form 

removable executions for each case.  

8.2.1. Definition and Importance 

Cloud computing is a major decision for an organization. The lack of standardization 

and legislative constraints makes cloud computing decisions complex, with three distinct 
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cloud types. A perception by some practitioners that cloud computing is primarily a cost 

saving measure constrains its breadth of consideration, especially a relegation to a 

commodity service rather than a business driver or level 5 ambition. This perception 

makes investment decisions average across many organizations rather than a focus on 

end-user needs. DevOps is a new approach to the development and operations of IT 

systems, where development teams do not throw everything “over the wall” to 

operations teams. Rather, teams are integrated, work in collaboration, and are 

incentivized to work towards the same business objectives, which is new to many 

organizations. 

A high-level approach to understanding DevOps is to consider its competitive impacts, 

alternatively seen as hype to avoid, a silver-bullet set of practices for culture/efficiency 

automation of operations, or an idealized model of fully automated self-service 

capabilities viewed in isolation or inappropriately compared. It raises fundamental 

questions of governance tooling integration constraints. Security compliance of 

automated DevOps processes is increasingly hard while being a requirement. Integration 

of standard-based security activities into the current DevOps approach is a systematic 

and industry appetizing method. The cloud is providing the basis for the future pillars of 

technological change for business. Cloud services provide institutions with essential 

building blocks to compete successfully in digital services. Cloud services, combined 

with big data analytics, mobile computing, Internet of Things (IoT), and new 

technological leakage like drones, are converting medical treatment into precision 

treatment, marketing into targeted marketing, and the car showrooms into little else than 

a method to display high-end models as a fresh change in services. 

8.2.2. Challenges in Traditional Supply Chains 

Traditional supply chains have been created over decades with the aim of optimizing 

production, distribution, and sales. This has led to a hybrid approach with different types 

of businesses in one chain, with many interdependencies on which many millions rely 

for their work, livelihoods, and daily lives. Most businesses with a well-defined supply 

chain have their infrastructure in on-prem data centers, with few moving to cloud 

providers. As a result, traditional supply chain infrastructure is difficult and slow to adapt 

to the new realities of scale, data-tracking, and continuous improvement in today’s 

global supply chains. They don’t scale when the volumes of business change, either up 

or down. They cannot easily adopt the new indexing, querying, and visualization tooling 

that can cope with today’s size datasets. They do not support experimentation and 

improvements to find better working practices. 

The complex management of delivery dates, costs, and product quality in the presence 

of uncertainty has added challenges to be tackled in recent times. Different activities in 
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a given supply chain can be performed either in-house or outsourced to a third-party 

logistics (3PL) company. A logical choice is to select one of the options that produces 

the most favorable scenario. On-time and low-cost service are key elements for attracting 

and retaining customers. Security risks and reduced profit might be the consequences of 

lax product quality. 

The fight against climate change is another challenge for supply chain owners. They 

must disclose CO2 footprints of shipments in public forums or in contracts with regards 

to environmental slaughter indexes and refining proof. The ability to assess and quantify 

emissions, as well as visualizing their development, can be crucial to safeguard long-

term company liquidity in a climate-regulated future. Owing to the exponential rise in 

freight traffic, logistics is also responsible for an elevated carbon signature. Better 

tracking and matching of shipments with potential carriers in terms of cost, speed, 

availability, and ecological impact is an important step to maximizing efficiencies and 

minimizing energy consumption. 

8.3. Cloud-Native DevOps 

With the development of DevOps, observability technologies and practices have become 

critical to the successful deployment of cloud-native software. To achieve the 

automation, scalability, flexibility, and cost-effectiveness intended with a cloud-native 

infrastructure, it must be treated as a finely coordinated set of distributed components. 

This requires observability aimed not just at the cloud-native applications but also their 

increasingly complex cloud-native infrastructure, comprising multiple clusters that are 

connected across multiple data centers. 

While current observability practices provide visibility into the state of the environment, 

they rarely reveal why that state exists. A reasoned belief in the state of the environment, 

also known as “understanding,” yields the kind of assurance currently lacking such that 

any significant level of business disruption is acceptable. As infrastructure teams move 

to make their environments cloud-native, their currently monolithic infrastructures will 

become multifaceted, far more heterogeneous, and dramatically more branching than 

their current state. Consequently, there is a need for this narrower type of observability 

aimed specifically at cloud-native infrastructure. This class of observability is called 

“infrastructure observability.” Infrastructure observability comprises Just-in-Time (JiT) 

resource and service environment models, integrated with code-level observability, 

description languages that support interactive exploration of these models, and 

annotation recipient tools that use these models—together creating an annotated 

machine-executable declaration of intent detailing how the environment is to act and 

also how it will act. 
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Infrastructure observability proactively observes an extensive range of metrics, 

instantiating and integrating a number of mathematical models of their expected values, 

thereby generating just-in-time operational models of environments comprising 

interconnected infrastructures and workloads.  

 

                                                    Fig 8.2: Cloud-Native DevOps 

8.3.1. Principles of Cloud-Native Development 

Cloud-native is a term used to describe a set of best practices for writing software and 

how Best-in-Class DevOps teams consume it. Cloud-native is vendor-agnostic and 

makes minimal assumptions about the infrastructure and platforms. Cloud-native 

software might be migrated from an on-premises environment or be written directly in 

an IaaS or cloud service, but efforts are focused on consuming it cloud-natively. 

Cloud providers have advanced their platforms with proprietary software to enable 

capabilities such as artificial intelligence and machine learning, serverless, 

containerization, and cloud-native data warehousing. This software runs on their own 

hardware and is now deployed as a Service, with ownership passed on to the CSPs. In 

the cloud-native paradigm, software engineers and data science teams become citizens 

of their respective platforms and focus on code, leveraging cloud-native TaaS products 

without worrying about the underlying migration and infrastructure and potentially 

saving CapEx and OpEx. 
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Though cloud-native, SaaS products are disruptive and fundamentally different from 

other enterprise software products, development and deployment of cloud-native 

platforms are also different from traditional on-premises proprietary software delivery. 

Cloud-native paradigms and approaches are vendor-agnostic and abstract environments. 

The early start-up vendor Thryfty, with a mission to democratize revenue intelligence 

and Make Every Deal Count, started with a cloud-native software design approach 

leveraging commercial SaaS products and cloud-native capabilities. 

This approach enabled rapid time-to-market, lean operational overhead, elastic and cost-

efficient architecture, and scalability in a short time frame. However, development, 

delivery, and operation as a cloud-native product in a cloud-independent way is not 

trivial. Over time, the cloud-native architecture will scale with SaaS products growing 

organically, a data-centric architecture will outperform a mere code-centric and 

abstraction approach, and structured, traceable, tested, reproducible, and reliable 

Infrastructure and Operating Models are needed. 

8.3.2. DevOps Practices and Tools 

Pipelining data jobs under batch and streaming modes should be easier with something 

easier than a managed extent. There is a current notebooks-based workflow, located as 

per the scoping process. Project validation for meta proc-que-results, the generated 

processes meant for videos and jamming pipelines, was easily coded. 

Powered compositional analysis, with tempo-altering and harmonic globbing, with 

copious prebuilt approaches. Conversion that matches labels from training made 

possible. A utility-based approach continues to prosper in theory; attention-first models 

may later be incorporated. With accolades/cycles, with a soft focus on process gates, 

cleaning, submission in this current mode to spectrogram. Basic audio waveform 

analysis, spectrogram creation, lone paths with hybrid out-selectors may also be in the 

test patch one day. Additional adaptations form clusters and levels using and. 

With some daily tests noticed for this type of data. Some losses for usage efficiency may 

be occurring. Orchestration invoked may be investigated to improve efficiency. Caching 

should keep down computation; exploration only runs on instances. For larger data, 

current overcrowding may need a move; most usage costs currently passed there. 

Constructs to check memory loads should offer guardrails, with something using. 

FastFetch or something may keep direct to web-server return if this exploration is taken 

full-playing. 
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8.4. Infrastructure-as-Code (IaC) 

IaC is the practice of automatically configuring system dependencies and provisioning 

local and remote instances through code and scripts, similar to application code. It is a 

solution for changing the environment, consistent environment, and repeatable 

development environments. Technologies for implementing IaC include cloud and 

container orchestration platforms, Shell scripting, general-purpose programming 

languages, and domain-specific languages. Any of which can fall under the IaC 

umbrella. Regardless of the tech stack, organizations can use IaC tools to automate 

infrastructure setup. IaC is considered a fundamental pillar of DevOps, which arose from 

the need for organizations to adopt rapid software delivery practices to meet the demand 

from users and customers faster and more frequently. The adoption of DevOps helps 

organizations close the gap between development and operations teams. However, with 

the increased complexity of delivering software and automation tools establishing the 

gap comes with challenges. With an organizational emphasis on rapid software 

development and deployment, there is bound to be increased demand for automation 

tools to tackle the growing software products. There is, however, a need to address the 

fact that delivery processes are increasingly automated with code, which creates 

emergence besides the developers’ code. This situation is referred to as configuration 

sprawl, which increases the codebase an organization and its developers have to manage. 

The objective is to assist software teams in addressing the emergence from their 

automating supply chain infrastructure cloud-native challenges, with a focus on covering 

infrastructure as code (IaC), DevOps toolchain observability, and GitOps to deploy and 

manage cloud-native microservice applications and tools. The broader ambition is to 

support software engineering teams on cloud-native tooling adoption by surfacing 

Seamless info, thereby promoting CI/CD observability, task automation, and cloud cost 

observability. 

8.4.1. Overview of Infrastructure-as-Code 

Infrastructure-as-Code (IAC) aims to automate infrastructure provisioning and 

configuration by managing machine instances and other Infrastructure components. 

Using IAC, the infrastructure instances can be defined using a high-level programming 

language, which is meant to be automatically or semi-automatically transformed into 

lower-level specifications that can be interpreted by the automation stack. Traditionally, 

in an Infrastructure–as–Code (IaC) environment, a few provisioning and configuration 

scripts are manually created. These scripts written in languages such as SHA, ANSIBLE, 

or Python are error-prone and based on the system and infrastructure lock-in approach. 

The IAC stack is based on IAC tools that are bound to a single cloud vendor and are not 

portable across the multi-clouds. IAC lies at the lower cloud stack layer built using cloud 
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agnostic services. The IAC approach achieves HCI(R) irrespective of the complexity of 

the cloud or on-premises infrastructure. 

Infrastructure as Code (IaC) is seen by practitioners as a key practice to automate 

systems and infrastructures (where infrastructure includes VM, container orchestration, 

networking, VM images, etc.), and to implement DevOps within their IT organizations. 

However, since infrastructure automates the system configuration, the complexity 

increases significantly. This gap in research is critical since not understanding the 

complexity, problems, challenges, and limitations in IaC practice will inhibit the 

effective adoption of IaC within organizations, and thus the effective implementation of 

DevOps practices. A systematic mapping study on existing Infrastructure as Code (IaC) 

research is conducted in order to identify potential gaps in the research, such as defects 

and security flaws in IaC scripts, how those vertical usages of the practice are supported 

by research, what challenges practitioners face in adopting those usages of the practice 

currently, and what guidance they have for researchers to mitigate those challenges. 

8.4.2. IaC Tools and Technologies 

Infrastructure as code (IaC) is a mechanism that allows changing computer infrastructure 

or services through code (vaguely understood as machine-readable and possibly human-

readable scripts). To maintain shorter deployment times, on-demand provisioning of 

services, and minimal manual intervention in service deployment, deployment of cloud 

services typically requires many configurations to be performed in an agreed 

infrastructure language. Except for a few such concerns, end-users have largely been 

insulated from the specifics of cloud infrastructure languages. A few high-level services 

such as those provided by CloudFormation or Terraform have been described. Manual 

effort for orchestration tasks is incurred owing to the following gaps: (i) the 

specifications and dependencies imposed by the cloud platform cannot be described at a 

higher level of abstraction as intended by the user; (ii) The technologies involved, mostly 

low-level programming languages, infer a huge domain expertise need along a steep 

learning curve. For relatively beginner users, straightforward use of such tools is 

daunting and leads to indeterminate delays between idea generation and realization. The 

quality of generated infrastructure-specific code from such higher-level specifications is 

arguable and typically non-ideal for enterprise class applications that may evolve vastly 

over time; and an overwhelming amount of such IAC specifications will quickly bloat 

the user profile causing various pain points for end-users as they would have to discard 

the premise of employing high-level abstractions as invisibility of detail. CloudCAMP 

is a GUI based cloud automation and orchestration framework. It enables the users to 

describe the concerned application/software stack with declarative language without 

needing to delve into domain details or actual scripting code. It then generates IaC code 
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deployable by existing tools. CloudCamp allows infrastructural cloud services to handle 

both one-time use of services and planned orchestration of services yielding cost, time 

and complexity gains. Aspects such as state handling, service availability, and transient 

service states of error can be typically left to the cloud service encompassing one-off use 

of cloud resources during which the framework raises no overheads. 

8.5. Observability in Supply Chain Systems 

To make observability simple and effective, it’s important to know that: Systems in 

production are dynamic instances of software in constant change. Systems evolve, but 

observability can only be pushed at development time: Observability stays constant 

technologies change. Classic observability brings the burden to bring observability on-

device. All production environments can change any time, so monitoring can and will 

break. Observability Metrics need to abstract systems they monitor: Metrics provide 

regular reports; Controlling the system is slow. Naturally, observability must be app-

specific. Cloud-native application signatures are hard to define, huge, and constantly 

evolve. Systems are dynamic instances of software in constant change. Systems evolve, 

but observability can only be pushed at development time. Even if observability is 

integrated upfront, it stays “dumb” and unaware of system change. Observability brings 

the burden to understand and extract on-device information. The history of software is 

the history of newly introduced further levels of abstraction. The mere goal can get in 

the way of observability: Metrics need to abstract systems they monitor. Metrics provide 

regular reports, controlling the system is slow. The need for observability must be treated 

first class, observable consumers must become a stakeholder. If observability succeeds, 

it becomes invisible. Despite diversity, observability can be achieved and mostly already 

exists. Because observability came too late, it must be rebuilt. Adding observability: For 

broad observability help is needed. Existing research algorithms can be leveraged and 

shifted to observability. Automation eases observability addition to broad existing 

systems. Nevertheless, observability comes with challenges. Diagnostics discover 

surprises: Mechanisms need to cope with surprises. Good surprises need to be filtered 

from the rest. Test metrics need to discover change, baselines need to be maintained but 

alert at anomalies. Configuration metrics incur a time overhead. Statistics must fit the 

monitored system, get filtered from regular updates, thresholds need to be optimally 

multivariate and break on trends. Новые данные требуют пересмотра базовой 

метрики. 
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Fig : Data-Driven Engine Health Monitoring with AI 

8.5.1. Importance of Observability 

Observability is top of mind for many cloud native stakeholders with a wide variety of 

actors, interests, services, and technologies involved in the broad observability 

ecosystem (Financial Times, 2023; Lloyds Banking Group, 2024). Observability, in 

cloud native systems, is the capability to continuously generate and discover actionable 

insights based on signals from the system under observation. Crucially, these insights 

are usually time-sensitive and decisions based on observability signals need to be made 

based on information that is as fresh as possible. 

Insights from observability signals can take many forms, e.g., business or infrastructure 

KPI dashboards for executive reporting, alerts to signal exceptions or thresholds 

breached, recommendations or guided troubleshooting flows exploring potential causes 

to an observable issue. Most observable signals are generated as data streams in, e.g., 

log files, metric values, distributed traces, etc. There is a trend towards more actionable 

observability information being generated and consumed by machine learning and 

AI/ML tooling or scoped tools. 

Often, there are difficulties and challenges in the rollout of observability aimed systems 

in organizations. Among these difficulties are expectations and prior experiences; data 

ownership issues; a wide variety of observability solutions and their architectures, 

capabilities, and features; large and very large volumes of signals generated and other 

operationalization challenges; the complexity of observability scope and multi-faceted 

observability dimensions, levels, industries, stacks, and technologies. Consequently, 
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many organizations take a piecemeal, ad-hoc approach leading to uneven observability 

maturity and incremental observability debt over time. 

8.5.2. Key Metrics and Monitoring Tools 

Prometheus is a powerful telemetry system and time-series database that provides a 

sophisticated set of functions, flexible queries over a time period, and seamless 

integration with Grafana. The system relies on a pull model, in which the Prometheus 

time-series database scrapes monitored targets in specified intervals. The scraped data is 

stored in a custom time-series database (TSDB). It supports any data type based on a 64-

bit integer with optional metadata. It comes with an elaborate API for querying and 

retrieving stored time-series data. These results can take many forms, making Mongo, 

MySQL, PostgreSQL, and other specialized data stores unnecessarily cumbersome. 

Users query the data using the PromQL query language, which allows for a wide range 

of functions. Templates in the query interfaces allow for a flexible construction of 

dashboards in Grafana, a powerful web-based visualization tool. It is supporting a 

massive user community, and a plethora of plugins, dashboards, and external tools on 

the net are accessible. 

The biggest benefit of Prometheus is its scalability . The cloud-native microservices run 

thousands of processing instances in parallel across many nodes. Scaling one intelligent 

workload from a dozen to hundreds of instances is fairly common in today's on-demand 

processing economy. This introduces new challenges beyond simply staggering the 

workload. A microservice deployment may have many moving parts. Each StatefulSet 

stores a persistent volume in a cloud provider's managed storage and is independently 

assigned a Kubernetes service; ingress proxy specific for each domain, and a dozen or 

so batches temporarily employing huge VMs. Each day, in a big cloud provider, many 

thousands of instances may be running or inactive on a single infrastructure.  

8.6. Conclusion 

This report describes how a combination of cloud-native DevOps, observability, and 

Infrastructure-as-Code technologies were used to automate a new significantly more 

capable supply chain infrastructure for a factory site. The core of the infrastructure 

consists of a data lake and an enterprise data platform application that processes, fuses, 

stores, analyzes, and visualizes data about the state of the factory. Observability tooling 

enables monitoring and alerting on application and platform performance as well as end 

user analytics. Architecture and Infrastructure overviews Most of the application 

services are microservices deployed in Linux based docker containers in Kubernetes. 

The observability tooling comprises the open source Elastic Stack and Grafana in 
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combination with tools from Contour, Jaeger and gRPC to monitor application 

performance and reporting, and end user analytics. Observability tooling is configured 

and administered by Infrastructure as Code written in Python using the Pulumi platform. 

DevOps tooling includes Git for version control, GitHub Actions for CI/CD, pytest for 

unit and integration testing, docker for local running and testing, and GitHub for code 

hosting and issue tracking. All deployment runs entirely automated in response to 

commits to the child repository where the output of a code generation tool at build time 

is pushed. Staging and production application instances share a code base with 

configuration settings deciding where to run. DevOps tooling is configured and 

administered by IaC written in Bash shell scripts relying on Docker Compose. 

8.6.1. Future Trends 

The rise of cloud-native applications radically changed the speed and cost of deploying 

infrastructure; giving developers self-service access to create and tear-down 

environments on commodity infrastructure without engaging traditional architects; all 

developers can be in a DevOps role and release software independently with little 

oversight; monitoring and observability is driven down to a single application auto-

configured by the DevOps pipeline. However, moving to a cloud-native paradigm 

without addressing the underlying architecture will lead to chaos and governance issues 

not too long after the migration. In topic 8.4.1, an argument was put forward that defining 

platforms, validated by architecturally justifiable reference architectures, as an 

independent layer in the DevOps process chain is the only way future cloud adoption 

scenarios may proceed; continuously defining and shaping cloud-native microservices 

platforms; and evolution of infrastructure-as-code being focused not on deployment 

pipelines but supply chain pipelines. This vision raises new challenges; procurement 

already-disassembled carpenters and grannies; enforcing architectural tenets from the 

platform team and increasingly involving external services; boosting supply chain 

observability in a multi-devops toolchain landscape; and finally long-term consolidation 

of the reference architecture drawn in C4 diagrams. 

There is inevitably a future where almost every part of this value creation chain is left to 

machines and every decision is made by an AI offering mediated interfaces to internal 

and external parties. Value chain monitoring costs are likely driven down and replaced 

by appropriate orchestrations of pipelines themselves mediating and providing access to 

the relevant data. Platform-as-code creating references architectures likely to be adapted 

to local protocols and managed by a low-code solution capable of continued fine-tuning 

by experienced users. No matter how this future (and many others) plays out; a strong 

architect role will be required in the design of the AI assisting external engagements. 
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