

101

Chapter 8: Intelligent vehicle health

monitoring through engine data,

artificial intelligence, and machine

learning

8.1. Introduction
Modern supply chains regularly move products and services from suppliers to

manufacturers, wholesalers, logistics providers, and then retailers and finally customers.

Performing these operations becomes increasingly difficult as the number of suppliers

increases and supply sources are more sheared. In competitive environments, justice and

speed determine most of the success of any of the companies involved in such networks.

Reliability and low cost more recently became of similar importance. The services

provided by a single company are never enough in these cases. This is why companies

can cooperate and create a supply chain. While some companies own competing supply

chains regardless of how they tried to cooperate, the most dominant platforms are public,

and loosely controlled with minimal single-control points. A new way of communicating

and transferring material is required that can equally level the playing ground of

suppliers and its performers while preserving privacy and trading tactics. Selecting best-

of-breed new ways is not enough, such methods should be automated on a large scale

and mutually operated on existing platforms. Such new invisible third-party networks

reconfigure, i.e. acting on a larger scheduling problem than the existing supply chains,

are required to integrate and consume the existing supply chain platforms. In such

networks, pricing and the inter-company calendar of events are agreed upon behind a

semi-secrecy and left between the parties a choice to actively join and mutually operate

on a supply chain without ever leaking the supply chain or candidate parties.

Most of the Operating System concepts such as queues and micro-time divisions are

probably present in computer networking but are insufficient to direct countless

Deep Science Publishing

https://doi.org/10.70593/978-93-49307-44-5_8

102

communicating IP addresses. Alternative incentive schemes such as multi-level theft and

automatic stock buying probably exist for cooperative corporations. A real-time and

synchronous environment on the Networking is required to quantize time and selectively

disperse animate and inanimate processing on behalf of other peers. Robust voting and

reporting methods, verifiable cryptographic rails are forfeited on the current salvage

spectered networks. Infrastructure-as-Code, or machine-readable code, allows declaring

configuration layouts, monitoring tools, policies, etc. It provides a new approach for data

analysts to verify the correct construction or maintenance of Data lakes, which arguably

is an important milestone of Contemporary Analytics. Continuous

Integration/Deployment techniques became necessary to mitigate human errors and to

comply with Auditors and Data Protection Authorities.

 Fig 8.1: Car health monitoring system

8.1.1. Background and Significance

On-premises IT operation and management relies more on analogue and semi-digital

practices involving a multitude of human controls. While it is changing toward more

automated and on-demand Management with the adoption of well-defined interfaces/

standards, it is yet to achieve the level of DevOps automation that renowned cloud

service providers (CSPs) have accomplished. The situation does not improve for

companies moving to a hybrid cloud/ multi-cloud situation. The situation worsens as

companies deal with multiple public off-premises hybrid clouds and on-premises

infrastructures with little homogeneity in different on-premises environments. The

environments are heterogeneous, multi-vendor, and appliance-oriented architecture.

However, misuse of advanced infrastructure-as-code (IaC) and on-demand approach

might lead to many security and compliance issues.

The announced infrastructure might not be ready on arrival, or the new infrastructure

might need other configurations before it serves the purpose. There are also differences

103

in regions with regard to regulation compliance, legal hold of data, availability of

resources, and geographic/ political considerations. The perception was that all resources

under the control of the company during the onboarding were under direct ownership.

The readiness of the infrastructure will be answered by how knowledge acquired from

the on-premises data center will be applied to use in the hybrid environments. Cloud-

native toolkit will be used to re-apply the past knowledge in setting up a hybrid/ multi-

cloud infrastructure with open standards. How the own environment is made cloud-

native is a cloud-native platform that allows the configuration as a code. Snippets of

configuration code will be adopted from various open-source templates of cloud-native.

8.2. Understanding Supply Chain Infrastructure

Understanding Supply Chain Infrastructure, Architecture, and Operations. Supply chains

are omnipresent in economies (Dhawan, 2024; Rowe, 2024; Cyriac et al., 2025). They

consist of many goods that provide sources of raw materials for several products’

external suppliers. Products are delivered from an original customer, through several

distributors to local stores, vending machines and eventually customers. Products’

suppliers, distributors, and retailers observe several novelties, including higher

requirements on observable expensive processes of consolidation for monumental items

like large buildings, but also smaller items requiring shorter lead times urgency rather

with lower uncertainty like equipment parts.

Observations include the absence of cross-modular connections for level two supply

chains that communicate and exchange information independently from module

management systems. Cross-modular connections would align levels of visibility,

observability and observability of the assembly line. General overview, separate

overview of modules or sub-modules, and sub-separate observations of sensors could be

aligned through devices performing adaptively reticulated compressions of supplies’

decision variables. Control capabilities shifting from the modular operators ignoring the

operation system, towards processes tracing physical entities if observability is

insufficient for manufactures and batch aggregators. Employed protocols impose

obstacles for this enhancement, which could be solved by a lighter operation system

based on information representation. In this imprint, modern service automation creates

variables of newer distributed business processes in specific memories that form

removable executions for each case.

8.2.1. Definition and Importance

Cloud computing is a major decision for an organization. The lack of standardization

and legislative constraints makes cloud computing decisions complex, with three distinct

104

cloud types. A perception by some practitioners that cloud computing is primarily a cost

saving measure constrains its breadth of consideration, especially a relegation to a

commodity service rather than a business driver or level 5 ambition. This perception

makes investment decisions average across many organizations rather than a focus on

end-user needs. DevOps is a new approach to the development and operations of IT

systems, where development teams do not throw everything “over the wall” to

operations teams. Rather, teams are integrated, work in collaboration, and are

incentivized to work towards the same business objectives, which is new to many

organizations.

A high-level approach to understanding DevOps is to consider its competitive impacts,

alternatively seen as hype to avoid, a silver-bullet set of practices for culture/efficiency

automation of operations, or an idealized model of fully automated self-service

capabilities viewed in isolation or inappropriately compared. It raises fundamental

questions of governance tooling integration constraints. Security compliance of

automated DevOps processes is increasingly hard while being a requirement. Integration

of standard-based security activities into the current DevOps approach is a systematic

and industry appetizing method. The cloud is providing the basis for the future pillars of

technological change for business. Cloud services provide institutions with essential

building blocks to compete successfully in digital services. Cloud services, combined

with big data analytics, mobile computing, Internet of Things (IoT), and new

technological leakage like drones, are converting medical treatment into precision

treatment, marketing into targeted marketing, and the car showrooms into little else than

a method to display high-end models as a fresh change in services.

8.2.2. Challenges in Traditional Supply Chains

Traditional supply chains have been created over decades with the aim of optimizing

production, distribution, and sales. This has led to a hybrid approach with different types

of businesses in one chain, with many interdependencies on which many millions rely

for their work, livelihoods, and daily lives. Most businesses with a well-defined supply

chain have their infrastructure in on-prem data centers, with few moving to cloud

providers. As a result, traditional supply chain infrastructure is difficult and slow to adapt

to the new realities of scale, data-tracking, and continuous improvement in today’s

global supply chains. They don’t scale when the volumes of business change, either up

or down. They cannot easily adopt the new indexing, querying, and visualization tooling

that can cope with today’s size datasets. They do not support experimentation and

improvements to find better working practices.

The complex management of delivery dates, costs, and product quality in the presence

of uncertainty has added challenges to be tackled in recent times. Different activities in

105

a given supply chain can be performed either in-house or outsourced to a third-party

logistics (3PL) company. A logical choice is to select one of the options that produces

the most favorable scenario. On-time and low-cost service are key elements for attracting

and retaining customers. Security risks and reduced profit might be the consequences of

lax product quality.

The fight against climate change is another challenge for supply chain owners. They

must disclose CO2 footprints of shipments in public forums or in contracts with regards

to environmental slaughter indexes and refining proof. The ability to assess and quantify

emissions, as well as visualizing their development, can be crucial to safeguard long-

term company liquidity in a climate-regulated future. Owing to the exponential rise in

freight traffic, logistics is also responsible for an elevated carbon signature. Better

tracking and matching of shipments with potential carriers in terms of cost, speed,

availability, and ecological impact is an important step to maximizing efficiencies and

minimizing energy consumption.

8.3. Cloud-Native DevOps

With the development of DevOps, observability technologies and practices have become

critical to the successful deployment of cloud-native software. To achieve the

automation, scalability, flexibility, and cost-effectiveness intended with a cloud-native

infrastructure, it must be treated as a finely coordinated set of distributed components.

This requires observability aimed not just at the cloud-native applications but also their

increasingly complex cloud-native infrastructure, comprising multiple clusters that are

connected across multiple data centers.

While current observability practices provide visibility into the state of the environment,

they rarely reveal why that state exists. A reasoned belief in the state of the environment,

also known as “understanding,” yields the kind of assurance currently lacking such that

any significant level of business disruption is acceptable. As infrastructure teams move

to make their environments cloud-native, their currently monolithic infrastructures will

become multifaceted, far more heterogeneous, and dramatically more branching than

their current state. Consequently, there is a need for this narrower type of observability

aimed specifically at cloud-native infrastructure. This class of observability is called

“infrastructure observability.” Infrastructure observability comprises Just-in-Time (JiT)

resource and service environment models, integrated with code-level observability,

description languages that support interactive exploration of these models, and

annotation recipient tools that use these models—together creating an annotated

machine-executable declaration of intent detailing how the environment is to act and

also how it will act.

106

Infrastructure observability proactively observes an extensive range of metrics,

instantiating and integrating a number of mathematical models of their expected values,

thereby generating just-in-time operational models of environments comprising

interconnected infrastructures and workloads.

 Fig 8.2: Cloud-Native DevOps

8.3.1. Principles of Cloud-Native Development

Cloud-native is a term used to describe a set of best practices for writing software and

how Best-in-Class DevOps teams consume it. Cloud-native is vendor-agnostic and

makes minimal assumptions about the infrastructure and platforms. Cloud-native

software might be migrated from an on-premises environment or be written directly in

an IaaS or cloud service, but efforts are focused on consuming it cloud-natively.

Cloud providers have advanced their platforms with proprietary software to enable

capabilities such as artificial intelligence and machine learning, serverless,

containerization, and cloud-native data warehousing. This software runs on their own

hardware and is now deployed as a Service, with ownership passed on to the CSPs. In

the cloud-native paradigm, software engineers and data science teams become citizens

of their respective platforms and focus on code, leveraging cloud-native TaaS products

without worrying about the underlying migration and infrastructure and potentially

saving CapEx and OpEx.

107

Though cloud-native, SaaS products are disruptive and fundamentally different from

other enterprise software products, development and deployment of cloud-native

platforms are also different from traditional on-premises proprietary software delivery.

Cloud-native paradigms and approaches are vendor-agnostic and abstract environments.

The early start-up vendor Thryfty, with a mission to democratize revenue intelligence

and Make Every Deal Count, started with a cloud-native software design approach

leveraging commercial SaaS products and cloud-native capabilities.

This approach enabled rapid time-to-market, lean operational overhead, elastic and cost-

efficient architecture, and scalability in a short time frame. However, development,

delivery, and operation as a cloud-native product in a cloud-independent way is not

trivial. Over time, the cloud-native architecture will scale with SaaS products growing

organically, a data-centric architecture will outperform a mere code-centric and

abstraction approach, and structured, traceable, tested, reproducible, and reliable

Infrastructure and Operating Models are needed.

8.3.2. DevOps Practices and Tools

Pipelining data jobs under batch and streaming modes should be easier with something

easier than a managed extent. There is a current notebooks-based workflow, located as

per the scoping process. Project validation for meta proc-que-results, the generated

processes meant for videos and jamming pipelines, was easily coded.

Powered compositional analysis, with tempo-altering and harmonic globbing, with

copious prebuilt approaches. Conversion that matches labels from training made

possible. A utility-based approach continues to prosper in theory; attention-first models

may later be incorporated. With accolades/cycles, with a soft focus on process gates,

cleaning, submission in this current mode to spectrogram. Basic audio waveform

analysis, spectrogram creation, lone paths with hybrid out-selectors may also be in the

test patch one day. Additional adaptations form clusters and levels using and.

With some daily tests noticed for this type of data. Some losses for usage efficiency may

be occurring. Orchestration invoked may be investigated to improve efficiency. Caching

should keep down computation; exploration only runs on instances. For larger data,

current overcrowding may need a move; most usage costs currently passed there.

Constructs to check memory loads should offer guardrails, with something using.

FastFetch or something may keep direct to web-server return if this exploration is taken

full-playing.

108

8.4. Infrastructure-as-Code (IaC)

IaC is the practice of automatically configuring system dependencies and provisioning

local and remote instances through code and scripts, similar to application code. It is a

solution for changing the environment, consistent environment, and repeatable

development environments. Technologies for implementing IaC include cloud and

container orchestration platforms, Shell scripting, general-purpose programming

languages, and domain-specific languages. Any of which can fall under the IaC

umbrella. Regardless of the tech stack, organizations can use IaC tools to automate

infrastructure setup. IaC is considered a fundamental pillar of DevOps, which arose from

the need for organizations to adopt rapid software delivery practices to meet the demand

from users and customers faster and more frequently. The adoption of DevOps helps

organizations close the gap between development and operations teams. However, with

the increased complexity of delivering software and automation tools establishing the

gap comes with challenges. With an organizational emphasis on rapid software

development and deployment, there is bound to be increased demand for automation

tools to tackle the growing software products. There is, however, a need to address the

fact that delivery processes are increasingly automated with code, which creates

emergence besides the developers’ code. This situation is referred to as configuration

sprawl, which increases the codebase an organization and its developers have to manage.

The objective is to assist software teams in addressing the emergence from their

automating supply chain infrastructure cloud-native challenges, with a focus on covering

infrastructure as code (IaC), DevOps toolchain observability, and GitOps to deploy and

manage cloud-native microservice applications and tools. The broader ambition is to

support software engineering teams on cloud-native tooling adoption by surfacing

Seamless info, thereby promoting CI/CD observability, task automation, and cloud cost

observability.

8.4.1. Overview of Infrastructure-as-Code

Infrastructure-as-Code (IAC) aims to automate infrastructure provisioning and

configuration by managing machine instances and other Infrastructure components.

Using IAC, the infrastructure instances can be defined using a high-level programming

language, which is meant to be automatically or semi-automatically transformed into

lower-level specifications that can be interpreted by the automation stack. Traditionally,

in an Infrastructure–as–Code (IaC) environment, a few provisioning and configuration

scripts are manually created. These scripts written in languages such as SHA, ANSIBLE,

or Python are error-prone and based on the system and infrastructure lock-in approach.

The IAC stack is based on IAC tools that are bound to a single cloud vendor and are not

portable across the multi-clouds. IAC lies at the lower cloud stack layer built using cloud

109

agnostic services. The IAC approach achieves HCI(R) irrespective of the complexity of

the cloud or on-premises infrastructure.

Infrastructure as Code (IaC) is seen by practitioners as a key practice to automate

systems and infrastructures (where infrastructure includes VM, container orchestration,

networking, VM images, etc.), and to implement DevOps within their IT organizations.

However, since infrastructure automates the system configuration, the complexity

increases significantly. This gap in research is critical since not understanding the

complexity, problems, challenges, and limitations in IaC practice will inhibit the

effective adoption of IaC within organizations, and thus the effective implementation of

DevOps practices. A systematic mapping study on existing Infrastructure as Code (IaC)

research is conducted in order to identify potential gaps in the research, such as defects

and security flaws in IaC scripts, how those vertical usages of the practice are supported

by research, what challenges practitioners face in adopting those usages of the practice

currently, and what guidance they have for researchers to mitigate those challenges.

8.4.2. IaC Tools and Technologies

Infrastructure as code (IaC) is a mechanism that allows changing computer infrastructure

or services through code (vaguely understood as machine-readable and possibly human-

readable scripts). To maintain shorter deployment times, on-demand provisioning of

services, and minimal manual intervention in service deployment, deployment of cloud

services typically requires many configurations to be performed in an agreed

infrastructure language. Except for a few such concerns, end-users have largely been

insulated from the specifics of cloud infrastructure languages. A few high-level services

such as those provided by CloudFormation or Terraform have been described. Manual

effort for orchestration tasks is incurred owing to the following gaps: (i) the

specifications and dependencies imposed by the cloud platform cannot be described at a

higher level of abstraction as intended by the user; (ii) The technologies involved, mostly

low-level programming languages, infer a huge domain expertise need along a steep

learning curve. For relatively beginner users, straightforward use of such tools is

daunting and leads to indeterminate delays between idea generation and realization. The

quality of generated infrastructure-specific code from such higher-level specifications is

arguable and typically non-ideal for enterprise class applications that may evolve vastly

over time; and an overwhelming amount of such IAC specifications will quickly bloat

the user profile causing various pain points for end-users as they would have to discard

the premise of employing high-level abstractions as invisibility of detail. CloudCAMP

is a GUI based cloud automation and orchestration framework. It enables the users to

describe the concerned application/software stack with declarative language without

needing to delve into domain details or actual scripting code. It then generates IaC code

110

deployable by existing tools. CloudCamp allows infrastructural cloud services to handle

both one-time use of services and planned orchestration of services yielding cost, time

and complexity gains. Aspects such as state handling, service availability, and transient

service states of error can be typically left to the cloud service encompassing one-off use

of cloud resources during which the framework raises no overheads.

8.5. Observability in Supply Chain Systems

To make observability simple and effective, it’s important to know that: Systems in

production are dynamic instances of software in constant change. Systems evolve, but

observability can only be pushed at development time: Observability stays constant

technologies change. Classic observability brings the burden to bring observability on-

device. All production environments can change any time, so monitoring can and will

break. Observability Metrics need to abstract systems they monitor: Metrics provide

regular reports; Controlling the system is slow. Naturally, observability must be app-

specific. Cloud-native application signatures are hard to define, huge, and constantly

evolve. Systems are dynamic instances of software in constant change. Systems evolve,

but observability can only be pushed at development time. Even if observability is

integrated upfront, it stays “dumb” and unaware of system change. Observability brings

the burden to understand and extract on-device information. The history of software is

the history of newly introduced further levels of abstraction. The mere goal can get in

the way of observability: Metrics need to abstract systems they monitor. Metrics provide

regular reports, controlling the system is slow. The need for observability must be treated

first class, observable consumers must become a stakeholder. If observability succeeds,

it becomes invisible. Despite diversity, observability can be achieved and mostly already

exists. Because observability came too late, it must be rebuilt. Adding observability: For

broad observability help is needed. Existing research algorithms can be leveraged and

shifted to observability. Automation eases observability addition to broad existing

systems. Nevertheless, observability comes with challenges. Diagnostics discover

surprises: Mechanisms need to cope with surprises. Good surprises need to be filtered

from the rest. Test metrics need to discover change, baselines need to be maintained but

alert at anomalies. Configuration metrics incur a time overhead. Statistics must fit the

monitored system, get filtered from regular updates, thresholds need to be optimally

multivariate and break on trends. Новые данные требуют пересмотра базовой

метрики.

111

Fig : Data-Driven Engine Health Monitoring with AI

8.5.1. Importance of Observability

Observability is top of mind for many cloud native stakeholders with a wide variety of

actors, interests, services, and technologies involved in the broad observability

ecosystem (Financial Times, 2023; Lloyds Banking Group, 2024). Observability, in

cloud native systems, is the capability to continuously generate and discover actionable

insights based on signals from the system under observation. Crucially, these insights

are usually time-sensitive and decisions based on observability signals need to be made

based on information that is as fresh as possible.

Insights from observability signals can take many forms, e.g., business or infrastructure

KPI dashboards for executive reporting, alerts to signal exceptions or thresholds

breached, recommendations or guided troubleshooting flows exploring potential causes

to an observable issue. Most observable signals are generated as data streams in, e.g.,

log files, metric values, distributed traces, etc. There is a trend towards more actionable

observability information being generated and consumed by machine learning and

AI/ML tooling or scoped tools.

Often, there are difficulties and challenges in the rollout of observability aimed systems

in organizations. Among these difficulties are expectations and prior experiences; data

ownership issues; a wide variety of observability solutions and their architectures,

capabilities, and features; large and very large volumes of signals generated and other

operationalization challenges; the complexity of observability scope and multi-faceted

observability dimensions, levels, industries, stacks, and technologies. Consequently,

112

many organizations take a piecemeal, ad-hoc approach leading to uneven observability

maturity and incremental observability debt over time.

8.5.2. Key Metrics and Monitoring Tools

Prometheus is a powerful telemetry system and time-series database that provides a

sophisticated set of functions, flexible queries over a time period, and seamless

integration with Grafana. The system relies on a pull model, in which the Prometheus

time-series database scrapes monitored targets in specified intervals. The scraped data is

stored in a custom time-series database (TSDB). It supports any data type based on a 64-

bit integer with optional metadata. It comes with an elaborate API for querying and

retrieving stored time-series data. These results can take many forms, making Mongo,

MySQL, PostgreSQL, and other specialized data stores unnecessarily cumbersome.

Users query the data using the PromQL query language, which allows for a wide range

of functions. Templates in the query interfaces allow for a flexible construction of

dashboards in Grafana, a powerful web-based visualization tool. It is supporting a

massive user community, and a plethora of plugins, dashboards, and external tools on

the net are accessible.

The biggest benefit of Prometheus is its scalability . The cloud-native microservices run

thousands of processing instances in parallel across many nodes. Scaling one intelligent

workload from a dozen to hundreds of instances is fairly common in today's on-demand

processing economy. This introduces new challenges beyond simply staggering the

workload. A microservice deployment may have many moving parts. Each StatefulSet

stores a persistent volume in a cloud provider's managed storage and is independently

assigned a Kubernetes service; ingress proxy specific for each domain, and a dozen or

so batches temporarily employing huge VMs. Each day, in a big cloud provider, many

thousands of instances may be running or inactive on a single infrastructure.

8.6. Conclusion

This report describes how a combination of cloud-native DevOps, observability, and

Infrastructure-as-Code technologies were used to automate a new significantly more

capable supply chain infrastructure for a factory site. The core of the infrastructure

consists of a data lake and an enterprise data platform application that processes, fuses,

stores, analyzes, and visualizes data about the state of the factory. Observability tooling

enables monitoring and alerting on application and platform performance as well as end

user analytics. Architecture and Infrastructure overviews Most of the application

services are microservices deployed in Linux based docker containers in Kubernetes.

The observability tooling comprises the open source Elastic Stack and Grafana in

113

combination with tools from Contour, Jaeger and gRPC to monitor application

performance and reporting, and end user analytics. Observability tooling is configured

and administered by Infrastructure as Code written in Python using the Pulumi platform.

DevOps tooling includes Git for version control, GitHub Actions for CI/CD, pytest for

unit and integration testing, docker for local running and testing, and GitHub for code

hosting and issue tracking. All deployment runs entirely automated in response to

commits to the child repository where the output of a code generation tool at build time

is pushed. Staging and production application instances share a code base with

configuration settings deciding where to run. DevOps tooling is configured and

administered by IaC written in Bash shell scripts relying on Docker Compose.

8.6.1. Future Trends

The rise of cloud-native applications radically changed the speed and cost of deploying

infrastructure; giving developers self-service access to create and tear-down

environments on commodity infrastructure without engaging traditional architects; all

developers can be in a DevOps role and release software independently with little

oversight; monitoring and observability is driven down to a single application auto-

configured by the DevOps pipeline. However, moving to a cloud-native paradigm

without addressing the underlying architecture will lead to chaos and governance issues

not too long after the migration. In topic 8.4.1, an argument was put forward that defining

platforms, validated by architecturally justifiable reference architectures, as an

independent layer in the DevOps process chain is the only way future cloud adoption

scenarios may proceed; continuously defining and shaping cloud-native microservices

platforms; and evolution of infrastructure-as-code being focused not on deployment

pipelines but supply chain pipelines. This vision raises new challenges; procurement

already-disassembled carpenters and grannies; enforcing architectural tenets from the

platform team and increasingly involving external services; boosting supply chain

observability in a multi-devops toolchain landscape; and finally long-term consolidation

of the reference architecture drawn in C4 diagrams.

There is inevitably a future where almost every part of this value creation chain is left to

machines and every decision is made by an AI offering mediated interfaces to internal

and external parties. Value chain monitoring costs are likely driven down and replaced

by appropriate orchestrations of pipelines themselves mediating and providing access to

the relevant data. Platform-as-code creating references architectures likely to be adapted

to local protocols and managed by a low-code solution capable of continued fine-tuning

by experienced users. No matter how this future (and many others) plays out; a strong

architect role will be required in the design of the AI assisting external engagements.

114

References

Dhawan, R. (2024). AWS is helping financial giants like JPMorgan and Bridgewater with their

AI ambitions. Business Insider. Retrieved from businessinsider.comBusiness Insider

Financial Times. (2023). AI in banking, payments and insurance. Financial Times. Retrieved

from ft.comFinancial Times

Cyriac, T., Regenstein, J., & McConnell, S. (2025). Agentic AI in Financial Services and

Insurance. Snowflake. Retrieved from snowflake.comSnowflake AI Data Cloud

Rowe, T. (2024). How Agentic AI is Transforming the Banking Industry. Intelligent Core™.

Retrieved from intelligentcore.ioIntelligent Core™

Lloyds Banking Group. (2024). Lloyds hires an Amazon Web Services executive as its new AI

chief. Financial Times. Retrieved from ft.com

	Chapter 8: Intelligent vehicle health monitoring through engine data, artificial intelligence, and machine learning
	8.1. Introduction
	8.2. Understanding Supply Chain Infrastructure
	8.3. Cloud-Native DevOps
	8.4. Infrastructure-as-Code (IaC)
	8.5. Observability in Supply Chain Systems
	8.6. Conclusion
	References

