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Chapter 4: Implementing artificial intelligence-powered 

predictive maintenance and inventory forecasting in 

retail supply chains   

4.1. Introduction 

To compete in the digital economy, retail industry firms must supply the right product, 

in the right quantity, at the right time, to the right place, and at the right price. Supply 

chains must be customer-centric and align with customer requirements. They are 

challenged to shorten cycle lead times as customer demand shifts to the just-in-time 

ordering, while increasing the inventory to meet service objectives in the face of 

increased demand volatility and unpredictability. Supply chain activities, especially 

warehousing and inventory management, are crucial to reduce total business costs, and 

technology-enabled decision tools are required to optimize these activities. Online 

channels are the most disruptive factor in today’s retail environment, and consumers are 

increasingly using these channels to select their products while wanting to avoid delays 

in order fulfillment. This requires additional demand for fulfillment services from 

operation of distribution and retail branches with complex inventory policies (Choi et 

al., 2018; Duan et al., 2019; Ghosh et al., 2021). The disruptions have needed 

collaborative arrangements to reconceptualize the nature of core business, which 

involves the reconsideration of the product and service mix, the appropriate distribution 

channel, and the collaborative resources and capabilities required to support the service 

and product development process over the long term. Retail supply chains are now 

designed and managed by networks that represent more than just the flow of logistics in 

the form of distribution channels and suppliers, and new paradigms in performance 

assessment and resource planning are needed. Profit recovery is achieved through 

accurate prediction replacement part demand, particularly in demand spikes. Traditional 

demand forecasting methods use past demand history, but sales of many products exhibit 

seasonal, cyclical, or trend-stabilizing patterns, which are difficult to model. Time series, 

autoregressive statistical methods have been unable to provide accurate forecast results 

in terms of MSE or MAPD (Ivanov et al., 2019; Wang et al., 2021). 
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4.1.1. Setting the Stage for Retail Supply Chains: Current Landscape and 

Challenges 

Retail supply chains exhibit unique characteristics. Retail supply chains distribute 

needed products to different retail outlets in different amounts at different times. A retail 

supply chain seeks to satisfy varying customer demand for quantities and assortment of 

products within a limited time frame. If a customer cannot find the desired product at the 

retail outlet at the desired time, the sale is lost. Selling the product is the goal of the 

supply chain because the customer will not seek out a competitor simply because the 

product is available. In contrast, for most other supply chains, the customer need not be 

concerned with the timing of product availability. While the supply chain usually desires 

to minimize the costs associated with holding inventory and transportation, if a product 

is not available to the consumer at the retail outlet at this critical point in time, the sale 

will be lost because competing retailers will be offering the same product for sale. This 

objective emphasizes the need for close coordination between the retail outlet and the 

upstream supply chain members that produce and transport the products. 

 

Fig 4 . 1 : Retail Supply Chains 

The retail world has been changing dramatically due largely to the rapid advances in 

information technology and telecommunications technology. Corresponding to these 

technological advances, business practices have also become more sophisticated and 

more efficient. Retailers are better able to put together strategic alliances with 

complementary manufacturers to offer leaner supply chains, but this has also shaped the 

way they have conducted their operations. Fulfilling customer demand is no longer the 

primary goal of retailers. Instead, they are very much concerned about minimizing the 
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costs associated with out-of-stock situations while keeping required inventory 

investment and inventory holding costs as low as possible. They seek to maintain the 

secrecy concerning their retail data since sharing the information with upstream supply 

chain members has been perceived to jeopardize their competitive advantage in their 

quest for survival in the retail world. 

4.2. Overview of Retail Supply Chains 

Supply chain refers to a set of companies involved in the design, production, distribution, 

and sale of a product. For example, in a clothing supply chain, the suppliers provide 

fabric and zippers, the first-tier manufacturer assembles the clothing, the intermediary 

retailer provides service and support, and the end-user buys and uses the clothing. In 

retail supply chains, the retailer adds value by delivering the product closer to the 

consumer, and in return, the end-user pays a price higher than the product's cost at the 

retailer. Although supply chain partners operate in coordination, they compete with 

similar supply chain partners at each level; for example, there are different first-tier 

manufacturers and retailing intermediaries providing substitute products at varying 

prices. In practice, the end-user is often indirectly paying for the compounded cost from 

each level of the supply chain. 

In the brick-and-mortar retail supply chain model, the manufacturer sells goods to 

retailers at wholesale prices, and retailers sell goods to customers at retail prices. 

Generally, the retail price is higher than the wholesale price, and the difference is the 

retailer's margin. Retailers typically keep the products in their inventory for some time, 

and customers demand the products according to a stochastic process. If the retailer's 

inventory level becomes zero, the customer has to wait until the retailer reorders and 

replenishes the product, or the customer switches to a competing product. Because the 

customers are unwilling to wait, the retailer will lose sales when the product is out of 

stock; that is, the retailer experiences a stockout, which is costly for both the retailer and 

the manufacturer. 

4.2.1. Understanding Retail Supply Chain Dynamics and Trends 

The major purpose of a retail supply chain is providing products when, where, and in the 

right quantities needed to satisfy customer needs at an optimum cost of service. Retail 

supply chains are different from other supply chains since demand evolution is shown 

to differ significantly, with retail being characterized by high market volatility, with 

rapid demand changes since being affected by frequently changing customer tastes and 

preferences, high levels of item variety with demand reflecting rules, or further increased 

due to the rise of private label brands. Supply chains are hierarchical consisting of core 
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and extended members and several levels. Retail supply chains span wholesale suppliers, 

manufacturers, distributors, transportation services, and finally retail firms. 

As opposed to pure manufacturer supply chains, higher levels of collaboration and 

optimization strategies can allow retailers to provide lower prices and better availability. 

The growing importance of sourcing optimized logistics and distribution networks 

reduces expediting demand variability through successful supplier management and 

resulting collaborative and trading partner efforts, using collaborative technology and 

information sharing. Enterprise marketing and distribution resource planning through 

collaborative sharing speed product time-to-market and provide accurate delivery 

schedules allowing better aligning distributor needs. Chains can provide more efficiency 

if decisions are done in a collaborative way. This extends to cross-docking policies and 

vendor-managed inventories applied to clearing orders consolidated by routing 

shipments across several stores to a single destination. But increased chain complexity 

further increased towards multi-channeling, deeper supply lines, brakes on stock and 

transport cost layers, and outsourcing further challenge the management of retail chain 

operations. 

4.3. The Role of AI in Supply Chain Management 

To establish efficient supply chain operations and effective logistics strategies, 

managing unpredictable behavior is a critical issue that can considerably enhance overall 

performance. Hence, attention has been paid by organizations to the integration of digital 

technologies such as AI. In digital transformation, AI is regarded as a powerful force to 

provide supply chains with real-time responses, predictive capabilities, enhanced 

decision-making, and improved people-machine collaboration. AI technology 

encompasses various technologies and services that can help organizations improve their 

operational processes, improve existing products and services, and develop new products 

and services. The use of AI in supply chain operations goes beyond that of automation. 

It includes product design and manufacturing, logistics, stocking of warehouses, 

inventory levels, controlling the flow of goods, and many other functions in the supply 

chain. 

Traditionally, when managing complex and uncertain supply chain operations, 

traditional decision-making systems were deterministic models or prescriptive analytics 

at the upper stages of the decision level. In general, these levels are not directly affecting 

costs and performance on a short-term basis. Today, technological changes in IT systems 

make it possible to manage with AI others' decisions and information levels on neural 

networks to which data on costs and performance indicators are sent to bring them 

quickly and steadily within set performance ranges. In addition to reducing costs and 

improving performance, AI can facilitate predictive and preventive techniques and 
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processes, provide training, add data in operational processes, and assist future decision-

making at all levels. 

4.3.1. Key Benefits of AI Integration in Supply Chain Operations 

Artificial intelligence (AI) is becoming a crucial part of the future success of the retail 

supply chain. Until recently, retail supply chains have discussed Artificial Intelligence, 

but mainly in the form of business research. Different academic and commercial papers 

on business describe the benefits of AI but however only some leading companies have 

so far deployed such systems. The tendency until now has primarily focused on business 

risk instead of business advantages. New developments such as data availability, 

increased number of data sources that include Voice of Customer data, reduced model 

fitting time, and also enhanced computer processing open the door to many new 

applications for Artificial Intelligence in retail analytics. The most important benefit for 

a retail company is increased revenue. 

The motivation for retail companies to invest in predictive and prescriptive AI systems 

is enhanced sales revenue that comes from enhanced sales prediction. Higher store sales 

in combination with real-time digital pricing will lead to increased customer loyalty 

while diminishing markdowns and price discrimination making more customers 

satisfied. Predictive AI tools will significantly impact the daily work of Merchandising 

Planning Associates at the corporate headquarters, as well as Inventory Planning 

Associates and Store Associates at the local level, who check every week product 

inventories in their stores. Store Associates are responsible for the replenishment of 

every product for every store, and predictive AI solutions will help them access the right 

data and make the right decisions in order to enhance product availability in the stores. 

Future predictive AI algorithms will ease these Associates’ work and reduce the time of 

fitting models. 

4.4. Predictive Maintenance in Retail 

Over 1 Million retail stores exist worldwide, including large chains, tech chains, 

warehouse chains, and grocery megastores. Retail stores in industrialized ascension 

countries are expected to grow rapidly. These stores also need to maintain operations 

without interruptions from the failure of equipment such as point-of-sale registers, 

electronic billboards, credit processing terminals, securities devices, cameras, electronic 

surveillance systems, automatic substance dispensing devices, payment processing 

systems, and any equipment dependent on electricity and/or hardwired into a server. 

Creating and implementing an effective predictive maintenance strategy plan for repair 
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and maintenance of these systems is crucial to ensuring that their operations run 

continuously without service failures. 

To better understand the workshop methods of the predictive maintenance in retail 

supply chains, two exemplary small use cases are discussed. In both workflow models, 

we utilize machine learning techniques and embedded systems. The first use case is a 

POS register, which is the center point at a retail store where a monetary transaction 

occurs. An interruption of the operations of the POS system would result in huge losses 

if the payment cannot be processed. It is crucial to minimize the downtime of the point 

of sale register in case of failure. A second use case is an electronic billboard installed 

in a retail center. Electronic billboards attract customers and provide advertisement that 

information about the store enhances customer experience to create a positive imagine 

about the company. An interruption of the operation of an electronic billboard for a long 

time without displaying advertisements on it would result in huge losses. 

4.4.1. Definition and Importance 

Since the beginning of the 21st century, memorable increases in the investment in new 

technologies that allow retailers to develop new business strategies and models have 

been verified. Actually, recognizing the necessity to invest in innovation and research, 

governments have created partnerships with universities and private sectors in order to 

implement appropriate rules to govern the respective areas. This investment in 

technology has brought the development of new inventory management systems, distinct 

from traditional ones, which enable more rational decision making. Within these 

systems, predictive maintenance solutions make use of sophisticated mathematical 

models and new data analysis algorithms to anticipate and avoid possible equipment 

failures. Furthermore, companies that bet on better predictive maintenance management 

processes can be rewarded with reduced maintenance costs, reduced inventory levels, 

increased production capacity, improved product quality, and increased customer 

satisfaction, among others. 

The enormous degree of Automation Industrial Revolution 4.0 and Industrial Internet of 

Things is heavily impacted by the drastically reduction of costs of secure cloud storage 

and real-time remote monitoring of information generated by millions of sensors in the 

majority of the production equipment used in the world, smart devices, enabling the 

development of sophisticated mathematical data and predictive analytics models since 

the last decade of the 20th century. With the drop of Big Data and advanced analytics 

techniques that deploy artificial intelligence and machine learning algorithms, which 

were commonly utilized to design predictive retail-centric maintenance solutions in the 

middle of the last decade, companies have accelerated the implementation of Industry 
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4.0 technologies towards Industry Digital Twins in order to develop self-optimizing 

factory solutions. 

4.4.2. Technologies Used 

The technologies used in predictive maintenance comprise the whole battery of tools and 

techniques of data analysis ranging from statistics to advanced artificial intelligence – 

mainly machine learning and deep learning – that may add value to the data. Statistical 

methods were the first to emerge, and, for many years, were the go-to techniques used 

in predictive maintenance. However, the capacity for handling large volumes of data, 

lack of prior assumptions about the probability distribution function of the data and the 

ability of machine learning and deep learning techniques for automatically capturing 

hidden patterns in the data made them more popular in the solutions of predictive 

maintenance deployed in recent years. Predictive maintenance methods can be classified 

according to the data they use and how they use them: Traditional methods rely on expert 

knowledge, machine learning / deep learning methods trained on historical failure data, 

and monitoring methods that detect anomalous patterns in the signals generated by the 

equipment while in operation. Additionally, methods may also be classified according 

to the stage of the process they are (1) one-time prediction of time to failure, (2) 

continuous prediction of time to failure, (3) maintenance scheduling, (4) work-order 

multi-objective optimization problem or (5) recently developed, closed-loop predictive 

maintenance. All these variations in data input and output make predictive maintenance 

a complex problem, with a variety of tools that may generate different outcomes. 

4.4.3. Case Studies 

The importance of predictive maintenance reflects on the studies that aim to evaluate it 

along with its implementation. Several studies influence such evaluation indicating that 

the implementation of predictive maintenance can minimize the downtimes and machine 

failures, influence equipment life cycle, among other impacts. Therefore, in this section, 

we explore some case studies that analyze the application of predictive maintenance in 

different situations. 

A decision support system was developed that integrates various engineering models to 

identify the type of data warranting further collection and analysis. The system's primary 

goal is to develop an efficient predictive maintenance policy for systems composed of 

heterogeneous but dependent components to maximize profit. The approach is based on 

the principle of maximizing the profit generated by the combination of all maintenance 

and failure cost-related factors, including the influence of preventive maintenance on the 

operative costs during the time intervals between failures. A predictive maintenance 
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method was applied in the main conveyor of a distribution center. The technique relies 

on a fault diagnosis method through decision trees created through the historical data of 

machine failure. After semiautomatic support for fault diagnosis, and classification of 

faults with respect to maintenance, predictive models are created based on time series 

regression between maintenance requisition and anomalies. Then, the results of the 

previous predictive models are assessed, selecting the best method. The method aims to 

bring benefits for companies by reduction of unplanned stop, cost reductions, increase 

of quality of service, and improvement of customer satisfaction. 

An important contribution in the area of predictive maintenance applied to retail is found 

in a study that proposes the development of a software tool with integrated predictive 

maintenance support to help organizations in the retail sector to avoid equipment failures 

by providing indicators that help predict these failures. Such increased software tool 

advantages come essentially from the integrated support of several predictors and the 

analysis of historical data considering the periodic and seasonal nature of the retail 

business. 

4.5. Inventory Forecasting Techniques 

In many industries, the standard operational paradigm is that forecasted demand and 

inventory replenishment, normally triggered by some external factors, are required to 

meet the anticipated demand, following a flow-down process from the final product to 

its distribution centers, and then to different tiers of suppliers in hierarchy. To be more 

specific, the flow-down model uses information at the bottom of the supply chain, i.e., 

the demand at retail level, to forecast the needs at higher levels of the supply chain, then 

allocate these needs to various distribution and/or manufacturing locations to ensure 

acceptable service level. This requirement passes through the entire supply chain, 

leading to insufficient or excessive inventory at various levels of the supply chain and 

low resource utilization. 

Most of the traditional demand forecasting models, such as time series trend analysis, 

exponential smoothing models, decomposition models, regression models as well as 

neural networks, mostly rely heavily on training historical data to estimate parameters 

and are not implementable when very little or no data is available at all, which is almost 

always the case at the higher levels of the supply chain. Moreover, these models 

impliedly assume that the underlying demand processes are deterministic, when the 

demand processes in reality exhibit stochastic behavior. In practice, any model of 

demand uncertainty used for inventory management should be based not on the 

economics of demand estimation, but rather on the entropic bias introduced by a limited 

demand history. More importantly, the intrinsic uncertainty in demand would in fact be, 

in most meaningful cases, considerably greater at the higher levels of the supply chain. 
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4.5.1. Traditional Methods 

The science of inventory forecasting has a long history. Traditional methods include 

Qualitative Methods, Time Series Analysis, Causal Methods, Linear Regression, and 

Econometric Methods. 

Qualitative Methods are suggestions from experts from different areas. These experts 

participate in juries or brainstorming, and underline what they think is more important. 

Experts can use previous data to try to quantify their suggestions. The advance of 

machine learning algorithms drastically increased the availability of decision variables. 

Words from customers, partners and employees can be easily transformed into 

quantitative variables to help experts to make better predictions. Text mining can 

transform opinions expressed on social media to reach workers that can improve 

predictions. 

 

Fig 4 . 2 : Inventory Forecasting Methods 

Time Series Analysis has been largely used in the past. They are based on collected sales 

data. The simplest method consists of using historical average sales in the time horizon 

to come but it assigns the same weight to all previous sales. Therefore, not considering 

possible recent changes in seasonality and trend. This brings us to other methods such 

as moving averages that also do not assign weights to influences throughout the history. 

The exponential smoothing method assigns a higher weight to recent sales but it is a 

linear function. Considering that sales may need to suffer heavier changes, in cases of 

an innovation, other approaches used in inventory theory such as the Holt-Winters 

method where trend and seasonality are linear as well as ARMA and ARIMAX models, 

which are dedicated ARMA for non-stationary series, have only linear solutions. 

Causal Models are used to correlate sales that have been observed and independent 

variables. There are statistical models and simulation models. Simulation models are 
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more advanced simulation software. For statistical models, consumers are assumed to be 

rational homogeneous individuals. Demands are inelastic and functions have to their 

theoretical properties. The truth is that those constraints can limit flexibility. 

Nevertheless, they are an excellent tool for demand forecasting when the conditions can 

be achieved. 

4.5.2. AI-Driven Approaches 

Furthermore, concerning the AI-supported techniques, it is suggested that, to better 

inform shoppers and help prices be more dynamic, the inclusion of five features in the 

prediction model, including seasonality, displayed promo, displayed state, peer promo, 

and whether promo, is beneficial. In our model, data had to be refined, scaled and was 

transformed into a supervised predictive model or translated into a supervised 

classification model. The first model applies to our non-disaggregated models, whereas 

the second model applies to our disaggregated models predicting whether or not a SKU 

was sold in each day of our prediction window. Starting from the existing demand data 

in the training window, we modeled the sales with one of two possible cases: one as a 

continuous quantity prediction model, including both sold and unsold units during 

promotions for a SKU on a specific day, with a constant price, and one as a classification 

model, signaling a binary SKU day case, which included the estimated units of the sold 

SKU at a specific day at the constant price, without being either displayed or peer 

promoted. Finally, both the models were validated against some benchmarks with 

different hyperparameter optimization approaches. 

There is a need to review previous forecasting models, but there is no concern with utility 

functions in the overall forecasts. Similarly, after reviewing several forecasting 

techniques in terms of classification accuracy, predictive accuracy, and utility-based loss 

functions, it has been stated that, although the research into the sales forecasting process 

has been substantial, it has mainly explored the application of conventional statistical 

techniques. It is concluded that, despite the growing popularity of AI and ML techniques 

in many business areas, they do not seem to have had a similar impact on the sales 

forecasting process. 

4.5.3. Comparative Analysis 

A comparison matrix in Table 7 presents a summary of the reviewed methods on the 

following discussed criteria: capabilities, i.e., inventory demand characteristics that are 

addressed; computational efficiency, i.e., computational cost correlated to overhead; 

data requirements, i.e., amount and types of data needed for employing; training 

requirements, i.e., amount and types of data needed to train the models; and modeling 
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capability, i.e., ability to capture dependencies between times series. Together with these 

attributes, we also add our perspective comments on the pros and cons of the different 

approaches, to help the reader get a sense of the most popular methods presented. 

Traditional methods customize different strategies or mechanics to accommodate the 

characteristics of the problem domain in hand. Moving averages, exponential smoothing, 

or the Holt-Winters seasonal approach capture proven time-series features, while 

ARIMA-based models require an optimal selection of time-lagged forecast variables. 

Traditional methods rely on the past values, either from the target time series or 

covariates, and do not require training. In addition, they can generalize well when the 

models are adapted to the right settings. 

Traditional methods can also tackle problems from limited data domains, provided they 

do not introduce selection biases in certain periods of time. They therefore require a 

limited amount of data, mostly historical, and can use external or internal forecasts at a 

lower cost and overhead relative to machine learning or AI. They can perform multi-

sourcing by inherently including additional time series that are directly connected to the 

forecasting source or consider the sum of different products need to forecast the total 

demand. However, traditional methods certainly present several limitations. They rely 

on complex heuristics that are relatively ineffective at capturing the dependency patterns 

between product demand variations. 

4.6. Data Collection and Management 

This section describes data collection and management in detail. It discusses selected 

data sources, methods and tools used to develop, clean, store, and transform data to meet 

user requirements. Data management is an ongoing effort, which requires constant 

attention. Advantages of maintaining high-quality data include saving time by 

alleviating the data cleaning task, accelerating the data analysis and model calibration 

process, and preventing model failures due to inaccurate data. On the contrary, poor data 

quality may prevent systems from delivering the expected results. In the context of this 

thesis, retail and supply chain data integration and cleaning are paramount. This is 

particularly true for the third and sixth relevant use cases. 

Historically, the adoption of Artificial Intelligence in supply chains has been slower than 

expected. Initially, the technology costs were too high. In addition, the required in-house 

expertise to implement tailored AI-based solutions was lacking. Only those companies 

willing to invest heavily on cloud computing were able to implement successful AI 

solutions. Technological progress and increased macro business data availability leveled 

the playing field and democratized access to data-based technological innovation, and 

particularly innovation driven by Machine Learning techniques. Today, due to the easy 
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availability of cloud-based Machine Learning tools, even small and mid-size companies 

can benefit from machine learning-based solutions. Moreover, today’s data-driven AI-

based innovation goes beyond the company’s internal data. Data from external, 

alternative sources has become an essential ingredient of AI-based business solutions. 

Accordingly with machine learning best practice, data processing and data cleansing is 

a numerically important part of this work. In order for estimate errors to have a 

meaningful interpretation, high quality data should be used. In practice, raw data is not 

always available, and different versions exist. Different sources may use different 

encoding systems and communicational styles. Thus, using another source besides the 

one corresponding to the target variable would require translating and cleaning the 

variables to be compared and merged. 

4.6.1. Sources of Data 

Data collection is the starting point in the establishment of both predictive maintenance 

and inventory forecasting solutions. Consequently, understanding and agreeing upon the 

sources of data is essential, however, should not be chosen lightly, as this is a choice that 

can create long-lasting impacts. We can distinguish two main types of data sources that 

can be used in AI-PPM solutions: digitalized data sources and enhanced physical data 

sources. The digitalized data sources are data that exist in digital form in the company’s 

systems that together form a digital backbone of a company. These databases are often 

built from the recording of salient events related to an asset or related to operations that 

contain timestamp identifiers and in many instances unique integer identifiers that relate 

to the asset for which the event is recorded. These data sources can be easily accessed, 

and the most common such sources are ERPs, which contain information on inventories 

and the supply chain in general, AMs, which contain a record of performed maintenance 

and repair actions, and IoT systems or sensors that track asset use over time. Other 

plausible digital databases are CRM systems, PLM databases, databases related to the 

company’s ordering process, or even accident and incident databases if these are utilized 

in the company. 

However, these data do not always exist, or do not contain the necessary granularity, or 

relevance for model building. In such instances, enhanced physical data sources should 

be considered. Enhanced physical data sources consist of data physically collected in a 

non-digitalized format that are created together with a thorough understanding and 

design of the desired modeling outcomes. Recordings can be made by either humans or 

smart devices. The enhanced physical data sources are often referred to as ground-truth 

data as they are manually collected data reflecting reality. An example of enhanced 

physical data sources utilized in an AI-PPM solution is the joint field expeditions where 
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engineers collected activity data on asset use while encountering the difficulties of 

physically collecting these data. 

4.6.2. Data Quality and Governance 

The quality of data is critical, and systems should be in place to support consistency, 

quality control, integrity checking, sharing, and to avoid redundancy. For predicting 

maintenance requirements and forewarning potential issues within supply chain 

technology enabled systems, additional methods for ensuring that data is appropriate and 

usable would be useful and desirable. Big data standards in measuring quality in big data 

involve both subjective and objective measures. Subjective evaluation would involve an 

expert deciding on the quality of different truth enhancing data quality dimensions (for 

example, time dimension - semantic correctness related to the temporal extent of the 

data, or degree of aggregation; completeness; redundancy; dimensional consistency; 

precision – accuracy of data values considering their intended use); while objective 

evaluation processes could be implemented as well, where for example, integrity 

checking involves verifying that the data lies in the right domain. 

For sensing systems, the data could be examined for each sensor, because input 

measurement error rates can differ considerably for different sensors. Also, monitoring 

these values or comparison to other sources could give an estimate of credibility. Testing 

involves either functionality testing via validation and comparison against other trusted 

data; or using confidence measures such as root mean square error, or the more 

commonly employed mean absolute error, to indicate validation threshold levels for 

sensor values. Although completeness is a major challenge, ongoing considerations and 

updates relative to the sensor technology can help improve and guarantee data quality. 

Data governance involves multiple organizations working together to define policy and 

establish rules and standards supporting the creation, storage, movement, and consumer 

access to the data used throughout all of these collaborative organizations. This involves 

the establishment of procedures for creating useful metadata, and for data models, as 

well as the establishment of appropriate data sharing agreements and structures to 

provide user access for all of the synergies desired in attempting to gain better insight 

from the shared data. 

4.7. Machine Learning Algorithms for Predictive Maintenance 

The field of predictive maintenance has seen advancements stemming from novel sensor 

technologies and the vast amounts of data produced by sensors on industrial systems 

spanning various fields. Organizations are seeking to move past the traditional, time-
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based maintenance applied indiscriminately to all aspects of production and downtime 

management. Instead, work is focused on reducing operational risk by predicting 

equipment and production failures. The purpose of predictive maintenance is to better 

leverage the data being generated from machinery to perform efficient and strategic 

maintenance, improving KPIs such as cost, efficiency, and uptime. With the objective 

of reducing unplanned downtime, the decision of when to execute maintenance can be 

informed by understanding the underlying health of systems critical to the production 

lifecycle. The timing of maintenance can occur closer to operating thresholds using 

advanced data techniques, including machine learning. Performance prediction models 

can be constructed from information on physical, mechanical, and operational 

parameters. 

The complex interdependency of physical systems and the uncertainty related to 

environmental parameters can be modeled, learned, and forecasted via machine learning 

techniques. In predictive maintenance, the lifecycle of predictive models is impacted by 

the characteristic lifecycle properties of machines. The performance of existing models 

deteriorates when they transition between different lifecycle phases, necessitating their 

periodic retraining. Companies are presented with challenges separate from the technical 

impediments to value generation through machine learning. There are short- and long-

term difficulties around data strategy and governance; process, culture, and 

organizational design; technology management; expertise and skills transfer; and 

operational rigor. Many lifecycle changes and the impact on asset degradation and 

remaining life can be modeled with supervised machine learning techniques. 

4.7.1. Supervised Learning 

Many classification and regression ML algorithms belong to the category of supervised 

learning and the model learned by supervised algorithms can be used as an estimator to 

make predictions of failure events. In supervised learning problems, the model is trained 

using data which contain the inputs and the desired output(s). The given input-output 

pairs are referred to as labeled data. The labeled data used for supervised learning 

problems varies in characteristics such as reliability and amount. A large body of 

research has focused on predicting failure times or identifying failures using predictive 

models learned from reliable labeled and unlabeled data. Although such models can be 

powerful predictors of future failures, the construction of large, reliable history failure 

log databases can often pose significant challenges. Others have focused on enhancing 

the predictive accuracy of models trained on smaller amounts of labeled data by adopting 

semi-supervised learning techniques in which the model is first initialized with a model 

pre-trained with labeled data from a related dataset as a starting point and then fine-tuned 

using smaller amounts of labeled data. Others have considered the influence of 
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performance measure selection on the predictive accuracy of a variety of weak classifier 

models trained on imbalanced datasets, varying the performance measures for 

sensitivity, specificity, overall accuracy, negative predictive accuracy, and Matthews 

Correlation Coefficient, and considered the use of the Matthews Correlation Coefficient 

as a performance measure in such imbalanced domains. Others have sought to identify 

and cluster failure events with similar temporal profiles and then share the related 

clusters among the classification models of different failure events using a multitask-

learning framework. 

4.7.2. Unsupervised Learning 

Unsupervised learning allows the machine to decide what to learn and how. It examines 

the input data to find some inherent patterns, eliminating the need for human intervention 

in data tagging. Exploratory Data Analysis is an example of unsupervised learning that 

makes use of clustering techniques like K-means clustering or Hierarchical clustering. 

Advanced dimensionality reduction techniques like t-SNE and Auto-encoders use 

unsupervised learning to help in the visualization of data. In the context of time series 

data, clustering techniques can be used to discover some inherent patterns in the input 

data. Anomaly detection algorithms search for deviations from the normal pattern based 

on multivariate measures of distance, and Principal Component Analysis can model 

temperature effects and metadata de-noising in streaming sensor data. 

Unsupervised learning is common in Predictive Maintenance applications where there 

is hardly any labelled data for training. Unsupervised learning has also been used for 

anomaly detection on data from industrial processes or condition monitoring of rotating 

machinery. Compared with supervised models, which are often less robust due to 

overfitting to historical anomalies, unsupervised anomaly detection models are more 

interpretable and easy to deploy. Cascaded anomaly detection models based on 

unsupervised learning can also help transfer knowledge from labelled data of similar 

failure modes in other products or regions. Additionally, unsupervised learning helps 

eliminate the challenges of classification-based architectures which can suffer from class 

imbalance. 

4.7.3. Reinforcement Learning 

Reinforcement learning (RL) finds its niche in situations where the actions to be taken 

aren't discretely defined within the environment – a non-stationary temporal context that 

isn't explicably bounded – but they can still be identified using the continual signal of 

accumulated rewards. RL, like the subfields of computer vision and natural language 

processing within machine learning, shaken loose a handful of very successful 
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algorithms. In terms of core ideas, RL is more similar to econometric approaches than it 

is to any of the other machine learning subfields – such as supervised learning, 

classification and regression; or unsupervised learning, clustering and dimensionality 

reduction – because what RL emphasizes isn't broad training-sample use. It's that RL 

assumes that any decision-maker is optimizing an objective function. 

In other words, each agent interacts with a complex environment and – by means of 

thousands or millions of random-thoughtful decisions – determines, through trial-and-

error, an optimal course of action. The experience that the agent accumulates doesn't 

take the form of pairs of provided inputs and outputs, as is the case with supervised 

learning and successive iterations over a canonical training set. Rather, it comprises 

sequences of inputs and successive outputs, each decision leading to a change in the 

current state of the environment. As with supervised learning, the RL idea is to abstract 

from the details of those experiential sequences, and replace them with a multitude of 

simpler abstractions that can then be generalized to an abstract model of the decision-

maker's environment. Importantly, the RL agent meshes with its environment in a 

continuous loop, providing experience that, in turn, changes the environment's response 

to the agent's inputs. In economic theory this is known as "strategic interaction." In RL, 

it's known as the policy-inference problem. 

4.8. Integrating AI Solutions into Existing Systems 

There is an increasing urgency to develop intelligent solutions in addressing the 

challenges of predictive inventory forecasting and predictive maintenance in retail 

supply chains. While some organizations would prefer investing in new or custom-build 

software applications, the majority would rather innovate within their existing systems, 

given the possible substantive investment that could come from a search for new 

software providers or risk protracted integrations with existing infrastructure. Hence, 

retail supply chains have a growing need for intelligent solutions that can seamlessly 

integrate into the existing system architecture. Enabling AI intelligence into solutions 

portfolios that have been used for years to address the problem of predictive maintenance 

and predictive inventory monitoring is an overlooked area in the development of 

intelligent enterprise systems frameworks and technological stacks for AI development. 

Technological barriers prohibit many supply chain systems in retail from embodying 

‘plug-and-play’ AI solutions. Technology vendors explore a small number of industries 

and offer applications for only the most common use cases. There are several barriers 

that contribute to the low usage of AI for predictive analytics even when highly relevant 

data is available. First are the challenges from internal stakeholder pressure in 

organizations. This collaboration can take a long time to reach expertise in the areas of 

knowledge management systems. Models may also be used which, if executed without 
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suitable management, can lead to even greater obstacles for the user. However, the 

advantages of using AI techniques are such that, despite their limitations, they still 

present a far better alternative and should be taken into account for users. A common 

challenge of these models is the ‘user look and feel’. When wrapped in a software system 

which has been designed to be easily used, their use becomes tougher, especially for 

complex models. These ‘user-friendly’ systems must appeal to the user portfolio in the 

organizations due to their complexity in some cases. 

4.8.1. Challenges and Barriers 

A very simple yet false assumption regarding AI solutions for business is that these are 

plug and play products that would yield immediate ROI when integrated in the 

company’s business processes. Therefore, it is essential to better describe the barriers 

and challenges that organizations would typically experience when trying to integrate 

AI solutions into their existing business systems. There are challenges related to 

developing a complete understanding of the business processes by the AI developers 

and, vice versa, for the organizations to understand how best to utilize the capabilities 

and already defined limitations of the AI tools. Most existing business processes are very 

rich and rely on sophisticated knowledge and heuristics built over time by the staff based 

on their day-to-day experiences. However, most reporting business data in the 

organization, especially if batch oriented, are extremely limited in terms of what they 

convey about the knowledge required to build the predictive models that would be the 

essence of the AI solution. 

Thus, with regards to the business processes designed by experts or used by employees 

for many years, there is usually a high possibility of the processes being undocumented 

at a level that would provide a solid understanding for documenting the key 

dependencies and variances used to create, modify and review any instance of these 

processes. Moreover, these processes often exhibit very high complexity with diverse 

structure and data, resources and people utilization. Simultaneously, the information that 

AI tools can process to learn the tasks typically exhibit low volume as they reflect the 

decisions made by the employees over long time spans. This can be minimized by using 

AI to review events and decisions over the past to help document the actual deviations 

from the expected work rules. This difficulty is heightened in retail by the need to merge 

many point of sales transactions spread over hundreds or thousands of stores. Even once 

actual tasks are documented, the task learning models may be difficult to build without 

proper design of the process and task documentation modules that support modeling the 

rich variety of different instances. 
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4.8.2. Best Practices 

Integrating advanced machine learning techniques into existing enterprise-wide systems 

will require novel approaches, due to the nature of the data and techniques applied, but 

also due to the scale and operational requirements of real-world systems. In general, we 

recommend developing and testing advanced techniques in sandbox environments. 

Advanced AI models can then be incrementally integrated back into the integrated 

operational decision-making processes of corporate systems. In several cases, we 

recommend using supervised learning approaches due to the operational requirements 

of production environments, and leveraging the most advanced AI and machine learning 

techniques only in the learning steps of operational systems. 

 

                Fig 4 . 3 : Predictive AI In Supply Chain Market Size 

 

Data is often collected in enterprise systems in order to solve decision-making problems, 

and not in general terms of extending support for modeling. Traditional exploratory 

analysis would often not be possible, and therefore, it will be necessary to leverage 

business domain results and large proven operational systems in order to identify the 

most promising data, modeling, and decision variables usable for advanced model 

leveraging. Domain modeling steps leading to supervised learning model development 

will often need a cyclical review and update process for parameter updates and 

recalibrations, due to the nature of enterprise systems and decision-making problem. 

More advanced techniques could be leveraged at the feedback stage, where additional 

iterations can be analyzed as control variables, if technically feasible for the specific 

enterprise decision. 
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Models developed with other learning approaches will often be categorical, due to the 

nature of the specific problem addressable and enterprise requirement of assigning 

optimal values for the corresponding extreme decision metric targets. In these cases, all 

possible combinations of model variable states will need to be processed in order to 

assign the necessary model weights for operational implementations and use. 

4.9. Conclusion 

Retail is an evolving enterprise which utilizes modern technology in many areas to 

enhance its abundance of products and services. Supply chain is a complex interplay of 

organizations, people, information, processes and products to deliver a consistent 

product to consumers. Superfluous inventory, ruptured supply, and exorbitant costs are 

serious challenges that retail chains cope with. No business can afford to hold excessive 

money in playing around SKUs and not being invested in more profitable ways. In this 

work, we discussed how to use AI technology, Business-Driven Predictive Analytics, 

applied in innovative ways, to enhance forecasting accuracy, hence improving other 

interrelated operational areas, such as inventory and merchandising, increasing the 

chance of correcting errors before they occur and streamlining the organization for better 

utilization of human resources. 

Our Predictive Maintenance solution, along with the ability to train predictive machine 

learning models using a limited set of historical data, are both enablers to this goal. We 

are witnessing the advent and rise of Smart Stores, along with the fast-paced 

technological evolution in omnichannel logistics and ecommerce. Among many 

characteristics of Smart Stores, two are pertinent to the discussion: adaptation of store 

layouts to real-world consumer behavioral changes and automation of merchandising 

processes and logistics. Artificial intelligence, particularly business-driven predictive 

analytics and predictive maintenance capabilities, are instrumental in areas such as 

computer vision and conversational chatbots, empowering retailers to provide great 

customer experience when visiting stores and ease the handling of online order 

fulfillment either to be delivered directly to customers or picked up by customers at their 

local stores. 

4.9.1. Final Thoughts on Advancing Retail Supply Chains Through Innovation 

Revolution and disruption in retail are often used to characterize the last decade in the 

industry. However, at least in North America, the specific family of events has taken 30 

years to unfold. It began with massive shifts in consumers’ demographics and 

preferences, as well as overarching impacts from globalization, followed by the dot-com 

era. Retail modernization was slowly but steadily being built by innovators who utilized 
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new technology, with credits given to companies such as Walmart and Amazon. 

However, the impact was muted until an unlikely pandemic turned out to be the 

proverbial spark that not only lit the fire but really intensified it. During the COVID 

crisis, consumers have embraced online shopping at a speed and scale that many believe 

has ushered in a new normal, one that is here to stay. For many retailers, it is now about 

survival, with no guarantee of prosperity ahead. This conclusion is written from the 

perspective of the prior content-breaking retail supply chain framework. We close with 

some final thoughts. 

Advancing retail supply chains through the latest technology and business models is at 

the core of this effort. The value chain is essentially being turned inside out, with 

advanced collaborative, consumer-centric ecosystems fostering competitive advantage. 

In the post-pandemic new normal, smart supply chains need to connect the digital dots, 

thereby facilitating a customer-centric view of supply and product flows. There are a 

number of ways to accomplish this. This will require new and old players to work 

together. It will require innovation and a lot of it for real impact. 
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