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Chapter 6: Developing robust data engineering 

pipelines for complex retail analytics and 

manufacturing intelligence      

6.1. Introduction 

What is Data Engineering? Why is data engineering crucial for analytics in retail and 

manufacturing? Researchers in the fields of marketing and operations management have 

emphasized the importance of making analytical insights readily available for front-line 

users. Largely ignored in this literature is the necessity of creating a data engineering 

platform that will make the availability of data possible. Such a data engineering effort 

not only facilitates the smooth functioning of analytics in organizations but also leads to 

democratization of analytics by making it available for use by front line management 

and, even by customers. In this paper, we define, delineate, and describe the extensive 

and complex processes and activities involved in constructing the foundations of a robust 

data engineering platform (Grolinger et al., 2014; Choi et al., 2018; da Costa et al., 2022). 

Data engineering data pipelines transform, consolidate, and make available data in a 

timely, reliable, and usable manner to front-line management analytics tools, such as 

dashboards, risk management tools, and report generators. A data engineering pipeline 

has three key objectives: addressing all reporting needs of front-line users, not just those 

known at the design stage, at low cost and on a timely basis; ensuring the correctness 

and reliability of all the data used for reporting, and being flexible enough to adapt to 

the rapid evolution of front-line management needs. Front-line management typically 

prefers simple but timely reports that leverage previously developed and reliable data. 

This goal can be realized by providing schedules for the computations of metrics that 

will hold true through such schedules. The typical user prefers tools similar to traditional 

spreadsheet applications rather than analytic applications using data presented to the user 

in abstract database format. A robust data engineering pipeline is a prerequisite for 

analytics and business intelligence (Kreps et al., 2011; Singh et al., 2021). 
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6.1.1. Significance of Data Engineering in Retail and Manufacturing 

Data engineering is a vital evolution from traditional business intelligence (BI) in its 

focus on delivering a scalable, reliable, and flexible data architecture that meets 

organization-wide data needs and acts as a foundation for data analysis, machine learning 

and reporting. Retail and Manufacturing organizations generate a lot of operational data, 

and our experience in building both small and enterprise scale data pipelines in both 

these industries highlight the importance of data engineering in enabling effective 

analytics. These industries have their own complexities in terms of business logic and 

processes which drive the data feeds from various enterprise application modules, 

scheduling and orchestration of multiple jobs to manage key time-based and 

transactional events and finally designing the pipelines to be highly scalable, robust, and 

able to deal with the data velocity and volume that such events generate. Complex 

business processes, data volume, operational imperatives and technology heterogeneity 

call for robust, scalable and enterprise-grade data pipelines to be built using data 

engineering, as compared to small scale efforts usually seen in smaller organizations 

across less complex sectors. 

 

Fig 6 . 1 : Data Engineering 

Significant amounts of data are generated by business functions and enterprise 

applications over the course of day to day operations. While the data is available in these 

systems, it is difficult to access it, integrate it and deliver it in an easy to consume nature. 

Data engineering solves this business problem across verticals and functions and across 

both decision support and operational systems. The organizational quest to gain insights 

and analytics on business performance, on a weekly and daily basis, combined with the 

specialized technology stack in place further enhances the importance of good data 
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engineering. The pipelines need to be designed to handle multiple analytics, support 

batch and real-time use-cases and support complex and ever-changing business needs. 

6.2. The Importance of Data Engineering in Retail and Manufacturing 

Over the last decades, increasingly data-driven decision making has become critical for 

any business aiming to remain competitive and make the most out of its resources during 

both turbulent and stable phases. Making the right data-driven business decisions 

depends on various factors, e.g., high quality data being collected, stored, processed, 

transformed, integrated and presented in user-friendly dashboards or reports. Critical and 

inclusive among these factors is a step, which is often wrongfully undermined, 

overlooked or simply neglected: the step of developing all the necessary procedures and 

tools for conducting these operations in an efficient, trustworthy, and scalable manner, 

that is, data engineering. 

Data engineering can be defined as the missing link between data collection and data 

analytics, whose purpose is to create the foundation that allows for the impactful 

utilization of the constantly increasing amounts of data that are generated within and 

across organizations alike. Data engineering activities encompass methods and tools for 

the impactful collection, storage and retrieval, modeling, processing, transformation, 

integration and delivery of data in order to enable, support and enhance data analytics 

activities. Hence, data engineering plays a critical role in any data analytics project, as 

the results produced by data analytics initiatives ultimately depend on the way that the 

underlying data have been handled, that is, data engineering for data analytics. In 

particular, the data pipeline is at the very core of data engineering. Data pipelines connect 

the disparate systems utilized for storing the data resources used within and across data 

analytics projects. 

6.2.1. The Strategic Value of Data Engineering for Business Success 

Whether in the retail sector or manufacturing industry, data are increasingly recognized 

as essential strategic assets for business success, especially as it relates to the effective 

delivery of core operational as well as customer value propositions. In large measure 

because of the widespread adoption of eCommerce and social media by consumers, and 

the ubiquity of sensors in manufacturing facilities, the volume of data generated and 

collected is growing exponentially, for some companies increasing at an ever-

accelerating pace. Yet, simply collecting these data is not in itself creating value, 

especially for the larger corporations that have distribution networks and installed bases 

with billions of touchpoints. In order to augment revenues and profitability, and do so 

sustainably, these businesses have to analyze these data, derive insights, and act upon 
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these in near real-time. The larger and more complex the business's operations, the more 

difficult providing these high value-added analytics services becomes. As more and 

more analytics use cases are deployed across any large enterprise's manufacturing and 

distribution ecosystems, the more critical the underlying data engineering pipelines 

become. A well-designed, robust, flexible, automated, scalable, and efficient data 

engineering pipeline enables the organization to rapidly, accurately, and timely derive 

business-critical insights from its data. Conversely, a poorly-engineered pipeline 

increases the burden for analytic teams, decreases the speed with which analytics can be 

delivered, and limits the number of analytic applications that can be put into production. 

6.3. Understanding Data Pipelines 

Data pipelines are the engines that power data-driven decisions. Regardless of how 

advanced an organization’s machine learning models, predictive engines or dashboards 

are, data pipelines are required to efficiently ingest, model, and curate the data they rely 

on. High quality data is paramount for all downstream use-cases that rely on it. This data 

must go through rigorous data engineering processes to enable the correct, timely and 

accurate usage of information for intelligence. The objectives for a data pipeline includes 

the collection, organization, and transformation of data, its storage in a suitable data 

warehouse solution, and the maintenance of the pipeline itself such that the processes 

are automatically scheduled, monitored and retried when failure is detected. 

The architecture of a typical data pipeline comprises of multiple modules, which can be 

broadly classified into five steps: Data Ingestion, Data Extraction, Data Transformation, 

Data Load, Data Pipeline Maintenance. Data ingestion, as the name suggests, refers to 

the collection of data from different sources and the initial store of this information in a 

staging zone, which is usually a data lake or raw table in a database. Data extraction is 

the step of extracting the relevant pieces of information from the ingested data. This is 

usually done after the discovery of which information is relevant to the downstream 

business processes. Data Transformation refers to the steps of transforming the extracted 

data - either in a series of transformations that lead to a modeling template being created, 

or modeling templates being created for common use-cases. Data Load further organizes 

the data into warehouses and storage courses that ease the consumption of data or 

efficient model training for process automation, or both, included in a same step of the 

data pipeline. In the final step, monitoring and maintenance of the pipeline ensures that 

the pipeline continues to function even as changes are introduced in data structures. 

 

 



  

111 
 

6.3.1. Fundamentals of Data Pipeline Architecture 

Data pipelines have evolved from hard-wired data extraction, transfer, and loading 

(ETL) scripts, often executed in batch at night, to highly configurable core services that 

move high volumes of data in real-time. A major reason for this evolution is the 

explosion of internal and external data available to business and operational functions. 

Data integration and movement are no longer simple background jobs that flow 

additional data to the business intelligence systems. Instead, virtually every business 

function generating high volumes of event-based transactions relies on real-time event 

data moving in and out of core systems, into repositories for offline analysis, and feeding 

applied machine learning system inputs for prediction and recommendation of 

immediate actions. Various data reveal some surprising statistics about the structure and 

maintenance of modern data pipelines. They ingest over 1 petabyte of user event data 

every single day, in addition to user data, groups, company events, groups, messages, 

and many other tables. Each event message may modify more than 3,000 different back-

end tables. Batch ETL jobs generally move more than 10 petabytes monthly to their 

OLAP data warehouse. 

Consequently, companies should not think of system communication solely from the 

perspective of data transport and format. Data pipelines are critical core services 

requiring distributed system architecture patterns that support real-time movement of 

data, high throughput, and low latency. Supporting criteria include scalability for 

astoundingly large volumes of data generated every minute, from hundreds of 

asynchronous sources; micro-batching or streaming capability; guaranteed delivery; 

configurable or programmable sequence of transformation processes; reliable 

monitoring and alerting; and fault tolerance. Data movement pipelines should support 

reliable, lossless storage of potentially vast amounts of event data in common formats 

for ad hoc analysis during initial investigations of system events or as long-term archival 

for compliance. 

6.4. Key Components of Data Engineering Pipelines 

Understanding of data engineering techniques would be incomplete without 

consideration of various components of data engineering pipelines. Based on our 

experience, a data engineering pipeline is generally composed of the following 

components: 

Data ingestion involves the movement of data from source systems to staging areas. Data 

can be ingested in real-time or batch mode. Batch data ingestion is still the most common 

approach to ingest data from source systems. However, it is observed that more and more 

organizations are adopting stream-based or change data capture methods of data 
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ingestion. This is especially true for organizations operating in areas of e-commerce, 

fintech, online gaming or other areas of low latency. Using tools, organizations are 

capable of ingesting terabytes of data, commensurate with the underlying database 

transaction volume, with minimum latency. 

Data storage components refer to specialized storage structures that allow optimized 

storage of raw and transformed data at multiple levels based on predefined service level 

requirement policies. These policies can be image, low level storage with high time 

required to access, frequency of data change, and query access frequency. Most data 

engineering pipelines stage raw data in data lakes. However, purely raw data storage 

may not be suitable for analytics. Therefore, it is recommended that data lakes be curated 

through the creation of one or more formats optimized for analytical query access or a 

specialized storage structure suitable for query execution such as data warehouses or 

data marts. 

Data processing, the next component of data pipelines, involves the preparation of data 

for real-time or near real-time analytics. This step typically involves the execution of a 

combination of multiple algorithms from the domain of enterprise analytics such as data 

exploration, data engineering, machine learning, deep learning or business rule 

execution either in batch or real-time mode. These algorithms typically involve mapping 

of records through mapping functions, extraction of specific fields through data 

scrubbing, enrichment of records through association with other data sources, matching 

of records using algorithms from the domain of probability and statistics, execution of 

business rule actions using algorithms from AI and recreation of data tables and schemas 

using microservices. 

6.4.1. Data Ingestion 

The data ingestion layer is the main entry point for data into a data engineering pipeline. 

It is responsible for ingesting data coming from multiple producers, integrating the data 

coming from multiple sources, and forwarding the transformed data to downstream 

layers of the data pipeline for storage and processing. In a typical real-world data pipeline 

for a retail application, a variety of data sources need to be ingested including various 

enterprise applications, data lakes, database systems and cloud services, Internet of 

Things devices, web services, flat files, and other legacy systems. 

Enterprises use multiple tools and systems for executing their business processes and 

thus creating important data that logs business transactions. Some of these applications 

are developed and maintained in-house while other enterprise applications are provided 

by vendors. Various enterprise applications will have their own proprietary storage 

systems, data formats, and authentication authorization interfaces. We see a need for 
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building an automated, plugin-capable, flexible data ingestion system for enterprise 

applications, which is capable of handling diverse types of enterprise applications, is 

easily extensible, can be integrated with cloud and on-premises infrastructure, and is 

resilient, reliable, and fault-tolerant. Additional complexities arise in the case of 

applications that do not expose APIs and only store data in some proprietary format. An 

even greater challenge is posed by legacy applications that do not offer any means for 

integrating with external systems, but often need to be analyzed alongside the data from 

existing systems. 

Once the data is transported to the data ingestion layer of the retail data pipeline, the data 

ingestion layer needs to mediate interfaces between the various data sources and the 

underlying data structure, enabling uniform data storage and querying interfaces. The 

objective of the mediation agent is to provide a uniform viewpoint of all data from 

multiple sources to the data storage and processing systems. 

6.4.2. Data Storage 

A data storage system stores the ingested data for access, at rest, by other components 

of the data engineering pipeline. In the case of batch processing, the system must be 

capable of holding the data until processing is complete. In scenarios where data is 

transformed and subsequently added to the dataset to enable additional insights about 

the collective dataset, such as a common use case in business analytics, the data must 

also be able to persist through data transformations. The data storage system must also 

align with the volume of incoming traffic and the intended analytics workloads accessing 

the data in terms of storage type and how the storage is deployed. Finally, data access 

times may also factor into the choice of data storage utilized, especially when 

considering real-time processing use cases where time is a critical factor in enabling the 

decision to take action on the analytics insights. 

We generally distinguish between two categories of data stores: data warehouses and 

data lakes. Data warehouses are typically configured to accommodate analytical 

workloads that access small volumes of the total dataset at a time and involve expensive, 

multi-table joins. Because of that, a data warehouse generally requires the processed 

data, such as aggregated data or fact tables and dimension tables, to be persisted to enable 

efficient access times, especially when considering low-latency requirements. In 

scenarios where analytics needs require all of the underlying data to be dynamically 

assembled with each query execution - such as in web analytics and where the primary 

table is queried often and joins with other small tables are common - a traditional 

relational database may be more efficient for storage and access times, especially when 

considering that the data is persisted and may also have transactional processing applied 

to it. 



  

114 
 

Data lakes, on the other hand, are better configured to handle the sheer volume rather 

than the access, in terms of counts and complexity of query operations, required to 

complete analytics workloads. Therefore, data lakes may be better suited to hold raw, 

unprocessed, and unstructured datasets, especially when considering the continued 

growth of Internet and remote devices used for sensor detection and real-time location 

data. The analytics workloads for these types of data are often run against the raw data 

itself and extract datasets for downstream consumption or serve reports for the business 

rather than return analytics insights at application runtime, so these workloads may be 

lower on average in terms of availability requirements. 

6.4.3. Data Processing 

Data processing is the act of transforming data from one form to another. We use data 

processing to explain a comprehensive and exhaustively detailed set of operations that 

are specified and developed to transform raw data into refined data so that it is amenable 

for end-user consumption such as visualization or model experimentation. These data 

operations may include information processing, production planning, interactive 

demand forecasting, item categorization, and so on for the retail and manufacturing 

industries. 

The retail and manufacturing industries generate enormous quantities of raw data from 

wide and diverse heterogeneous sources such as sales transactions, product catalog, 

promotional calendars, marketing budgets, product supply structure, supplier reliability, 

and customer service systems in an unrelenting and continuous pace. This raw data has 

little reusability or consumption potential. It needs to undergo a series of varied levels 

of pre-processing, manipulation and processing to convert it into multi-purpose unique 

historical data products; rich and data resourceful that capture important trends and 

patterns, not only are they directly usable for business operations and high-level 

decisions but also are they indispensable for developing and modeling any data levels, 

from product to channel to wide food market at both national and local levels; and used 

for creating and calibration of demand models for forecast and execution at all product 

levels, across all channels, and at all points in time; as well as for execution and 

deployment of multi-level demand component models with specific validations, they are 

key inputs for measurement of uncompensated elasticities and for assessments of short-

term and long-term feedback responses to price, coupon, premiums, display, and item-

specific advertising. 
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6.4.4. Data Transformation 

The data transformation component of a data engineering pipeline is meant to apply 

transformations on the cleaned and processed data into interpretable and analytic-

specific data. This is also the final stage in the data engineering process before the data 

is made available to the business analytics and intelligence teams for actual business 

reporting and analysis. Because of the wide spectrum of divergent analytical, reporting, 

and machine learning needs, the requirement for transforming data is dynamic. Our work 

largely supports queries submitted by the BI team as well as other business functional 

teams across different flavors of data e.g. flat-columnar reshaped tables meant for 

dimensional modeling and efficient querying, advanced data models that aggregate 

metrics over customer, time, and product hierarchies, as well as datasets for predictive 

modeling and bottoms-up calculations used by data science. A separate analytics layer 

is built using query optimization techniques as part of the transformation pipeline, to 

support the wide variety of functional and analytical stakeholder teams across business 

functions. 

Given the diverse team objectives, the complexity in their transformation requirements, 

and the dynamic business needs, it is vital to build a flexible transformation engine that 

abstracts the undifferentiated heavy lifting for common use cases. A small subset of 

common transformations consumed over time by these users hold the key to reusability 

and efficiency. Optimization and automation should be the key mantras while building 

such a transformation engine. Providing a central repository for these templates, 

automating their orchestration, and enabling rapid change management form the key 

pillars in building a performant data transformations suite. In our use case, we augment 

these use cases with business metadata embedded in query templates to optimize for 

runtime performance and data freshness with intelligent scheduling that dynamically 

throttles based on performance impact. 

6.4.5. Data Quality Management 

The astuteness of any data pipeline is hinged on its ability to efficiently reinforce its 

underlying intelligence and to allow effective remedial measures to be devised towards 

maintaining a consistent quality of data during the effective lifecycle of the pipeline. In 

our pipeline design, we make use of an additional layer - Data Quality Manager (DQM) 

- which is a service layer that encapsulates functionalities that allow the data architects 

to define Data Quality Rules (DQRs) for different data sources across the data pipeline 

processes. Additionally, it allows the user to set the frequency and conditions under 

which these DQRs require to be validated and the route for further remedial actions when 

the data quality rules get violated. DQRs may include checks for validation of business 

rules on the incoming and output of data sources, intrinsic checks for missing values, 
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null values, outliers and threshold checks for aggregates and ratio calculations. The 

DQM repository hooks into the various data sources or components of the pipeline where 

users have defined the DQRs. The DQM service exposes a REST API that is triggered 

by an external orchestrator for validating predefined DQRs before the commencement 

or during the execution of various pipeline jobs. 

Having a dedicated DQM wrapper over source transformation jobs achieves the 

advantages of processing DQRs at appropriate times and locations, reduces duplicity of 

QA code, and centralizes enforcement of business/quality rules, defect remediation, and 

notification alerts. The DQM also allows for optimizing the re-checking exercise by 

deciding the various sources of concern based on which DQRs require obtaining only 

those DQRs which haven’t passed previously for the current data jobs for checking rather 

than checking for all predetermined DQRs. Data quality automation in pipeline 

architectures is a critical cornerstone for establishing and maintaining trust in the datasets 

generated and for an organization’s eventual success in achieving their different data-

driven objectives. 

6.5. Technologies and Tools for Data Engineering 

The primary purpose of this chapter is to present the key methodologies, processes, 

technologies, tools, and services used in Data Engineering. The chapter is a review of 

such methodologies and of the best-of-breed tools capable of serving the needs of 

complex Data Engineering Pipelines in Big Data technologies and services. Because 

Data Engineering is an ever-evolving field, this chapter can't be prescriptive as to which 

tools and services should be utilized in which situations. If the expansion of Digital Data 

and Data Services has democratized Machine Learning and Data Usage, it has also 

provided a rich marketplace of ETL, Data Preparation, Data orchestrators, Data 

Warehouses, Data Lakehouses, Data Lakes, Batch and Stream Processing Engines, Data 

Catalogs, Cloud Infrastructure, and Vendors to Data Engineers that aim to build, manage 

and monitor complex Data Engineering Pipelines. This broad availability of such 

services can only speed up and simplify the work of Data Engineering teams around the 

globe and allow them to focus on ensuring that it provides business value in a timely and 

error-free manner. Particularly in large organizations, there tends to be hundreds if not 

thousands of Data Analysts and Data Scientists generating digital artifacts every day but 

only a few dozen Data Engineers who are responsible for designing, developing and 

monitoring the Data Pipelines that allow for the proper and safe flow of data. However, 

to ensure the success of the company efforts around Data, Machine Learning, Business 

Intelligence and Digital Data Presentation, the work of Data Engineers have to enable at 

scale in a timely and error-free manner the work of Data Analysts and Data Scientists. 
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6.5.1. ETL Tools 

Introduction to ETL Tools 

A vital component of developing modern pipelines for decision support in retail analytics 

and manufacturing intelligence is to read, transform, and write large stream, structured 

datasets. These datasets are usually transactional and initialization files. Major Data 

Engineering processes such as data extraction, data cleansing, data validation, and data 

integration are executed at scale over these datasets, so correct design of data pipelines 

has huge impact on business results. The tools that provide such Pipeline as a Service 

solutions are known as ETL Tools. 

ETL tools move and manipulate data into meaningful data warehouses, the hub for 

business intelligence to achieve business insights. ETL has two major operations, one of 

which is responsible for data integration. Data is collected from a variety of sources; 

such sources include database systems, text files, XML files, online services, as well as 

other ETL sources. Strictly speaking, the graphic representation of ETL focuses on the 

movement of data to the warehouse where the data is integrated, summarized, filtered, 

and stored in a predictable and scalable fashion. Integration may also include metadata 

lookups in data catalogs. The other major operation is the movement of the integrated 

data to the warehouse. Movement involves efforts to summarize and stage the data and 

transfer it on a schedule that fits the needs of the organizations. Data movement means 

dealing with decision-timed data; timely data is moved from staging and summary tables 

to the decision support environment. When the data cubes are small enough, movement 

for present period data is accomplished by memory copy commands. If data cubes are 

larger, only a few bytes of summary data are copied to cube summary tables for the 

present period, and database commands redistribute the other data. 

 

Fig 6 . 2 : Retail manufacturing Intelligence 
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6.5.2. Data Warehousing Solutions 

The data we have discussed so far is mostly transient in nature. After an e-commerce 

promotion is over, the user behavior data is removed from the source. However, if you 

think from a data analyst point of view, this is the data that she would like to run queries 

on. If the data is continuously flowing in, and you want to query on the historical data 

along with the current one, you need to save the queue in some location. Another 

important thing about most of these source systems, they are not designed for querying 

and analytics. You want a fast solution where you can run your SQL queries without 

compromising performance. Coming to another point, there can be multiple source 

systems. You may need to regularly extract data from each of them and load it into a 

single system, from where you can easily query the data. For example, if you want to see 

how many users are clicking on ads posted on social media, or how many clicks on paid 

ads are resulting in sales on the website, or how many users are following the posts. You 

need to have the data from all the systems in one location. A Data Warehouse is an 

optimal solution to this, which is designed for query and analytics. And though not single 

handedly, you may use Data Warehouse as a foundational piece and may build similar 

systems to resolve your analytics needs given that Data Warehouses come at a cost. 

6.5.3. Big Data Technologies 

Big data technologies, frameworks, and tools are key infrastructure components of a 

modern data engineering stack that can scale to diverse requirements of sourcing, 

processing, packaging, curating, and delivering consumed-ready data and insights. In 

principle, traditional technology stacks featuring relational backends and batch-based 

ETL can be expanded to satisfy these needs by scaling vertically or horizontally by 

deploying more powerful machines or more lower-cost machines. We briefly summarize 

key considerations when evaluating what stack and tools to choose based on use case 

requirements since the number of available solutions is dizzying. 

Key capabilities that are novel in big data stacks compared to traditional stacks include 

(a) functioning efficiently without relying on SQL to describe data sources and 

transformation intents, (b) multiple data input and output options that can include files, 

databases, realtime and batch message protocols, and structured, semi-structured, and 

unstructured data of different velocity, volume, variety, and value characteristics, (c) 

effectively managing evolving and heterogeneous schemas across different sources, 

especially data lakes, (d) combining batch, near-realtime streaming, and point 

transformation of data on a source, (e) support multiple incompatible data processing 

engines including SQL-like engines, graph engines, MapReduce, Dataflow, and Flink 

Streaming, Python, and machine learning SDKs, without needing to redefine workflows 

for each engine, (f) Python, SQL, Scala, Java, and R APIs to allow developers to work 
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in their language of choice for every step, (g) simplifying managing infrastructure such 

as provisioning, monitoring, and managing costs without incurring platform lock-in. 

6.5.4. Cloud Services 

Cloud computing has transformed technological innovation, allowing companies to 

outsource their data processing needs and focus on their core competencies. Cloud 

computing allows organizations to decrease their investments in physical infrastructure, 

while flexibly adapting their operations to changing demand. Major cloud computing 

companies provide a comprehensive catalogue of products and services that allow users 

to implement a complete Data Engineering stack using cost-effective cloud solutions. 

This versatility has been successfully leveraged for a wide range of Data Engineering 

problems across industries. 

To cite a few examples based on our experience, we have used associated cloud offerings 

from major cloud service providers to develop Data Engineering pipelines for: data 

harnessing, data storage, data processing, and analytics deployment. All these were done 

in some cases as hybrid Data Engineering implementations that involved cost-effective 

integration of cloud and on-premises assets, based on performance, security and/or 

privacy considerations. Hence, to enable organizations to adapt their additional Data 

Engineering needs, irrespective of their architectonic preferences, we describe next the 

available cloud services across the different Data Engineering pipeline stages. 

6.6. Challenges in Building Data Pipelines 

Building data pipelines capable of processing the volume and variety of data generated 

by retail organizations today is not a straight-forward task. The data generated by such 

businesses is not only huge in size, but also increasingly diversified in source and 

structure, and is generated continuously. Processing such diverse data sets present a 

number of challenges to data architects: data pipelines should be capable of scaling both 

in terms of the size of data and in terms of throughput; the development process should 

be efficient in terms of time, and not give rise to costly delays in data availability; 

enterprise data should not be scattered across data silos, and mechanisms need to be 

developed for ETL/ELT processes that cover data products besides centralized data 

lakes, making data available in a consistent manner; and finally, organizations should 

have a mechanism of efficiently processing the real-time streams of events generated by 

customers and in-store devices, and reconcile it with the batched data for historical 

analytics. 
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With recent advances in cloud computing, scalability has become less of a challenge. 

However, data pipelines typically created in ad-hoc manner during the initial phase of 

development, become more elaborate as organizations recognize the impacts of the 

transformations performed in the data pipeline stages. Heuristic and code-driven 

approaches to integration become production versions requiring careful review to ensure 

that the transformation and enrichment process is accurate, consistent and efficient. In 

large organizations, different teams define their own versions of the schemas for data 

products, leading to divergence and inconsistency. Continuous change in data schema 

should be exposed to the consumers of the data, and if the data products are to be used 

by different teams, the access should be appropriately controlled. Data pipelines should 

also allow for audit and tracking of data statistics to trace anomalies and holes in the 

data. 

6.6.1. Scalability Issues 

Herculean efforts are mainstream today in the pursuit of building a single source of truth 

information system for retail and specific verticals of rapid delivery, for instance, Q-

Commerce or quick commerce. Such efforts eventually jeopardize timely, new, fact-

based critical decision-making processes for retail businesses, elevating their failure risk 

– slow businesses die. The challenge is two-fold, first that of managing massive amounts 

of data ingested daily for hundreds of thousands of products sold across physical and/or 

digital channels, often referred as long tail problem, across many regions and countries. 

Far more than selling specialized and/or niche portfolio products, large-scale retailers 

typically conduct mass consumption and/or fast-moving product inventories – FMCG 

sector for instance – research and marketing work. This output sales volume from 

hundreds of borders with an intensive transaction criteria involves such risky factors as 

hastening amounts of working capital that are easily blocked for weeks, months, even 

years; unpredictable product-toward consumer-direct behaviors; unrealistic and 

incorrect supply chain delivery dates. The second challenge arises from panicking 

remote or virtual critical decision periods required by business management when 

sudden lifting or reduction of sensitive volumes imposed operational and marketing 

disturbances for retail companies or e-commerce organizations are experienced. During 

sets of notably fluctuated date ranges, key and principal macros must be sensed, tracked 

along their historic timeline; timely repositories, in the sense of effective process, 

efficient data transformation should be organized to consolidate wholes or large 

components of specific product family groups data accompanying temporary seasonal 

breakdown duration. 
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6.6.2. Data Silos 

Data entered by an organization gradually gets distributed as pockets across the 

enterprise. This is especially true for the analytics domain, where the data gets processed, 

ingested, and copied several times for different departments and groups. For example, 

marketing, sales, finance, and logistics all need the information related to orders. Hence, 

data related to orders is stored on multiple systems for different purposes, like order 

monitoring, order analysis, reporting, etc. The customer, product, and order data 

pipelines often have been running in silos over the years. Each of the data pipelines is 

developed and operated by a specific team and hence has become a black box for 

everyone else. The internal product structure in the data pipelines has become implicit 

for the consumer teams after a couple of data transformations. It is rare, if ever, that data 

vocabulary is shared across teams. 

Security and validation often act as useful guards for these silos. The data stewards keep 

a watchful eye on the changes to the data pipelines from other consumer teams or source 

teams. The risk of fire-fighting an issue at the last moment also helps. The increasing 

need for agility in product development, use of cloud technologies, data-sharing 

integrations, among other reasons, is sapping the security and validation barriers. The 

groups of analysts and developers supporting the data pipelines are similar in several 

requests. Having near real-time access to fresh data is crucial for the success of an 

organization. New cloud technologies let groups quickly prototype and share data 

pipelines. This leads to similar data getting processed by multiple teams, vacationing the 

data silos. 

6.6.3. Real-time Processing 

With the rise in the volume of embedded devices, the number of systems producing data 

has exploded. In retail analytics, there is almost an order of magnitude of difference 

between traditional structured data and systems, and continuous unstructured data from 

the systems in the form of sound, video, and pictures coordinated with geo-positioning 

capabilities. The former is routinely analyzed to provide intelligence in bulk, while the 

latter is utilized for capturing micro-moments of the retail experience in as close to real 

time as possible, with various hues in data engineering skills, technology, and 

implementation complexity levels. In the world of Smart manufacturing, embedded 

devices communicate continuously during the entire life cycle of the product and its 

ancestors. For defending against adversarial learning, real-time systems and skills are 

becoming common. These use motion detection and social networking capabilities for 

tagging, approval, or disapproval for the actions, modeled mostly with unsupervised 

learning techniques. 
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Emerging software, hardware, and technology stacks are capable of identifying and 

processing such data in near real time. The business use case and nature of the data 

determine the right solution stack, as hybrid solutions tend to work better in aligning 

with business goals while providing feasible decisions. While the design, integration, 

and functioning of data flows seem to be easier for such capabilities, there are still gaps 

and issues in the actual day-to-day functioning from engineering and design 

perspectives. Data engineers are needed, with a mix of technology and operational skills, 

so that flow processes, periodically coarse-filtered or notified, produce actionable 

streaming data products, which can then be used for fast aggregation, inference, or 

analytical products aligned with the business goals. The potential of technology is 

enormous, and encompassing its entire dimensions of synergy would require 

transformative thinking. 

6.7. Best Practices for Designing Data Pipelines 

Data is omnipresent in today’s world. As everything around us becomes only more 

complex and entwined with technology, optimally storing, processing, analyzing, and 

utilizing data becomes a matter of importance. Oftentimes, this problem is delicately 

handled by data scientists, who also address the corresponding business problems. While 

the output and the corresponding models are of utmost importance, the manner in which 

the data was processed and turned into a consumable product is often not given enough 

attention. However, the design of the data pipeline holds equal or often more importance 

than the data models. This is for several reasons. Firstly, in order for data predictions to 

be actionable, decision makers require usable reports which present the model outputs 

in an understandable manner, that is updated frequently and automatically. Secondly, 

data models are constantly in flux, whether because the underlying business dynamics 

change or because of updates in the underlying data. Therefore, the data pipelines have 

to be modified frequently and quickly. However, lack of attention to the design of data 

pipelines leads to these updates being extremely challenging. Extending the functionality 

of poorly designed pipelines is extremely cumbersome and can consume time and 

resources. 

If data pipelines are more modular and documented, incorporating changes to pipeline 

with additional data sources, updated data structures, and altered model designs is 

significantly easier, ensuring that the time and resources saved can be utilized in driving 

business impact in other ways. Furthermore, documentation of data pipelines further 

enhances the quality of the data pipeline because it reduces the burden of comprehension 

of other data scientists and analysts who are utilizing it building off it. 
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6.7.1. Modular Design 

Modularizing tasks within large analytic pipelines is one of the better practices for 

engineers to follow, as it leads to better-maintained pipelines, quicker debugging, 

reduces overall development and QA cycles, and often helps in reusability of similar 

components for future projects. So, what does module design look like? Each module 

should do only one thing and be responsible for that one thing. In the world of data 

engineering, this unit of work could be an individual DAG or a set of closely associated 

functions and classes that have the expected module interface. In quite a few data 

workflows, task modularization is naturally available. However, this is not the case for 

all analytic pipelines. In projects with scarce documentation or components put together 

on an ad-hoc basis, understanding and splitting an analytic pipeline into reusable 

modules can be an arduous task. 

The above ad-hoc construction might not expose the logical flow of the functional parts 

of the pipeline clearly, and during a proper refactoring, a more interface-driven design 

should be used. The input-output contracts of the module should be clearly defined 

upfront, and data types should be validated and error-handled before the internal logic 

of the module is executed to ensure that there are no unintended behaviors. Data type 

and null-safe validation become even more important while developing generic modules 

where the input and output contracts should cover the major use cases. If the module in 

question interacts with third-party proprietary software, then such checks should be built 

in also. Single responsibility keeps the modules clean and relatively straightforward to 

figure out. Consequently, with input and output contracts clear, using the modules should 

reduce the development overhead on the engineer using it. 

6.7.2. Version Control 

Data pipelines are complex software systems and should be reviewed and updated on a 

regular basis. Creating a modular versioned package to allow better collaboration among 

data engineers and data scientists working together on projects will be useful as it will 

help identify causes of changes, and help support and respond to business users. Data 

pipelines with long lifecycles are often refactored and optimized. Forgetting the original 

design decisions can lead to inhibiting future changes or introducing bugs in programs 

that contain historical analyses or data. The same is true for virtually any computer code, 

not just pipeline and analysis code, but it is important to mention here because of the 

longer lifecycles and serious effects when data pipelines for automated reporting or 

indirect or direct decisioning of core business objectives break due to incorrect data, 

logistics or cost overruns. 
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Version control systems track changes to code, allowing programmers to see changes in 

functionality, speed, the use of memory or storage, and any new features, along with the 

dates of those changes and the initials of the person(s) who made the changes. Version 

control at a high abstract level is done using a library to package collections of data 

functions and data classes. High-level version control does not allow you to specify 

changes at a low level such as the values of each variable or constant. In practice, source 

code is modified more frequently than compiled libraries and images and therefore is 

usually what is stored in a version control system. 

Using version control systems and libraries is useful for groups of developers and whole 

companies. Using them to manage data pipelines and libraries helps data companies 

develop and manage code more efficiently and improve code quality. Automated testing, 

code review, and branching features of version control systems help ensure that the code 

entering production gives correct results and can be maintained efficiently. 

6.7.3. Documentation 

In any pipeline implementation, whether from scratch or using a pipeline framework, I 

cannot overstate the importance of documentation. During the pipeline design, 

implementation, QA, deployment, and execution, there needs to be documentation for 

the design and implementation decisions and the outcomes of each of the above stages. 

Obviously, the above documentation will not be perfect or sufficiently influential the 

first time it is made. More likely than not, the first draft of any documentation made 

while coding along will not be great. That is fine. However, as time goes by and there 

are numerous iterations and versions of the data pipeline documented earlier in its 

lifetime, one should continue to improve on the earlier drafts to the best of one’s ability. 

 

Fig 6 . 3 : Building a Robust Retail Data Pipeline 
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Why, one may ask, should documentation be continuously improved? For several 

reasons. One should remember that each pipeline has a lifetime that will span years, at 

least several months when built on a commercial system. During these months and years, 

organizations will invariably experience personnel reassignments, turnover, or 

retirements. In addition, these pipelines perform business-critical functions that ensure 

the pipeline owners, business analysts, and data scientists get timely and accurate results 

in a form that is usable for their analytical functions. Therefore, the quality of the 

documentation is critical to the success of these data pipelines. Documents such as 

business requirements, design documents, and functional and data element specifications 

provide essential background for both new personnel and existing personnel to 

understand what the pipeline was designed to accomplish, the relevant data elements that 

are used, who were the relevant stakeholders that either influence the pipeline or use its 

results, and the tradeoffs used during the design and implementation stages, as well as 

the latter stages of testing and deployment. 

6.8. Conclusion 

In the digital age where real-time data reigned supreme, the writing team pioneered the 

discipline of data engineering. With a wealth of experience, having designed, 

implemented, and operated numerous analytical pipelines in rich collaboration with 

operational experts, they documented the knowledge to create a streamlined 

methodology tailored to not only build pipelines that produce trusted, robust data but 

also teach others to do the same. The objective was to eliminate the bottlenecks 

associated with data trust and usability and lower the barrier to entry to the world of 

advanced analytics in retail and manufacturing settings. The discipline of data 

engineering is not just about how to extract data from source systems and generate a 

report on it. What is needed is a fusion of expertise and experience in advanced data 

manipulation and industry knowledge of the many potential drivers, curvatures, and 

anomalies happening in every retail season. It is how to structure, mend, and collate data 

across systems, timelines, and business units into a usable form in which the value of 

advanced analytics truly becomes realized and then leveraged into increased sales and 

profit through better decision-making. Data engineering capabilities allow organizations 

to escape from spreadsheets and into automated decision-making tools that reduce time 

spent on decision support and increase time spent making decisions. The time saved 

reduces human dimensionality and increases the accuracy of topical decisions being 

made. It’s about tools that can shape what would otherwise be brutalized under the sizing 

of innocently automated uploads of transactional detail into caches for administrative 

burden stretching back homogenized historic reports. 
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6.8.1. Key Takeaways and Future Directions in Data Engineering for Retail and 

Manufacturing 

Emerging advanced computing and machine learning technologies hold the promise of 

novel retail analytics and manufacturing intelligence applications to improve the 

decision making capabilities of the workforce and executives in retail and manufacturing 

businesses. However, it is equally important to invest in the right foundational solutions 

to collect, integrate, and structure the right data for analysis. While the period of hype 

about big data is over, the complexity and scale of the data being generated and used in 

these applications are. These applications are common to many other domains such as 

healthcare and financial services. However, what makes retail analytics and 

manufacturing intelligence data engineering research different and important is the 

complexity unique to this domain. For retail analytics to enable the relevant corporation 

customer execution models for CEOs of retail corporations to teach the science and art 

of execution to the floor teams, it’s important to collect the right set of simple and 

advanced analytics so that they can be done without excessive processing and data 

engineering time. Specific algorithms and their resource loading and throughput 

dependencies allow business analysts to feed predictions to the planning dimensions so 

that these predictions can be used in assortment planning and pricing actions at the 

relevant forecast and allocation time granularity. 

There is further complexity when looking at value stream based analytics for 

manufacturing and design-to-analytics for microelectronics. Future work can extend the 

paradigm of data mesh both vertically and horizontally for more domains, and the 

domain modeling approach can be extended to more data use cases within retail and 

manufacturing domains. 
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