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Chapter 10: Algorithmic trading and portfolio 

optimization using deep learning and high-frequency 

market data 

10.1. Introduction                               

Algorithmic trading has become a dominating form of trading in equity and derivatives 

markets. A recent analysis of trading data from the U.S. equity market revealed that 70% 

of all trading activity is now handled by computers using various algorithmic strategies 

and trading systems. These strategies range from traditional execution, liquidity shaping 

and smart order routing strategies to more sophisticated high-frequency trading 

strategies that are often based on statistical arbitrage and market making principles. 

Autonomous in their performance, proprietary trading firms typically run high-

frequency trading strategies on collocated servers. These high-performance trading 

infrastructure are expensive and involve a highly-technical staff that build custom 

software intrusions, write often complex algorithmic trading strategies in low level 

programming languages, and configure powerful computing networks and fast internet 

connectivity. Not surprisingly, many proprietary trading firms have generated 

astronomical profits from the skyrocketing growth in trading volume, particularly in 

equity options (O’Brien, 2025; Pereira, 2025; Quinn, 2025). 

The term algorithmic trading is used to describe any trading that is based on using 

specific instructions derived from pre-defined criteria to execute trades. These criteria 

are based on benchmarks, average price, and arrival price, for example. There are 

different approaches to implementing algorithmic trading. The simplest approach is to 

break a large order into smaller chunks and execute them at different times. This is called 

the slicing strategy. However, this does not guarantee a successful outcome as market 

price may drift during the time intervals between executions. Algorithmic trading 

involves devising a set of rules that will automate trading activity. This is done through 

the implementation of algorithmic trading systems that allow traders to determine the 

criteria that will generate buy and sell signals. The systems are also designed to execute 

trades using the predefined rules for entering and exiting trades. 
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The research and academic effort has focused on the predictability of financial market 

excess returns, which had been the research goal of early signal generation studies. AI 

is directly relevant to these problems, as it is now possible to train AI systems to solve 

the temporal or spatiotemporal problems posed by these studies directly, simply and 

effectively. Unlike traditional time series methods, AI systems do not require market 

data stationarity or normalization, nor do they rely heavily on feature engineering to 

convert market data into particular domains or components (Rajan, 2025; Santos & Xu, 

2025). 

 

Fig 10.1: Algorithmic Trading and Portfolio Optimization 
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10.2. Literature Review 

AI systems have emerged as vital tools for algorithmic trading-related tasks. However, 

we have not yet encountered such comprehensive coverage of the third revolution of AI 

— the deep learning renaissance — in algorithmic trading research. This literature 

review highlights the AI heritage of algorithmic trading, deep learning applied to 

financial time series forecasting, deep learning applied to order book dynamics, and 

algorithmic trading with AI equities and assets. The current AI methods lack resilience 

and transparency: AI-assisted algorithmic trading can result in catastrophic losses for 

market participants and financial markets. These problems are surmountable thanks to 

practical constraints embedded in AI systems and encouraged transparency. 

Studies in the time series and forecasting literature have long been at the forefront of 

applying statistical techniques, machine learning, and AI to algorithmic trading design. 

Financial time series forecasting has a long standing and rich academic literature.  

10.3. High-Frequency Market Data 

High-frequency market data play a major role when bridging modern deep learning 

techniques with financial markets. They contain a wealth of information about a growing 

list of assets, trading decisions and their consequences, as well as the influence of third 

parties. The ever-increasing supply of various types of high-frequency data in 

combination with recent innovations in financial theory, artificial intelligence, and the 

increase in computing power and bandwidths has opened a new era of designing trading 

systems and optimizing portfolios. In this context, we first review the major types of 

high-frequency data one encounters in finance. We then describe current data acquisition 

techniques, motivations, and issues. Coherent models are only as good as their 

underlying data, and as such, we devote a special section on cleaning, preprocessing, and 

replenishing high-frequency data. 

We naturally focus on high-frequency (intraday) trading and related portfolio strategies. 

High-frequency data usually refers to trading data on an extreme frequency, such as 1-

second or even 1-millisecond frequency. In particular, we cover ask, bid, spread, volume, 

depth, tick size, and return data. We also touch briefly on other types of data such as 

news articles, trading ideas, and fundamental signals such as earnings. High-frequency 

data usually refers to price data on a very high frequency, such as one or more 

milliseconds. Such trading data consists of ask price, bid price, and volume data. Not 

denying the importance and added value of data of lower frequencies, such as 1-minute 

or even 1-hour data, the extreme frequency of high-frequency data provides much richer 

trading and portfolio signals, with trading decision horizons possibly being even less 

than one second. 
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10.3.1. Types of High-Frequency Data 

High-frequency market data come in several types, which can be classified into the 

following primary categories: 

Price and Volume Series: This includes the actual price and volume series as a function 

of time. The price series can be in the form of bids, asks, midprices, or transaction prices. 

There are also a variety of volume measures, such as transaction volume or volume 

reshaped using other methods. All of these price and volume series can be recorded at 

different sampling frequencies and in different terms. 

Order Book Data: This is the multilevel order book that records all limit and market 

orders at each level of the bid-ask spread. There are a variety of sampling frequencies 

for order book data, as well as various terms. The order book data can also be reshaped 

into other bid-ask spread measures. 

Order Flow Data: This includes the sequence of all market orders and limit orders, as 

well as other combinations of market and limit orders over time. Orders can take the 

form of market orders, limit orders, or even cancellation orders. Mostly, however, they 

are either market orders or limit orders, and they can be referenced in many ways. For 

example, they can be counted or represented as a sum of values or a change in terms of 

percentage changes, raw values, or both. They can also be provided in terms of the 

direction of the transaction, either buyer-initiated or seller-initiated. These transactions 

can also be aggregated over time, and the resulting by-respective market-side transacting 

measures can be smoothed over time using various bandwidth smoothing techniques and 

sampling frequencies. 

10.3.2. Data Acquisition Techniques 

There are several ways to gather high-frequency market data. Many data vendors 

specialize in selling high-frequency data that has been collected previously. Some of 

these vendors may supply historical data for a price, while others provide tick data for a 

fee. Some high-frequency traders can download historical high-frequency market data 

at no cost. Other free data sources include various platforms. The drawback to using free 

data sources, however, is that the downloaded market data may not include all of the 

required financial instruments, instruments of interest may have missing tick data, or the 

data could end up being wrong. 

Some high-frequency traders may want additional data that vendors do not provide, or 

that they may find more beneficial in the holistic trading decision-making process. If, 

for example, proprietary tick data is needed, the trading system must have a way to 

access financial terms called Application Programming Interfaces (APIs) provided by 
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financial trading firms or clearinghouses, as well as brokerage firms and financial market 

exchanges. APIs are useful for something other than just collecting tick data. They can 

be employed by trading software to place a buy or sell limit order into the market or 

retrieve a triggered stop-loss order. An API is an indirect connection to the Web that 

transmits the request over the Internet and returns any requested data in an appropriate 

format. 

10.3.3. Data Preprocessing and Cleaning 

This chapter focuses on tick data or order-book data and discusses data selection and 

preparation necessary for algorithmic trading and portfolio strategy design. Using data 

without necessary cleaning and preprocessing affects backtesting and simulation. The 

term “garbage-in, garbage-out” applies aptly to backtesting simulations where the data 

for training a model and the data for testing the model are not chosen correctly. Applying 

high-frequency data or data from a different market regime will yield misleading results 

about the model's predictive power and the expected Sharpe ratio of backtested results. 

It is thus imperative to know in detail how the data has been generated and what 

adjustments might be necessary. 

Preprocessing and cleaning of high-frequency trading data requires domain-specific 

knowledge of the type of data-generating process and what stylized facts of price data 

should be expected. For example, minute-frequency close-to-close series would not 

exhibit the same kind of autocorrelation structure as limit order book data. Preprocessing 

for the first case would remove duplicates, adjust for corporate actions, fill missing 

values if necessary, and correct for outliers. In addition to these adjustments, trading 

phenomena unique to lower frequencies must also be considered. The data analyst would 

check for price rallies, bubbles, stock splits, and overnight drifts. Stylized facts available 

for limit order book data would include order imbalance, volatility jumps, queue 

dynamics, order waiting times, order execution probabilities, and adverse selection 

effects due to asymmetric information, especially in the market regime and their 

dependence on order size. 

10.4. Deep Learning Techniques 

Despite their remarkable success, traditional ML techniques often require addressing 

some critical issues such as the need for careful feature engineering, choices of scale, 

sparsity, and normalization, and selection of hyper-parameters. Realizing that the above 

challenges have to be addressed every time for a new task, the idea of using deep learning 

techniques to represent a diverse and complex range of variations, many of which may 

be unknown until now, led to revolutionary advances in various fields by massively 
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improving speed and accuracy, sometimes even by an order of magnitude. Also deserves 

mention the growing availability of high-performance computational facilities, including 

GPUs and TPUs, increase in the availability of large datasets, and the emergence of 

powerful visualized deep learning software frameworks, thus helping practitioners focus 

more on approaches than implementation. In brief, deep learning enables better 

performance on varied AI tasks, improving on traditional ML methods and becoming 

the foundation of increased AI automation. It is believed by some that deep learning may 

even render ML unnecessary for many applications. Traditional ML techniques and deep 

learning methods are thus not necessarily seen as mutually exclusive; rather, deep 

learning acts as a scalable and state-of-the-art approach to both specific and general tasks 

in many AI applications. The innovation is thus by making hard problems easier again. 

With the rapidly evolving financial technology ecosystem, deep learning techniques 

have emerged as an important new class of algorithms in financial applications. The 

appropriate use of deep learning methods requires careful consideration of the massive 

amount of financial data, its structure, representation, the tasks in question, theoretical 

understanding, and domain knowledge, in tandem with building on the success of 

traditional approaches. Indeed, traditional techniques and deep learning methods are 

again synergistic. 

 

Fig 10.2: Deep Learning Techniques of Algorithmic Trading 
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10.4.1. Neural Networks Overview 

Deep learning is widely believed to be the most successful branch of machine learning. 

As part of a larger class of models referred to as neural networks, deep networks use 

additional levels of successive non-linear transformation, so-called hidden layers, 

allowing them to ultimately learn complex structure in high-dimensional data provided 

that sufficient amounts of labeled data is available for supervised training. Neural 

networks themselves draw inspiration from the structure and organization of the human 

brain. Each single neuron receives a sum of inputs from nearby neurons, sending a single 

output forward to potentially many more other neurons. The degree of contribution 

corresponds to the strength of the connection, a real-valued weight which is then changed 

during the supervised learning process using gradient-based optimization. The single 

neuron implements a non-linear transfer function, with the activation function specifying 

the amount of activation as a function of the total input. Standard choices are the logistic 

function or variations on the rectifier. The first hidden layer performs thus a local 

weighted sum and the non-linear activation of its inputs. The output of a single neuron 

in one layer can thus act as the input to several neurons in the next layer, providing a 

way to jointly model more complex transformations, especially as it is repeated several 

times. 

Given enough data, restrictions concerning the capacity of modeling hidden patterns and 

structure in the data can be controlled adaptively by simply varying the number of hidden 

layers or the number of neurons in the layers, as well as communicating their mutual 

influence by sharing weights between layers or within layers. The associated learning 

task of gradient descent on the error with respect to the training data labels has become 

parallelizable across several CPU and GPU architectures, allowing the practical training 

of deep architectures for many different learning tasks, from image processing to speech 

recognition and natural language processing. Hybrid with probabilistic graphical 

techniques, neural networks are also a true generative model capable of generating 

realistic samples that mimic the real data distribution. 

10.4.2. Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are crucial in deep learning for analyzing sequential 

data due to their unique capability to maintain context through loop connections, 

characterizing them as the first deep learning technology incorporating memory. RNNs 

generate time-dependent additions to the layer-hybrid output of traditional neural 

networks, allowing them to learn patterns in sequential or time-series data. By using 

time-dependent results to calculate the network error, the Backpropagation Through 

Time (BPTT) process allows RNNs to update network weights. The BPTT process 

calculates the total network error by addition across all timesteps, which unfortunately 
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limits the length of sequential data that can be processed due to memory constraints. 

Therefore, RNNs are typically used for time-series problems with limited durations. 

Unfortunately, simple RNNs suffer from the vanishing or exploding gradient problems, 

which are amplified for multi-time step sequential data. Long Short-Term Memory 

(LSTM) and Gated Recurrent Neural Networks (GRUs) are examples of extended RNN 

architectures that facilitate vastly flexible architectures without the vanishing or 

exploding gradient problems. LSTMs expand the memory capabilities of the Vanishing 

Gradient RNN through the addition of gated units that modulate the flow of information 

into and out of memory cells. GRUs will also do this using gating units, but do not have 

memory cells which make for a simpler architecture. BPTT can still be used for LSTM 

and GRU architectures, but the use of distinct gates for controlling memory states also 

facilitate additional gradient efficiency advantages. 

10.4.3. Convolutional Neural Networks (CNNs) 

Deep Learning techniques are Machine Learning algorithms which learn the features 

hierarchically. These algorithms consist of multiple layers: the first layer learns simple 

patterns and then passes them to the next layer to learn from patterns produced by the 

previous layer, and so on until the final layer is reached. The last layer uses different 

signals which are results of features from previous layers, to make a prediction of the 

target well tuned. These feature learning algorithms are called feature extraction 

algorithms which extract higher level features from the input data which makes learning 

the final prediction function more effective. 

Deep Learning techniques are inspired by the way the human brain works and its ability 

to recognize and distinguish high level features from low level features. Different from 

classical algorithms, these Deep Learning methods can learn features hierarchically from 

the input for various different data types like images, video, text and audio and combined 

together have the capacity to surpass the performance of classical models. In recent 

years, due to the massive amount of available data and the great advances of the capacity 

of Graphics Processing Units, Deep Learning techniques have become popular in 

practice and have gained their advocates among practitioners and researchers. The 

following sections briefly discuss some popular Deep Learning techniques: 

Convolutional Neural Networks, Recurrent Neural Networks, and Generative 

Adversarial Networks. 

In the field of Machine Learning, CNNs are a category of Neural Networks that have 

proven very effective in areas such as image recognition and image classification tasks. 

As a specialized kind of Neural Networks for processing data that has a known grid-like 

topology, CNNs are particularly used to analyze visual imagery but have also proven 
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useful in other applications that involve spatial data. For these reasons, CNNs are also 

called Shift Invariant or Space Invariant Networks since the parameters are defined to 

be shared across space. This is mainly achieved by using filters to perform convolutions. 

CNNs are similar to ordinary Deep Neural Networks, except that they make use of CNN 

architecture to exploit the 2D structure of the data. 

10.4.4. Generative Adversarial Networks (GANs) 

Generative Adversarial Networks (GANs) have since become one of the most successful 

recent developments in neural networks. A GAN consists of two neural networks – a 

generator and a discriminator – which are trained simultaneously through a process 

similar to a minimax two-player game. The generator is trained to produce fake data 

resembling the training data in order to fool the discriminator into thinking that the data 

was real. The discriminator is trained to go through batches of real data and fake data 

produced by the generator, and to output probabilities of how likely the data is real. Once 

both these networks have been trained, the generator can produce unseen high-

dimensional data that looks similar to the training data. 

GANs have been widely applied to image, text, and video generation. Since financial 

data is often viewed as high-dimensional data, GANs can be applied to high-dimensional 

financial data. As GANs consist of two networks, they require large amounts of training 

data. Moreover, GANs are notoriously prone to mode collapse where the generator 

learns to capture only a small fraction of the data distribution. Such limitations make 

their application to trading systems and portfolio optimization challenging. However, 

the benefits of GANs such as the ability to augment small financial datasets and to 

produce unseen high-dimensional financial data have made GANs attractive to research 

in finance. 

In finance, GANs have so far been predominantly used to augment financial datasets, 

especially images such as stock price charts or candlesticks. GANs have also been used 

to generate time series data such as stock prices, and to generate trading signals. 

However, GANs have not been used to model and optimize high-dimensional portfolio 

return distributions, which is one of the key contributions of this work. Due to the 

limitations of GANs mentioned earlier, GANs have also not been applied to trading 

systems or portfolio optimization. 

10.5. Algorithmic Trading Strategies 

Algorithmic trading is the use of specialized computer programs to enter a series of 

orders to execute a financial trading strategy without human intervention. It is a very 



  

148 
 

powerful technique allowing trading at much higher speeds with lower costs than human 

trading while eliminating the risks of human error. 

There are many different specific trading strategies that may be incorporated within an 

algorithmic trading program. Typically, an algorithmic trading program would be 

structured to use multiple trading strategies simultaneously for a more diversified 

approach to generate income from market trading during different market environments. 

A single strategy may also be optimized to be applied to different securities, and more 

sophisticated algorithms may adapt the strategies dynamically as market conditions 

change. Empirical evidence suggests substantial profits can be generated using 

algorithmic trading with relatively low downside risk and such strategy may form the 

basis of an investment fund. In this chapter, we will detail some of these commonly used 

algorithmic trading strategies. 

Market making involves placing bids and offers in a market to profit from the bid-offer 

spread. Market making normally involves taking and providing liquidity into the market 

by placing bids and offers at the consensus market prices. A market maker would 

normally make money over time from the bid-offer spread. Algorithmic trading building 

blocks for market making normally consist of a price updating engine and a bid-offer 

spread control module. The price updating engine ensures the bid and offer prices are 

reflective of the latest market prices based on trade and market data while the bid and 

offer spread control module sets the bid-offer spread depending on current market 

conditions. 

 

Fig 10.3: Deep Learning and High-Frequency Market Data 
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Arbitrage strategies seek to profit from mispricing between closely related products or 

relationships by taking offsetting positions in these products or using products or related 

securities with defined price or payout relationships. Typically, arbitrage strategies have 

specific entry and exit signals and allocation of capital across the products being 

arbitraged. 

The example above is a simple case of statistical arbitrage where we simply took 

advantage of the pricing discrepancy of a single asset across two exchanges. However, 

there are various sophisticated methods of arbitrage. Below are a couple of commonly 

employed arbitrage trading strategies. The first one is called cash and carry arbitrage. In 

this arbitrage, two positions are taken, one in the cash market and the other in the 

derivative market, i.e., futures market or options market. The trader buys the underlying 

asset from the cash market and simultaneously sells the derivative on the same 

underlying security. 

10.5.1. Market Making 

Market making consists of supplying liquidity to the limit order book by placing limit 

orders on both sides of the book. Market makers capture the bid-ask spread of an asset 

or security selling at the ask price and subsequently buying to close at the bid price. 

Market makers have private information about their clients’ demand and supply, and 

they engage in a vast amount of transactions at little profit with the aim of profiting from 

illiquid markets. Retail and institutional investors are the main consumers of this service. 

The longer the distance between the bid and ask price the higher the cost to consumers. 

Yet market making is not risk-free, especially in the eventuality of an adverse selection 

cost when market makers trade against informed traders. 

10.5.2. Arbitrage 

Arbitrage is frequently considered the most basic form of trading. An arbitrageur is said 

to exploit price differences in a specific financial instrument in different markets. Of 

course, in an efficient market, such pricing discrepancies only exist for a short time. Let 

us consider an example to show the concept of arbitrage. 

Suppose that a stock is traded on two exchanges. The stock is currently trading at $100 

in one exchange, and $103 in another. The trader simultaneously buys the stock at one 

exchange for $100 and sells it at the other for $103, pocketing a $3 profit. However, as 

soon as the trader engages in this transaction, the price of the stock on the first exchange 

will increase (due to the buying pressure), and the price of the stock on the second 

exchange will decrease (due to selling pressure). Eventually, the prices on the two 
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exchanges will converge to a single price, eliminating the possibility of profits from the 

trade. If such price discrepancies existed for a longer time, traders would exploit them 

and make significant profits, thus increasing market efficiency since they would have 

provided liquidity by buying the stock in one exchange and selling it in another. 

10.5.3. Trend Following 

Trend Following strategies buy an asset after a price increase, and short-sell the asset 

after a price decrease, with the expectation these directions would continue. The goal of 

these strategies is to find price movements that can persist over a certain period of time, 

with the hope that they persist over the order execution time in the case of high-frequency 

trading. Trend Following is a less contrarian strategy than Mean Reversion and is 

actually a more liked strategy by trend followers, for the simple fact that it would reduce 

their lifetime risk of investing and help them realize their annualized returns. CTAs and 

hedge funds have employed diversified Trend Following for systematic trading for 

decades, holding long and short positions on equity indexes, interest rates, foreign 

exchange, and commodity futures. Such trading strategies, for the most part, have been 

developed using non-machine learning tools, model-free reinforcement learning, and 

deep reinforcement learning to develop the trading strategy later. Trend Following has a 

very large literature with dozens of models for volatility and risk controls with different 

types of orders; price, spread, market, limit, stop; and different objectives and different 

markets. Although work has been done using Long Short-Term Memory neural 

networks, especially when using sentiment variables and recommendation systems, 

LSTMs have been used mainly for sequential prediction of asset prices. Unlike LSTMs, 

which are trained for sequential asset price prediction on daily data, the high-frequency 

trading strategy developed in this research will use day-of-the-week and time-of-the-

trading-day periodic functions incorporated in the architecture of the model. This will 

enable the proposed model to be trained directly to optimize the order execution between 

the two critical trading times of the trading day; the market open and market close. 

10.5.4. Mean Reversion 

Mean reversion is one of the oldest algorithmic trading strategies. The rationale is that, 

in the short term, prices fluctuate and sometimes move far from their long-term moving 

averages. After trading for a time just outside their normal price range, stocks become 

an overbought and oversold situation, retracing back to their average price level. The 

determination of the mean-reverting zone proximity is calculated via a short-term 

moving average or another indicator, such as Bollinger Bands or the relative strength 

index. 
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Mean Reversion Strategy Algorithm 

The algorithm of the trading mean reversion strategy is the following: 

Input Kernel Function, K(s,t), and stock price, S(t).. 

1. Step 1. Prepare Data 

The training data are D8(t0) containing D8(t0 − 1), D8(t0 − 2), D8(t0 − 3), … and D8(t0 

+ 1), D8(t0 + 2), D8(t0 + 3), …, with Qt of length Q as inputs and K8, M(1), and D8(t0 

+ 8) as output. 

The tested data contain D8(t1), D8(t1 − 1), D8(t1 − 2), D8(t1 − 3), … across days are 

loaded with, K8, M(2),(4), and D8(t1 − 8) as output. 

2. Step 2. Submit Task 

A kernel model is generated from the training data, and the mean reversion trading model 

is submitted along with the task. The task is to generate the return prediction for day t1... 

to minimize error. 

3. Step 3. Execute Task 

At the end of the day, the mean reverting signal is generated for the distance from the 

training data center. The input mode for performing the forecasting exercise on test data 

consists of K8, M(1), D8(D8(t0 − 8)). During the day every half hour, the kernel model 

is executed. A binary trading strategy is implemented. 

The mean reversion method consists of selling overbought shares and purchasing 

oversold ones as part of a trading algorithm. Although many refer to this rationale, it is 

very challenging to define either a single signal throughout the day or a binary signal 

that proceeds to the repeated distances across the day. 

10.6. Portfolio Optimization Techniques 

Constructing a portfolio out of one or more assets is an essential step after predicting 

market trends. Portfolio optimization is a critical task in asset trading and allocation 

management since a portfolio with a maximum return for a minimum acceptable risk 

and given constraints is desired. Optimization of a portfolio is normally done by 

employing historical data of assets and indexes to find suitable correlation values among 

the assets. Although associated with the Capital Assets Pricing Model, the optimal 

portfolio is more often obtained by utilizing the Modern Portfolio Theory. In MPT, a 

static asset allocation consisting of prescribed proportions of assets in a portfolio over a 

long-term horizon is often utilized based on uniformly weighted historical sample data. 
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Thereafter, this allocation is reevaluated after a certain time interval in order to provide 

the best risk-return characteristics. In this approach, historical return is used to compute 

the optimal portfolio. Generally, these optimal portfolios may be optimal only at the 

historical time period in which they were computed. In fact, financial datasets of stock 

prices are characterized by chaos and nonlinearity, for which traditional static models of 

forecasting are not supposed to work. As a result, the actual returns may often deviate 

considerably from the forecast return values. 

There are several techniques available to optimize a portfolio. We discuss below three 

of the most popular techniques. 

10.6.1. Modern Portfolio Theory 

Introduced and elaborated by the Nobel laureate Harry Markowitz, the Modern Portfolio 

Theory (MPT) addresses key questions related to the capital allocation problem, central 

to the theory of finance. Suppose our portfolio consists of n risky assets, denoted by 

(S^1, S^2,..., S^n), and our portfolio weight vector is given by w = (w^1, w^2, ..., w^n). 

For different investments at different maturity dates, we need to take into consideration 

the evolution of the value of the portfolio over time. Thus, we only consider the returns 

instead of the (absolute) levels, which is consistent with most economic arguments. We 

are also assuming for now that the risk-free interest rate is constant over time. The return 

on our portfolio then is a linear combination of the returns on the individual assets, thus 

given by the equation: 

r^p = w^T r + r^F, 

where r denotes the vector of returns on the investment assets, r^F is the risk-free return, 

and r^p is the return on our portfolio. The risk associated with the investment return 

comes from the risks associated with the investment in each security; that is, our portfolio 

volatility depends upon the volatilities associated with the individual securities as well 

as their covariances. 

We first analyze the capital allocation problem with two risky assets, and later generalize 

it to the case with more than two risky assets. Suppose that the portfolio consists of two 

risky securities S1 and S^2, which have returns given by the equations: 

r^1 = μ^1 + ε^1(t), and r^2 = μ^1 + ε^2(t), 

where the return vectors given by ε^1 and ε^2 are both normal distributions with mean 

zero and ≥ 0 with variances σ^2_1 and σ^2_2 and correlation, respectively. The return 

volatility associated with portfolio investment during the horizon is given by: 

σ^2p = w^2_1 σ^2_1 + w^2_2 σ^2_2 + 2 w_1 w_2 ρ σ_1 σ_2, 
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where w_1 + w_2 = 1. Both portfolio returns and volatilities have the same structural 

meaning as the individual security returns and volatilities, but enlarged from the one-

dimensional case to the two-dimensional (risky assets) case. Thus, the investment 

portfolio is no longer given by naïve diversification. Instead, it follows the theory of 

finance. 

10.6.2. Black-Litterman Model 

The Black-Litterman model is an extension of the original CAPM model and has been 

widely recognized in finance literature as a rational method for creating a portfolio of 

assets. In this approach, an investor can generate his/her expectations on asset returns 

based on both the risk of the asset and an equilibrium assumed to be defined by the 

market. The Black-Litterman model has several advantages: it allows the inclusion of an 

investor's opinions on specific assets; it reflects the investor's confidence in the 

estimations; it incorporates a method of combining different estimation sources; and it 

overcomes the problem that a small error of estimation could make huge variance during 

the optimization process. The realistic problems implied in this model could be 

generated and properly solved using the tools of deep learning, including input-output 

operation and attention. 

The Black-Litterman model is typically constructed as a normal distribution. Aside from 

scratches and uncertainty, its distribution could be classified as irrational as it fixes the 

expected return of a specific portfolio to the risk-budgeting portfolio with confidence, 

which is typically not the case for an unreasonable investor who creates a portfolio 

without inward consideration of the world market, his/her past investment experiences, 

and the objective market state including unknown structural breaks. However, the 

structure of the Black-Litterman model indicates that one could construct distorted 

estimations of the expected return by adjusting the input variables and applying deep 

learning. Using these advantages over a wide asset universe, we propose a recursive 

approach to decorated estimations of the expected return, extract a reasonable portfolio 

without unreasonable inputs, and generate a probabilistic rather than a deterministic 

portfolio using random guessing. 

10.6.3. Risk Parity Approach 

Another approach to portfolio construction has lately gained popularity, appealing to a 

group of portfolio managers and hedge funds. This group believes that market 

capitalizations are not a good measure of risk and the overall investment weighting 

should take into consideration the risk contribution of each asset in a portfolio. The 

approach is called risk parity, which is a relatively new concept that is the radical 
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opposite of the capital asset pricing model and modern portfolio theory in that it would 

allocate capital to each asset class based on risk, not correlation. The basic concept 

contends that risk and its contribution to a portfolio’s total risk, rather than expected 

return, is the most important factor to consider when devising which assets to put in a 

portfolio and how to weight them. Risk parity aims to allocate a portfolio’s risk equally 

among the various asset classes contained in the portfolio. The conceptual foundation of 

risk parity is relatively simple. If you create a portfolio where both equity and bond 

positions contribute equally to overall portfolio risk, the portfolio should perform better 

than one that is long equities and short bonds, since equities are, on a historical basis, a 

much riskier asset class than bonds. 

Risk finding has become much easier for portfolio managers because computer 

technology now allows for simultaneous monitoring of the risk factor exposures of 

hundreds of portfolios. Generating risk concentrations, such as geographic exposure, 

sector exposure, currency exposure, and liquidity exposure, has become a common 

practice in the hedge fund industry. As hedge fund styles have become more defined and 

more transparent, the risk separation process permits investors to constrict risk and 

protect against possible blow-ups from their hedge fund investments. 

10.7. Conclusion 

In this book, we introduced us to how to find alpha in financial markets from the lens of 

deep learning. We focused on using deep learning methods on high-frequency financial 

data due to its readily available information and the profit potential coming from its low 

market price impact. The result of applying deep learning to the problem of predicting 

mid-price change was streamed spatially on a daily basis and temporally on a tick-by-

tick basis and showed a very high precision and a very low maximum drawdown. Based 

on it, we built an execution strategy based on only market orders and back-tested it on 

actual high frequency data over a year of S&P 500 E-Mini futures. We showed it beat 

the transaction costs towards which we built the strategy. And because it was built on 

raw market data, we presented its profitability as 0.10% of the market depth. The strategy 

was also very resilient to the widening of the market depth. We also learnt a lot about 

deep learning using high-frequency financial data, such as batch generations and 

hyperparameter tuning. Our learnings enable us to build deep learning models that had 

a streaming data mode and that could generalize to unseen data. 

10.7.1. Future Trends 

Advances in all aspects of machine learning methods are leading to rapid adoption by an 

increasing number of the retail market actors, as well as by other participants in generally 
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every sector of the economy. The exponential growth of available datasets and the 

democratization of the tools necessary to analyze them are pushing the boundaries of 

formerly posited limits for machine learning methods. The future is, therefore, very 

exciting but also ambiguous: will, e.g., reinforcement learning-based approaches shift 

the market dynamics, or on the contrary, the machine learning models will prevail, 

allocating portfolios in such a way that the reinforcement strategies are prevented from 

being successful? 

In light of the fast pace of innovation, what conclusions can be drawn from the analysis 

shown in this study? Generally, we suggest that a wide array of different approaches 

should be tried and allocated to different market conditions, relying in this way on their 

inherent strength and expertise. There is no single best approach for machine learning-

based portfolio optimization and the generic question of model selection is not trivial. 

The underlying multi-objective decision process is wide, as decisions considering 

transaction costs and bid-ask spreads, risk preferences while optimizing on return or 

optimizing on the Sharpe ratio, or richness of tradeable strategies while optimizing on 

the turnover or optimizing on the portfolio cardinality uniquely influence performances. 

These types of decisions depend not only on a market actor’s profile but also on the 

prevailing market conditions. A broad basket of strategies, models, and configurations 

focused on specific market scenarios is very helpful in effectively exploiting the rich 

sources of information provided in high-frequency datasets.. 
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