

153

Chapter 10: High-precision validation and multi-

domain testing techniques for complex chipsets

10.1. Introduction

With the proliferation of digital devices used in the consumer space, there has been an

increased demand for performance and a concurrent growth in power and cost that needs

to be effectively managed for sustaining the growth in the semiconductor industry. Chip

manufacturers are continuously challenged with the need to reduce the risk of test

escapes as they begin the migration at both the die level as well as the package level by

incorporating unproven and unverified technology in production systems (Goldsmith,

2005; Biglieri, 2007; Heath et al., 2016). This is also being emphasized by the

technology transition coming from 20 nm to 14nm and further migrations to 10nm and

below where chip costs are extremely high and the silicon brought up is concurrent with

product implementation timelines that necessitate the introduction of effective validation

and testing strategies that are organized and method driven. As has been experienced in

the past, as technology scales and design complexities increase, multi-domain functional

testing of die with deeply embedded die-to-die and die-to-package interconnect circuitry

becomes critical in ensuring adequate test coverage and reducing the risk of test escapes

from manufacturing. Emphasis on the need for the early introduction of Validation and

Fault Testing techniques is becoming increasingly important. We present techniques and

concepts that help facilitate the reduced validation time frame and validate complex die

with high density die-to-die and die-to-package interconnects and circuitry. These

techniques are modular in implementation and can deal with complex test access

challenges during silicon bring up and preliminary validation when standard boundary

scan and serial link circuitry techniques cannot be reliably used (Tse & Viswanath, 2005;

Larsson et al., 2014; Heath et al., 2016).

Deep Science Publishing

https://doi.org/10.70593/978-81-989050-5-5_10

154

10.2. Overview of Chipset Architecture

A modern computer system is made up of one or more processors, a set of memory

manager, caches, control units, and Input-output (I/O) peripherals such as an interface to

the disk, a display device, network interfaces, and so on. To connect all these functional

units together, external buses are used. The number of cycles that the processor needs to

complete a function, such as issuing a read command for a certain memory address, may

be small, and the number of general-purpose processors that perform this function is a

very small number. This is the motivation of building a small number of processors with

a large number of external buses and using a set of interfaces for all the I/O needs of the

system. These interfaces are connected to the chipset through parallel buses which

translate the parallel buses to the appropriate format used at the external buses of the

CPU. The chipset then connects to the graphic rendering unit, memory units, storage,

networking, and other peripherals.

Fig 10.1: High-Precision Validation and Multi-Domain Testing

To provide high speeds of operation, the integrated chipset provides built-in high-speed

communication links among the processing units connected in the system. The core

components of these integrated chipsets are often several small-scale integrated circuits

connected into a Chip Set. These core components of the chipset are made of various

155

digital processing bricks such as bus controllers, programmable logic devices, memory

controllers, network interface controllers, bus interfaces, address decoders and I/O port

controllers working in an integrated manner. Compared to a processor, these peripherals

are programmable, and implement many more functions, but work simultaneously for a

very small fraction of the system’s actual operational time. Hence, the cost of these I/O

processor circuits is less than the processor circuits in an equivalent area; and so, many

more logic gates are available in the same amount of area, power, and time.

10.3. Importance of Validation in Chipset Development

Chipset development is a fast-paced and intense process that typically lasts only a few

years. This is not typically long enough to allow for discovery of corner-case bugs by

normal product user experience. Realistically, the product is not deployed in any truly

long-term, stressing environments, and thus those important corner-case bugs are usually

found only many years into the product life cycle - and often during the development of

the next generation chipset. No-blame validation is extremely helpful for this problem.

No-blame validation is designed to detect those important corner case bugs early on by

focusing on creating relatively simple, relatively short tests that take an "end-user

perspective" of functionality. No blame validation thus has a strong emphasis on Task

Execution Completion, SEC - Self Error Checking, and YET - User-Experience Time

targets. It is foolish to focus validation on million-operation once-in-a-while stress tests

- those are definitely designed to be bug initiators but discovering a bug by executing a

difficult special test months or years after it was feared to be dormant is not a desired

objective.

The biggest chip/device buggers are the ones that are the most unexpected and "found

by accident"; these types of bugs cause the most pain and are usually the hardest to debug

and recreate. Strong peripheral interaction exploratory testing methods help catch those

types of bugs early. Chipset devices are an autonomous system containing many devices,

including primary processors, secondary processors, sensors, actuators, wireless devices,

and GUI and I/O hardware. These devices can last through much product development

but not as long as the product itself.

10.4. High-Precision Validation Techniques

To accomplish multi-domain validation of a chipset, it is mandatory to validate all

functionalities exposed by the chipset to all external agents as correctly specified and to

fulfill the required specifications within the allowed limits. For example, Functional

Validation establishes that all input/output signal logics are applied correctly and that

correct logics are sensed from the outputs. Timing Validation consists in assessing that

156

timing for a signal appearing at the output is correct and inspected with respect to the

timing of the respective input signal being inspected. Moreover, Timing Validation must

be performed under all allowed operation scenarios. Similarly, Power Validation

consists in verifying that the power consumed under all possible functional cases does

not exceed the specified upper limit.

The set of methodologies used to verify all of the possible device operating cases with

the target precision is termed as High-Precision Validation Techniques. High-Precision

Validation Techniques may be classified into (1) static and (2) dynamic validation

techniques. Static Techniques do not require any operation to assess the validity of the

device design within the required limits. Rather than this, they utilize model analysis on

all functions related to validation to demonstrate that no error can occur. Dynamic

Techniques involve actual operation of the device in order to observe the power, timing

relationships, and Functional statistics.

 Fig 10.3: High-Precision Validation Techniques

Static validation techniques enable the highest validation precision possible because

there is no uncertainty related to the test applied, detection of the expected output, and

157

sensitivity to outer perturbations. For timing validation, this approach assures the

maximum accuracy in timing measurement because it does not suffer from any

restriction on the edges of the signals used for timing measurements. Static techniques

mainly include (1) simulation-based bitmap analysis, (2) SAT-based verification, (3)

Symbolic Transfer-Based Method, (4) timing clock gating, (5) timing cone of influence

analysis, (6) symbolic functional analysis, and (7) static power analysis.

10.4.1. Static Validation Methods

The need for ever more complex DSP/FPGA-based chipsets in various domains is rising

tremendously. Moreover, both hardware componentes, as well as associated and

embedded software for functional validation go complex, huge, and excessive, making

it really challenging, tedious, and by far mostly impossible for design houses to ensure

without any doubt that their products are designed correctly, that there are no hidden

silicon implementation flaws, no bugs in the IPs, hardware and software works perfect

as a single product valid for the intended application domain, chips-based chipset address

and serve the application correctly.

In parallel, not being able to provide technical, valid, well-advanced validation and test

techniques and tools represents a distinctive limit for third parties companies who are

investing time and efforts in licensing and utilizing costly blocks soldered in complex

assemblies. Though sometimes anyhow locked to a specific third-party house. On one

side, traditional validation methods are basically returning zero debug capabilities for

such complex heterogeneous designs, on the other side, resorts to ad hoc internal

developed or small-house-developed tools cannot address high-performance

verification.

The only valid resort on these problems is to capitalize on existing static validation

previously developed, continuously updated, and real-life-proven methods and

associated software tools that take into account the typical core-design validation

problems of huge complex heterogeneous DSP/FPGA-based circuitry architectures at

multi-DSP, distributed processing level. In particular, both advanced ASIC physical

design closed-topology methods and validation and test design hierarchical methodology

for DSP/FPGA—high-precision validation of architectural solutions are considered, that

are exploiting both usage and tech at this assembly level.

10.4.2. Dynamic Validation Approaches

The definition of a functional validation metric is a necessary and sufficient condition to

formally establish the precision of any dynamic validation method, under given

158

assumptions. As a first ad-hoc step towards high-precision validation methods, initial

techniques focused on implementing expressive directed test generation techniques to

reduce the gap between testing and functional validation. The proposed approaches

restrict the search space for functional validation to specific scenarios where the

functional validation metric density is maximally favorable to the method itself.

Directed state-space search adds a validation mode on top of the detection capability of

a general DSP. By using combinations of known input data, the controller of the selected

DSP can optimally stretch functional validation and trigger the error. By itself, functional

validation is always a non-deterministic process; several VLSI deployment aspects, e.g.

operating conditions and process variations, errors generated by other non-validated

chips in the same package, etc., can collaborate in hiding the fault effect into noise,

preventing detection. By intentionally steering the operation conditions of the chip, the

probability density of the errors produced at its output data is altered. The chip detection

is temporarily maximized, allowing detection of errors that would otherwise remain

invisible due to non-determinism. Dynamic methods are implemented in most cases after

final deployment in order to target and test undesired behaviors.

Since the 1980’s, the concept of dynamic methods has been expanded towards post

production implementation, initially taking physical form in the semi-invasive Active

Load Testing. The idea was that one or more good chips are either purposely connected

to the faulty chip terminal I/O ports or forced to a calibration state. By minimizing the

difference between the measured and predicted signals, the influence of fabrication and

design errors could be evaluated.

10.5. Multi-Domain Testing Strategies

As the silicon technology moved from planar to 3D FinFET structures, the complexity

of integrated circuits increased dramatically. Today, the modern chips contain multiple

design domains ranging from dozens of domains of many heterogeneous digital blocks

to high-performance, mixed-signal or analog blocks. Naturally, the Test methods and

design-for-test structures have to match this growing complexity. The classification is

usually in digital or analog domains. Digital domain test deals with testing of

conventional combinational or sequential logic using a standard extended deterministic

test approach. The issues include controllability, observability, stuck-at faults for fast-

path digital blocks, and access for sequential blocks. Test generation is simplified based

on built-in test structures such as scan. The correct test or fault coverage is critical to

failure prediction for complex designs. For fast-path digital blocks placed into the

Mixed-Signal Domain, pattern generation is complicated as test input vectors need to

drive analog signals such as AC or DC bias notes.

159

Analog domain test has been around for several decades, and comprises testing blocks

such as A/D or D/A converters, PLLs, DACs, operational and passive filters, amplifiers,

comparators, and buffers. The methods used are based on special characteristics or

transfer functions tied to the block. Digital-based testers are generally used for hybrid-

type DFT. More rigid test procedures are required that may include signal integrity

analysis of the device under test with careful selection of AC or DC patterns injected at

input test pins. Mixed-Signal Domain Test Strategies test partitions for hybrid chips

where only some of the blocks are mixed-signal or analog. These strategies are based on

simplistically regarding the mixed-signal blocks as being digital-testable. Such

partitioning constraints have been used in system on chip designs based on the use of

passive mixed-signal block DFT solutions.

10.5.1. Digital Domain Testing

Most multi-domain techniques explore the digital testing of the mixed-signal blocks.

Due to this fact, we must first discuss the existing digital testing techniques, with a joint

solution proposed in the age of the emerging complex multi-domain systems. Most

digital blocks are tested by faults in the circuit.

Fig 10.3: Multi-Domain Testing Techniques for Complex Chipsets

The fault models can be defined at different levels of abstraction, such as: the layout

level, the netlist level, the transistor level. The most common practice is to define a fault

list – either by simulation or learning from real failures. The fault coverage is then

determined from the percentage of detected faults. If detection is not possible, design

160

changes or additional testing strategies are employed in order to raise the fault coverage.

Most tests are created with the use of Automatic Test pattern Generation tools. A test is

said to have structural fault coverage if it detects certain types of faults mostly associated

with structural problems in logic circuits. Faults that are never detected by the test set

are referred to as redundant faults. If in addition the test satisfies all the logic detection

states for certain types of fault modeling, it is said to have logical fault coverage. Logic

fault simulation has traditionally been the most widely used approach for test generation.

Due to the structural simplicity of digital circuits and the ease of modifying the

descriptions, there are tools that require only a short time to simulate all possible circuit

input combinations. However, this technique is prohibitive in terms of computation time,

for the case of large circuits. There are special tools designed to work on large circuits,

but they are still quite slow.

10.5.2. Analog Domain Testing

The focus of this section is on fault modeling and ATPG for analog circuits, as well as

their practical implementations. This testing is critical because in most chipsets there are

a significant number of analog blocks such as A/D and D/A converters, PLLs, ADCs,

DACs, CMOS amplifiers, RF circuits, etc. All these circuits are responsible for some

important functions in a digital image processing system. If the performance of any of

these analog circuits turns out to be below specification, the overall functionality of the

chipset could be seriously affected. As analog testing is a major bottleneck during chip

production, research work for developing efficient techniques for testing these important

blocks of the system is currently a very important field of interest.

Fault modeling is a key area of research for both theoretical and practical aspects of

analog circuit testing. In the past two decades, extensive research work has been done

on the reliability and quality issues for analog and mixed-signal circuits. Some of the

important aspects in this regard are semiconductor aging under high thermal

environments, production problems in integrated circuits, electrostatic discharge

problems, manufacturability and erosion of chip components, etc. In addition, many

parameter variation problems are mostly prefeature problems, which are driven by

design rules and circuit forced scaling. As a result, increasing system complexity makes

it more and more difficult to conduct fault simulation and testing algorithms for all

analog devices.

Most of the commercial tools available for analog fault modeling are based on multiport,

small-signal models of linear and nonlinear circuits. There are several methods, which

are based on perturbation of circuit parameters and generation of faulty frequency

responses. In addition to this, several fault models have also been proposed for the non-

linear devices based on physical structure or parameters like transistor-level behavioral

161

macromodels. These models are based on some physical parameters rather than simply

voltage transfer characteristics.

10.5.3. Mixed-Signal Domain Testing

Within the context of multi-domain testing, this section covers strategies and techniques

to test the Mixed-Signal domain. We shall elaborate on some of the existing

methodologies as well as on a specific ADC-DAC concurrent testing strategy

specifically conceived as a Mixed-Signal domain test. The Analog-Mixed Signal (AMS)

test cost has become essential for the semiconductor industry, since AMS devices

represent more than one-third of all semiconductor production – and the percentage is

increasing. These devices are primarily the Analog-Digital Converters (ADC), Digital-

Analog Converters (DAC), and Power Management Integrated Circuits (PMIC). To

produce AMS Devices that surpass stringent quality and reliability standards with

minimal economic impact, the industry has to develop efficient test methods for a wide

variety of AMS. The extensive testing of AMS devices, mostly carried out at wafer test

and final package test, including Long Test Programs on ATE, is driven by the Consumer

Electronics sector. The demand for low-cost solutions with constant availability, is

challenging AMS design-in test.

With the goal of reducing AMS test costs, the development of innovative concurrent

Moving Device Under Test (DUT) architectures and design-in test strategies and

methodologies, is ever more considered. To achieve this goal, the state of the art

considers the design of dedicated AMS design architectures that could enable Device

Under Test (DUT) Fault Modeling and how these reduce the need for extensive

Independent Built-In Self-Test (IBIST) functions for each Analog & Mixed-Signal

block, including Power Distribution Network (PDN) built-in self-test strategies for

PMIC devices. The device-in test methods include concurrent Mixed-Signal Chain Test

(MSCT) architectures and methods for Data Converters and Power Management

Integrated Circuits. These methods present the capability to reduce the test cost

significantly.

10.6. Test Automation Frameworks

A testing framework can be defined as a solution that provides a specific environment

for developing, running, and managing test cases. High technology chip designs involve

millions of logic elements, leading to a diverse set of features and capabilities. Testing

the functionality of such large-scale integration designs requires the execution of an

equally large number of tests. It is therefore essential to automate the hardware validation

process to a large extent. Most products are equipped with internal capabilities that allow

162

the designer to assemble, configure and send data to the hardware in a streamlined

manner. Other products also allow following the response in real-time at the speed of

the hardware product. Integrated tools and flexible drivers transfer addresses, set

parameters to the chip, read it back and check the answer. These let designers focus on

writing tests using high-level languages rather than spending months developing it from

low-level functions.

The production of hardware validation patterns are generated from the design

decompilation. However, normally the designer has to go through an iterative process

with the production team, refining the tests and driving the pattern generation tools

multiple times until the generated patterns achieve satisfactory results. Some provide an

assistance page which allows running in automated mode and takes full advantage of

test frameworks capabilities. Such integration level of automation not only speeds up the

hardware validation process but also eliminates the repetitive front-end design checks

once brought out by the use of test software. Often these bugs or oversights could be

difficult to show by automated functional checks. The test framework will visualize any

discrepancy in response in a report format, showing input vectors and expected/actual

chip responses.

10.6.1. Automated Test Development

Test automation these days has become essential for complex SoCs as it not only helps

in completing the record number of test cases with shorter time but also helps in

achieving the required functional and quality coverage. Creating test software for IPs

and complete design validation requires a lot of effort on specific tooling but the

requirement is justified as the design complexity increases. There are a lot of tools

available today which offer various capabilities in the test development domain. The

kind of support available on various aspects in test automation frameworks play a crucial

role in deciding the framework which is chosen for the specific collaboration. The

aspects include the support given for Hardware-Software Collaboration, System

Modeling & Stimulus Generation, Forensic capabilities during Failure Analysis, Post

Analysis, Debugger Support, Factory Enablement, and Multi Domain Support. The

collaboration of Hardware Design, Verification and Test experts helps in achieving these

capabilities. Test Development Tools today focus on multi-adoption capabilities for the

ecosystem leading to less maintenance and faster time-to-market. Integrated Capabilities

in the area of Automated Test Development along with Coverage Checking, Debugging

and Revision Control plays a crucial role in cutting down the overall development time

and optimizing Test Times.

The statement stands true for different aspects and a single internal organization is not

capable of supporting everything. In-House Tools work well for supporting particular

163

areas related to Test Development In-House while Commercial Tools have their own

pros and cons and it is often necessary to evaluate the risk and work on integrating both

the capabilities in a single collaboration. The integration and collaboration in these areas

cannot be understated as modern test development focuses on the Complete Lifecycle of

Debugging, Scalable and Integrated Data Management and Fail Forensics with General-

Purpose Tests with Lot-Level Screening, Composite Test Conditions, and High-Level

Test Instantiation Interface with Centralized Scalable Data Management for Efficient

and Flexible Access to Test Metadata for Test Planning, Retrieval, Planning windows,

and Sign-Off while Unity of Structure and Methodology is Ensured by Comprehensive

Guidelines for Test Metadata Structure.

10.6.2. Continuous Integration for Validation

Show me a validation team that doesn’t want a Good-Enough Release; that team is

probably oblivious to the goal of the Project Manager, or doesn’t care about the

impending product release! Validation is probably the only project phase that keeps

moving right until after the product starts to sell. You are saving some of the worst of

the worst bugs for the final release – bugs that are found by customers or by the field. Is

there a better way? Continuous Integration helps eliminate bugs during the integration

process. In typical software Continuous Integration, every night, the latest code from the

repository is compiled, linked, and all unit tests are run. Results from the builds and tests

are posted. Developers work during normal hours, and bugs are found and fixed before

their intent disappears. In more integrated development processes, dev code is integrated

twice a week, then run through additional tests. Continuous Integration applies these

ideas to validation.

For hardware validation, Continuous Integration is at least partly scriptable (i.e. you set

up a script to start a new build after a certain time, regardless of whether any changes

made in the previous iteration). However, this is a monolithic idea. The common case of

the last phase of silicon development that gently segues into product release doesn’t

combine well with “commit early, commit often”. For hardware validation, Continuous

Integration isn’t. It doesn’t have to do everything better than people manually doing it,

just do the common case better. Have any steps that are manual, do those steps. Then

checkpoint the manual phase, and scrutinize the delta between checkpoints. Automate

as much as possible between checkpoints. Then set the time between checkpoints to be

either a rapid cadence or even completely scriptable. Rinse and repeat.

164

10.7. Conclusion

Testing and validation of new, complex chipset architectures are of utmost importance

for circuit designers and manufacturers beforehand to avoid hidden problems and to

achieve the expected level of reliability of the consumer final product in fast-moving,

high-competition, low-cost markets. We have considered validation and testing

techniques, based on both physical measurements and model-based testing, which

operate in the accuracy- and fault coverage- driven corners. Overview of both families

of techniques has been presented, followed by their comparison and different synergetic

applications. After examining how model-based testing can be exploited in combination

with electrical physical measurements to enhance fault coverage, we consider a multi-

domain combination of methods where model-based and physical methods generate and

share the stimulus to perform spectrum analysis. The very high complexity of the circuits

and the new trends, i.e., the multi-domain, multi-functionality nature of circuit chips, the

exploration of different technologies and package solutions, and the convergence to

integrated architecture will likely require an even greater convergence of modeling and

application of fast experimental methods. We then consider how current modeling and

focus on the quality in testing goods and services transition into the concept of zero

service defect in the integrated track of the new harmonization and commenting on the

inclusion of test and validation in the Life-Cycle Communication Packaging, which

seeks to provide the supply chain with a tool to assist in creating appropriate

communication packaging. The sixth section tackles the synergy status of reliability and

test engineering, which is of primary importance for the life cycle of customers and

users. Meeting customers’ needs means making products that work properly, or provide

them with the information to allow them to understand that a product is meant for a

different use. Advancing quality management thinking, customers and users cannot

obtain what they want without being provided with clearly written specifications.

10.7.1. Future Trends

The semiconductor industry strongly drives the general development of technology. As

a consequence, there are always new requirements for semiconductor products to

guarantee even more performances, more functionalities, and lower costs. This has

important implications that reflect on product testing as well. The increase in product

integration impacts the effort and the cost of product validation and test because the

complexity of the design and the complexity of the circuitry and of the algorithms used

within the product entail an intricate relationship that is hard to manage in practice.

Complexity requires more effort and more care in the early phases of design validation,

in order to keep the debug effort within reasonable limits. At the same time, since

semiconductors are still subject to continuous cost reduction to maintain the overall

165

manufacturing cost for semiconductor products within acceptable limits in the consumer

market, the implementation of design and production tests still needs to minimize test

cost, usually at the expense of coverage and quality specifications. In the same way, the

increase in product integration defines a strong trade-off between production cost and

production yield, strongly influencing product lifetime quality. In practice, the

embedded testing capabilities are dictated by the ability to manage the complexity at

both design and system levels. In hardware, this refers to the analysis of the overall

design architecture with respect to functional and structural testing architecture. In

software, this refers to the analysis of the algorithms and the execution paths to define

the code and access patterns that need to be validated and controlled.

References

Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next

generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

Heath, R. W., Gonzalez-Prelcic, N., Rangan, S., Rappaport, T. S., & Murdock, J. N. (2016). An

overview of signal processing techniques for millimeter wave MIMO systems. IEEE Journal

of Selected Topics in Signal Processing, 10(3), 436–453.

Goldsmith, A. (2005). Wireless Communications. Cambridge University Press.

Tse, D., & Viswanath, P. (2005). Fundamentals of Wireless Communication. Cambridge

University Press.

Biglieri, E. (2007). MIMO Wireless Communications. Cambridge University Press.

	Chapter 10: High-precision validation and multi-domain testing techniques for complex chipsets
	10.1. Introduction
	10.2. Overview of Chipset Architecture
	10.3. Importance of Validation in Chipset Development
	10.4. High-Precision Validation Techniques
	10.5. Multi-Domain Testing Strategies
	10.6. Test Automation Frameworks
	10.7. Conclusion
	References

