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Chapter 10: High-precision validation and multi-

domain testing techniques for complex chipsets  

10.1. Introduction                               

With the proliferation of digital devices used in the consumer space, there has been an 

increased demand for performance and a concurrent growth in power and cost that needs 

to be effectively managed for sustaining the growth in the semiconductor industry. Chip 

manufacturers are continuously challenged with the need to reduce the risk of test 

escapes as they begin the migration at both the die level as well as the package level by 

incorporating unproven and unverified technology in production systems (Goldsmith, 

2005; Biglieri, 2007; Heath et al., 2016). This is also being emphasized by the 

technology transition coming from 20 nm to 14nm and further migrations to 10nm and 

below where chip costs are extremely high and the silicon brought up is concurrent with 

product implementation timelines that necessitate the introduction of effective validation 

and testing strategies that are organized and method driven. As has been experienced in 

the past, as technology scales and design complexities increase, multi-domain functional 

testing of die with deeply embedded die-to-die and die-to-package interconnect circuitry 

becomes critical in ensuring adequate test coverage and reducing the risk of test escapes 

from manufacturing. Emphasis on the need for the early introduction of Validation and 

Fault Testing techniques is becoming increasingly important. We present techniques and 

concepts that help facilitate the reduced validation time frame and validate complex die 

with high density die-to-die and die-to-package interconnects and circuitry. These 

techniques are modular in implementation and can deal with complex test access 

challenges during silicon bring up and preliminary validation when standard boundary 

scan and serial link circuitry techniques cannot be reliably used (Tse & Viswanath, 2005; 

Larsson et al., 2014; Heath et al., 2016). 

Deep Science Publishing  

https://doi.org/10.70593/978-81-989050-5-5_10 



  

154 
 

10.2. Overview of Chipset Architecture 

A modern computer system is made up of one or more processors, a set of memory 

manager, caches, control units, and Input-output (I/O) peripherals such as an interface to 

the disk, a display device, network interfaces, and so on. To connect all these functional 

units together, external buses are used. The number of cycles that the processor needs to 

complete a function, such as issuing a read command for a certain memory address, may 

be small, and the number of general-purpose processors that perform this function is a 

very small number. This is the motivation of building a small number of processors with 

a large number of external buses and using a set of interfaces for all the I/O needs of the 

system. These interfaces are connected to the chipset through parallel buses which 

translate the parallel buses to the appropriate format used at the external buses of the 

CPU. The chipset then connects to the graphic rendering unit, memory units, storage, 

networking, and other peripherals. 

 

Fig 10.1: High-Precision Validation and Multi-Domain Testing 

To provide high speeds of operation, the integrated chipset provides built-in high-speed 

communication links among the processing units connected in the system. The core 

components of these integrated chipsets are often several small-scale integrated circuits 

connected into a Chip Set. These core components of the chipset are made of various 
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digital processing bricks such as bus controllers, programmable logic devices, memory 

controllers, network interface controllers, bus interfaces, address decoders and I/O port 

controllers working in an integrated manner. Compared to a processor, these peripherals 

are programmable, and implement many more functions, but work simultaneously for a 

very small fraction of the system’s actual operational time. Hence, the cost of these I/O 

processor circuits is less than the processor circuits in an equivalent area; and so, many 

more logic gates are available in the same amount of area, power, and time. 

10.3. Importance of Validation in Chipset Development 

Chipset development is a fast-paced and intense process that typically lasts only a few 

years. This is not typically long enough to allow for discovery of corner-case bugs by 

normal product user experience. Realistically, the product is not deployed in any truly 

long-term, stressing environments, and thus those important corner-case bugs are usually 

found only many years into the product life cycle - and often during the development of 

the next generation chipset. No-blame validation is extremely helpful for this problem. 

No-blame validation is designed to detect those important corner case bugs early on by 

focusing on creating relatively simple, relatively short tests that take an "end-user 

perspective" of functionality. No blame validation thus has a strong emphasis on Task 

Execution Completion, SEC - Self Error Checking, and YET - User-Experience Time 

targets. It is foolish to focus validation on million-operation once-in-a-while stress tests 

- those are definitely designed to be bug initiators but discovering a bug by executing a 

difficult special test months or years after it was feared to be dormant is not a desired 

objective. 

The biggest chip/device buggers are the ones that are the most unexpected and "found 

by accident"; these types of bugs cause the most pain and are usually the hardest to debug 

and recreate. Strong peripheral interaction exploratory testing methods help catch those 

types of bugs early. Chipset devices are an autonomous system containing many devices, 

including primary processors, secondary processors, sensors, actuators, wireless devices, 

and GUI and I/O hardware. These devices can last through much product development 

but not as long as the product itself. 

10.4. High-Precision Validation Techniques 

To accomplish multi-domain validation of a chipset, it is mandatory to validate all 

functionalities exposed by the chipset to all external agents as correctly specified and to 

fulfill the required specifications within the allowed limits. For example, Functional 

Validation establishes that all input/output signal logics are applied correctly and that 

correct logics are sensed from the outputs. Timing Validation consists in assessing that 
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timing for a signal appearing at the output is correct and inspected with respect to the 

timing of the respective input signal being inspected. Moreover, Timing Validation must 

be performed under all allowed operation scenarios. Similarly, Power Validation 

consists in verifying that the power consumed under all possible functional cases does 

not exceed the specified upper limit. 

The set of methodologies used to verify all of the possible device operating cases with 

the target precision is termed as High-Precision Validation Techniques. High-Precision 

Validation Techniques may be classified into (1) static and (2) dynamic validation 

techniques. Static Techniques do not require any operation to assess the validity of the 

device design within the required limits. Rather than this, they utilize model analysis on 

all functions related to validation to demonstrate that no error can occur. Dynamic 

Techniques involve actual operation of the device in order to observe the power, timing 

relationships, and Functional statistics. 

 

                         Fig 10.3: High-Precision Validation Techniques 

Static validation techniques enable the highest validation precision possible because 

there is no uncertainty related to the test applied, detection of the expected output, and 
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sensitivity to outer perturbations. For timing validation, this approach assures the 

maximum accuracy in timing measurement because it does not suffer from any 

restriction on the edges of the signals used for timing measurements. Static techniques 

mainly include (1) simulation-based bitmap analysis, (2) SAT-based verification, (3) 

Symbolic Transfer-Based Method, (4) timing clock gating, (5) timing cone of influence 

analysis, (6) symbolic functional analysis, and (7) static power analysis. 

10.4.1. Static Validation Methods 

The need for ever more complex DSP/FPGA-based chipsets in various domains is rising 

tremendously. Moreover, both hardware componentes, as well as associated and 

embedded software for functional validation go complex, huge, and excessive, making 

it really challenging, tedious, and by far mostly impossible for design houses to ensure 

without any doubt that their products are designed correctly, that there are no hidden 

silicon implementation flaws, no bugs in the IPs, hardware and software works perfect 

as a single product valid for the intended application domain, chips-based chipset address 

and serve the application correctly. 

In parallel, not being able to provide technical, valid, well-advanced validation and test 

techniques and tools represents a distinctive limit for third parties companies who are 

investing time and efforts in licensing and utilizing costly blocks soldered in complex 

assemblies. Though sometimes anyhow locked to a specific third-party house. On one 

side, traditional validation methods are basically returning zero debug capabilities for 

such complex heterogeneous designs, on the other side, resorts to ad hoc internal 

developed or small-house-developed tools cannot address high-performance 

verification. 

The only valid resort on these problems is to capitalize on existing static validation 

previously developed, continuously updated, and real-life-proven methods and 

associated software tools that take into account the typical core-design validation 

problems of huge complex heterogeneous DSP/FPGA-based circuitry architectures at 

multi-DSP, distributed processing level. In particular, both advanced ASIC physical 

design closed-topology methods and validation and test design hierarchical methodology 

for DSP/FPGA—high-precision validation of architectural solutions are considered, that 

are exploiting both usage and tech at this assembly level. 

10.4.2. Dynamic Validation Approaches 

The definition of a functional validation metric is a necessary and sufficient condition to 

formally establish the precision of any dynamic validation method, under given 
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assumptions. As a first ad-hoc step towards high-precision validation methods, initial 

techniques focused on implementing expressive directed test generation techniques to 

reduce the gap between testing and functional validation. The proposed approaches 

restrict the search space for functional validation to specific scenarios where the 

functional validation metric density is maximally favorable to the method itself. 

Directed state-space search adds a validation mode on top of the detection capability of 

a general DSP. By using combinations of known input data, the controller of the selected 

DSP can optimally stretch functional validation and trigger the error. By itself, functional 

validation is always a non-deterministic process; several VLSI deployment aspects, e.g. 

operating conditions and process variations, errors generated by other non-validated 

chips in the same package, etc., can collaborate in hiding the fault effect into noise, 

preventing detection. By intentionally steering the operation conditions of the chip, the 

probability density of the errors produced at its output data is altered. The chip detection 

is temporarily maximized, allowing detection of errors that would otherwise remain 

invisible due to non-determinism. Dynamic methods are implemented in most cases after 

final deployment in order to target and test undesired behaviors. 

Since the 1980’s, the concept of dynamic methods has been expanded towards post 

production implementation, initially taking physical form in the semi-invasive Active 

Load Testing. The idea was that one or more good chips are either purposely connected 

to the faulty chip terminal I/O ports or forced to a calibration state. By minimizing the 

difference between the measured and predicted signals, the influence of fabrication and 

design errors could be evaluated. 

10.5. Multi-Domain Testing Strategies 

As the silicon technology moved from planar to 3D FinFET structures, the complexity 

of integrated circuits increased dramatically. Today, the modern chips contain multiple 

design domains ranging from dozens of domains of many heterogeneous digital blocks 

to high-performance, mixed-signal or analog blocks. Naturally, the Test methods and 

design-for-test structures have to match this growing complexity. The classification is 

usually in digital or analog domains. Digital domain test deals with testing of 

conventional combinational or sequential logic using a standard extended deterministic 

test approach. The issues include controllability, observability, stuck-at faults for fast-

path digital blocks, and access for sequential blocks. Test generation is simplified based 

on built-in test structures such as scan. The correct test or fault coverage is critical to 

failure prediction for complex designs. For fast-path digital blocks placed into the 

Mixed-Signal Domain, pattern generation is complicated as test input vectors need to 

drive analog signals such as AC or DC bias notes. 
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Analog domain test has been around for several decades, and comprises testing blocks 

such as A/D or D/A converters, PLLs, DACs, operational and passive filters, amplifiers, 

comparators, and buffers. The methods used are based on special characteristics or 

transfer functions tied to the block. Digital-based testers are generally used for hybrid-

type DFT. More rigid test procedures are required that may include signal integrity 

analysis of the device under test with careful selection of AC or DC patterns injected at 

input test pins. Mixed-Signal Domain Test Strategies test partitions for hybrid chips 

where only some of the blocks are mixed-signal or analog. These strategies are based on 

simplistically regarding the mixed-signal blocks as being digital-testable. Such 

partitioning constraints have been used in system on chip designs based on the use of 

passive mixed-signal block DFT solutions. 

10.5.1. Digital Domain Testing 

Most multi-domain techniques explore the digital testing of the mixed-signal blocks. 

Due to this fact, we must first discuss the existing digital testing techniques, with a joint 

solution proposed in the age of the emerging complex multi-domain systems. Most 

digital blocks are tested by faults in the circuit.  

 

Fig 10.3: Multi-Domain Testing Techniques for Complex Chipsets 

The fault models can be defined at different levels of abstraction, such as: the layout 

level, the netlist level, the transistor level. The most common practice is to define a fault 

list – either by simulation or learning from real failures. The fault coverage is then 

determined from the percentage of detected faults. If detection is not possible, design 
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changes or additional testing strategies are employed in order to raise the fault coverage. 

Most tests are created with the use of Automatic Test pattern Generation tools. A test is 

said to have structural fault coverage if it detects certain types of faults mostly associated 

with structural problems in logic circuits. Faults that are never detected by the test set 

are referred to as redundant faults. If in addition the test satisfies all the logic detection 

states for certain types of fault modeling, it is said to have logical fault coverage. Logic 

fault simulation has traditionally been the most widely used approach for test generation. 

Due to the structural simplicity of digital circuits and the ease of modifying the 

descriptions, there are tools that require only a short time to simulate all possible circuit 

input combinations. However, this technique is prohibitive in terms of computation time, 

for the case of large circuits. There are special tools designed to work on large circuits, 

but they are still quite slow. 

10.5.2. Analog Domain Testing 

The focus of this section is on fault modeling and ATPG for analog circuits, as well as 

their practical implementations. This testing is critical because in most chipsets there are 

a significant number of analog blocks such as A/D and D/A converters, PLLs, ADCs, 

DACs, CMOS amplifiers, RF circuits, etc. All these circuits are responsible for some 

important functions in a digital image processing system. If the performance of any of 

these analog circuits turns out to be below specification, the overall functionality of the 

chipset could be seriously affected. As analog testing is a major bottleneck during chip 

production, research work for developing efficient techniques for testing these important 

blocks of the system is currently a very important field of interest. 

Fault modeling is a key area of research for both theoretical and practical aspects of 

analog circuit testing. In the past two decades, extensive research work has been done 

on the reliability and quality issues for analog and mixed-signal circuits. Some of the 

important aspects in this regard are semiconductor aging under high thermal 

environments, production problems in integrated circuits, electrostatic discharge 

problems, manufacturability and erosion of chip components, etc. In addition, many 

parameter variation problems are mostly prefeature problems, which are driven by 

design rules and circuit forced scaling. As a result, increasing system complexity makes 

it more and more difficult to conduct fault simulation and testing algorithms for all 

analog devices. 

Most of the commercial tools available for analog fault modeling are based on multiport, 

small-signal models of linear and nonlinear circuits. There are several methods, which 

are based on perturbation of circuit parameters and generation of faulty frequency 

responses. In addition to this, several fault models have also been proposed for the non-

linear devices based on physical structure or parameters like transistor-level behavioral 
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macromodels. These models are based on some physical parameters rather than simply 

voltage transfer characteristics. 

10.5.3. Mixed-Signal Domain Testing 

Within the context of multi-domain testing, this section covers strategies and techniques 

to test the Mixed-Signal domain. We shall elaborate on some of the existing 

methodologies as well as on a specific ADC-DAC concurrent testing strategy 

specifically conceived as a Mixed-Signal domain test. The Analog-Mixed Signal (AMS) 

test cost has become essential for the semiconductor industry, since AMS devices 

represent more than one-third of all semiconductor production – and the percentage is 

increasing. These devices are primarily the Analog-Digital Converters (ADC), Digital-

Analog Converters (DAC), and Power Management Integrated Circuits (PMIC). To 

produce AMS Devices that surpass stringent quality and reliability standards with 

minimal economic impact, the industry has to develop efficient test methods for a wide 

variety of AMS. The extensive testing of AMS devices, mostly carried out at wafer test 

and final package test, including Long Test Programs on ATE, is driven by the Consumer 

Electronics sector. The demand for low-cost solutions with constant availability, is 

challenging AMS design-in test. 

With the goal of reducing AMS test costs, the development of innovative concurrent 

Moving Device Under Test (DUT) architectures and design-in test strategies and 

methodologies, is ever more considered. To achieve this goal, the state of the art 

considers the design of dedicated AMS design architectures that could enable Device 

Under Test (DUT) Fault Modeling and how these reduce the need for extensive 

Independent Built-In Self-Test (IBIST) functions for each Analog & Mixed-Signal 

block, including Power Distribution Network (PDN) built-in self-test strategies for 

PMIC devices. The device-in test methods include concurrent Mixed-Signal Chain Test 

(MSCT) architectures and methods for Data Converters and Power Management 

Integrated Circuits. These methods present the capability to reduce the test cost 

significantly. 

10.6. Test Automation Frameworks 

A testing framework can be defined as a solution that provides a specific environment 

for developing, running, and managing test cases. High technology chip designs involve 

millions of logic elements, leading to a diverse set of features and capabilities. Testing 

the functionality of such large-scale integration designs requires the execution of an 

equally large number of tests. It is therefore essential to automate the hardware validation 

process to a large extent. Most products are equipped with internal capabilities that allow 
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the designer to assemble, configure and send data to the hardware in a streamlined 

manner. Other products also allow following the response in real-time at the speed of 

the hardware product. Integrated tools and flexible drivers transfer addresses, set 

parameters to the chip, read it back and check the answer. These let designers focus on 

writing tests using high-level languages rather than spending months developing it from 

low-level functions. 

The production of hardware validation patterns are generated from the design 

decompilation. However, normally the designer has to go through an iterative process 

with the production team, refining the tests and driving the pattern generation tools 

multiple times until the generated patterns achieve satisfactory results. Some provide an 

assistance page which allows running in automated mode and takes full advantage of 

test frameworks capabilities. Such integration level of automation not only speeds up the 

hardware validation process but also eliminates the repetitive front-end design checks 

once brought out by the use of test software. Often these bugs or oversights could be 

difficult to show by automated functional checks. The test framework will visualize any 

discrepancy in response in a report format, showing input vectors and expected/actual 

chip responses. 

10.6.1. Automated Test Development 

Test automation these days has become essential for complex SoCs as it not only helps 

in completing the record number of test cases with shorter time but also helps in 

achieving the required functional and quality coverage. Creating test software for IPs 

and complete design validation requires a lot of effort on specific tooling but the 

requirement is justified as the design complexity increases. There are a lot of tools 

available today which offer various capabilities in the test development domain. The 

kind of support available on various aspects in test automation frameworks play a crucial 

role in deciding the framework which is chosen for the specific collaboration. The 

aspects include the support given for Hardware-Software Collaboration, System 

Modeling & Stimulus Generation, Forensic capabilities during Failure Analysis, Post 

Analysis, Debugger Support, Factory Enablement, and Multi Domain Support. The 

collaboration of Hardware Design, Verification and Test experts helps in achieving these 

capabilities. Test Development Tools today focus on multi-adoption capabilities for the 

ecosystem leading to less maintenance and faster time-to-market. Integrated Capabilities 

in the area of Automated Test Development along with Coverage Checking, Debugging 

and Revision Control plays a crucial role in cutting down the overall development time 

and optimizing Test Times. 

The statement stands true for different aspects and a single internal organization is not 

capable of supporting everything. In-House Tools work well for supporting particular 
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areas related to Test Development In-House while Commercial Tools have their own 

pros and cons and it is often necessary to evaluate the risk and work on integrating both 

the capabilities in a single collaboration. The integration and collaboration in these areas 

cannot be understated as modern test development focuses on the Complete Lifecycle of 

Debugging, Scalable and Integrated Data Management and Fail Forensics with General-

Purpose Tests with Lot-Level Screening, Composite Test Conditions, and High-Level 

Test Instantiation Interface with Centralized Scalable Data Management for Efficient 

and Flexible Access to Test Metadata for Test Planning, Retrieval, Planning windows, 

and Sign-Off while Unity of Structure and Methodology is Ensured by Comprehensive 

Guidelines for Test Metadata Structure. 

10.6.2. Continuous Integration for Validation 

Show me a validation team that doesn’t want a Good-Enough Release; that team is 

probably oblivious to the goal of the Project Manager, or doesn’t care about the 

impending product release! Validation is probably the only project phase that keeps 

moving right until after the product starts to sell. You are saving some of the worst of 

the worst bugs for the final release – bugs that are found by customers or by the field. Is 

there a better way? Continuous Integration helps eliminate bugs during the integration 

process. In typical software Continuous Integration, every night, the latest code from the 

repository is compiled, linked, and all unit tests are run. Results from the builds and tests 

are posted. Developers work during normal hours, and bugs are found and fixed before 

their intent disappears. In more integrated development processes, dev code is integrated 

twice a week, then run through additional tests. Continuous Integration applies these 

ideas to validation. 

For hardware validation, Continuous Integration is at least partly scriptable (i.e. you set 

up a script to start a new build after a certain time, regardless of whether any changes 

made in the previous iteration). However, this is a monolithic idea. The common case of 

the last phase of silicon development that gently segues into product release doesn’t 

combine well with “commit early, commit often”. For hardware validation, Continuous 

Integration isn’t. It doesn’t have to do everything better than people manually doing it, 

just do the common case better. Have any steps that are manual, do those steps. Then 

checkpoint the manual phase, and scrutinize the delta between checkpoints. Automate 

as much as possible between checkpoints. Then set the time between checkpoints to be 

either a rapid cadence or even completely scriptable. Rinse and repeat. 
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10.7. Conclusion 

Testing and validation of new, complex chipset architectures are of utmost importance 

for circuit designers and manufacturers beforehand to avoid hidden problems and to 

achieve the expected level of reliability of the consumer final product in fast-moving, 

high-competition, low-cost markets. We have considered validation and testing 

techniques, based on both physical measurements and model-based testing, which 

operate in the accuracy- and fault coverage- driven corners. Overview of both families 

of techniques has been presented, followed by their comparison and different synergetic 

applications. After examining how model-based testing can be exploited in combination 

with electrical physical measurements to enhance fault coverage, we consider a multi-

domain combination of methods where model-based and physical methods generate and 

share the stimulus to perform spectrum analysis. The very high complexity of the circuits 

and the new trends, i.e., the multi-domain, multi-functionality nature of circuit chips, the 

exploration of different technologies and package solutions, and the convergence to 

integrated architecture will likely require an even greater convergence of modeling and 

application of fast experimental methods. We then consider how current modeling and 

focus on the quality in testing goods and services transition into the concept of zero 

service defect in the integrated track of the new harmonization and commenting on the 

inclusion of test and validation in the Life-Cycle Communication Packaging, which 

seeks to provide the supply chain with a tool to assist in creating appropriate 

communication packaging. The sixth section tackles the synergy status of reliability and 

test engineering, which is of primary importance for the life cycle of customers and 

users. Meeting customers’ needs means making products that work properly, or provide 

them with the information to allow them to understand that a product is meant for a 

different use. Advancing quality management thinking, customers and users cannot 

obtain what they want without being provided with clearly written specifications. 

10.7.1. Future Trends 

The semiconductor industry strongly drives the general development of technology. As 

a consequence, there are always new requirements for semiconductor products to 

guarantee even more performances, more functionalities, and lower costs. This has 

important implications that reflect on product testing as well. The increase in product 

integration impacts the effort and the cost of product validation and test because the 

complexity of the design and the complexity of the circuitry and of the algorithms used 

within the product entail an intricate relationship that is hard to manage in practice. 

Complexity requires more effort and more care in the early phases of design validation, 

in order to keep the debug effort within reasonable limits. At the same time, since 

semiconductors are still subject to continuous cost reduction to maintain the overall 
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manufacturing cost for semiconductor products within acceptable limits in the consumer 

market, the implementation of design and production tests still needs to minimize test 

cost, usually at the expense of coverage and quality specifications. In the same way, the 

increase in product integration defines a strong trade-off between production cost and 

production yield, strongly influencing product lifetime quality. In practice, the 

embedded testing capabilities are dictated by the ability to manage the complexity at 

both design and system levels. In hardware, this refers to the analysis of the overall 

design architecture with respect to functional and structural testing architecture. In 

software, this refers to the analysis of the algorithms and the execution paths to define 

the code and access patterns that need to be validated and controlled. 
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