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Chapter 5: The integration of machine learning to 

streamline manufacturing and improve quality 

assurance  

5.1. Introduction 

The market for consumer-oriented products is becoming increasingly competitive. To 

maintain or gain market share, manufacturers are under pressure to improve quality and 

reduce costs. Social and political factors increase product life cycles and encourage 

manufacturers to pay more attention to the whole production process. It becomes 

increasingly common to integrate certain processes of manufacturing automation to 

respond to more and more sophisticated requests, such as flexible and versatile 

production at high-quality coordination of design, quality assurance, and production 

planning. In modern production and business control, the drivers towards greater 

competitiveness are considered global and adaptive supply chain management (Kang et 

al., 2018; Tao et al., 2018; Lee et al., 2019). 

Due to fast market changes and shorter product life cycles, the goal of manufacturing 

and design integration is to keep the design process in synchronization with the 

production process, which is initiated at the beginning of the product design phase. This 

is done by passing the feedback of the capabilities and constraints of the production 

process to the designers so that proper design decisions are made. A central tenet of 

concurrent engineering is to bring people and information together so that constraints 

once considered. Here, we focus on the area of design and manufacturing integration, 

which is an important subarea of CE. Integration can be defined as merging branches of 

a service to improve performance at higher levels. The ultimate goal of the integration 

of design and manufacturing is to have a common set of corporate-wide optimal design 

and manufacturing decisions that leads to corporate-wide performance optimization at 

lower levels since the system's cost is inversely proportional to the performance level at 

which the integration is done (Zhong et al., 2017; Xu et al., 2018). 
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5.1.1. Background and Significance 

Multiple processes are required to manufacture an end-item product. These processes in 

a typical manufacturing environment can include machining, assembly, welding, 

soldering, coating, material handling, inspection, and finishing. The process of 

producing the product design is in general done by engineering personnel. The design 

concepts then undergo iterative changes until the best technical solution is fully evolved 

and established in the form of detailed drawings and specifications that can be used to 

manufacture the product. This phase is often referred to as product development. The 

subsequent process of the physical realization of the product from materials is referred 

to as the manufacturing phase. Manufacturing of products involves a great deal of effort. 

Quality and reliability of products and services, which are deemed to be satisfactory by 

the customers, are mainly associated with how the products are manufactured. It is a 

natural desire for any manufacturer to ensure that their products are manufactured with 

the best possible quality and reliability. Quality control is thus an essential function of 

manufacturing management. 

In recent years, there have been many developments in techniques, procedures, and 

methods used in the tasks and activities associated with production. These advances are 

mainly facilitated by the introduction of computers. Computerized tools that help 

product designers or engineers of manufacturers to carry out in a compact and integrated 

manner all the variables and parameters in the numerous tasks, interactions, and 

decisions of product design and development related to quality and reliability are known 

as CAD/CAM tools. CAD/CAM tools have been developed to be implemented into 

manufacturing processes such as machining, assembly, welding, soldering, and coating, 

enabling them to be in effect computer-aided or finalized. Various modern techniques 

for quality assurance have emerged, allowing companies to have a more efficient means 

for quality systems. These techniques include quality function deployment, failure-mode 

effects analysis, Reliability, Maintainability, and Supportability engineering, and fault-

tolerant system technique. 

5.2. Overview of Manufacturing Processes 

Manufacturing is concerned with the technological and economic processes involved in 

the transformation of raw materials into products. It transforms energy and materials 

from nature into engineering systems that provide the functions desired by society. A 

product is defined as an ensemble of parts that assemble to give the product its 

functionality, that are manufactured according to established performance, cost, and 

quality thresholds and standards; complying with rules for the safety of persons in the 

operational activity, with rules for safety of the environment, and with rules regarding 

other externalities not directly connected to the product process. The parts that comprise 
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the product itself may be defined as bulk components, sheets, molded, or a combination 

thereof. Parts can also be sub-assemblies or assemblies made by the mechanical 

assembly and engineering systems that accompany the product. 

Manufacturing can be described as a series of interrelated processes that reside on a 

factory floor. A transformation system takes as input work-in-progress in the form of 

materials, existing components, information, or a combination thereof. The output is 

finished products, sub-assemblies, or assemblies. The result of a transformation is the 

geometric and physical attributes of the product as a consequence of cycles involving 

motion, monitoring, waiting, and action. Before geometric attributes are defined, the part 

undergoes rough machining and finish machining cycles during which the material 

properties develop. The tools used during the machining cycle are cutting tools whose 

geometry defines the resulting product attributes and are constantly monitored to take 

into account wear during the cycle. The attributes of the tool and the applied process 

parameters are the main elements that define the length of the machining cycle and the 

resulting product quality. However, the entire process can only be understood if the 

geometry of the cutting tool is applied, considering the physical attributes and the 

features of the bulk and sheet materials used. 

 

Fig 5.1:  Overview of Manufacturing Processes. 
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5.2.1. Traditional Manufacturing Techniques 

The manufacturing sector is one of the oldest in the world. Making goods as a company 

and selling them to customers who need them is the foundation of every business on the 

planet. The beginning of the creation of things started with an artisan and his hand tools. 

At that time, it was the artisan himself who shaped the product according to customer 

requirements and requests. He was flexible but expensive and therefore limited to a small 

number of pieces. Therefore, the birth of industry came with the need to produce on a 

larger scale, with shorter time delivery at a lower cost. As a result, the artisan was 

replaced by mass-production manufacturers. The initial production model consisted of a 

system of simple tasks divided among multiple employees, in the same space as the 

craftsman, to produce at lower unit cost. Later, developments in mechanization and the 

implementation of high-volume production lines increased product standardization. 

Basically, the mass production system became a system of mass production systems, 

equipped with highly specialized machines, where the ability to determine machine and 

operation characteristics was given to engineers. 

The flexibility lost in the mass production system started to be recuperated with the 

implementation of Numerical Control machines. With NC, and especially CNC machine 

tools the machine was equipped with the ability to modify its behavior according to 

customers or production requirements. The automation allowed for a better utilization 

of the resource which enabled the adoption of production systems designed for low-

volume production tasks such as craft systems, without the associated high unit cost. 

However, during the eighties new competitors were emerging in the low-cost markets. 

New countries that could supply low unit cost. The manufacturers aimed to push 

production volumes to the lowest levels possible, thus reducing production costs. Instead 

of competition at low prices, the development of high quality at low cost was the road 

to follow. Unexpectedly, a higher proliferation of products was demanded by the markets 

with shorter time to deliver, together with the need for low product costs. 

5.2.2. Emerging Trends in Manufacturing 

Over the last decade, the manufacturing landscape has undergone significant change 

with the incorporation of augmented reality, robotics and cobots, and artificial 

intelligence and machine learning. This change was intensified as a consequence of the 

pandemic, which forced major portions of the global workforce to stay at home, 

hampering the workforce and operational capacity of many manufacturers, particularly 

in the traditional sectors. This shortage elevated labor costs, which accelerated the 

movement toward automation in regions that have historically enjoyed competitive 

salary advantages. This shift to automation, however, has been more evident in 

developed countries, where many companies are increasingly adopting solutions enabled 
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by augmented reality, robotics, artificial intelligence, and machine learning. It has been 

noted that the increased focus on digital manufacturing solutions will not decrease after 

the pandemic. Digital solutions will be the key driver for recovery and growth and will 

help regain its pole position in the Asia-Pacific market, overcoming the losses due to the 

crisis. 

Augmented reality technology allows the introduction of additional information into the 

eye of the user when analyzing the surrounding environment. As a consequence, an 

augmented reality-supported system can insert virtual objects into the real environment 

and interact with the human user for better understanding and decision-making. For 

example, an augmented reality application has been proposed to guide operators in 

complex factory assembly processes, which is an essential part of the operation of many 

high-tech multistage assembly processes for precision electronic products, such as 

mobile phones, computers, and reasonable and feasible robots with simple augmented 

reality equipment. Using augmented reality technology to support manual assembly 

operations may improve operators’ cognitive load reduction and task performance. 

Artificial intelligence, Industrial Intelligence, and explained artificial intelligence are 

becoming hot development fronts in the intelligentization and automation process in 

manufacturing systems. 

5.3. Understanding Machine Learning 

Whether explicitly or not explicitly stated, machine learning, or ML, is an increasingly 

adopted technology in Industry 4.0, which aims to intelligently connect people, things, 

and systems to foster the flexibility and efficiency of the manufacturing process. Deep 

learning (DL), or deep neural networks, is a special case of ML, but the terms ML and 

DL are often mistaken as the same technology. In addition to the research and 

development of ML-DL algorithms themselves, other critical technologies for intelligent 

automation and integration of ML-DL-driven systems into the manufacturing process 

include data hosting platforms, data preprocessing algorithms, computing resources 

provided by the edge/cloud, and cybersecurity and privacy-preserving mechanisms. 

There are multiple types of ML-DL algorithms with varying levels of supervision, 

interpretability, difficulty of training, data size requirements, etc. Regardless of the 

specific type of algorithms, training an ML model requires special modeling 

considerations. The modeling considerations are critical to the success of deploying ML 

in manufacturing, but these considerations are not explicitly mentioned in scientific 

papers that focus on developing new types of ML algorithms. However, the modeling 

considerations are often explicitly or implicitly covered in applied ML-DL engineering 

textbooks, which serve as good references for a general audience. Due to space 
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limitations, we only provide a high-level overview of ML-DL algorithms and modeling 

considerations via a short summary. 

5.3.1. Definition and Key Concepts 

Machine learning is a field of computer science that involves the statistical modeling of 

data to create computer programs that can analyze data, recognize and learn patterns, 

and predict outcomes with reasonable accuracy. These patterns may be complex, 

encompassing multidimensional relationships that are difficult to mathematically 

express directly, and the predictions may be uncertain. Machine learning is an extension 

of some of the classical techniques and concepts in statistics, computer science, and 

optimization theory, and it differs from those classical approaches in that machine 

learning emphasizes enhancing performance automatically as more data becomes 

available rather than relying on a predefined set of rules. As a result, machine learning 

is often part of a larger software system and is applied to software problems where there 

is a significant amount of complex data. For a problem to be solved via machine learning, 

a large amount of typical past data must be gathered; this data can be labeled as showing 

user preference or outcome. During the training or algorithm-learning phase, a model is 

configured based on this past data, and then it is used to predict user outcomes for new 

data. 

The most frequently used types of machine learning are supervised learning, 

unsupervised learning, and reinforcement learning. The primary focus of this essay is on 

supervised machine learning for classification and regression problems and 

reinforcement learning, which is well-suited for knowledge-based decision problems, 

such as autonomous driving. The supervised learning paradigm relies on training 

datasets that contain a set of known labels or solution parameters based on the problem 

domain data. 

5.3.2. Types of Machine Learning 

The two primary types of machine learning, supervised and unsupervised learning, differ 

in the way they interpret the data. The main characteristic of supervised learning is that 

an algorithm acts on some input data and generates output in a specific field. This 

corresponds to a database that can consist of numerical data or discrete categorical data. 

The use of supervised learning is mainly predictive meaning that it will analyze the data 

to build a model to predict future outcomes. In this case, the model helps us answer the 

question "What do we think will happen?" We can apply supervised learning in various 

applications, for example, to predict stock prices, airplane delays, times of seismic 

activity, etc. 
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 Unlike supervised learning, in unsupervised learning, there is no answer to learning, and 

there are no variables to predict. At this stage, there are only input variables (also called 

features), which means a database is optimized to describe the variables of interest. 

Therefore, the unsupervised approach is crucial to help understand what is happening in 

the dataset in order to carry out the next steps in the data analysis project. In this case, 

the model helps answer the question "What is happening in the data set?" Unsupervised 

learning is used to discover patterns present in data such as clustering customers or 

observing how a disease evolves. Associative rule learning, clustering, dimensionality 

reduction, least squares, expectation-maximization algorithm, and k-means are examples 

of unsupervised learning techniques. In addition to the supervised and unsupervised type 

approaches, machine learning algorithms differ based on the function of the learning 

task. There are algorithms for classification, regression, handling missing values, 

inducing relation, density estimation, and probability estimation. We have already 

mentioned classification and regression in the very first paragraph about the supervised 

and unsupervised tasks. 

5.4. Applications of Machine Learning in Manufacturing 

Manufacturing has been the background for many innovations and pioneering 

applications of Machine Learning. The ability of this technology to learn functional 

relationships from vast amounts of data, including temporal data, has helped the 

application of business process management in manufacturing. These types of 

techniques are very useful for Predictive Maintenance, Quality Control and Assurance, 

Supply Chain Optimization, and Scheduling. 

Maintenance has always been a focus of interest in many industries. For the 

manufacturers, even with a low margin, postponing activities intended to keep machines 

running may harm operations, causing unexpected shutdowns, long delays, and other 

issues. Therefore, the adoption of solutions that avoid unexpected maintenance becomes 

crucial. Traditionally, maintenance has been reactive, responding to machines' behavior. 

With the increase in the utilization of sensors, it became possible to adopt monitoring 

solutions, which are called Predictive Maintenance or Condition-Based Maintenance. 

Since the 1980s, several statistical models have been used to predict machine failures. 

However, with the rapid development of Machine Learning, its algorithms have been 

employed for this function, including Neural Networks, Decision Trees, Ensemble 

Learning, and others. 

Quality Inspection has become a focus for Machine Learning applications. With the 

utilization of cameras and image processing, the analysis of images is an important topic 

in quality assurance because it remains a significant challenge in manufacturing. Human 
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workers are still the default solution adopted by manufacturers for quality inspection due 

to the limitations of cameras, such as lighting or angle of view. 

 

Fig 5.2: Applications of Machine Learning in Manufacturing. 

5.4.1. Predictive Maintenance 

Among these applications, predictive maintenance is one of the major areas of concern 

to manufacturers, since machine service has a large impact on the manufacturing process 

and its cost. Maintenance and service-related expenditures account for 18% of total costs 

in the manufacturing sector, as well as for the 2nd greatest expense after sales cost. 

Further, because traditional maintenance services rely on static service schedules to 

avoid machine breakdown, the fixed schedules can lead to either over-maintenance or 

under-maintenance by the manufacturer. Thus, there is an increasing demand for the 

development of novel intelligent predictive maintenance services to streamline 

predictive maintenance efficiency, increasing functioning machine time as well as 

reducing costs. 
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Traditional predictive maintenance systems are not able to provide real-time detection 

and accurate prediction of machine problems, tasks that are crucial to successful 

production. Novel predictive maintenance approaches integrating available data with 

advanced integrated algorithms leveraging machine learning or AI methods are starting 

to replace conventional solutions. With advanced-level data analytics in predictive 

maintenance, achieving enhanced success is possible by improving the prediction of 

parts' life cycles and item failures more accurately. Other predictive maintenance models 

leverage sensor measurement data and advanced machine learning models to increase 

prediction accuracy. In addition, other studies propose methodologies for machine fault 

prediction employing deep learning methods. With global digitization, there is an 

increasing amount and availability of manufacturing machine failure and operating data 

collected from sources. 

5.4.2. Quality Control and Assurance 

Machine learning is having an increasingly important impact on quality control. In 

industrial settings, managed queues and production environments must be capable of 

detecting and debunking the failure of production processes, to preserve special product 

characteristics, hence safeguarding the functionality of the produced goods. While the 

application of complex algorithms for quality inspection is still rare in production, 

traditional, straightforward rules are often the means of choice. The provisional 

implementation of unverified heuristic rules in production ensures both simple 

maintainability by production personnel and the option for retrospective optimization of 

quality gates. This inclination toward easier-to-manage quality gates is observable in 

many applied applications. Together with the wide availability of smartphone cameras, 

quality inspection with machine learning is forecasted to prevail in many industrial use 

cases in the future. 

The industrial implementation also entails several hurdles. Quality inspection algorithms 

are typically highly data-hungry, needing large amounts of data for training. If it is 

possible to support the computer-aided inspection with well-running human visual 

control, it is possible to create a large training database. Further on, while the manual 

camera calibration for operator inspection might be a human-intensive process, the 

outcome is an optimized hardware and software solution for operator-staffed visual 

control that requires nearly no investment to be transferred into industrial production. 

Further on, even the introduction of ML into quality inspection systems must not offer 

unreasonable or unwarranted gains. Inherent risks accompany every quality inspection 

system that must be kept in mind when introducing an ML solution. In the worst-case 

scenario, faulty quality inspection will lead to contaminated dispatch products, which 

potentially endangers life and limb. 
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5.4.3. Supply Chain Optimization 

The application of machine learning has enabled vast improvements in the efficiencies 

of components throughout the manufacturing process. These improvements go beyond 

just equipment and tools on the factory floor. Instead, the systems that supply materials 

and rely on a plant’s output also benefit from machine learning. One of the most efficient 

productivity improvement programs within manufacturing is the just-in-time (JIT) 

philosophy. JIT seeks to minimize inventory required by suppliers and manufacturers, 

thus cutting down on costs through reduced waste and a more streamlined operation. 

Although the principles of JIT have existed for decades, the incorporation of machine 

learning within these systems has demonstrated considerable advantages. 

Directly related to supplier considerations is the choice of suppliers as well as the 

management of supplier performance over time. Machine learning just-in-time (JIT) 

process optimizes many resource-intensive tasks. This technology process achieves 

advanced operational efficiency through continuous monitoring of the tasks affecting 

costs and time savings, predictive analytics to adjust plans based on dynamic changes 

that occur in the course of all production orders, and insight into internal processes with 

artificial intelligence-based decision support. A JIT machine learning process integrates 

all strategic production factors, such as production capacity, routing, surge orders 

management, demand changes notification, instant capacity changes management, and 

machine learning recommendations to accelerate the JIT process and reduce costs. 

In the area of supplier performance management, the use of machine learning for 

performance scoring supplier capabilities has been proposed. It has been demonstrated 

that supplier scoring, which utilizes an ensemble of algorithms, can outperform 

traditional scoring methods. The aim is to offer effective and efficient solutions for the 

development of supply chain capabilities in the automotive industry.The use of machine 

learning for supplier selection has also been reviewed, with a comparison to deep 

learning methods. It has been affirmed that despite the past two decades of substantial 

academic research and important managerial implications, supplier selection still 

remains a popular subject of ongoing research but a challenge for deploying actual 

solutions. 

5.5. Benefits of Machine Learning in Manufacturing 

Aggressive innovations in technologies based on microcontrollers and information 

technology are being applied to major technical fields such as biological information, 

energy resources, and advanced materials. Low-cost, high-speed information technology 

has been applied to these fields, including the use of distributed sensor networks, 

broadband wireless data transmission, and computer integration. Manufacturing is one 
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of the most important sectors of human activities. The development of automated, 

computerized control systems has advanced considerably, covering sectors from 

individual fabrication processes up to nearly total enterprise integration. Over the last 

few years, machine learning has emerged as a promising tool for performing important 

predictive inferences in a variety of scientific and commercial domains. The rapid pace 

of development in machine learning, combined with the emphasis on laying the 

foundations for a new model of computational and integrated manufacturing, has created 

a unique convergence that offers new possibilities for knowledge and data-driven 

product design and system integration. 

The application of sensor-based data-driven machine learning approaches in 

manufacturing is attractive when the relationship between the inputs and outputs is of 

high complexity. Moreover, when physical models cannot fully capture this relationship, 

we believe that machine learning will play a substantial role in the manufacturing 

environment of the future. In addition, the application domains such as quality control, 

diagnostics, prognosis, or process control in which machine learning has been applied 

for decades will benefit further from the emerging machine learning technologies. This 

integration of models and data is enabling a new generation of manufacturing products 

and processes, built at the intersection of statistical inference and machine learning, 

sensor information and model-based reasoning, sophisticated modeling, and 

mathematical modeling technology. 

5.5.1. Increased Efficiency 

Implementing machine learning in the manufacturing process reduces unnecessary labor 

and errors, which contributes positively to the overall efficiency of the company. The 

flawless implementation of production plans depends on several factors, including 

internal equipment and operational processes, availability and quantity of raw materials, 

availability of commercially possible production alternatives, as well as environmental 

conditions like weather, national holidays, and other important local or sociocultural 

events. All these factors have external, unpredictable, and unmanageable influences 

beyond the control of manufacturers. These erratic waits for materials or production 

process elements create negative effects on the schedules of operations such as expected 

processing time, transit time, absolute tardiness, and minimum makespan. They increase 

production costs and affect the entire supply chain if those increases are not 

accommodated by customers. Such increases create a ripple effect through 

manufacturers, their suppliers, and the people who carry out downstream services. 

The introduction of artificial intelligence applications in production process planning 

and scheduling is progressively improving the overall control of the various work centers 

that execute the operations of the production schedule. With better control and 
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coordination of the execution of production schedules, the expected time for each 

internal element and each operation of a product will be reduced. Unforeseeable delays 

can be anticipated and hopefully avoided allowing, at best, a condition of negligible 

tardiness. This is the condition in which minimizing the makespan is perfectly correlated 

to minimizing the costs of the production processes because no internal defect will 

impact the entire work center both in terms of efficiencies lost on the utilization of 

resources, but mostly from the minuses associated with the payment of workers affected 

by the delay in production. 

5.5.2. Cost Reduction 

One of the more apparent impacts that machine learning has on manufacturing is the 

reduced costs associated with inventory and resources. As further advancements around 

machine learning and AI domains arise in conjunction with big data generation, 

manufacturing companies can devise better models that predict market demand and 

therefore are able to make better-informed decisions based on accurately predicting the 

demand to produce and minimize excess goods. Fewer excess goods entail lower storage 

costs for companies while also reducing waste from spoilage depending on the type of 

market the excess goods might be from, whether it is food, wholesale consumer goods, 

or any other product with an expiration time, molds, or obsolescence. Another benefit 

companies experience by predicting demand more accurately is financial, since it 

reduces excess material costs associated with the production and storage of excess 

goods.  

From a general perspective, minimizing the required excess stock can be the difference 

between success and failure for many manufacturing companies, since excess stock 

might cost a company more than what it is ultimately worth and creates excess work 

when it comes to restocking and rotation. A good model can help reduce a company’s 

holding cost, and allow the business to invest the capital it saves in other parts of the 

business or other areas that require focus. Maintaining a suitably low level of inventory 

and supply chain are essential to ensure the best product supply at the most efficient 

costs. Fortunately, through advanced machine learning vendors and investors can help 

grow the business's demand and supply processes and achieve cost efficiency. 

5.5.3. Enhanced Product Quality 

The ability to improve product quality is a major advantage. Any manufactured item 

serves a specific function. If it is incapable of serving that function, its utility is adversely 

affected. Product failure can be tantamount to a major disaster—consider an explosive 

shell malfunctioning, a cancer diagnostic detection kit failing to detect the disease, or an 
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airplane crashing because of a control system defect. Ordinarily, products are developed 

based on very specific specifications. Most products have tolerances indicated; for 

example, for electrical components, the specified or indicated values of resistance can 

deviate by a small percentage. The proportion of items failing or outside tolerances 

should be very small; even so, such failures may result in monetary losses or even serious 

consequences. 

ML can minimize product quality issues. ML is interdisciplinary; it utilizes concepts 

from statistics, applied mathematics, and computer science. The crux of ML is its ability 

to learn from data. If one has sufficient data about failures either in operation or 

production, ML algorithms can be trained to either predict such anomalies or identify 

faulty items in real-time or at the factory floor end. Such predictions can mitigate product 

failures. By advancing product quality, ML will also enhance profits. 

An item’s functionality is generally linked to a set of measurable quality parameters. For 

example, the parameter controlling a plastic covering resistance to failure may be 

thermal conductivity or strength. If it is known beforehand that such parameters are 

linked to certain test conditions, and the manufactured item is subjected to such tests, the 

manufactured items can be classified as doing the appropriate work over the required 

period. Suppose that the model defining the links is given as a function F, and during 

testing, the output of the function is compared with threshold parameter values. 

5.6. Challenges in Implementing Machine Learning 

While machine learning can be powerful, there are several challenges to keep in mind 

for your organization. Machine learning requires a substantial amount of high-quality 

data, particularly labeled data, to train predictive models. If your data is not 

representative of the scenarios that typically occur in your manufacturing process, the 

model may not generalize well. Constructing high-quality training datasets can be 

laborious and often involves the guidance of engineers and domain experts. Labeling 

and data processing pipelines may not exist for your data and may need to be constructed, 

which involves significant additional effort. Furthermore, your labeled data may be 

subject to bias and inaccuracies, which can degrade the performance of machine learning 

models. In these cases, such as when predicting defects or failures, it is important to 

investigate the accuracy of any available labels derived from automated processes that 

may introduce errors. In many cases, organizations choose to experiment with small 

amounts or subsets of data, due to resource costs, or impracticality with employing 

domain expertise on thousands of samples. The decision of what amounts of data to use 

should take into account the challenges posed by the data. Additionally, some machine-

learning algorithms struggle particularly when they are trained on small datasets that are 

meant to be broadly predictive, and bias-variance tradeoffs must be taken into account. 
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Integrating new machine-learning processes successfully into the existing manufacturing 

pipeline will likely require significant engineering attention, such as rethinking how your 

data is processed, labeled, extracted, and monitored over time. Existing data 

management structures may need updates or major changes to accommodate and collect 

new data types. For example, you may not currently collect raw images of parts during 

processing, which would be needed to create a defect-detection model. What additional 

data should you keep, and how should you change your data-collection protocols? What 

efficiency losses are acceptable while gathering this new data? 

 

Fig:  The Integration of Machine Learning to Streamline Manufacturing and Improve 

Quality Assurance. 

5.6.1. Data Quality and Availability 

The quality and volume of data available are the primary concern for a successful ML 

operation. The experience in recent years shows that the more data available during 

training, the better an ML-based application can perform in the production phase. The 

performance improvement usually comes along with better generalization when unseen 

data is fed after deployment. Previous studies show that for an ML project, the 

contribution of data quality, rather than its volume, outweighs the importance of the 

development algorithm and of the team and the amount of effort spent. Further, the cost 

of bad-quality data is five to ten times higher than the cost of obtaining high-quality data. 

However, a major obstacle to having enough quality data is monitoring in the 
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manufacturing industry. While a lot of data is produced during the operation of industrial 

equipment, such data are sparse, have low sampling rates, and are often noisy, along 

with the difficulty of creating a ground truth for supervised learning. For some 

applications, it is even impossible to collect online data during equipment operation 

because of the risk of damaging the equipment or places of operation, which can be 

dangerous for people. The classical solution in that case is to use offline data, but such 

data might not be sufficient, or even impossible to obtain – even for estimates such as 

remaining useful life prediction, which require long data sequences. For some use cases, 

such data deficiency issues can somehow be verified in advance, but for those actual use 

cases and work conditions, data quality and availability are inevitable concerns for any 

ML-based solution in its development phase, and these concerns will determine the 

feasibility of setting up such a solution in practice. 

5.6.2. Integration with Existing Systems 

The integration of ML algorithms into existing quality assurance systems and processes 

is crucial for manufacturers. Existing quality assurance systems play a different role as 

compared to standard triggers for events such as receiving a train set that sounds different 

or has a different resonance frequency. In most cases, however, the existing system does 

not trigger any corrective actions but serves more as a passive reporting of quality issues. 

Often the existing systems will also confirm that there is an issue without determining 

the root cause of such an issue. However, simply reconciling the difference between 

existing triggers and ML insights is not enough. If an ML prediction does not trigger any 

corrective action, then should it become part of the existing quality assurance systems? 

Also, existing trigger reports are often unfounded. How can we be sure that when a report 

is issued, such a prediction is made in a responsible manner and provides trust within the 

department associated with making corrective actions? Further, if a manufacturer 

engages in continuous product improvement, can standard triggers for corrective actions 

continually issue reports over time? Integrating the quality assurance system with the 

ML algorithm has several advantages. The integration helps reduce the number of false 

alerts for quality impacts, which helps alleviate the fears of a production unit associated 

with triggering corrective actions each time the existing system detects a deviation. This 

eventually builds trust and helps in sharing and augmenting ML insights into the 

decision-making processes associated with corrective actions. Furthermore, integrating 

the insights from the existing warranty, repair, etc. systems into the ML training data set 

helps the ML algorithm better understand the impact of various features on the quality. 
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5.6.3. Skill Gaps and Training Needs 

As the industrial ecosystem is rapidly changing and adapting to Industrial 4.0, companies 

face a challenge in finding skilled workers who can support their data science and 

machine learning initiatives. A large percentage of companies are struggling to recruit 

qualified candidates for their AI-related roles. This is attributed to the fact that new roles 

that have only recently emerged in AI or data science have nonetheless become 

especially crucial within a short time. These roles often come with very little guidance 

on what type of skills and proficiencies the person needs to do the work successfully, 

and this is exacerbated by the fact that there are not enough people entering the 

workforce with the necessary education or training. 

Current deficiencies in education or skills can be addressed by either extending academic 

curricula to include them or providing alternative training and upskilling programs. 

Given the speed at which the AI and data landscape is maturing, academia is struggling 

to keep up. Additional challenges include re-streamlining programs so they support both 

graduate and non-graduate positions whilst also helping them to fill available roles in AI 

development and deployment. While traditional degrees will still be needed, the soft and 

hard skills required of a successful AI team member mean that organizations should also 

develop work-related training and mentorship programs marketed towards women, 

racial minorities, and veterans to help diversify the talent pool. Organizations can also 

fund initiatives where advanced degree students work on AI projects and close the gap 

that would otherwise exist. 

5.7. Conclusion 

This chapter discusses how soft-monitoring and machine-learning technologies applied 

to real-time process data can be used to help streamline manufacturing in automated 

production processes. Real-time process data can be effectively combined with close to 

real-time quality data to identify and track changes in the manufacturing process at the 

root cause level using soft sensors for those process change predictors that have been 

proven relevant. The disciplined process-integration approach leads to a better 

understanding of the process, more effective utilization of resources, continuous quality 

improvement, reduced cycle time, and reduced scrap and rework. These strategies can 

be applied to any automated process. 

Machine learning and pattern recognition methods that have been proven highly 

effective in health monitoring and diagnostics can also be used to help manage the 

ramping up of automated processes. These machine learning methods can be used to link 

transient process behavior to the final quality of the manufactured product at the most 

granular level, which is the time-varying transient process data. Automated production 
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processes mature extremely slowly, in some instances, since they are run on very long 

production cycles. Consequently, quality loss and scrap/rework loss accumulate over an 

extremely long time. Monitoring the transient process behavior at such a granular level 

represents an opportunity to reduce these losses. Such monitoring and diagnostics tools 

can also take advantage of the capability of pattern recognition tools to help 

automatically classify different types of transient behavior and help focus attention on 

those transients that are most predictive of final product quality. Such monitoring and 

diagnostics tools can help respond to the early signs of shifts in the relationship between 

transient process behavior and final product quality. 

5.7.1. Future Trends 

For a stable global economy, it is vital to increase the efficiency of production systems 

with the least consumption of resources. Manufacturing methods will deal with low lot 

sizes, rapid changes in production cycles, and dynamic networks. To continue being 

competitive, manufacturers will invest in automation technologies, like advanced 

robotics, computer-aided design and manufacturing, flexible manufacturing systems, 

manufacturing process integration, machine vision, quality improvement methods, rapid 

manufacturing tools, rapid transfer and repair, etc. Automation systems should be 

sophisticated enough to guide automatic cells to respond to the rapid change of articles 

in the market, varying cycle time, and production. This is only possible through the 

application of intelligent technologies or cyber-physical systems. Further, it has also 

been observed that with the explosion of big data in the manufacturing industry along 

with improvement in network bandwidth, product complexity is also increasing 

dramatically. It thus becomes important to consider models that allow for big data 

formation together with product complexity. 

In addition, research institutions globally are focusing on developing newer models, 

solutions, and guidelines that would enable manufacturers to create cyber-physical 

systems that would fulfill their objectives. Furthermore, the next generation of 

manufacturing systems should be greener with a focus on decreasing negative impacts 

on the environment. Research in sustainable development strategies has opened new 

horizons for enhancing the use of green manufacturing technologies with negligible non-

renewable resources and energy. Further, green machine learning technology can act as 

a catalyst in developing renewable products with zero feedback that would thus require 

less energy and improve quality assurance with minimal human intervention. This would 

then ensure that the future of manufacturing is responsible towards the utilization of 

resources. 
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