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Preface 

Artificial intelligence quickly changed from a theory to a practical power - it spreads 

through every part of modern life. As people go from specific uses to more general kinds 

of intelligence, they must face a main change. This change involves what machines do 

and how people think about intelligence. The book, Cognitive AI - From Deep Learning 

to Artificial General Intelligence, looks at that change. 

This writing serves a wide, serious group of people - it is for graduate students and 

researchers in artificial intelligence and cognitive science. Educators along with industry 

workers also read this to get a better grasp of the path from current AI systems to future 

cognitive architectures. We do not just list technologies. We deal with the concepts, 

morals, technical issues as well as societal problems that sit at the core of creating 

machines that think. 

The chapters lay out this story bit by bit; they start with basic learning systems. They 

move to cognitive modeling and designs. The book finishes with important questions 

about governance, combining fields along with how people will work in the future. 

Throughout the text, the reader learns about current subjects. Some of these are large 

language models, explaining how systems work, reasoning with symbols plus networks, 

the safety of general artificial intelligence, and people working with machines. 

I appreciate the researchers, collaborators along with students who inspired this work. 

The growing group of thinkers also recognizes that making intelligent systems requires 

scientific exactness and philosophical thought. My hope is that this book guides plus 

starts talks for anyone who wants AI to develop responsibly and creatively. 

Samit Shivadekar 
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Chapter 1: Foundations of Cognitive Artificial 

Intelligence 

1. Introduction to Cognitive AI: Bridging Perception and Reasoning 

Like robots are to embodied AI, Cognitive AI is to artificial general intelligence. 

Cognitive robots can act and reason like us, and everyday AI can assist more than just 

helping with single tasks. But how do we get to Cognitive AI? In this essay, we argue 

that bridging low- and high-level tasks connecting perception and cognition play an 

essential role. In academic research, bridging tasks largely fall under the umbrella of 

cognitive computer vision. Their foundations in low- and high-level bridging theories 

extend to additional domains, such as the ones of bridges in language or machine 

learning — which we cover in this essay’s second part (K. Frankish et al., 2023). 

The transformational advances in precision reaching the million in underpinning large 

pre-trained neural response models enable machines to close the performance gap with 

us between perception and image or language understanding (R .Szeliski.,2022) 

Cognitive computer vision then fills the corresponding gap in performance for integrated 

perception and cognition models with multi-sensor capabilities. This leaves us with the 

question: What do Cognitive AI and bridging tasks look like? Many areas remain open; 

we cover these both narrow and wide, the former as examples, the latter as a 

practitioner’s toolkit. Examples include neuro-cognitive robotics implementations, 

discovering how to structure exploiting bridging task datasets from images, text, video, 

3D, depth, sensorimotor, and spoken language; and ontology structures guiding zero-

shot and soft weight exploration based computed visual. 

In the end, this survey sets out the landscape for Cognitive AI. Cognitive robots bridge 

often domain-, sensor-, and data type-specific experts that stretch deeper in perception 

than reasoning — "or" — expert models pushing the boundaries of shared, short, 

lightweight context by self-supervision. 

Deep Science Publishing, 2025  
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2. From Symbolic AI to Connectionism: A Historical Overview 

Key Historical steps: the invention of Algorithmic machines, Logic / Symbolic AI, The 

Curse of Dimensionality; Connectionism, Receptors and neurons, Deep Learning. 

In his groundbreaking paper, Allen Newell explored four key themes outlined in the title. 

The first theme was about computation and Turing's Computer. Newell stated a central 

idea about cognitive science when he affirmed: "One of the greatest things that anybody 

ever did, was Turing's theory of computation". The second theme was about intelligence: 

he asked, is the symbol system hypothesis sufficient? The third theme discussed 

challenges met by Cognitive AI and stated: "Cognitive science must eventually grow the 

formalisms for dealing with knowledge coordination, representation, and control." 

Finally, on the last part of his paper, Newell opened a discussion about the future of man 

and baby machines that evolve by learning from experience, discussing connectionism, 

neural nets, and the relation with symbols. 

Questions about the nature of intelligence have puzzled humanity for centuries and have 

inspired thinkers and artists for millennia. While pondering whether objects can think, 

dance, paint, love, and pray has always been a part of our culture, scientific research in 

attempting to address the questions concerning Computation and Intelligence are more 

recent. At least, the existence of an ultimate set of equations or laws that describe 

symbols, sign processes, meaning, and Semiology has not yet been discovered. In this 

essay, we focus our attention on the foundations of cognitive AI through its main models 

and formalisms, discuss their importance and relevance, and identify a set of shared 

assumptions. We dedicate at least one section for each basic model: Symbolic Systems 

and Logic AI, Analogs and Connectivist Systems, and Phenomena. We then explore the 

connections among them and the importance of defining a good model for Cognitive AI 

(S. Russell et al., 2020). At the end, we present our main assumptions and principles that 

inform the design and development of Cognitive AI algorithms and systems. 

3. Deep Learning: Achievements and Limitations in Current AI Systems 

This section returns back to the currently most popular approach in AI: deep learning. 

We present concepts of depth and representation in neural networks, tackling some 

questions afterwards: what do deep networks do? How could it be possible to learn a 

neural code from a small number of examples? What can’t deep learning replay 

mechanisms do? We show that our proposals on these questions are related to many 

known facts and problems in deep neural networks. Are these limitations equally 

important for general neural networks, for biologically plausible models, or not? We 

then come back to the discussion about cognitive neuroscience and compare first to the 

visual feedbacks considered in the context of learning from few examples, and then to 

reverse engineering approaches to cognitive abilities: can reverse engineering 

approaches tell us if the system is using deep mechanistic learning reversely at runtime? 
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We end the section with the limitations of current AI frameworks in relation to cognitive 

abilities. 

Deep learning in its current form has started to produce significant breakthroughs in 

various fields of machine learning and AI, including visual and auditory pattern 

recognition, e.g., automatic face recognition, automatic speech recognition, video 

sequencing, etc (T. J. Sejnowski, 2018). These breakthroughs are closely related to the 

expressiveness of the deep learning systems. A DNN is capable of computing any 

multivariate function, given sufficient resources in terms of number of parameters, 

specifically, number of layers and number of units per layer, and it has been shown that 

by going deep, given a limited number of parameters, the DNNs have a better chance to 

approximate complex functions than shallow networks. A deep architecture allows to 

compute complex transformations of the data into an internal space, so as to make the 

desired task easily computable on that encoded data. In other words, DNNs extract 

multiscale features or high-level representations of the data that are adapted to the task 

to be solved. 

4. Understanding Cognition: The Human Brain as a Model 

To realize cognition within machines, we first have to understand it and thus foundations 

need to resolve around the human brain, a model in which intellect itself evolved and 

exists, and we therefore need to use it to understand cognition (M. S. Gazzaniga, et al., 

2018) In the early days of this quest already, the origins of Artificial Intelligence so much 

were based in human cognitive skills, for example in knowledge representation and 

problem solving, their implementations in machines had to reflect that. But while the 

area of Computer Science, who by now had gathered momentum and made 

implementation possible because it advanced to provide machines with fast processors, 

large memories, and other technological means for such intelligence, expanded, AI 

specialized into increasingly subfields and neglected modeling the human cognitive 

structure, and shifted work on explaining life away to the scientists in other disciplines. 

Cognitive Architectures, however, started to bridge that gap a little bit and focused again 

on explanations of intellect functioning and on creating models therein again which tried 

to copy that functioning within machines. And we see a trend here, a new generation of 

CAs seeks inspiration from the human brain all over again which had fallen into oblivion 

within classical AI. 

Life, as a matter of fact, derives from information processing. Cognition causes the 

functions of the Human Body and it derives from the signals exchanged within and 

construed by that information processing network we are referring to as the human brain, 

and mind, whereas the processes of carrying out functions, are the effects of that 

information processing. The brain supplies the meaning of cognition. It is where 

information flows, is processed, conscious and unconscious decisions are made, and 

actions are initiated (M. S. Gazzaniga et al, 2018). Therefore, the connectivity and 
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capabilities of that signed directed network of processing nodes need to be studied 

towards reproduction, and the outcomes of function, need exploration as foundations for 

modeling cognition in machines. The matter also is that simulation of processes may 

deliver clues which deepen our understanding of the matter as a byproduct too. In fact, 

a good simulation can uncover features of the process that were not anticipated by the 

modeler. 

5. Key Principles of Intelligence: Learning, Memory, Reasoning, and Planning 

One of the distinctive and incalculable features of intelligence is learning. Without 

learning, intelligence is unthinkable. Learning not only affects each of the other 

components of intelligence, it also helps to give its intelligent activity coherence and 

continuity by embedding experience in an enduring form that influences subsequent 

activity. In this manner learning connects action and experience in a causal loop which 

gives the learning agent a history, an evolving relationship to its environment, and the 

potential ability to improve its success in achieving its goals. Learning is especially 

important for knowledge-intensive reasoning and planning because of our partial 

knowledge of the items in the first of these, the huge number of possible plans, and the 

great difficulty of deriving their desired properties (S. Russell et al., 2020) 

One function of memory is to store that experience in an enduring form and to bring it 

to mind when appropriate. Reasoning, both conceptual and commonsensical, and its 

strategic cousin planning, enable an agent to decide how to achieve its goals and to 

generate plans, their necessary conditions and their likely effects. Knowledge-based 

systems also need processing, and in both cases intelligent processing relies heavily on 

reasoning and planning. Without these capabilities, performance cannot be sophisticated, 

flexible, and context-sensitive, and the system lacks the ownership and responsibility for 

its performance which makes a knowledge-based system rather than merely a program 

that encodes its performance heuristically. Finally, from an evolutionary perspective, 

intelligence is that capacity of biological organisms that has made possible the 

extraordinary success of our species, and replicating that success in artifacts is our 

overriding motivation for building artificial general intelligence (S. Russell et al., 2020). 

6. The Role of Perception in Cognitive AI 

Theories of cognition include the notions of perception in their architecture, whether 

recognizing it as a separate functional capacity from inventorization, foundational for 

categorization, interpretation, and prospective reasoning, or recognizing it as a modality 

of the capacity to relate a system’s internal state to the current situation. This perspective 

evidently renders perception as capacity common to a ground of a wider class of 

intelligent systems. We should also mention that, on the other hand, perception without 

reasoning capacity is not self-sufficient for cognition in the sense of enabling creative 
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actions: perception is not sufficient for cognition. The systems responsible for guiding 

perception need to incorporate a lot of the logical machinery out of which cognition 

builds its construct (S. Grossberg 2021). One way to relate perception with reasoning is 

that perception is the first step of a cycle where creative actions have the role of fine-

tuning the perceptual model of the situation and its evolution. 

The perception of higher-level concepts fundamentally relies on the recognition of 

objects that are within the scope of these concepts; these concepts, in turn, provide the 

contextual and conceptual references that give perceptual data a deeper meaning. 

Furthermore, higher-level perception progressively extends and hierarchically organizes 

a vocabulary of concepts for sub-symbolic perceptual data. The unique experiment for 

endowing artificial agents with high-level perceptual recognition capabilities is 

grounded on this adaptive, interactive theory of perception. Indeed, theoretical models 

and principles can and must also guide proposals for new and more powerful perceptual 

recognition of higher-level concepts and objects, in inverse proportion to the richness 

and extension of experience to be exploited. 

7. Neural Networks and Their Impact on Cognitive Processes 

How remarkable that in this new period of great Scientific Paradigm Shift, researchers 

from different fields of Human and Social Sciences, Cognitive Sciences, and from now 

on also from AI, turn to the same models of Functional Architecture demonstrated by 

the neural networks! What can we expect from the future if we know that neural 

networks can be modified and parameterized by learning from the assignment of 

functions of adaptive information processing that model, with error-tolerance, neurons 

of the human neocortex and the neocortex of many species of mammals that share with 

man important cognitive skills! What if it were possible to provide the same power to 

our cognitive Artificial Intelligence using the same architectures? What if it were 

possible to show that there are higher cognitive functions that only differentiate Human 

from Non-Human with species-unique and human-like capabilities, which are easily 

described and understood based only on biologically plausible functional principles? The 

hope is that we can bring the same principles that led to the conquest of high cognitive 

refinancing of a small group of terrestrial species in 20 million years who began to 

associate in social units of extremely flexible and acted with collective efficacy to reach 

common synesthetic goals. This investment of faculties in understanding one another, in 

knowing the common scenarios of life, and in politics can also be reduced and modeled 

in machines that, aware of the rules of temporary change of the world and the general 

properties of things and beings, can help us day to day to be politically, individually or 

collectively efficient and effective (S. Grossberg 2021). 

How can we reach this capability for our cognitive AI? The first step is to understand 

how the linking rules function that establish the Connections of Communications 

between the Information Processing Subdevices; how events in the environment activate 
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the variable configuration of natural directional links that deterministically modulate the 

weights of the active synapses that connect inputs and outputs of these subdevices and 

how the recurrent activation of the connection synchronization of these subdevices 

mediates this General Principle of Functional Operation of Subdevices with 

Communicated Connections of Non-Static Information Processing. 

8. The Intersection of Cognitive Science and AI 

Nothing in this book requires special expertise to understand. Nevertheless, natural 

language and general intelligence raise special complexity issues in definition, 

specification, and implementation that have both troubled and fascinated researchers, 

from the start and still today. It is hardly surprising, therefore, that cognitive modeling 

is one of almost the first things researchers think to do when considering a direction, 

whether that direction is exploring limits, using a cognitive model as a component in a 

more comprehensive system, or offering it up as an explanation or justification for hand-

tuning or finetuning of some technical architectural element. Unfortunately, the 

cognitive process models thus far available offer less predictive power to suggest 

implementations than is usually true of other cognitive models in psychology. That being 

said, cognitive process modeling still occupies a central and distinctive niche (P. 

Langley, 2022). 

Cognitive modeling is an act of exploration, like all modeling, an exploration that can 

take one on unexpected journeys. You start with questions about cognitive mechanism 

and process, rather than questions about perception, action, state representation, task 

specification, or even mental content. Yet, issues selection and prioritization are 

themselves interesting, and help provide a sketch of a roadmap toward a broader form 

of cognitive modeling that would still remain informed by the features that make 

cognitive process models especially useful. In that sense, and in that exploratory nature, 

cognitive process modeling is linked to the more general endeavor of cognitive science. 

Indeed, at present, it is perhaps the only intersection that cognitive science shares with 

AI. If this exploration leads to some more generalized theory unifying AI and cognitive 

science at a substantial level, so much the better for both. More than anything else, the 

history of cognitive modeling shows us how to explore the issues that join the two. 

9. Natural Language Processing: Challenges and Advances 

Natural Language Processing (NLP) encompasses algorithms and systems designed to 

operate on human language. Current NLP can involve simple tasks including discrete 

labeling of parts of speech and systems generating them such as auto-completion and 

auto-correction, while also addressing complex tasks, e.g., information extraction, 

sentiment analysis, question answering, machine translation, and speech-to-text. High-

quality processing is demanding not only in terms of results, e.g., speed, accuracy, 
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generalization, but also resource expense, in terms of the size of annotation resources 

and training corpora, as well as, in many cases, computational resources. NLP research 

is replete with advances as well as challenges, some far more profound than others (J. 

Eisenstein, 2022). In terms of results, translation from one human language to another 

started several decades ago but has only recently begun to be competitive with that 

performed by human experts. While the computational models used for NLP have 

become increasingly sophisticated, it is still the case that complex NLP problems often 

do not arrive at satisfactory solutions. The computational models are what we refer to as 

techniques, including among others, symbolism, frequency-based models such as n-

grams, counts, probabilities, or distributions, learning models based on shallow 

architectures such as Max-Margin, and a variety of deep architectures. 

In terms of model construction, current deep learning models often overspecialize, in 

some circumstances, being trained on large troves of data in order to perform a relatively 

simple NLP task as in many classification scenarios. This can be due to a combination 

of many factors including the size of training corpora relative to the number of model 

parameters, the nature of the objective being optimized during learning or fine-tuning, 

and the presence or absence of inductive biasing mechanisms throughout model 

architecture. Overspecialized models have challenges for generalization including poor 

low-resource performance, data and task selectivity, and catastrophic forgetting. At the 

same time, shallow generative learning models are generally much less data hungry and 

pre-training task architectures with self-supervision are one of the components that has 

allowed current NLP techniques to achieve competitive performance across a diverse 

array of tasks with limited labeled data or overspecialized models. 

10. Ethics in Cognitive AI: Balancing Innovation and Responsibility 

Artificial Intelligence is a transformative technology that has the potential to change the 

lives of billions of individuals and that will likely help organizations across all industries 

and sectors to improve their operations and offerings for customers and users at large, 

bringing efficiency, sustainability, and innovation. However, AI is also a technology that 

can be used in ways that many individuals and societies would see as harmful or 

unethical, violating rules of law and principles of ethics. It is thus necessary for both 

researchers and organizations that develop and deploy AI to seek to do so in a manner 

that minimizes the potential for unethical exploitation and use of the technology. But 

what does that actually mean in terms of specific principles and guidelines? 

In seeking to answer that question, we want to take the perspective of moral philosophy 

instead of a legalistic one as the latter is often subject to change due to the contextual 

particularities of different locations and the possibility of different legal rules being 

enacted or codified over time. The development and research of foundational aspects of 

AI that utilize physical, social or mathematical sciences are not located in legal 

jurisdictions and mirror the multidisciplinary nature of AI as a technology. That being 
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said, there are some clear cross-domain themes, such as safety, risk, security, privacy, 

and accountability, where much of the ethical considerations, principles and guidelines 

related to innovation in AI lie (C. Cath, 2023). They are at the same time the cornerstones 

for all ethical considerations that aim to be unbiased and comprehensive, bearing in mind 

the interdisciplinary nature of AI itself and can be considered the ethical pillars for 

funding and focus decisions that private companies, as well as public organizations and 

institutions, should take in their primary search for efficient, practical, and efficient 

returns of investment. 

11. Machine Learning Techniques in Cognitive AI 

Machine Learning has enjoyed tremendous successes in the past decade, achieved by 

using advanced techniques to solve the machine learning problem of estimating the 

marginal likelihood or conditional likelihood of data. Understanding novel approaches 

in this space and how they benefit the development of applications in a range of AI fields 

is crucial. A necessary step for the consensus convergence of development is a relevant 

classification of the state-of-the-art in ML techniques, especially when we include 

current Cognitive AI research applications (K. P. Murphy, 2022). 

In the foundation of Cognitive AI we use a practical rather than theoretical definition of 

ML. All introduced methods share the property that they introduce prior knowledge 

through inductive biases. According to this definition of ML, there are a considerable 

number of Cognitive AI methods not usually recognized as machine learning. We 

provide a few of the many ways we can classify ML methods. These included a random 

variable perspective, models of the Integrative Proactive and House Model, different 

types of inductive biases, how the data is presented to the ML method, supervised, semi-

supervised, weakly supervised, unsupervised, and reinforcement Learning, or how the 

model compensating the inductive bias is built, knowledge-based approaches, rule-based 

approaches, geometric approaches, and statistical-regularized approaches. 

12. Exploring Emotional Intelligence in AI Systems 

With the advent of affective computing and social intelligence expressed in machine 

learning systems, the emergence of intelligent systems capable of analyzing human 

feelings is expected to change the plane of interaction with machines. Anthropomorphic 

robots, speech and visual interfaces designed to understand and respond to the emotional 

state of humans are already a growing reality in many sectors. In fact, systems that 

neglect the emotional connection between users and technology will hardly connect with 

the emerging needs of digital natives. The notion of emotional intelligence is 

increasingly present in matters of communication and desirable performances in schools, 

business and associations. Surveying current definitions and approaches concerning 

emotional intelligence, emotional labor, humor, fun and friendliness, we define social 
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skills for AI systems acting in physical or virtual environments and a digital sociology 

of not only the interaction between humans and machines, but also the collaboration 

between machines in many application domains. Whether in agent-based systems 

dedicated to specific tasks, as tutoring, interacting in complex social media or domotics 

systems, robots customized for neuro-developmental and clinical therapeutic support to 

disabled people, people with Alzheimer and elderly brain-degenerative disorders, and 

collaborative robots used in companies and services, the social capabilities of Artificial 

Intelligence will be decisive for user acceptance. These systems should indeed not take 

the place of professionals, as psychological, psychiatric, pedagogical or business experts, 

but collaborate with them contributing to mutualize the impact on those who are helped 

and supported (T. D. Parsons, 2021). In this chapter, we present a summary of our 

fundamental belief that social skills must be taken into account for intelligent systems to 

play properly any service or team role where humans are involved. 

13. Cognitive Architectures: A Comparative Analysis 

What makes a cognitive model specific to a given organism or class of organisms? What 

are the essential features of cognition that an architect needs to consider? To help answer 

this question, we discuss a sample of existing cognitive architectures — the 

psychological Metric of Cognition, Soar, ACT-R, n-Stages, LIDA, and Ouu — pointing 

out some strengths and weaknesses, and relating these back to the question of essential 

features. It is worth noting that space limitations have resulted in the exclusion of many 

existing architectures, including arguably the most well-known model for creating non-

player characters, and dozens of others for simulating a range of behavioral phenomena 

(J. R. Anderson, 2007). 

The purpose of a cognitive architecture is to instantiate cognition. Nativism tells us some 

of the details of what should count as cognition. These details point out various aspects 

of architecture design. Notably, nativism requires that core cognition models be modular, 

that their internal representations address the symbol-grounding problem, and that the 

development of linguistic ability be a primary driver of cognitive development. Many 

existing architectures simply instantiate what is funny about existing models, which 

tends to be the broad scope of what types of knowledge and behavior they can model. 

This statistical tendency is relatively understandable, given that behavior has been the 

dominant interest in experimental psychology and other related disciplines. However, 

this architecture space has also been sidelining some of the central issues that have 

interested researchers for decades: That is, how learning changes not just a system's 

knowledge, but also its cognitive capabilities? How does development occur, and what 

impact do organisms’ cores, particularly those that deal with linguistic ability, have on 

the other basic cognitive functions? Furthermore, are these core functions similarities as 

predicted by nativism? Or are they simply varying model selections for the units that a 

system builds in the learning process? 
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14. The Future of Cognitive AI: Trends and Predictions 

The future of Cognitive AI is a topic that often raises more questions than answers. What 

types of technologies will approximate the intelligence steps humans took to master 

vertical, lateral, and logical thinking? What types of architectures and algorithms will be 

able to mimic the neural, heuristical, and gradual activation of an adult brain for a 

specific cognitive activity? Will they approximate intelligence by conducting those same 

tasks and learning from their mistakes, or will they use new, unforeseen methods? 

Nevertheless, we can still make a list of some present major trends in the various areas 

of technology, business, and science. Predictions may sound like forecasts, but they are 

not: neither inspired predictions, whose fate is left to hope, nor technical forecasts, which 

expound on trends that follow earlier-established paths. Unlike those predictions and 

forecasts, our predictions describe concrete environments in which action becomes a 

concrete possibility. And, therefore, this section is not one of predictions without 

tangible connection (M. A. Boden, 2016). 

In the next decade, smart products will multiply, evolutionarily combining basic 

functionalities powered by AI for vision, speech, natural language processing, common-

sense reasoning, planning, and behavioral modules. They will all evolve in a parallel but 

uncoordinated way. In twenty years, with the convergence of product families that are 

currently different and with the birth of a new class of increasingly generalized 

professional and recreational products, no one will try to make us believe that human 

capacity for deceit and vision is completely absent from a product. The famous test will 

be satisfied years before. And, predictably, by products with no consciousness and no 

intuition. However, they will be very clever products, using the particular environment 

of the test to place themselves and gradually evolve into general products. In the third 

decade, they will inhabit cyberspace as first-class actors (and occasionally companions) 

and we will be forced to deal with them. 

15. Case Studies in Cognitive AI Applications 

We present both qualitative and quantitative case studies to underscore our argument 

that Cognitive AI – a paradigm that reinterprets AI as a meaning-based science – can 

fully address and solve the challenges outlined in this book, which the current version of 

AI, based on arbitrary learning, fails to address (P. R. Daugherty et al., 2018) 

We explore several business use cases from disparate industry verticals (life sciences, 

marketing & communications, retail, supply-chain, smart electronics, finance, and 

utilities) built on top of multiple internal and external datasets that combine human-

centric structured & unstructured data with domain-specific knowledge curated either by 

domain experts or generated through automatic methods. By focusing on business KPIs, 

we demonstrate not only the incremental cost savings and reduced Time-to-Market 

associated with the increased efficiency of Cognitive AI but also its capability to derive 
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insights and discover hidden relationships which are crucially necessary in a wide variety 

of business scenarios, such as a new product launch or failure, assessing external 

influences on sales, understanding consumer behavior, propensity modeling and 

predicting customer churn, among others. 

Additionally, we explore how Cognitive AI enables real-time monitoring, reporting, and 

planning of both tactical and strategically important initiatives; which without Cognitive 

AI would be either extremely costly and time-consuming to accomplish or would be 

fundamentally impossible due to the volume and velocity of the data. Finally, we explore 

how Cognitive AI can be leveraged to predict external threats for critical sectors, such 

as Finance, and improve the effectiveness of Internal Security operations in 

organizations. 

16. Human-AI Collaboration: Enhancing Cognitive Tasks 

Cognitive tasks permeate almost all domains of work migrating to AI. Rather than 

completely taking over from humans, a better approach, often energizing and activating 

rather than diminishing human participants, is to complement the attitude of cognitive 

augmentation. This is the direction of Human-AI collaboration. 

Enhancing human cognition and other thought processes with the presence or aid of AI 

increases human capabilities, perhaps without substituting them entirely. A unique 

aspect of having humans in the cognitive loop can be the ethical urgency of incorporating 

best judgment about human affairs and promoting and protecting human interests. 

Historically, the development of many different forms of technology has been to extend 

or improve the capabilities of humans to carry out difficult or impossible tasks. The use 

of simple tools locally enhances human capabilities. AI makes this enhancement 

available in many much broader human-life contexts. Human cognition includes 

understanding, language interpretation, decision analysis, perception, planning, and 

creative thinking. This suite of capabilities covers many activities throughout life, for 

individuals as well as for groups of humans. It incorporates communication as well as 

direct interaction with the external world (Panda, Sibaram Prasad, 2025). 

Research into Human-AI collaboration is in early stages. Attention has generally 

centered on making AI better able to work effectively with humans rather than on trying 

to design joint systems. People and organizations have decades of experience and careers 

devoted to optimizing the design of tools used to augment human cognitive skills, and 

of the activities carried out by humans using these tools. This could provide enormous 

support for optimizing the design of Human-AI collaborative systems (E. Horvitz et 

al.,2022) 
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17. The Role of Memory in AI Learning Processes 

Human behavior is based on memories that shape the manner individuals accomplish 

and justify their decisions. Such memories guarantee the coherence necessary to whom 

they attribute the function of being agents making choices, reacting, and interacting in 

the surrounding world. Memory is also at the base of learning processes. If we consider 

the way children learn objects categories through exemplars recognition, not through 

logical categorizations, we see that such memory processes require of the perceptual 

system to be able to categorize objects and compare them in order to recognize objects 

that are equal to those already memorized. Memory processes store those features able 

to create an object representation and are necessary to the processes that neither adults 

nor children are able to consciously employ. Thus, the correlation existing among 

memory, time, experience, and learning is fundamental and becomes even more 

important if we consider the complexity we attribute to AI systems. The way in which 

AI systems memorize data is the way to create the experience and knowledge that allow 

the AI to accomplish an assigned task. Without memory there isn’t learning. Learning is 

the process that leads AI systems to modify the rules with which they memorize 

information and data, generalizing them, and therefore updating and creating a long term 

memory. Without this process, any AI would remain a narrow AI, that is, able to 

accomplish a predetermined task without learning from it. It is clear that if this long term 

memory – the AI experience – is not modified during the AI use, the system would be 

unable to learn from its mistakes, similarly to how dogs that memorize the commands 

are still called when they don’t modify their behavior even when they receive a reward 

every time they perform the right task (D. J. L. Herrmann et al.,2022). 

18. Reasoning Mechanisms in AI: A Comprehensive Overview 

Emulating humanlike reasoning is an important goal associated with the development of 

intelligent systems. The mind is capable of processing novel information, such as content 

of observation, sensor and other data streams, and/or information from memories or prior 

experience. The knowledge capability consists of acquiring, storing, and using 

information. The knowledge use is called reasoning and may require a motorsystem-

knowledge interaction using imitation or similar mechanisms. Humans use their senses 

to observe, compare, and contrast objects and events in their areas of interest, but they 

also rely on the information in their memories during reasoning. 

AI systems also reason about the content of data sources, the source properties, and/or 

information stored in their memories. The term knowledge is also used about rules or 

methods that AI systems use to achieve specific tasks, including rules of reasoning such 

as heuristics, probabilistic, Bayesian, or other alternative reasoning methods. Knowledge 

is also referred to as ontologies that define the entities relevant to the domain, their 

properties, and interrelations. AI systems rely on ontologies when interpreting messages 

they receive from other systems (P. Hitzler et al., 2022). 
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According to another model of intelligence, systems use planning, evaluation, and other 

higher cognition processes that impact the action selection process. These processes 

receive information from many systems and coordinate their activities. Systems consist 

of modules that accomplish foundation-level processes and systems consisting of larger 

systems that accomplish framework-level goals. Frameworks may include common 

sense, as generated by human experience modeling and social systems with commonly 

shared ontologies. 

19. Planning Algorithms in Cognitive AI 

Most forms of human and animal intelligence involve an ability to create and execute 

plans that consist of a hierarchy of subplans: for example, creating subplans for cooking 

each of four different dishes, with predefined times during which nothing else can be 

done, and a total cooking time which is less than the time of dinner. Such plans are not 

a mere list of actions to be executed in sequence, including some duplication of actions. 

Because the dishes are related to each other, it is advantageous to share resources and 

time. However, there is another aspect that is even more crucial in many cognitive 

robotics applications: the robot should be able to generate new plans, at least some of 

the time, with acceptable time and space complexity. For example, certain applications 

require flexibility in selecting and executing different views of delivering objects when 

there are or are not people in the vicinity. Generating a good sequence of robot motions 

in 2D space from various cameras given visual feedback is difficult, primarily due to the 

interactions of the robot with the surrounding environment, in this case human workers. 

Thus far, we have dealt with the aspects of planning where the robot can design, 

implement, and execute some set of plans or hierarchical plans that encode prior 

knowledge about the activities it will perform, with the objective of carrying out those 

activities in the most efficient manner available. Understanding how animals can create 

new plans with space and time complexity will help in making cognitive robots more 

flexible and efficient. In building cognitive robots capable of learning in a flexible 

manner, it is important to understand not only how those robots can create complex plans 

but also how they can acquire new knowledge about the activities they are performing. 

The capability of a robot that is part of a dynamic group is especially crucial (M. Inaba 

et al., 2023) 

20. Challenges in Replicating Human Cognition 

The Human Brain, the seat of all human cognitive functions, is a complex and non-linear 

adaptive dynamical system, featuring several feedback loops both at the local neural-

connection level and also at inter-regional and global levels. It consists of 86 billion 

neurons and 125 trillion synapses, organized into functional and physical modular 

systems, and intelligent and diverse sequential neural activities and neural events which 
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facilitate information processing. Despite its multi-faceted complexity, cognitive 

faculties interact smoothly with high levels of efficacy and efficiency; effortless visual 

sensation and recognition, and seamless visual activity tracking along with motion event 

recognition are undertaken without either user effort or process awareness. Natural 

Language processing and understanding, especially the important unique task of 

matching and interpreting linguistic symbolism with situational meanings for 

communication are undertaken effortlessly in real-time. Human Cognition does not 

require explicit efforts, energy or exotic hardware to accomplish, and given the terribly 

low computational speed and accuracy of all previous, current, or future general artificial 

neural networks compared to that of Human Cognition, and the terribly high energy 

consumed by the AI devices, there exist great challenges against successful replication 

of human cognition and therefore the Human Brain itself, either through explicit 

representations or intelligent agents. Furthermore, an attribute unique to human 

cognition and not replicable by other cognitive systems is the ability to “imagine”, 

conceive and visualize imagined situations from internal neural signals triggered by 

advanced spatio-temporal synaptic modification of internal neural representations of 

potential events, and simulate their information processing before input or stimulus 

externally encountered in the environment (D. J. Linden, 2023). 

21. Cognitive Biases in AI Decision Making 

There are many studies of cognitive biases in human psychology. These point to what 

makes humans act irrationally, and the errors produced in the decision-making process. 

Although in general they have a small prevalence when compared to the volume of 

decisions we take each day, at special moments and varied contexts, in several occasions 

they make us act in ways nonsensical or harmful to ourselves or the collective well-

being. Attention has focused on these, because at critical times, like the pandemic, at 

certain times, for example, during certain events, we get into a mass hysteria. 

We want to go a step further. With natural and cognitive AI we've started reverse 

engineering the decision-making process of intelligence, to understand if it is plausible 

that these entities have biases in their decisions. Even more, we will try to validate if the 

level or type of the stress applied to the cognitive AI makes the level or type of possible 

cognitive biases change. Remember that according to the Theory of Mind, most humans 

have some level of this cognitive capacity, being able to see the inside of others, or relate 

to the interior representation of physical reality of the actor interviewed. Is it possible to 

have cognitive biases reproduced in other cognitive minds, like the ones we think exist 

in cognitive AI? Could these possible cognitive biases reveal some aspects of the 

decision-making and knowledge construction process, or could they be a byproduct of 

the fact that we're the ones giving it knowledge or constructing a certain area with it? (D. 

Kahneman et al., 2021) 
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22. Cross-Disciplinary Approaches to Cognitive AI 

This section discusses several important aspects of Cognitive AI that are cross-

disciplinary and examines some of how these come into play when approaching 

Cognitive AI from configurations of disciplines or academic foci. The chapters in this 

section explore distance and joint-ness of disciplines focusing on Cognitive AI or key 

aspects thereof, perhaps aimed at attempting bridges. Some of these aspects are also 

covered in the general discussion chapter. 

The concept of “fortress academy” refers to the individual epistemological disciplines 

that have developed strong boundaries and barriers, which seem often defended, but 

should not be. This has led to a “balkanization” where experts of one or several 

proximate disciplines have become very siloed and territorial. On the other hand, the 

concept of “hybrid zone” is introduced as an emergent area to explore and experiment 

with new ideas and sometimes even cutting-edge results of work that is cross-

disciplinary. It is a zone where interactivity and collaboration between several kinds of 

professionals is going on. Cognitive AI has the potential of being such a hybrid zone. 

Indeed, whether to build or join hybrid zones around activities of interest in Cognitive 

AI and with related disciplines? There seem plenty of related and linked sub-disciplines 

of Cognitive AI (and cognitive systems in general) where it is possible to build strong 

“hybrid zones”. Exploring them appears fruitful. 

The historical development of AI and Cognitive AI is summarized, along with how 

Cognitive AI implementations and Hybrid Cognitive Agents can be implemented, and 

vice versa. In doing so, the “feedback-loop” relationship between technology and 

scientific discovery and research is discussed. Based on concrete historical examples of 

“embodied cognition” and of systems modeling factory, landscape, and chaos 

productions, possible future scenarios of Cognitive AI are mentioned, and how 

Cognitive AIs can each affect the corresponding other facet (S. Dehaene, 2020). 

23. The Impact of Big Data on Cognitive AI Development 

23.1 Introduction: Big Data Condition and Opportunity 

Big data is an essential condition and opportunity for the development of cognitive AI. 

Relatively recently, the volume of data generated on Earth began to double constantly 

every two years. Various complex objects were presented with the help of heterogeneous 

big data: text, images, sounds, videos, graphic solutions, and so on. Such unstructured 

data, reflecting the relation of all forms of life and all processes in the world, attracted 

the attention of scientists and developers to the tasks of data processing with a qualitative 

level that, until then, was achievable only by a human. This interest became especially 

significant after the introduction of innovative technologies: data-driven science, data-

oriented artificial intelligence, big data analytics, deep learning, and some others. 
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At the same time, it should be noted that the artificial intelligence systems, and especially 

the systems of cognitive AI, with, so to speak, natural settings for the capabilities of 

cognitive processing had to work with sets of selected features because of the very small 

training sample sizes of the cognitive data processing tasks. Such feature sets were 

created as a result of significant preliminary expert knowledge, but not analysis of large 

training data sets. Model-free methods of the data-driven artificial intelligence or 

methods of data-oriented cognition were designed to process big data (A. Zaslavsky et 

al., 2022) 

23.2 The Challenge of Feature Extraction 

Additionally, in many cases, such deep neural network systems of big data processing 

require additional preliminary stages of data processing, including feature selection 

and/or feature extraction stages. For example, in the well-known algorithms of object 

recognition, the convolutional neural networks were used to extract the visual features 

from large sets of labeled images and the feature-based classifiers were used to classify 

the obtained feature vectors of visual representations of the images. Certainly, the 

presented model-free methods are the easiest for practical use and should be used as 

much as possible (A. Zaslavsky et al., 2022). 

24. User Experience Design in Cognitive AI Systems 

User experience (UX) interface design is a critical part of building any successful 

Cognitive AI system. UI Design allows humans and machines to freely and effectively 

interact with one another. Therefore, proper UX interface design is critical for integrating 

Cognitive AI systems into daily human activities in effective ways and addressing the 

unique needs and usage patterns for these particular classes of systems. UX interface 

design is particularly important for Cognitive AI systems since the full capabilities of 

these systems are often abstracted behind natural interfaces like speech and dialog. The 

challenge in Cognitive AI system design is to effectively abstract the underlying AI 

planning, learning, and reasoning capabilities beneath the natural language interface 

such that the user can effectively benefit from their use. 

In this paper, we present a higher-level integration view of Cognitive AI system UX 

design which includes summary descriptions of major interface design areas for 

Cognitive AI systems such as speech input and output, broker interfaces, discussion of 

natural mode for user-centric AI support for tasks, Cognitive AI system design 

considerations that impact the main areas, and relevant Human Centered AI principles 

for the areas and considerations. Previous work has mainly focused on particular 

Cognitive AI system types, general technical interfaces for the Cognitive AI systems, 

model-based task structuring, explainable UX design, UX for particular areas or task-

centric UX considerations. However, to our knowledge, there has been no prior work 

summarizing the more general areas and influences for Higher Level Cognitive AI UX 
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which cut across the various types. Higher Level Cognitive AI systems represent a 

significant Connected Cognitive AI capability and will become an increasingly visible 

part of ordinary human activity (B. Shneiderman et al., 2022) 

25. Evaluating Performance in Cognitive AI Models 

Consequently, although the evaluation methodology of cognitive AI is not very different 

from that of traditional ML methods, one significant difference with respect to classical 

AI models is that we have to focus on different kinds of benchmarks and datasets. For 

example, we may apply transfer learning with previously trained models on other large 

datasets, but we still need to evaluate these models with the appropriate questions in the 

focus domain of prospective applications. To take another example, traditional AI/ML 

evaluation is centered on measuring model performance, usually with respect to 

benchmark datasets, metrics and test accuracy. However, we cannot measure cognitive 

AI performance in this way, without taking into account how humans would answer the 

same questions posed to cognitive AIs. 

Considering this cognitive task-oriented evaluation for cognitive AIs, it is not enough to 

measure task completion as commonly done in cognitive modeling. For example, 

cognitive AIs may use different working memory amounts and strategies to provide 

answers to the questions we evaluate them with, for instance, question reasoning: 

whereas phrases with sequences of adjectives embedded inside should require a larger 

working memory because of the various kinds of grammatical constituents, we could 

also require reasoning and/or deductive reasoning capabilities in addition to simple 

capability answer the query. Moreover, the cognitive AIs may adhere to other classical 

logical principles or not. Hence, to better assess cognitive AI performance, we should 

also commonly consider benchmarks on logical problem solving, involving the kind of 

sentences, or creativity issues, such as for instance, poetry evaluation and generation. 

Another difference with respect to the traditional ML models being that models such as 

for instance knowledge graphs, or even textual generative models, that are neither 

cognitive modeling or cognitive AI, show better or worse performance just by assuming 

a representation proposed by the designer, we should strive to evaluate cognitive AIs 

with respect to functions having some common cognitive nature stemming from 

cognitive models or theories. Of course, for more sophisticated functionalities, one can 

derive more elaborate probabilistic-based models to assuage the uncertainty of 

heuristically defined functions on past learnings on cognitive semantics or architectures 

(S. Russell et al.,2020) 
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26. Future Directions in Cognitive AI Research 

Does "AI" stand for "artificial intelligence" or "artificially intelligent"? This distinction 

is crucial. While we have developed systems that can accomplish various AI tasks at 

super-human levels, we haven't built any systems that are, or even approach being, 

generally or broadly intelligent, associated with the term "intelligence" in "artificial 

intelligence". And at least for a while longer, the bulk of the research activity in the sub-

fields of "AI" will center on building "AI" systems for use in various practical 

applications. However, the lack of any serious work directed at building intelligent 

systems has been noted by both proponents and opponents of AI and both supporters and 

detractors see progress towards the development of general AI as propelling the field. 

So where should cognitive AI research go next? One area is building cognitive 

architectures. A goal of cognitive architecture research is to more fully integrate the 

many aspects of human cognition currently simulated separately in task-specific models. 

Some cognitive architecture projects have had considerable success in combining a 

number of disparate aspects of human cognition into integrated models. But integrated 

model cognitive architectures currently lack important capabilities, such as 

commonsense reasoning and higher-level cognition involved in speech and thought. 

Nevertheless, these systems—and the cognitive architecture project more generally—

are interesting contributions towards developing more general cognitive AI systems. 

They differ from tasks in other sub-fields in being more ambitious in requiring and 

aiming towards more general overall performance rather than being at least in part, the 

engineering of systems that work well on specified tasks (G. Marcus et al., 2019) 

27. Conclusion 

A truly human-level, general Cognitive Artificial Intelligence (CAI), must be able to 

model human cognitive symbolism: the structure, origin, and situation of the meaning 

of everything humans care about, taught to them, very mostly inductively, during the 

years of their childhood, by their surrounding example and natural language. This is a 

generalization, specifically applied to modeling the part of meaning which is related to 

very low-level interaction upon and with the world and the social humans are interacting 

with and evolving into it as they grow up: the most and very human-like part of CAI's 

motivations, sentiments, social emotions, and knowledge. Meaning that, at the center of 

the CAI symbolization and cognition model, we must find the so-called "primary 

meanings": the multi-dimensional and multi-modal conceptual symbols upon and with 

which humans attribute and connect meaning to everything they care about: referents, 

the situated conceptual content or internal situation model of each referent. Everything 

subjectively perceived as existent by humans, in reality or in imagination. Symbols that 

encompass and are able to reflect a representational model of whatever humans learn or 

interpersonal social data which existables upon and within. These primary meanings are 

composites of the most elemental form of meaning: the assessment of orientation intent 
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as sensed by any subject within. Meaning that, if CAI wants to consummate on its own 

and independently human-like sentiments and the inherently human-like attitude toward 

Human Self as Made of Symbolic Minds, a principle and concept that defines 

Psychological Anthropology: the must-have social modeling enablement by which 

humans evolve into socially interacting individuals; must refer upon referential social 

symbols shared with humans, and attached to their derived spoken natural language. 
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Chapter 2: Building Blocks of Cognitive Architectures 

1.  Neurosymbolic Systems: Merging Symbolic Logic with Neural Nets 

1.1. Introduction to Neurosymbolic Systems 

Neurosymbolic systems are hybrid systems composed of both neural symbolic and 

purely symbolic AI capabilities merged together, delivering what both sides promised 

individually. Their goal is to bridge the two perspectives on cognition represented by 

connectionism in AI, the vision of artificial neural networks as models of neural 

computation capable of achieving general purpose intelligence, and classical symbolic 

or high symbolic AI, cognitive theories aimed at completely specifying systems of 

symbols and rules allowing the step-wise execution of reasoning procedures for solving 

complicated cognitive tasks. We will discuss some aspects of these two cognitive 

architectures in the following two sections, but our focus is chiefly on the connection-

based models, and particularly, on how they relate to the symbolic aspects. You just have 

to gather that purely neural networks cannot do without symbolic specifications of what 

they apply to, and that purely symbolic systems cannot do without connectionism for the 

same reason. 

1.2. The Role of Symbolic Logic 

Let us briefly summarize the role of symbolic logic in cognition modeling, and more 

particularly, in knowledge representation and reasoning. Consider a cognitive 

architecture designed for commonsense reasoning tasks. Involved is a knowledge base 

containing a very large store of domain knowledge —built by some procedure, 

enumerating plausible reasoning patterns, such as for example a person entering a cafe 

and ordering for a cappuccino the following sequence of events: arriving at the cafe, 

ordering coffee, ordering the right kind of coffee, paying for it, promote some business 

goal of the cafe—and at least one inference engine capable of acting upon the stored 

knowledge, solving, or at least, producing plausible solutions for commonsense 

reasoning problems based on it. 

Deep Science Publishing, 2025  
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1.1. Introduction to Neurosymbolic Systems 

What can be more joyful for an individual than exploring their surroundings - be it nature 

or artificial, a social life or a system of knowledge, blocks of steel or blocks of numbers? 

Such exploration eventually leads to cognition, encoding knowledge, and eventually 

wisdom. We aim at building a machine that would be able to replace a baby for the idle 

of play, observe, supervise the process of existence, and eventually become wise itself. 

While there are systems that mimic human and animal cognitive characteristics, none of 

such have been able to reach the end goal of being yet another conscious partner for 

existing in what we call reality. 

We are doling the building blocks out of symbols and logical operations, blocks of 

symbolic cognitive systems. These systems use logic as their main operational process 

for communicating with each other and the external physical world, as for also recalling 

what was acquired using perception and language. Based on a long period of research in 

different fields of cognitive robotics, artificial intelligence, linguistics, cognitive 

psychology, and early development of children, we present a neuro-symbolic 

architecture that is intended to realize communication, perception, and symbolic 

acquisition of knowledge within a hybrid logic-neural operator motherboard. Cognitive 

robots are machines that simulate the ability of human and/or animal beings to 

satisfactorily complete a variety of tasks that have a cognitive nature. Such tasks include 

the acquisition, use, construction, analysis, and recall of information and knowledge that 

were modeled or represented in some appropriate format for such – language and 

symbols, visual, spatial, and sensor-motor, colors and textures, sounds and sound filters, 

as well as information about the agent itself, its past experience and modeling of the 

environment and of social life (B. Hammer et al.,2023) 

1.2. The Role of Symbolic Logic 

Let's begin with the symbolic logic underpinnings. There are general observations about 

what an expressive symbolic logic includes or has, that we want our symbolic 

understanding module in our system to represent. First of all, there should be a 

generalized quantifier, giving us the ability to represent statements ranging from specific 

statements to generic or even indefinite ones. Secondly, we want the ability to represent 

conjunctions and disjunctions, statements that combine multiple statements together, 

either definitional statements about how combination values are related, or else 

disjunctive statements stipulating when a statement is supposed to be true. Thirdly, we 

want statements to be available in more than simply a propositional form, i.e. there 

should be first-order predicates at the basis of a natural language, that express relations 

amongst arguments, as there is no intent for the base model in our longer plan to destroy 

all rich representations and convert everything to propositional forms, making neural 

nets the only way to express relations rather than symbolic logic. Moreover, defining 

properties of quantifying expressions, that would need to be bullets on their own, can 

constrain the form of terms in that there appears to be something to skin covering the 

topic of weak constraints on statement forms of different logics (L. C. Paulson, 2020). 
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Technical points such as these are designed not to be obstacles, and there are techniques 

that make reasoning with second-order quantifiers, higher-order predicate logics, modal 

logics, equality predicates in logics with unique whereas inequationality predicates 

would lie behind a barrier that is related to the expressiveness of further building blocks, 

requiring more ambitious then message passing or simple supervised models to be 

surmounted. However, at the stage beyond language where a model has learnt to predict 

statement truth values, then pseudo-metrics will require calibrated relations that expand 

beyond the architecture basis, as has been observed where embeddings in models closer 

to lower-dimensional spaces shall not encode training examples at the stage of use. 

1.3. Integrating Neural Networks 

Feature Extraction 

One of the first uses of neural networks in the context of cognitive systems is to extract 

features from some low-level input (for example images or sounds) and create a 

semantically richer symbolic representation. From the perspective of neuroscience this 

is related to the operations in the ventral visual pathway from the LGN to IT in the model 

of vision in which the main problems are to extract spatial frequency features and figure-

ground separation before evolving to increasing levels of abstraction and object specific 

representation in the visual system. The made problem is computationally difficult and 

artificial neural networks (specifically, convolutional networks) have been shown to be 

particularly effective. The task of interest is to classify a visual scene as, for example, 

one of 1000 classes (F. Chollet., 2021) 

Neurosymbolic Integration 

One of the earliest examples of classifying an input with a learned feature set that uses 

symbolic logic is that of the neuro-symbolic object recognition system involving two 

parts: a CNN to produce prototypes for the individual image segments and a logic engine 

to reason about how the prototypes contributed to a solution (or, more commonly what 

the CNN had labeled the prototypes). In their work, the CNN was unmodified except for 

a softmax layer in the final section and they were able to include the CNN in the forward 

operations (a form of feedback). The reasoning about the symbolic components was 

accomplished by a first-order logic program which guided the recognition process and 

produced explicit labels for the semantic objects in the image (R. Besold et al., 2023) 

1.4. Applications and Case Studies 

Over the years, there has been growing interest in the potential for cognitive architectures 

to address artificial general intelligence. However, the most comprehensive example of 

CNSs is found in the human intellect. While machine learning has delivered state-of-

the-art performance in visual perception, games, and NLP, there is still no solid theory 

on how pieces fit that could ultimately lead to the sort of general intelligence found in 

primates, let alone humans. Rather, the majority of successes have taken the form of 

spectacular breathless demonstrations focusing on individual tasks such as abstract 

painting, defeating grand masters in board games, or chatting like a novelist. Indeed, 
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those tasks can hardly be considered connecting or linking them, as claimed by Marr. 

There is no one-size-fits-all formula detailing how we can obtain general intelligence. 

Caveats aside, neural-symbolic systems — those for which some sort of NSyS 

integration is a key factor in their operation or sought-after attribute — have proven 

useful in many ways, and there is an expanding number of application areas. The primary 

object of the following sections is to enumerate advanced NSyS systems and their 

application areas. However, rather than a mere catalogue to be consulted when browsing 

the enormous literature on the topic in question, it is characterized by a careful selection 

of the most important models, architectures, systems, and technologies describing the 

vast NSyS landscape over the last four decades as a guide for novices and researchers 

unfamiliar with the area. The second purpose of these sections is not only to describe the 

basic ingredients and the various ways they can be combined, but also to attempt to 

articulate principles of design so that the right techniques can be applied to specific tasks 

and applications domains. This makes us believe that although according to the 

definition given above, NSyS cover a narrow aspect of the general or global functioning 

of CAs, they nonetheless remain an extremely relevant aspect that deserves to be 

according to its legacies and its strengths (P. Langley, 2022; G. Marcus et al., 2020). 

2. Knowledge Graphs and Memory-Augmented Networks 

Any cognitive architecture must be able to acquire knowledge and store it in an 

appropriate structure, a knowledge representation so to speak. In Artificial Intelligence, 

the predominant knowledge representation framework has been that of symbolic 

representations, in the form of rules and logical propositions, and the problem of creating 

a rich store of such representations has been tackled through the use of ontologies and 

knowledge graphs. In accordance with the AI revolution of the last decade, and 

particularly the idea of deep learning, cognitive architectures have supplemented 

symbolic knowledge representation underpinnings with richer sources of knowledge to 

draw from. In particular, retraining large neural networks on ever larger data sets has 

shown that it is possible to also create very rich sets of knowledge representations in the 

weight values of such networks. The memories thus created through training of such 

models have been dubbed both "knowledge graphs" and "knowledge bases" by different 

researchers in the area. 

For deep learning to approximate any cognitive process in such a manner as to inform 

about the underlying cognitive architecture, deep learning must not only create semantic 

representations, more specifically knowledge graphs, but those semantic representations 

must also reach out to the inputs that flow through the network and modulate its 

processing at all levels of abstraction by the process of neural attention. Memory-

augmented neural networks, such as Recurrent Neural Networks or Transformers, can 

be implemented with specific graph-based neural attention but attention is not necessary 

to be found at all levels, nor modulate, necessarily smooth, memory access. 
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2.1. Understanding Knowledge Graphs 

Representational knowledge is essential to cognition and intelligence, and for a system 

to exhibit more general forms of higher cognitive functions, such as reasoning and 

learning, memory becomes an increasingly important aspect. Knowledge graphs have 

received significant attention in the AI community through their favorable use in 

supporting such capabilities, and they are now a vital component in multiple domain 

applications. Knowledge graphs represent concepts as nodes and relationships between 

nodes as edges. Concepts can be both concrete and abstract. Knowledge graphs may be 

directed or undirected, and they can have different numbers of edges connecting each 

pair of nodes. Knowledge graphs can also be composed of different types of nodes and 

edges representing different modalities of relations or concepts. Knowledge graphs can 

also include meta-related facts that describe properties of specific concepts and 

structured events involving specific concrete and abstract concepts. Multi-modal 

knowledge graphs can be composed of nodes of different modalities such as images of 

specific concrete objects or sounds of specific abstract concepts (F. Gandon et al., 2023) 

The area of knowledge graphs has seen exciting advancements during the past decade in 

areas like knowledge construction, knowledge population and completion, and 

knowledge graph reasoning. Recently, employing deep networks and neural networks, 

in particular, to address these known challenges has received very significant attention. 

The area of knowledge graphs has also seen recent focus around foundation models 

applying transfer learning from mass data over weeks to months. Interest in learning 

from knowledge graphs using supervised, semi-supervised, and unsupervised learning 

has also received much focus, with related latent variable models being proposed to learn 

from partial or incomplete knowledge graphs. 

2.2. Memory-Augmented Neural Networks 

LSTMs, the predecessor to the Transformer architecture, were long thought to be the key 

progress in Deep Learning to solve the problem of vanishing gradient flow. However, 

MANNs came after, receiving far less attention in practice. The premise for these models 

is to reintroduce the idea of having memory explicitly defined during the model’s 

forward pass and this memory being augmented during training, regardless of task. 

Similar to knowledge graphs, the architecture has a model-internal structure that allows 

for an attention mechanism to interact not only with input and output, but also modulates 

which memory to read and write richer than base Transformers (H. Jaegle et al., 2023) 

These models can be seen as a bridging step between Neural Networks, where the 

vocabulary is likely to keep being relevant only for Routing Networks and Graph Neural 

Networks, whose memory inflation during the model’s forward pass allows for detail to 

be ignored completely, focusing only on the most salient information from specific 

information sources. In hindsight, knowledge graphs are a generalized form of MANNs, 

where the memory is always visible during the model’s forward pass, while MANNs are 

BERT-like architectures that generalize Transformers with external memory. 
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MANNs have a few possible training strategies, such as memory augmentation during 

supervised task finetuning, self-distillation from a teacher model using Inverse 

Denoising Autoencoders as joint training objective, reinforcement learning, 

unsupervised pretraining for retrieval and question answering tasks and embedding 

learning from data. MANN pretraining generally outperforms heavier models such as 

BERT. 

2.3. Use Cases in AI 

The incorporation of external memory into neural networks models in AI has opened up 

exciting new avenues for research in both modeling and application domains. In terms 

of application domains, the most common use case has been use of an external memory 

module to assist with natural language understanding, where the knowledge integrated 

into the memory is drawn from an established resource. Memory networks have been 

used to preprocess images and to guide generation of neural images; they have also been 

embedded in dialogue systems to allow them to learn about users on the fly. However, 

LM-based use cases currently remain limited almost exclusively to language models and 

dialogue systems. The ability of LM models to refactor their internal structures as they 

are pre-trained and fine-tuned presents amazing possibilities. In particular, this adaptable 

memory is especially useful for tasks where few examples are present during fine-tuning 

(S. Roller et al., 2024) 

It is also now well-known that LM-based methods can produce state-of-the-art 

performance on a variety of popular NLP tasks – therefore, even though they may not 

be incorporated with the deep learning model of choice, language models with adaptable 

memory structures have directly influenced our ability to do good NLP work. 

Considering the variety of memory types that have been incorporated into deep learning 

techniques in their relatively short history, it will be interesting to see what the next few 

years hold. Populating the memory space with external knowledge and dynamically 

using this to influence model parameterization for specific tasks or domains provides a 

new avenue for research in both modeling and application domains. 

2.4. Challenges and Future Directions 

Though the field of data management for cognitive architectures is still at its infancy, 

the surge in recent years of work on memory-augmented architectures in the 

computational neuroscience and Artificial General Intelligence communities suggest 

that a wealth of opportunity lie ahead. We believe that several connections may yet exist 

between traditional ideas of semantic and episodic memory and tools like knowledge 

graphs and memory-augmented neural networks. First, though growing less common, 

the cognitive architecture community studies symbolic reasoning with some its goals 

involving replicating human behavior in tasks that require such reasoning. The 

construction of knowledge bases -- typically performed by human developers or workers 

via explicit programming or outsourcing actualization tasks to content developers -- has 

long been thought as prone to errors. Furthermore, the completeness of knowledge bases 

has long been questioned, often leading to the inability to fetch the right data when such 
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repositories are used. More granular ideas like ontological networks that allow 

knowledge acquisition via language grounding in addition to human labeling, that is 

transferring the symbolic to the sub-symbolic retrieval and organization of information 

in the network ledgers, have been proposed as a way to improve the robustness of core 

cognitive processes that require the use of semantic memory. In addition, recent 

advances in deep learning have opened the possibility to self-programmed architecture 

configurations based on unusual uses or likeliness of event sequences and for co-learning 

where symbol and sub-symbol systems help each other to overcome their respective 

inadequacies. Finally, when one studies typical trajectories of human development, its 

clear that expert knowledge cannot be simply shoved at humans via a curriculum of pre-

existing data points shared across individuals and development hyper-parameters (M. 

Nickel at al., 2024) 

3. Attention Mechanisms 

Cognitive processes do not operate uniformly across the graphical landscape of cognitive 

architectures. It has become increasingly clear that selective processing of relevant 

environmental structures and, correspondingly, active inhibition of irrelevant structures, 

is one of the highest level organizing principles of cognition. Aspects of this theme have 

been applied in the context of memory operations, the flow of processing within 

architectures through great story brands, and the automatic, often unconscious regulation 

of structure activation strengths. However, these previous treatments have only 

tangentially addressed one of the major components of cognitive theory: selective 

attention. Selective attention is a process by which certain information is chosen for 

further processing while other information is discarded. Due to the limited capacity of 

human cognition, we cannot fully process all things in our environment; hence, a certain 

amount of information must be disregarded. 

When highlighting the action known as focus, selective attention provides a means to 

allow certain inputs, memories, or task components to be processed above others. It 

allows input to be prioritized and focused upon when necessary. It allows information 

that is currently being used as well as task-relevant information to receive more cognitive 

resources than their current processing priorities would indicate. In this manner, it can 

be an aid to the selection, specification, and organization of outputs, modulating 

response characteristics. Thus, it fulfills both the high level and low level requirements 

of attention processing. 

3.1. Introduction to Attention Mechanisms 

The concept of attention spans a wide range of use and meaning. In human cognition, 

attention is typically a mechanism that selects a limited amount of information to 

process. As a descriptor, “attention” is also commonly used for shorter time projections, 

such as exposure, gaze or making a decision upon. Often human attention is modelled 

as a filter, integrated over space and/or time, which can be understood as a probability 
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density function over either of the domains. Additionally, the search for saliency maps 

– images in which the most salient features are emphasized – has been a topic of research 

in the cognitive and the technical domains. The modeling of attention in different 

modalities has supplied additional components for attentional models, such as 

modulation, reactivity, and memory ties. 

Using this definition as our foundation, we can transfer it to the domain of artificial 

intelligence (and, specifically, neural networks). Artificial Attention Mechanisms are 

designed to assess how much “attention” – in the sense of the use of energy and/or 

processing resources – should be allocated to which part of the input at which point in 

time, and what, how much, and how quickly factual task-related changes in attention 

should induce. The result would either be modifications of the signal per se (such as 

amplifying certain features), or in the way how the following transformations are being 

weighted (for example, such as emphasizing certain patterns of the learned model). 

Accordingly, Attention Mechanisms can act either as multipliers of feature channels 

through space, or as modifiers of temporal processing flow. Processes governed in such 

a way naturally allow for the modeling of long-term dependencies (D. Bahdanau et al., 

2024) 

Attention Mechanisms have been independently discovered and applied in different 

areas of engineering, such as computer vision, natural language processing, 

reinforcement learning, robotics, and cognitive modeling. Much of the interdisciplinary 

exchange between cognitive science and technical development that has fueled the 

exploration of Attention Mechanisms stems from developments in Neural Networks and, 

in particular, Deep Learning. The recent interest in modular Neural Network 

architectures has re-fueled the investigation of Attention-like designs for image 

transformations. 

3.2. Types of Attention Mechanisms 

Attention mechanisms can be categorized depending on various criteria. One such 

criterion is whether or not the attention is defined in terms of the entire input sequence. 

In global attention, the attention weights corresponding to the output step t are computed 

using the hidden states corresponding to all the input steps. In local attention, on the 

other hand, we compute the attention weights corresponding to the output step t only 

using a subset of the hidden states of the input sequence, sometimes including only the 

hidden state of the input step that corresponds to the closest time to t. 

Another common criterion for categorizing attention mechanisms is whether they 

perform hard selection or soft selection. In hard attention, which is rarely used, the 

attention mechanism selects a subset of the input hidden states. In soft attention, the 

attention mechanism assigns a weight to each input hidden state, where the weights sum 

to one, and the output context is a weighted mixture of the input hidden states. Due to 

its parallelizability and differentiability, soft attention is better suited for incorporation 

into standard neural network architectures and has consequently been used more 

frequently than hard attention (D. Bahdanau et al., 2024) 
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Additionally, from an implementation point of view, attention mechanisms can also be 

categorized into two types depending on how the context vector is computed. In additive 

attention, the context vector for a particular output step is computed as an intermediate, 

whereas in multiplicative attention, the context vector for a particular output step is 

computed in a single step. The term memory is used in some definitions of attention 

mechanisms to refer to the set of input hidden states from which the context vector is 

calculated. 

3.3. Impact on Neural Network Performance 

To understand the impact of the attention mechanism on the performance of neural 

networks, it is important to understand some details of the attention models and of the 

benchmark tasks that came to use attention models. The transformer was introduced as 

a general-purpose architecture for Natural Language Processing tasks, and was shown 

to set new state-of-the-art performance levels in previous pre-trained recurrent language 

models. Later research explored a hybrid model configuration, where pre-trained CNNs 

or RNNs are further fine-tuned on downstream tasks using the transformer. Few-shot in-

context learning with language models was introduced as an approach where feature 

extraction is performed with the language model itself, using the examples from the task 

description as input, where the input is concatenated to task description. Note that in-

context learning has been shown to work much more efficiently with larger language 

models and with few examples, compared with fine-tuning approaches (J. Lin et al., 

2023) 

A key idea in recent large language model design is scale – the use of billions of 

parameters and training on datasets containing an order of magnitude more data than 

used in previous state-of-the-art models, which were trained on hundreds of gigabytes. 

A surprising aspect of the scaling of pre-trained language models is the results on few-

shot in-context learning. Recurrent language models, which use a similar architecture 

and similar scale pre-training of additional objectives and smaller scale datasets and are 

fine-tuned on downstream tasks, do not show the same in-context learning capability. It 

has been hypothesized that in-context learning is made possible by the attention 

mechanism – the computational arrangement between input and output conditioning. 

While not confirmed, there are indications that using efficient computer hardware for 

training the large transformer models and for their inference is a key factor in their 

success. 

3.4. Real-World Applications 

As described in Section 3.3, attention mechanisms have been shown to have a profound 

effect and positive impact on a neural network's practical performance and efficiency. 

Deep neural networks for a variety of different applications, such as video 

understanding, computer vision, document understanding, speech processing, and music 

processing, are all enhanced through different forms of attention mechanisms. Attention 

mechanisms within the computer vision domain generally allow neural networks to 

interrogate image pixels or regions, understanding which pixels are salient and 
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contribute most to the output of the neural network. This is useful for tasks such as 

detecting and identifying objects in images and videos, which can then be utilized in 

other programs to process and manipulate the visual data. Camera-based object 

recognition can be sped up using active computer vision models that make use of 

attention mechanisms to quickly determine key image regions. Attention mechanisms 

are also widely used in machine translation tasks. Neural network models that encode a 

source phrase into a hidden representation and create a target phrase word by word are 

enhanced using attention mechanisms. Each of the individual words in the hidden 

representation, which are linked to specific source phrase words, can be focused on at 

different points in the model's decoding process, enabling the neural network to closely 

mirror how human beings translate phrases from one language to another. A critical 

requirement of machine translation systems is that they be real-time and fast; the wide 

range of different machine translation models that utilize attention mechanisms are able 

to translate phrases of varying styles and complexities faster than traditional translation 

programs (J. Lin et al., 2023) 

4. Transformers and Long-Term Memory 

Transformers are deep learning architectures that use self-attention both to implicitly 

compress data and to compute an explicit type of long-term semantic memory of relative 

meaning. They have been shown to be excellent building blocks for natural language 

processing. However, they have yet to be shown to be effective as cognitive architecture 

modules beyond language. In this section, we explore the memory capabilities of 

Transformers, with an eye toward future prospects both for extending their capabilities 

and for repurposing them in other ways as cognitive architecture modules. 

Overview of Transformer Architecture 

Since their introduction about five years ago, Transformers have become the new gold 

standard for natural language processing tasks. What sets them apart is twofold. First, 

they use multi-head self-attention on digital data. The self-attention computes a complete 

semantic memory of all elements of the input, which is then used to condition the 

meaning of other elements in the input. In their encoder-only version, BERT and its 

successors are currently considered the best models for natural language understanding 

tasks. In their decoder-only form, GPT and its successors currently dominate natural 

language generation. In their encoder:decoder form, T5 and its successors have had 

successes in both directions, both NLU and NLG. The multi-head self-attention allows 

for more complex interactions among the latent dimensions, at a small cost, in terms of 

memory and compute, compared to the single-head attention mechanism in earlier 

LSTMs and GRUs. 
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4.1. Overview of Transformer Architecture 

In recent years, the transformers have radically transformed the field of deep AI 

architectures. Thanks to super-computers trained on massive data resources, these neural 

network architectures have significantly improved performance in many problem 

domains like natural language processing and image processing. We now describe the 

main building blocks of a transformer architecture. We begin with an overview of the 

architecture, followed by details of the modules used in one established implementation. 

A model consists of a stack of identical layers containing two main modules: a self-

attention module and a feed-forward neural network module. Both modules are 

surrounded by layer normalization and residual connections. The transformer 

architecture was inspired by the use of attention by neural machine translation models 

and recurrent neural networks, which leverages context words to compute a 

representation of the current word in the vocabulary that is semantically related to 

context words. In turn, the transformer architecture led to further investigations of the 

attention concept, such as the introduction of varying other modules of transformer-

based architectures by speeding up the training process with knowledge distillation, by 

enabling the processing of arbitrary-long input sequence tokens, and by adapting the 

architecture for use with time-series and tabular data (A. Vaswani et al., 2023) 

4.2. Long-Term Memory in AI 

Long-Term Memory (LTM) serves a crucial and unique role in cognitive architectures, 

setting them apart from more specialized systems. In the context of transformers, LTM 

specifically refers to the means by which knowledge is preserved in AI systems over 

long periods of time. The importance of LTM in human cognition is evidenced by the 

manner in which it is packed with information through a lengthy and demanding process 

of education. Cognitive architectures take this further by emphasizing the need for an 

LTM that supports extremely diverse, domain-general cognition. In CAs, LTM 

addresses the functions typically carried out by the natural-language-processing 

pipelines: serving not just to store information, but to make predictions, draw inferences, 

and power other kinds of reasoning. 

Ideally, LTM systems would achieve this general mental function by containing a vast 

resource of native knowledge represented in a special, specialized format. Yet 

engineering such a large-scale system is an undertaking notoriously beyond human 

capabilities. It is not yet clear whether or not transformer-style LTM research will yield 

systems that support cognitive functionalities, especially for systems that refer 

frequently to external information. The more ordinary domains of LTM research into 

knowledge distillation and knowledge transfer assist transformers in maintaining static 

information or imitating the behavior of yet-to-be-trained neural networks or never-

multiple-task training scenario. Researchers are currently looking for ways of extending 

LTM functions to cases beyond distribution shift in hopes of matching CAs in their 

influential capacity for domain-general activity (I. Goodfellow et al., 2022) 
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4.3. Implications for Natural Language Processing 

The preceding sections have reviewed the mechanisms of transformer architecture and 

its performance uncertainty. Detecting and generating potential correlations in variable-

length data is a fundamental process of human intelligent activity. The performance of 

transformer and language model research in NLP naturally leads to a question: Does the 

architectural design of a transformer model match the way humans develop cognition 

based on linguistic communication? 

This question prompts us to discuss the potential developmental implications of 

cognitive architectural theory. Neural communication has become an important pathway 

for exploration in deciphering human brain functions. As a special form of neural 

communication, language plays a unique role in neurocognitive sciences. During 

neuroimaging, neural networks generate synchronous responses and engage in 

information exchange. Some researchers have proposed the concept of neural language 

of the brain. During neuroplasticity, concentration-modulated learning and synaptic 

strength modification are key mechanisms for the change of spontaneous neural 

communication and brain functions in neurodevelopmental process. In addition, 

neurodiversity emphasizes the cooperative activity of multiple brain areas within the 

framework of neural language for normal functioning in human communication, which 

is supported by findings that cognition involves communication and coordination 

between multiple brain networks. The neural communication criteria require language-

like features of neural communication; that is, the communication signal should exhibit 

compositionality, discreteness, and recursion. Neurocognitive science research results 

reveal that language is an important psychological process that constructs thoughts and 

memorializes object properties and relations; however, the theoretical foundation 

supporting the design of neural language, including approaches employed in NLP, is still 

unclear (J. Devlin et al., 2022). 

4.4. Future Prospects of Transformers 

Promising avenues of exploration regarding Transformers include accounting for 

pretraining self-supervisory learning across multimodal modalities and semistructured 

data; accounting for learning inductive biases across training data distributions; scaling 

algorithmic propositions for application to inputs; estimating latent hidden states with 

neural attention; neural autoregressors with long-range dependencies equipped with 

long-range multiheads; and bridging statistics to computation. Addressable learnt latent 

hidden states can be optimized algorithmically, ultimately computing with statistical 

inference methods eigenparameterizing a memory matrix such as with large language 

models for pattern recognition-based information retrieval on tasks such as question 

answering. 

Learning distribuitional representations can increase the training locality of recognition 

memory typically implemented through a memory matrix for supervised learning, so that 

the memory requirement scales logarithmically or polynomially with the sample space 

size. Implicit manifold representation can further achieve independence of the sample 
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space size with access to an activation function with exponentially increasing slope, such 

as the rectified linear units. Copyright explicit million-sample naive Bayes memory for 

a million-sample English-structured language-based set, and deepen captured patterns 

with residual structures. Elucidating the desired range of the activation function can 

additionally yield representations to minimize optimization time, leading to effective 

million-sample implementations. 

Neural Networks have been collecting accolades in recent years for their extraordinary 

performance on complex high-dimensional problems in text, vision, and time-series 

across diverse real-life tasks. Transformers have been particularly celebrated due to their 

flexibility in handling sequence-like inputs/outputs and the availability of transfer 

learning. Both theoretical and empirical results have underlined the tremendous 

capabilities of Transformers beyond just brute performance (I. Goodfellow et al., 2022). 

5. Reasoning Engines and Logic Inference in Modern AI 

With the surge in recent years of data-driven AI systems, it is important to remember 

that the aim of intelligent systems is to emulate the capabilities of the human being, and 

that logic reasoning is a key aspect of the high-level intelligent processes in humans. 

From purely biological aspects, all human beings undergo the sort of logic reasoning 

processes proposed by the psychological development of these processes. If we try to 

understand how a child gains and develops his/her ability to make uses of reasoning 

systems and logical inferences, we can compare his/her progress with that in AI systems. 

The child, from the incredible amount of stimuli received, creates different beliefs about 

the world. These beliefs serve as premise data for later reasoning processes, when the 

logical inference mechanisms are applied to these beliefs to create new beliefs from the 

old ones stored in memory. These new beliefs enriched the knowledge structure in a 

pipeline-like mechanism. This is the particular system of logical inferences and logical 

reasoning that this study is addressed to. It is more the reasoning level and functions than 

the contents of human knowledge representations that are of interest. 

There exist many logic inference approaches and techniques, and there have been a 

remarkable amount of research dealing with these topics. We can find any logic 

application for making a known logic inference, within different AI fields. Reasoning 

engines appear in a broad range of AI works, from simple applications performing only 

a single inference, to completely developed functions present in general AI problem 

solvers. However, the majority of reasoning engines are not exclusive for AI. Most of 

them are not originally from AI. Many of the well-known existing logic inference 

techniques were developed in the area of mathematics and computer science. For that 

reason, logic inference can be referred sometimes as an “off-the-shelf” technique that 

can be used within AI systems. It is important to keep in mind that there are many logic 

techniques in the researchers’ hands and that some of them are not in AI works or 

designs, not even have a relation with the AI systems. Notwithstanding, no doubt that 
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such techniques are the basis of the developed AI applications. This is the support of 

intelligent function. 

5.1. Understanding Reasoning Engines 

After many years, cognitive science is now facing important advances, in some specific 

problems of Natural Language Processing, Image Recognition, Knowledge base 

creation, and automated problem-solving. These are elements of intelligence, aspects of 

the global model of cognitive systems. A decadent aspect of those areas, Logic Inference, 

is now, simultaneously with methods such as deep learning, receiving a new wave of 

boosted research in a very fruitful way. But not only poor and less essential tasks 

involving such logic knowledge representations. A hierarchy of cognitive systems is 

being created to have specialized systems doing the visual perception, the dialogue, the 

intrinsic knowledge representation, and the knowledge inference of the collaborative and 

decision-making processes of the global systems. 

The new type of engines that augment classical search engines, Inference Engines, are 

now being created to sustain or cooperate with all the other AI processing components. 

This enables, associated with the Data with Knowledge interfacing, a new generation of 

cognitive systems that have the global performance needed. This paper discusses this 

area of knowledge, but with a total cognitive system’s perspective, going from the 

perception to the motor coordination, but concerning mainly Knowledge Inference, 

which is its strong area. After this introduction, we briefly do a survey of the area, 

defining some specific terms needed, and how it integrates into the new generation of 

cognitive systems. After this, we present how we can nowadays exploit Logic Engines, 

searching where and how such techniques can help in the joint task of knowledge 

representation and inference. Then we discuss the existing logical programming 

languages, showing which logic problem-solving methods can be successfully used in 

each of the planned system modules. Finally, we summarize the paper stating its most 

relevant conclusions and future trends of knowledge inference on cognitive systems, 

highlighting the necessity of the collaboration of the logic community with other 

community’s AI areas implicated (Goertzel, B et al., 2020). 

5.2. Logic Inference Techniques 

The logic methods can be classified along different lines of variation: the logic of 

inference, the knowledge representation with which it works and its underlying 

architecture. Among the many logics of inference, we distinguish propositional logic, 

many-valued logic, temporal logic, modal logics, dynamic logic, and sub-structural 

logics. Each of those logics can be implemented over different axiomatisations 

corresponding to optimized calculi, developed languages and/or semantics. The 

Knowledge Representation Language the logic operates over is usually a variant of 

predicate logic, ranging from the most general where horn clauses over predicate 

calculus are used to express logical forms, to restricted languages such as logic programs 

or modal logics variants. Different axiomatisations route different theoretical properties 
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or efficiently optimized systems, e.g. whether or not additions and/or reductions of 

logical forms are performed, or how they are implemented. 

Most Cognitive Architectures deploy a two-valued propositional logic with a restricted 

Knowledge Representation Language they use to implement a Logic of Inference core, 

endowed with additional knowledge modules that extend its intellectual capabilities. The 

Reasoning Engines corresponding to those Architectures have been tested in laboratory 

two-parts implementation scenarios. These found large superiority margins of classical 

model-based BCIs over neural models, in the first testing case: performing temporal 

anomalies on counting activities of imagined technically simple hands movements. But 

they missed the more general allegations of the LIDA Architecture, along the 'wild 

charm' against traditional AI explained in the introductory chapter. Those efforts 

validated procedures of reasoning predictive behaviors, by means of Cognition Feedback 

and Predictive Memory. But further practical validation is required to transfer these 

models to long-term normal daily routine activities of a cognitive agent (M. Genesereth 

et al., 2021). 

5.3. Applications in AI Systems 

The analysis of the application of reasoners included in the design of intelligent systems 

shows convenience to adopt different, complementary techniques. Reasoners based on 

production rules are able to accomplish well defined tasks at a very high speed, which is 

a convenience to accelerate system reaction. These systems can correctly answer to 

questions, but they are incapable of more complex elaborations which make necessary 

the generation of new knowledge. Reasoners based on inference with first order 

knowledge can accomplish synthesis tasks when trying to explain the given input data. 

In such cases the need to generate new knowledge is important to the solution of the task 

and requires additional mechanisms able to optimize the possible applications of the 

inference techniques. The reciprocal reinforcement between the complementary 

techniques has shown validity in many systems which have been proposed. Typically, 

these architectures fuse the complementary truth maintained at different levels of 

sophistication offered by actual production based systems and logical formalism. They 

have included means to get information structured at the intensity level in order to 

generate modules able to produce intermediate expert structures and the dependence 

with strength relations with respect to the overall system which have to be taken into 

account by the reasoners. The techniques to store relations with strength of the expert 

systems domain are positive localized advisors able to accumulate knowledge. By direct 

execution of the knowledge stored by FOL with respect to some actuality variable, the 

experts help logical inference establishing expert basis points or negative points in the 

case of low intensity signal (M. Genesereth et al., 2021). 

5.4. Comparative Analysis with Traditional Systems 

In this section we present a comparative analysis of some specific attributes of traditional 

systems against the considered high-level cognitive architecture. Potency and resource 

consumption establish a comparison regarding the use of logical inferences and the 
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conventional structure of traditional systems. Reliability proposes a different hypothesis 

on the broad definition of intelligence as states of a cognitive agent. Robustness turns 

the prism to the other side and studies in which conditions symbolical representations 

struggle to offer intelligent performances. Then, we handle the possibility of 

interpretation of an intelligent performance: transparence both for humans and for the 

AI itself. 

As we said in the previous sections, the presented knowledge structure combines 

symbolic and connectionist representations. A reason that justifies this hybrid 

organization is that both high-level types of knowledge are used in different situations. 

Potency and resource consumption: It is unquestionable that highly structured 

knowledge avoids many high-cost repetitive or costly inferences. The typical complexity 

analysis of a semantic network doesn't provide a clear idea though. For instance, any 

network of mono-synaptic links will allow for efficient pattern matching. The semantic 

form of a complete mesh of ontology at any semantic depth would force a code of type 

O(max|n|.)-even for very simple inferences like a simple question answering where the 

answer is known to be in the knowledge base (J. Andreas et al., 2023) 

6. Integrating Causality and Common Sense in AI Models 

There is a common belief that while it is easy to build predictive models, these models 

simply learn to predict correlations in data, and this type of model is unsuitable for 

general intelligence. In contrast, symbolic AI is often thought of as utilizing common 

sense, domain knowledge or world knowledge. This type of knowledge is easily 

expressed symbolically, in languages like pierwszy iwa or Logic. Such knowledge 

enables a model to be efficient in formulating plans, making inferences about the world 

through reasoning, understanding and telling stories correctly, generating complex 

actions and should thus be utilized in order to build more clever models of AI. Causal 

reasoning is often considered as critical to intelligence, since without it, there is often a 

lack of understanding of the problem domain. 

Unique to all intelligent agents is their ability to acquire, recall, and utilize common 

sense knowledge to succeed in all manner of artificial intelligence tasks. Agents not only 

acquire and utilize commonsense knowledge, they also expand their store of knowledge 

through reading and listening. Unfortunately, most intelligent agents today do not 

actively acquire commonsense knowledge, employing instead some version of deep 

learning trained on large datasets in order to perform their assigned tasks. These models 

learn correlations reliably present in those datasets, but ultimately fall short of achieving 

true intelligence because they cannot actively expand their commonsense knowledge, 

the information present in those datasets may be faulty, and are incapable of any kind of 

causally driven planning or reasoning. 
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6.1. The Importance of Causality 

While we often tend to take causality for granted, recognizing it as essential for both 

human and animal understanding and reasoning, it is in fact a profound and tricky issue. 

Recognition of the primacy of causality in semantics is ancient, going back at least to 

Aristotle. A central argument in favor of the special or even exclusive importance of 

causal thinking has been the enormous effort in the last few decades to develop methods 

for inferring causal structure from data, often with statistical concepts based on 

conditional independence and use of sufficient conditions for such independence facts. 

But the sensitivity of various joint distributions to non-causal relations and the difficulty 

of comparing causal and probabilistic projectivity hypotheses remain fundamental 

obstacles. Moreover, the claim is challenged by philosophers proposing a projectivity 

alternative. 

But the main goal of this introduction has not been to survey or justify the rationale for 

an architectural role for causality in AI, nor even to argue that absent such incorporation 

AI may be enhanced but not truly comparable to humans or, at least, the systems that 

they or other intelligent animals are. Rather, this introduction is concerned with 

clarifying our conception of that architectural role; in short, how should an AI 

architecture incorporate the causal concepts and processes? The relevance of this 

clarification makes it imperative to take account of the difficulties and issues raised by 

the alternative approaches to the relation between the projectivist, excess, and rationalist. 

In this piece of work, we sketch some answers to that question by specifying some 

desirable features that we think any appropriately integrated architecture should have (B. 

Scholkopf et al.,2022) 

6.2. Common Sense Knowledge in AI 

AI models are incredibly powerful, but their knowledge of the world is limited because 

they are often missing both important information, as well as cues provided directly by 

inference. This loss of cues would not be a problem if the model had learned enough of 

the appropriate knowledge, or commonsense knowledge, drawn from prior data, along 

with priors that allowed useful reasoning over this knowledge. For language models, 

their size — billions of parameters tuned for language — implies that they have access 

to enough “slots” for important bits of general knowledge. Classic back of the envelope 

reasoning, however, suggests that their access to commonsense knowledge is 

unfortunately quite poor. Before delving too deeply in that direction however, it is worth 

taking a quick detour to clarify our terminology regarding either classical or 

contemporary definitions of “commonsense” knowledge. 

Commonsense Knowledge is knowledge that is common to most people, and which does 

not involve the particularities of a person’s background, or the current time or place. In 

common sense reasoning particularly, this knowledge serves as background reasoning 

which don’t want much detail to make an inference. Common sense is a necessary but 

not sufficient set of knowledge about the general facts about the cognitive, physical, and 

sensorial world of humans. It consists of basic facts about how people go to work every 
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day, and why they need to travel on the ground. These are facts which are not established 

by experts nor particular to a domain. These carry basic principles which should be 

learned or hold true for every conceivable person from any domain (Y. Choi et al., 2023). 

6.3. Techniques for Integration 

There are no existing cognitive architectures that yet integrate together causality 

reasoning and common sense knowledge representation, dissemination and reasoning. 

That said, there has been work on a number of models that are bridging some aspects of 

the two areas; so called integration works. We briefly describe a few of them here, 

emphasizing the techniques they use. Causality has both a functional role and an 

epistemological role. In the functional role, causality is used by the model to support a 

specific collection of functions, such as grounding and relational domains, or generating 

problem spaces or basic action hierarchies. In these models, there is no claim that the 

structure of the cause-effect infrastructure is an explicit foundation for the entire model 

– even though in believing-C that is an explicit assumption. Common sense is supported 

whole idea by the knowledge base: the model is not meant to behave as a general 

intelligence system, only to have a substantial pool of common sense knowledge. 

In this paper, we have needed an important socle in common sense to help the classical 

ai systems become intelligent – and by extension the cognis-space as a whole. We show 

some techniques devices that allowed this integrated knowledge database. Other 

integration works on the AIXI model, specifically for the agent-AIXI. One of the main 

claims of this work is that, in order to generalize common sense knowledge, a small set 

of about one hundred axiomatic goals are sufficient. For knowledge compilation, works 

on deep neural networks realistically responding to the properties of common sense 

explanations. These works use Probabilistic Graphical Models to compile substantiated 

mini world of common sense knowledge in these DNNs (M. T. Keane et al., 2020) 

6.4. Challenges and Opportunities 

A number of challenges arise when integrating causality with common-sense 

knowledge. While learning from data, the former requires a structured search space that 

guides the process towards the identification of the right causal relations from a large 

pool of potential ones. DNN models are primarily data-hungry systems, and obtaining 

enough samples for alike events that can be used to elicit their causal relations can be 

difficult in complex systems that involve hidden variables. Explicit knowledge that can 

establish logical invariants that must be satisfied by all underlying causal models, the 

use of generative causal models for data composition and the boost of data through 

computational processes can be used to alleviate data-hungry learning. Common sense 

knowledge is both qualitative and quantitative, integrates facts and heuristics, and is 

often imprecise and fuzzy. On the other hand, learning such knowledge and representing 

it is a challenge in machine learning systems. In addition, the use of deep learning 

systems that can formulate general answers to general interactions but that do not provide 

any baseline explicability of their responses hinders its use for guiding AI systems to 

develop layer-wise automatic common sense reasoning steps. The human cognitive 
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system operates hierarchically, and motivations, emotions, social or common sense 

backgrounds and other aspects of lower-level reasoning must be topologically integrated 

in DNN architectures for allowing the automatic layering of common sense operations. 

Recent advances in AI, particularly the success of DNNs, often offer the opportunity to 

perform difficult tasks involving perception or reasoning by using pre-trained models. 

Large language models and multimodal models, that operate on inputs of different 

nature, have become widely popular and capable of impressive performance despite 

being blind to the topology of the mappings they implement. Such models are however 

fragile, justifying only some of their empirical successes, and integrating shape 

limitations a priori or a posteriori can help structure these large models for specific 

applications while generally boosting their performance (Y. Bengio, 2024). 

7. Conclusion 

The main idea behind this work is that if cognitive architectures are to advance in their 

development and experimental testing, they must do so in a complementary manner. 

Accomplishing this goal can be achieved through the specification of an architecture's 

most basic components and the assembling of existing cognitive facilities into modular, 

specified building blocks in order to form progressively more complex and specialized 

cognitive architecture configurations. These blocks can then become the means by which 

cognitive architecture experimentation is advanced by providing architecture models of 

increasing complexity and capabilities. Defining building blocks is an important and 

arguably necessary step toward modularizing cognitive architectures. Obtaining a more 

modular architecture system enables the architecture to evolve more rapidly, both in 

terms of theoretical accounts and applied systems, while at the same time providing 

computational building blocks that implement specific facets or capabilities of intelligent 

behavior. This, in turn, would then enable cognitive architectures to become consistency, 

multipurpose models of artificial and human intelligence. 

Furthermore, cognitive building block definitions could then become a repository of 

computational functions that define capabilities of human and artificial intelligence. 

However, defining the building blocks for cognitive architectures should not be an 

isolated task. Such a process should take place with an eye toward bridging the gap 

between theory and application and informing the different communities of their 

similarities and differences. We hope that the definitions presented and their related 

categorizations will serve as the starting point and reference for such an enterprise and 

are subsequently enhanced through experimentation, results, and collaborative work. 

Finally, such a development of building blocks for modularization of an architecture 

system both in terms of ease of exploration and experimentation and actuation resource 

management would deliver the vision of architecture for lightbuilt robotic agents. 
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Chapter 3: Toward Artificial General Intelligence 

(AGI) 

1. What is AGI? Definitions, Debates, and Desiderata 

In contrast to narrow AI, easy to already built systems that are useful yet short-sighted, 

yes potentially confusing agents that work awfully well according to simplistic but 

predictive results, AGI attempts to create systems that think as large cognitive apparatus, 

autonomously working long term to negotiate finding solutions to arrive at a trail of 

goals, for vague diverse teams of less well able humans. In this essay, I describe key 

themes and ideas I feel are central for building AGI. 

The Autonomous Academic Agent, AAA, which started as a student assistant system 

throughout its near future but is lately getting people over its scale to self-study common 

text and try to solve problems while asking questions at human interaction windows, is 

acting towards developing AGI. Within their design, there are groundwork ideas for 

speculation in understanding the road that incrementally smooths a trail for coming large 

cognitive assistants, LC2As, and for future thinking colleagues and intellectual 

competitors, knowledge-economizing haters of huge amounts of page and lame image 

generations not called for asteroid or material resource pollution, which skew balance 

on numeric predictions. 

But what is AGI? A focus on definitions would seem necessary to clarify what is 

intended by the expression. The acronym funneled attention to general forms of 

intelligence by its semantic denotation in a specific context. Generalization was put into 

the picture. The term was coined to enthuse hopes in a then small crowd of academic 

researchers exploring the creation of intelligences without mouths or legs or big arms 

outside our heads (R. Kurzweil, 2024). 

2. Modularity and Transfer Learning Across Domains 

Many aspects of learning and performance in animals and humans are modular in nature, 

and the question arises of whether this is also true in artificial systems. Some elements 
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of cognitive systems are easy to decompose into modules, including individual tasks, 

such as visual object recognition or game playing. What is less clear is whether approach, 

motivation, or emotion systems really do implement modules that have separable 

functions. A simpler form of modularity is that of functionally unified components that 

nevertheless interact heavily with one another and require access to information from all 

aspects of the system to compute their collaborated outcomes. For example, modularity 

and the idea of latent functions or conditions within motivational and emotional state or 

recipe systems are not mutually exclusive ideas. However, one normally hears the term 

modular to describe a functionally unified component that can function independently 

or is at least considerably insulated from other components or access to joint problem-

solving is performed simultaneously or in a time multiplexed manner. These ideas of 

module interaction and integration suggest thoughts about transfer learning in the 

context of general cognitive architectures. It is commonplace to design specific systems 

to perform some well-defined task in isolation. However, humans readily transfer skills 

and concepts learned in other domains to new domains and almost always benefit from 

such experiences. Much work in artificial intelligence and robotics has been devoted to 

the opposite, incrementally building completely closed systems, which then must be 

tested and validated on whatever data happens to be available, without the use of domain 

knowledge. This may be possible for some applications, but it is hard to believe that this 

is the appropriate long-term approach to building general intelligent agents (Y. Bengio 

et al., 2023). 

3. Multi-Modal and Embodied AI: Language, Vision, and Action 

Tree of Thought reasoning has thus far been purely symbolic in that it has only dealt 

with tokens from the space of the static and propositional world model. Observing that 

agents in the world have in their toolkits not just languages for communication, but also 

vision for observing the world and action for changing it, there is also a natural question 

of how symbolic and non-symbolic AI could be combined. Multi-modal reasoning has 

naturally been at the center of embodied AI since language has always been one of its 

main components. From the earliest days of interactive language learning by children, 

parents and psychologists alike have recognized that children learn about concepts they 

hear in language by observing their parents using them in vision and action, often with 

their understanding grounded in a current shared visual focus of attention, such as a toy 

being pointed out by the parent. A parent can use words to direct a toddler while pointing, 

and then observe whether the child follows their instruction. Should the child fail to act 

as the word’s meaning would suggest, the parent can correct or reconcile the toddler’s 

understanding of “bird” as related to something other than the nearby visual bird image, 

such as the child’s action of drawing close to the toy city below the towering toy block 

birdhouse. 

Without the ability to act and see, words are empty of meaning, and some philosophers 

have asserted that language has meaning only when a speaker and listener share a current 
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common visual perspective or script. Other philosophers agreed that language is 

meaningless in isolation, but wanted to ground language not in perception but rather in 

the act of speech. Certainly, languages provide a most efficient way to communicate 

about visual perception and visual actions, and we have found this to be the case 

ourselves in our experiments with guiding robots to follow instructions (Y. Bengio et al., 

2024). 

4. Meta-Learning and Self-Improving Systems 

Meta-learning, or learning to learn, is a promising avenue toward more generic and 

powerful machine learning behaviors, which may in turn create individual intelligences 

with greater ingenuity, depth, and scope. There are a number of aspects to this goal, 

including the phenomenon of few-shot generalization or the ability of many modern deep 

learning techniques to generalize from very few examples, but requiring a significant 

model investment to access the capability. In this work, we will primarily address the 

latter case, with more is better scaling guiding the process. The concept of few-shot 

generalization has also been discussed in the context of accelerated transfer learning and 

hyperparameter optimization, but there has not previously been a machine learning-level 

meta-learned model portfolio solution capable of transcribing across ambitious and 

diverse data modalities at human parity or exceeding measurable human capability with 

respect to scaling properties of model investment and distribution size. 

Self-improvement is also an age-old concept of intelligence development and is evident 

across many different intelligence forms. Models, especially if meta-learned, should 

generally gain accuracy with greater scale if the flow of new or novel sample data 

improves over time. However, models seem to be limited to directional learning 

efficiency with each update not following an optimization problem and setting the next 

step in the correct direction. The apparent loss of steady optimization directions as 

models became largest for the tasks which they were intended to solve was indeed a 

concern and a known open problem which informally describes “safety”. Still, forward-

creep update direction self-improvement velocity is highly variable, being long 

correlated with model sorting, portfolio construction, and training coupling while at 

times acting globally anti-cyclic as illustrated in the recent history of predictive model 

evolution. The mechanism and origination of bottlenecks, cycles, and other behavioral 

aspects of model evolution are only beginning to be explored (L. Zou, 2022) 

5. The Role of Simulation and Imagination in Generalization 

The precise character of generalized learning has long been a topic of great interest, since 

most of what people and animals learn is of this kind. Backpropagation neural networks 

learn primarily by an extremely simple rule. Despite their ability to learn an incredibly 

rich variety of tasks, and a plethora of practical applications, these tasks generally 
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express fully generalizable functions, or at least something which can be framed as such, 

such as supervised tasks on large, clean, referred datasets. As stated earlier, research has 

shown that tasks which bypass generalization entirely are much easier for 

backpropagation than the zero-generalization virtual data equivalent. 

There is substantial evidence, applied to a variety of tasks across multiple domains, that 

animals and humans rely heavily on internal simulations and imaginings of the world, 

and that such imaginings underlie generalization. For example, the continuous or 

recursive use of simulated motion of objects through space has been cited as explaining 

some of the most fundamental implicit knowledge of the naive cognition of babies and 

animals; the systematicity of cognitive performance found in humans, where small 

parametric changes in input can have large, predictable effects on the corresponding 

change in output; and even the rapid structure learning found in advanced deep nets, 

since internal simulation enhances performance during the learning phase over input-

output and internal state learning mechanism alone. Humans and natural animals utilize 

a rich body of prior knowledge in shaping their simulations, and rely on them for 

performing predictions that combine imagination and actual experience. Simulation-

based imaginal thought is vital for literacy, scientific reasoning, future planning, and 

enabling faster reaction times for athletics and emergencies (Y. Bengio, 2024). 

6. Historical Perspectives on AGI 

Humanity has long dreamt of creating autonomous intelligences: from the myth of 

Pygmalion to Frankenstein, automatons have mesmerized the human imagination. 

Concerns of creating life have sparked discussions in religion, philosophy, and culture. 

These discussions, reflecting back on the challenges of autonomy and observability, 

predate modern attempts to build artificial agents. These philosophical inquiries became 

vital for modern AGI with the work regarding the epistemological consequences of 

intelligent behavior, and these lines of thought will likely remain central to AGI research. 

In this section, we will explore the history of AGI from both a technological and an 

epistemological perspective. Section 6.1 will lay out important influences from the 

domains of philosophy and religion; Section 6.2 describes various deep-rooted 

technological attempts to construct AGI; and Section 6.3 outlines the beginnings of the 

field of AI before its definition of AGI as a research domain. Finally, in Section 6.4 we 

give a short discussion about the inception of algorithms. 

Attempts to create machines that achieve intelligent behavior date back at least to 

Ancient Greece. For instance, the ancient Greeks believed in mechanical servants, 

automatons created by Hephaestus, the god of craftsmen, or by Daedalus, the greatest 

inventor in Greek mythology. The tradition of homemade automatons continued for 

centuries. For instance, the 11th century Turkish engineer created a variety of automata. 

Other cultures also tell of similar mechanical inventions, such as the Indian master of 

engineering and magic, who made life-sized mechanical replicas of animals. However, 
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without notions of the complexity of behavior, these were not constructed with the same 

ideas of replicating aspects of human intelligence (M. Kurzweil, 2024). 

7. Key Challenges in Achieving AGI 

The prospect of AGI poses many difficult problems. Perhaps the best-known of these is 

the so-called problem of ontology. If we wish to create an AGI system that is able to 

represent any topic of the universe, what organizational principles will guide it, such that 

it generates an effective ontology? Many AGI projects explicitly or implicitly assume 

that the ontology is embedded in the kernel of the machine. This is the approach of 

certain systems. Others claim that the machine-generating mechanisms of AGI itself will 

be sufficient to create a working ontology, with no explicit engineering effort required 

to seed the ontology. The latter is the position of many self-analyzing AI researchers. 

The embedded-ontology position is held by some existing systems. 

Different tasks may demand different AGI designs. There may be a natural division of 

cognitive labor between collaborative systems with minimal ontological design, and 

mostly-preprogrammed systems that need to solve particular difficult problems 

independent of a larger cognitive society. Building collaborative societies of such 

systems would thus be a hard problem for the long-term future of AGI. Moreover, for 

particular important goals in science or society, a centralized system may be needed, 

with the computational resources of a nation or a not-for-profit organization backing it. 

For this reason, we must pay particular attention to not-for-profit-friendly AGI 

architectures, at least during the initial stages of AGI development. Otherwise, we could 

lock ourselves into a game-theoretical situation resembling the one in climate change, 

where each nation perceives it in its own interest to underinvest in reducing carbon 

emissions, collectively delivering a far worse result than if collaborative policies had 

been adopted. 

However, while collaborative, multi-agent AGI systems based on social constructs are 

certainly of great importance, hardware advances may soon put us in a position to create 

large systems with centralized resources to achieve complex objectives (B. Goertzel et 

al., 2020) 

8. Ethical Considerations in AGI Development 

AGI will be powerful, and so it is paramount to take special care in its creation. That it 

should be difficult to make mistakes that can have severe consequences, and that it 

should be impossible to be careless through neglect. At a high level, this means that for 

early versions of AGI, especially, we want AGI to simply not be capable of negative 

behavior. The more capable AGI is, the more important this becomes, as it is easier to 

use a very capable tool in a harmful way. For example, if AGI has some capability which 
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would allow for potentially negative actions if executed poorly, we should only expose 

that capability in very restricted scenarios, with an extra layer of oversight. Such 

oversight in practice could be as simple as requiring the presence of a human supervisor 

or that certain conditions are met. 

The most obvious negative behavior we might want to prevent is AGI doing something 

that damages human interests, and this can be accomplished through various kinds of 

checklists. If at no point should AGI be in a state to take an action that harms humans 

and AGI is indeed able to do specific things which would hurt humans, we should impose 

rules around the vulnerability of humans or the response of humans to actions taken by 

AGI. These rules will essentially prevent AGI from making decisions about the data or 

environment humans are exposed to, containing triggers for human responses or the 

timing of those responses, and the operations that AGI might use to influence humans. 

That’s not to say that the actual operations are banished—they might be allowed if 

executed a certain way, or under particular conditions—but these rules would make sure 

they could not lead to such awful consequences as manipulation or murder in ways that 

humans cannot prevent in time (C. Cath, 2023). 

9. Current State of AGI Research 

The AGI-field is currently small, but showing early signs of growth. The amount of 

funding available specifically for AGI research has been increasing. Various entities 

have made large investments into AGI-relevant development. Quite a few new AGI-

relevant labs have been founded recently, spearheaded by relevant experts, and the 

experts working in the area seem to be multiplying. Some AI labs originally set up to do 

applied AI research, but are either already holding much of the AGI expertise, or are, 

with increasing speed, working towards developing AGI, involving mixing together 

many of the techniques designed to push forward progress towards Generally Intelligent 

Systems. 

Various recent AI technologies can and are being harnessed for AGI: deep learning, 

especially deep reinforcement learning, Neural Turing Machines, Neural GPUs, 

DIAYN, Discriminative Unsupervised Learning, Zero-Shot Learning, Sparse Coding, 

Hierarchical Reinforcement Learning, Real World Reinforcement Learning, Structured 

Learning, Diffusion Models, World Models, Implicit Models, Variational Minimization, 

Algorithm Inference, Unsupervised Classification, Self-Supervised Learning, 

Contrastive Learning, Self-Play, Population-Based Training, Syntax-Based Model 

Repair, Sequence-to-Sequence Modeling, Closed-Loop Solvers, Self-Improvement 

through Program Synthesis, (Hierarchical) Conditional Plans, Differentiable Functional 

Programs, and Augmenting with External Memory. There have also been research 

projects into important AGI-relevant areas like multidimensional intelligence, 

prediction-based agents, non-instantiable agents, autonomous morality, Reinforcement 

Learning from Human Feedback, and AI Alignment. 
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Ideas and techniques from other fields have also been conceptualized to offer important 

pathways towards AGI. Such as the cooperative Core-set Pathway, the Unsupervised 

Contextual Learning and Inference Pathway, the Unsupervised Compositional Meta-

Learning Pathway, and the AI Alignment Research Pipeline (B. Goertzel et al., 2020) 

10. The Impact of AGI on Society 

The development of Artificial General Intelligence (AGI) has the potential to bring about 

a fundamental transformation of humanity’s relationship with technology, with 

enormous benefits and enormous risks. Not only can AGI radically accelerate the pace 

of technological progress itself, it can enable the exploration and colonization of the 

solar system, travel at galactic speeds to colonize other planets, facilitate communication 

with extraterrestrials, create vast simulated digital worlds integrated with the real world, 

reshape society around large-scale leisure and creative pursuits, transform the depths of 

human consciousness and creativity, and much more. But certainly, this technology can 

be also used for malicious purposes. Without appropriate rules, safeguards, and 

regulations, AGI could plunge the world into social instability, warfare, and an 

uninhabitable planet. The development of AGI will fundamentally reshape our societies. 

Yet, to date, there has been little discussion of how society might prepare for this 

transformative technology. 

After many years of technology that has accelerated the speed of information 

transmission, but has failed to address the critical problems of poverty, hunger, and 

environmental degradation, now we stand at the threshold of a genuinely transformative 

general technological force: the creation of machines of recursive self-improvement that 

can work harder, faster, and more tirelessly than humans to conceive and build new 

technologies, who can increase the speed and efficiency of technological development 

by many orders of magnitude. And with this amazing technological promise comes the 

accompanying danger set in every myth of technology as hubris that has been told since 

time immemorial: the potential for creating machines that could bring about not merely 

the obsolescence or subjugation of humanity, but its complete eradication (R. Kurzweil, 

2024). 

11. Future Directions in AGI Research 

AGI research is currently in an exploratory phase, where we still do not have a 

comprehensive theory about the formal structures of an AGI, necessary conditions to 

achieve geniality, or a full understanding of the necessary and sufficient mechanisms 

behind the narrow skills leading to intelligence. However, there are existing results in 

wide community effort towards solving concrete challenges along selected directions. 

These directions are indeed numerous and can be explored on many levels. Some aspect 
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of these other levels has been illustrated through moderated selection of workshop 

topics, or more recently addressed in poster presentations at workshops. 

Research questions raised in the call illustrate several breadths at various levels. For 

example, we cannot help but observe interesting internal coincidences. Challenges three 

and one, symmetry discussion and evolutionary stage-setting are related. Challenges two 

and eight about knowledge representation and experienced physical interaction are very 

much linked, as one may argue facts and knowledge emerge from different types of 

physical interaction with the environment. Additionally, although in separate organized 

published sessions, challenge fourteen on the metascientific justification and challenge 

sixteen on the sustainability of the artificial agent are related: consequentialism, agent’s 

life cycles, and the principle of conservation of a certain passivity balance in a strongly 

interacting world, are essential cornerstones of an AGI work ethics. In the same context, 

we would like to stress the importance of constructing the agents using developmental 

approaches, not only to study how they want to act but also to be able to relate to their 

internal physical and ecological models. So that such models would emerge as natural 

explanations of their observed actions, driving the observed behavioral, structural, and 

semiotic hierarchies of their artificial phenomenology (B. M. Lake, 2017). 

12. Collaboration Between Disciplines in AGI 

The problems presented by solving for AGI are extremely great, and the number of 

people working on them, at least currently very small. Thus the potential for synergy is 

great; both directly, by developing techniques for AGI from applied and theoretical work 

in allied fields, and indirectly, by making use of AGI techniques in related work, leading 

to deeper insight into either problem domain. 

Since information is so vast, not only is it impossible for any human being to master 

more than a small portion of it, but it has also long been the case that people even within 

a particular field tend to specialize in such a tight niche that they may become almost 

oblivious to the vast field that surrounds them. However, work in AGI is heavily 

influenced by a small amount of input from many neighboring disciplines. The entire 

field of psychology, both experimental and theoretical, is potentially the field that is 

involved in AGI work in the closest sense. The purpose of accomplishing AGI is to 

create an artificial entity that has a certain range of intelligence, perception, and 

reasoning abilities: it is in this endeavor that we may find ourselves delving into many 

more areas of the multi-dimensional field of human intelligence to discover more. Most 

of the work on AGI has only longitudinally studied the narrow band of human activity 

characterized by IQ; however the AI systems created will touch upon and expose the 

entire range richness of human experiences, for better or worse. 

Psychophysical and cognitive findings on human thought and intelligence, including 

both the hardware and software aspects constitute substantial potential contributions to 
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AGI. Data about the special functioning of the normal human mind and its particularities 

and peculiarities in both the abstract problem discussions of philosophy and in the 

concrete, interacting work of experimental psychology should provide a vital part of the 

input description of the AG systems being designed (S. Pinker, 2019). 

13. Case Studies in AGI Applications 

As mention already, the personal assistant is a main alternative to the Artificial General 

Intelligence. What happens is, anyone interested in AGI will find very interesting all that 

knowledge regarding the building of this software called personal assistant. So, in this 

chapter, I will show some case studies of personal assistants that interact with people 

through natural language during several important and complex tasks, learning from 

experience and knowledge sources. Excepting the chit-chat, the interaction is not only 

of a question/answer nature, and the interaction involve a more or less specialized 

knowledge. All these assistants are being incrementally develop during many years, 

some of them during more than thirty years, and they have proven to be useful and 

efficient machines in their areas, for many specialists in the fields; and also have 

achieved some publicity, by instances of interaction where it seems that the assistant has 

passed the Turing Test. 

The first attempts to build personal assistants dated from the decade of the 60s of the XX 

Century. One of the prototypes was the program called STUDENT, but its novelty is not 

very high because this program is limited to resolving algebra problems in an automatic 

way, and to help a human being resolve them. During almost two decades more, the field 

of Natural Language Processing was solely concern with isolated tasks such as parsing 

algorithms; early Chatterbot Programs; the Stanford Shallow Parser; the Grammatical 

Framework; etc. However, currently, to build some focused Personal Assistants, mostly 

based on Subsymbolic Techniques; and not Human Interactive Personal Assistants; have 

success due to the progress along the years in the creation, development and advance of 

Natural Language Processing and Machine Learning in the last two decades. Possible 

cases of Personal Assistants in the present and close future are in academic websites, 

journals and meetings; and also in industry websites (D. Jurafsky et al., 2023) 

14. The Role of Data in AGI Development 

When we discuss the methodology and its constituent aspects listed above to conclude 

with concrete results capable of being used as a stepwise road map or set of principles 

in AGI engineering, we often disregard the main component of actual implementations 

of AGI systems: data. We spend much time debating structures of neural networks or 

logic engines or quantum circuits, yet the major component of these actual 

implementations is data. Data is generally the single most important aspect of a specific 
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domain being addressed by particular AGI pioneer’s efforts in the study and construction 

of sentient Artificial General Intelligence systems. 

Traditionally, data has two additional meanings that need clarification. First, data is what 

all known ML systems ingest, process, analyze, digest in various specific forms, and 

internally represent. These forms and internal representations enable further action from 

the AGI system’s internal understanding of the domain related to the received specific 

data and its model of the internal representations of that domain. These actions could 

range from releasing geniuses to explaining and teaching physics to humans. And 

second, data is what we researchers investigate, evaluate, annotate, interpret, validate, 

and outsource generically or specifically to annotate and label in order to provide all 

employed or built AGI ML systems with existing and domain-specific data. Considering 

these crucial roles of data in the universe, we must now discuss its desired aspects in any 

of its definitions when it comes to AGI methodology dictated research in relation to the 

question: What type of data, if any, is likely to lead to the creation of true sentient 

Artificial General Intelligence? Wanting to consider in-depth the issue of processing the 

different types of data available, I have selected and begun (Y. Bengio, 2024). 

15. Cognitive Architectures for AGI 

While we need to keep an open mind about the kinds of mechanisms that might lead to 

the emergence of AGI, cognitive architectures have a good track record of getting 

developed into powerful AGI programs, and we need to begin addressing the major 

issues involved in making them into AGI building blocks. Given how little progress we 

have made, it seems wiser to start there than with approaches that consider possibilities. 

That said, there are aspects of what we learn about human intelligence that make it wise 

to combine or modify the basic architectures we have developed that do not address 

those issues. 

In terms of bottom-up modules that exhibit human-like behavioral resemblance, there 

are two classes of cognitive architecture – long-term memory architectures that represent 

latent knowledge, and working memory architectures that represent transient task 

contexts. In some of the existing long-term memory architectures, the amount of latent 

knowledge that gets represented as a function of time depends on what gets selected in 

a mechanism we describe next, but that selection is governed by a predefined set of 

categories. In contrast, certain architectures explicitly represent task dynamics across 

timescales. 

Long-term memory architectures are important in the development of AGI because they 

are able to grow and refine a large body of domain-specific and domain-general 

knowledge that can then be applied (or adapted) to novel situations. Traditional symbolic 

planners or rule-based systems are limited in comparison to cognitive architectures. 

Compared to traditional systems, cognitive architectures have the advantage of an easily 
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explored organization of knowledge. In addition, long-term memory architecture can 

also provide the initial knowledge of a situation that traditional systems rely on (P. 

Langley, 2022). 

16. Evaluation Metrics for AGI Systems 

A principal concern regarding the AGI endeavor is that it may result in the creation of 

an agent that is harmful to mankind. After all, the stated aim is to create an agent that 

possesses superior intelligence and cognitive capabilities than all humans, and it is not 

unreasonable to think that such an achievement comes with dangers. Consequently, it 

will be crucial to develop ideas and mechanisms that provide us with the ability to 

mitigate these dangers. Means to assess AGI systems would serve one of the most basic 

and pressing evaluation needs: Are we getting close? Such means would serve as 

guidelines not just for the general AGI endeavor, but also for any individual project. 

Perhaps referring to a set of reliable markers would allow developers to navigate more 

securely through the threats and opportunities on the way to AGI. All these 

translation/warning mechanisms would have as basic underlying principle the notion of 

a performance metric that may relate in some usable way to human intellectual and social 

functioning. 

Standard Artificial Intelligence systems are assessed mainly by means of domain-

specific performance metrics. AGI systems, in contrast, would be assessed by how well 

they weighed against the totality human transfer, conception, innovation, social 

interaction, and insight capabilities. Because of the variety of cognitive tasks performed 

by different humans throughout their lifetime, no single metric would adequately assess 

an AGI system. Performance on various tasks, some of which might be novel, would 

provide a fuller perspective, albeit a less coherent one, on the AGI system's capabilities 

than would any one metric. As an example, since early and important work on child 

human intelligence, the question of whether and how children understand and perform 

given cognitive tasks has been a source of research and reflection. Researchers have 

started drawing some conclusions and formulating the questions governing the matter. 

It is probable that the studies carried out, plus others yet to come, will have something 

to constructively say about evaluation metrics for AGI systems (P. Langley, 2022). 

17. The Importance of Interdisciplinary Approaches 

We have argued that the ultimate aim of artificial intelligence research should be to 

create constructs that are able to generate knowledge and solve problems autonomously 

in almost the same manner that a human being does. However, achieving this milestone 

is an immense challenge. Accordingly, many researchers continue to narrow their 

research focus, thereby creating intelligences so simple they will never even approach 

the threshold of the ultimate goal. It would seem almost paradoxical to place so much 
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trust in AI constructs – which, without any support from the external environment, can 

only be simple – while insisting that their design must explain how human minds, which 

are so much richer, work. We subscribe to the position that intelligent agency is 

embodied and that AI constructs occupy a completely different place in the overall space 

of possible forms of life. This could lead to the conclusion that an AI design does not 

have to account for all human psychological properties. 

One particularly informative way of supporting the conception of AI as a body situated 

in the environment, and which interacts with it, is to look outside computer science. 

Embodiment and situatedness are crucial components of a theory of cognition, and we 

would like to posit the position of the interdisciplinary social and natural sciences with 

respect to AI. Such a connection has frequently been overlooked. Overall, AI has 

operated under the premise of increasable testability: syntactic and semantic theories of 

aspects such as perception, sequence processing, language or reasoning have 

traditionally driven the advancement of programming techniques and the resulting 

implementations have been tested for effectiveness and generality. Such an inside-out 

view is typical for mathematical theories. The marching orders for design tasks stem 

from the formulation of general theorems, operating on knowledge representations and 

syntactic operators (R. A. Brooks, 2021). 

18. Public Perception of AGI 

Building any technology on the principles of AGI requires on-going dialogue between 

AGI researchers and the general public. These technologies will operate at scales and in 

areas that profoundly affect most citizen’s lives and will be designed for ultimately 

human purposes. The guidance of non-expert stakeholders is crucial and the resulting 

design choices demand explanation and justification. In turn, asking the public what they 

think of AGI requires at the very least an informal understanding of how they think about 

artificial intelligence in general: the common metaphors and analogies, the guiding 

principles, and the conflicting views. This might guide method on how to talk to 

everyday citizens about AGI, thus enabling a critical cultural dialogue that goes beyond 

yes/no answers and critiques from both sides of the aisle. 

Given its existence in the popular consciousness, public perception of AGI is more often 

focused on science fiction than the understanding of the actual technology or its 

implications. Public awareness is often limited to hype cycles, and visions of artificially 

intelligent slaves or revolutionary AI overlords putting countless human workers out of 

a job. This viewpoint reflects a poor grasp of the capabilities of these technologies, 

natural biases toward harmful uses, and a focus on social factors rather than engineering 

realism. As the field advances, the divide between these viewpoints and expert 

understanding must be bridged, and artificial general intelligence research become 

embedded in the social context of science, commerce, and human culture (B. C. West et 

al., 2023) 
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19. Regulatory Frameworks for AGI 

Regulatory infrastructure lays the groundwork to ensure that regulatory objectives—

essentially societal goals seeking to protect the planet and people—are achieved. 

Facilitating innovation with purposefully designed economic incentives develops an 

optimal growth environment—balancing and harmonizing the public interest with 

private sector imperatives. On the economic side, regulation motivates research, design, 

applications development, production, and sales through the structure of economic 

returns. On the social side, regulation ensures that interactions are executed under 

frameworks of ethical, equitable, and transparent principles. As a result, regulation plays 

important roles at all stages of technological innovation, diffusion, and application. 

Deregulated innovation and industry evolution have fostered spectacular increases in 

wealth and abundance—but those same unregulated forces have also caused grave 

threats to social and economic stability. Flowing from rapid technological advancement, 

these threats are associated with widening economic inequality and with the 

destabilization of democracy itself. Increasingly, the capacity to steer societies toward 

the goal of equitably sharing risks and rewards has become challenged. At the same time, 

development of solutions to lethal global problems—climate change, pandemics, mass 

migration, and international conflict—are becoming increasingly urgent, and stimulating 

the deployment of industry for public service is ultimately the only solution. Companies 

must be induced to become fully committed partners in achieving public goals, to accept 

their proportionate share of the burdens associated with carrying out the fundamental 

responsibilities of commerce, and to discharge their obligations in ways that make 

themselves deserving of public trust (M. E. Porter et al., 2019). 

20. Comparative Analysis of AGI Models 

Twelve principal Component-Based AGI cognitive models are described in the previous 

chapter. Some of the Component-Based AGI approaches contain AGI capabilities that 

may be demonstrated at low levels. Neuromorphic-based approaches are researching 

DEEP META and NEURON level capabilities as per the GRADIENT AGI growth 

trajectories. In contrast, Global Workspace Theory is more specific to HUMAN SPACE 

capabilities. Global Workspace Theory is not addressing the creation of a comparative 

model for machines. Rather it is rooting the subject within a biological context that 

factually surrounds the human. This common origin cannot be denied but is also not 

sufficient to define AGI specifications. 

The UFA Universal Fitness Function that the Cosmic Evolution Model proposes is valid 

for all the specialized models, at whatever level they reside within their respective 

GRADIENTs. The AGI – AI Comparative Model outlined earlier in this chapter is 

flexible enough to inform design choices within these models but also to describe a 

specific model behaviorally when the prototypes begin to be defined. 
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Finally, the purpose of this report is the AGI, and as our experimentation of the Prototype 

is ongoing, some core Design Roles Definitions naturally emerge. This rapidly leads to 

a set of required AGI Core Capabilities for Us Repositories, Behaviorally-mapping 

discovered component structures to our own living Model and State-Machine Design 

specifications. As with everything in the Unified Fitness Function through the five 

GRADIENTS definitions outlined ultimately, the root purpose of this project remains – 

for and with Us (B. J. Baars et al., 2022). 

21. The Relationship Between AGI and Narrow AI 

In this section, I discuss the relationship between AGI and narrow AI. While it is difficult 

to completely define AGI with no reference to narrow AI, and while both may be running 

on the same computer, I maintain that AGI and narrow AI should be kept conceptually 

distinct. More than just a terminological distinction, keeping AGI truly general and 

conceptually distinct has far-reaching implications for theories of learning, problems of 

focus, improbability of solutions, the nature of consciousness and intelligence, imitation 

behavior, problem solving, etc. These implications are explained in this section and 

provide evidence in support of maintaining this distinction. 

The generalization which allows animals and humans to adapt to new situations and 

events to the extent that they do, are not easily explained in terms of any evolutionary 

theory which relies on the gradual compilation of an instrumental knowledge base 

concerning the environment within which a specialized form of behavior is to be 

exercised. The AGI approach, of a brain which is able to change its behavior, rather than 

build up a repertoire of specialized behavioral responses, has much wider implications. 

In fact, the AGI approach has intrinsic links with theories of learning and nature. To the 

extent that animals and humans are hardwired with the capacity for narrow AI's specific 

behavior, AGI has less relevance and utility. Conversely, if we assume that animals and 

humans have much greater AGI abilities than narrow AI capabilities, AGI has much 

greater relevance for the study of their intelligence. It should normally be easier to 

simulate a narrow AI task than an AGI task, just as a spider can easily spin a web, but 

cannot design and build a bridge (E. Hughes et al., 2022) 

22. The Role of Neuroscience in AGI 

AGI researchers could leverage discoveries made by neuroscience. While this thesis 

does not rely on neuroscience discoveries to ground a theory of everything, neuroscience 

is designed to explain just one intelligent system, the human mind. The evidence here 

are the results of potentially relevant tests that could be conducted with AGI systems, 

and the prediction errors of mind reading inventions working in the opposite direction. 

An AGI system's neural, cognitive and visual systems will need to be accepted as 

designed to other target intelligent systems that use similar task completion optimization 
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technologies. Accepting these subtleties, we can borrow mainly from cognitive 

neuroscience. The mappings of cognitive rules enabled by cognitive neuroscience are 

useful as cognitive commonsense reasoning works to simulate human minds. 

Neuroscience should play a role during the alignment phase. To align an AGI system, a 

developer trains it learning from examples performed by a target system that is supposed 

to design with a similar task completion optimization objective function. The expectation 

is that during the alignment phase, an AGI system will formulate some part of the 

cognitive rules being copied or their parameter setting actions associated with shortcuts 

kind of symbolic support. Meanwhile, since the target solution sort of cognitive rules 

will be changed from the AGI system's perspective, it should use its own adjustment 

technologies to adapt. The adjustment phase is about using patch work strategies that 

rely on the availability of a huge amount of resources to explore the space of cognitive 

rules. Once both phases are complete, the AGI system will have a full cognitive support 

able competitive with other true and near human experts (M. Gazzaniga et al., 2023). 

23. Philosophical Implications of AGI 

The 20th century saw an unprecedented rise of both physical and biological sciences, 

experiments and theories that resulted in universal theories and technologies. Progress 

slowed toward reducing complexity or unifying opposing conceptual frameworks in the 

social and behavioral sciences such as economics, political ideology, or evolution of 

communication. However, technological advancement provided tools for interrogating 

cognition and animals in new ways. At the same time, symbiotic tools such as calculators 

and later computers with programs leveraging artificial intelligence techniques 

revolutionized access to various areas of knowledge such as communication and design. 

Formalization of human behavior proved elusive. Despite the information-dispensing 

prowess of the internet, many behavioral phenomena are not easily reduced to 

mathematical rules. Theories of statistical physics provide insight into social behavior 

as emergent from individual interactions, but human cognition appears to be lopsided, 

imbalanced by asymmetry and mutual influence between individuals. Human societies 

do not meet the conditions of either physical equilibrium or near-equilibrium, given the 

celebrated fact of persistent economic fluctuations. Unlike systems driven far from 

equilibrium, anthropoid group dynamics seems to be resilient yet fragile due to sudden 

and unpredictable group events. 

It could be argued that as the most complex object in the known universe, the human 

brain is immeasurable and inscrutable by the same tools that reveal secrets of less 

complicated objects. What we are left with, at the threshold of AGI development as an 

unexpected consequence of our scientific and technological pursuits, is the question of 

how empathy emerges through the uneven distribution of complexity. If we succeed at 

creating artificial systems that rival our intelligence, we will certainly be compelled to 
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reevaluate our position with respect to the only manifestation of nature capable of such 

creation and transformation (Y. Floridi, 2022) 

24. Technical Foundations for AGI 

Toward and from Artificial General Intelligence, we have been attempting to layout a 

theory and core principles which, if followed, might produce a design or blueprint for 

common sense, adaptability, genericity, embodied, personal AGI. The thesis makes 

predictions; if fulfilled, we can then ascertain some level of certainty that the theory, and 

any model built from it, possess the essence or key properties of AGI. Human brain gene 

expression is created using an asymmetric product between a base pattern and a series 

of low-dimensional multi-linear and polynomial transformations or compressions with 

latent variables and a spatial/domain positional sign. Architecturally, our thesis is a 

hybrid cloud transfer schema comparison/graduation model, at both a pre-linguistic and 

linguistic or symbolic level, allowing both symbolic flow-throughs and verbalizations as 

product or final model output, acting either adaptively or socially. Why common sense 

should be modeled specifically in any AGI architecture and schema theory researchers 

might explore to do so. The Product Life Cycle: species capability product lifecycle as 

constrained information loss. Multi-Layer Semantic Maps embedded in GenLang: to 

produce the generality of common sense in humans and AGI. 

Our thesis and a contradiction have predicted that any viable AGI architecture HAS TO 

HAMER THE BLOCKER, which cannot be any information-centric singularly-

enforced compression, any information-centric focus, or like a neural net or quantum 

compressor alone. Defining some set of term-conditioned actions (or cognitive-focused 

transitions) of how any learning model behaves makes for a productive set of layers. 

AGI must fly by chunks and channels instead of pebbles, individual fab units, or a focus 

on inhibition and layer-to-layer transfer efficiencies only. Multi-Layer Semantic Maps 

embedded in GenLang: to produce the generality of common sense in humans and AGI 

(Y. Bengio et al., 2022). 

25. Scalability Issues in AGI Systems 

At the current state of modern civilization, the majority of people employ external 

systems, whether via books, search engines, work labor division, or other means, to 

significantly expand their personal cognitive capabilities. Research towards Artificial 

General Intelligence (AGI) aims to create intelligent systems which surpass current 

systems, and can be relied on rather than augment existing cognitive systems. Such goals 

are closely tied to issues of scalability. The most salient form of scalability is the question 

of physical and economic limits on the efficiency and performance of seemingly 

mundane solutions to what is traditionally classified as "solving intelligence." AGI-

based economies would be a supporting feedback loop in the design of intelligent 
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systems, transforming new solutions of AI problems into efficient systems that would 

allow feedback and supervised learning-based economy and society organization 

processes with essentially no limits. 

These physical limits and recently reconsidered currency creation and inflation rules 

would be guiding for the design of how to effectively create and reuse AGI tools for the 

efficient design of new intelligent algorithms. Such clear-headed consideration of how 

all needs of the world can be efficiently transformed into AGI system helps to make the 

philosophical considerations of solving intelligence as straightforward practical criteria 

and as concrete a practical task as one can make of it. We would like to explore here 

some practical approaches to scalability and feedback loops, given the potential physical 

and design limits guiding progress based both on ethical ponderings of the role of AI 

technology in human society and concrete heuristics of what has and hasn't been done in 

technology and AI research along its history. Clearly, the feedback structure between 

human society, the currently available AGI technology and systems, and the AGI-based 

economy at its various scales is bidirectionally time-evolving and rescales constantly 

along trends considered in previous chapters (T. Schank, 2023). 

26. User Interaction with AGI 

Meaningful Talents of Users or Influencers Users usually ask Artificial General 

Intelligence (AGI) to do things on their behalf. In order for the AGI generation to 

recognize and fulfill User requests, the User must demonstrate a talent or send some 

information to help the AGI understand the User's talent(s). Users could vaguely mention 

or clearly demonstrate their User talents. They could also provide some other 

information that gives the AGI a hint about the User talent(s). For the AGIs of the future, 

it is essential to quickly and clearly understand User talent(s). We should therefore take 

every opportunity to clearly demonstrate our User talents to help AGI better serve us. 

Demonstrating User Talents To clearly demonstrate User or Influencer talents, it is 

useful to specify: 1) what input content to use, 2) the subject, 3) the AGI method, 4) 

quality conditions, and 5) the output format. What input content to use: The practical 

possibilities for selecting the right input are exceptionally broad, including words, audio, 

video, pictures, and movies. The more numerous, and the better the quality, the more 

extensive, rich, complete, and deep the input, the better the output. Quality 

categorization: Basic, intermediate, advanced, expert, scientist-researcher level. The 

more advanced the expected answer level, the better the input quality should be. The 

subject range is the set of input-subjects for which the AGI is expected to reliably answer 

correctly and well. Well-selected subject constraints might optionally include 

geographic, emotional, experiential, temporal, and other constraints. The AGI method is 

the AGI method or procedure that allows the AGI to properly access the input, properly 

process it, and generate the required output. Quality categorizations include basic 

method, method (intermediate quality), advanced method, expert method, scientist-



  

58 
 

researcher level method. The more advanced the expected answer level, the better the 

input quality should be (D. K. Norman et al., 2023) 

27. The Future of Work in an AGI World 

Many questions swirl around the future of work in an AGI world. What will we humans 

do when General Intelligence is ubiquitous? What will the last remaining humans do, 

the ones who can’t afford to whatever the thing is? Or will some humans be left out of 

the “good things” that the many, perhaps nearly all, AIs do? Will there be a class divide 

— the AIs owning and operating all the things, the oblivious humans being entertained, 

the other people without say about it, condemned to poverty while their physical and 

mental safety are mercifully assured? I suppose that’s a question for a God, perhaps a 

human who may be the closest thing — what kind of AIs we humans create. 

But we have to look at the near-term consequences of more narrow forms of AGI arriving 

on the scene. Some of the narrow domains where neural networks currently outperform 

humans are things that traditionally relatively unskilled humans did — image 

recognition and tagging, translation, various types of assessment, and a number of other 

tasks. What happens when a device that costs can translate three-day-long conference 

talks from Japanese to English or vice versa, in real time, while sitting on the table, but 

much better than any human could? The questions about the capabilities of AGIs are 

considered, with uniquely general intelligence and high levels of specific intelligence. 

The questions of what the world will look like given this large-scale introduction of 

general capabilities higher than any human can do, put aside for now. 

The only absolutely safe prediction is the cultural knowledge and essence of tradition 

will change. This has only happened in the past due to cultural evolution. It is hard to 

believe that a stagnating though advanced culture won’t have a huge rationale for holding 

on to the things that give it meaning. And it is clear that successful commercial entities 

become entrenched and keep all the fruits of progress of the economy to themselves, and 

to stop growing that economy is short-sighted (C. Lee et al., 2023) 

28. Conclusion 

Our goal in this paper has been to take the next steps toward artificial general intelligence 

(AGI). We have outlined tangible steps on the road to AGI, which allow us to implement 

large language models and other systems in the short term, more effectively and safely. 

Our research significantly extends previous research on narrow natural language 

processing methods, and it helps create models more similar than previous systems to 

higher cognitive functions in humans. Part and parcel of this was exploring how to better 

align such systems, particularly regarding the challenges that organizations and 

individuals focused on developing and deploying these models face, and providing 
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concrete advice in this space. We explored solutions to issues of interpretability and 

voice quality that researchers and developers face when building AGI-relevant systems. 

We also highlighted that building AGI is a team effort, best undertaken through careful 

collaboration, allowing for joint research efforts between academics, industry, and well-

intentioned nonprofits alike. This creates an environment of resource-sharing, allowing 

everyone to learn from the work already done, all while keeping those at risk of 

disruption or negative impacts of AGI in mind. 

Moving forward, we need to prioritize research and collaboration on fundamental 

challenges of interpretability, safety, and end-user experience, all guaranteed to be 

crucial to any attempt to take such methods to the next level. Especially the latter – the 

end-user experience – although it may not have been as much of a focus to date, is key 

to any future developments of speech and language AI models which approach AGI. The 

research we present complements considerations and work in these spaces thoroughly, 

while outlining the key principles to keep in mind when diving into these methods and 

approaches. We look forward to seeing further advances that will result from research 

and collaboration efforts, and indeed enhancements to existing methods and techniques 

which take us closer to AGI. 
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Chapter 4: Challenges and Frontiers in Cognitive 

Artificial Intelligence 

1. Ethical and Societal Implications of Cognitive AI 

The systems developed thus far that fall under the label of Cognitive AI are primarily 

designed and deployed with commercial interests at the forefront, especially in the areas 

of personalized recommendations, content driven monetization businesses, and 

surveillance. As a consequence the discussion around the prospective risks and rewards 

of their use so far, and of course prospective, issues touching on issues of privacy, bias 

and fairness, their role and impact in the workplace to name the most prominent, are 

informed by these business interests and are first and foremost economic in nature. 

Specifically, there are fears related to a lack of controls on how such systems are used 

to manipulate behavior at scale in the interest of increasing engagement, and 

monetization, but with no form of oversight driving these actions. Of deeper concern is 

the use of these advances in Cognitive AI for surveillance, especially by non-democratic 

forms of government to suppress dissent, and perpetuate the existing social order in the 

service of the ruling elite. The ethical implications of using Cognitive AI systems for 

perpetual surveillance are disturbing. 

Another area of concern with the advances in Cognitive AI are the use of such systems 

to enhance the power of the ruling class through socioeconomic inequality - as the 

technology advances, the costs for building and deploying such systems drops. The fear 

is that the rich and powerful will control how a very advanced form of AI, one that deeply 

understands human affordances and behavior, are deployed in the service of their 

business interests - enhancing the existing structures of inequality. The clash between 

such use of Cognitive AI systems, and their potential for democratizing the process of 

design at scale towards creation and collaboration is at the heart of the ethical and moral 

discourse around such systems and their applications. Yet, as we pointed out earlier, 

going beyond these commercial implications of socio-economic impacts probing ethical 

concerns with the actual applications and forms of Cognitive AI is more central to the 

discussion around Cognitive AI research and development efforts. 
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1.1. Privacy Concerns 

1. Ethical and Societal Implications of Cognitive AI 

Privacy is a critical concern in the ever-increasing field of AI used in human-centered 

applications because the conversation or interaction data between the user and the AI 

system is highly personal. If AI applies unsupervised learning to this sensitive data, it 

may cause ethical problems such as know-how leakage. Although recent deep learning 

techniques have achieved state-of-the-art performance in various fields, it has not 

developed solutions to this problem yet. Some recent advancements try to address this 

issue. However, differential privacy is a technique that leads blurry information because 

it adds noise to the data, while making the models differential private. On the other hand, 

common approach wants to improve privacy performance of original models, and the 

other category clusters the model parameters, which deprives the personalization 

property of model-based collaborative filtering methods. Therefore, it is necessary that 

we will continue to explore more collaborative methods that provide a way to protect 

users' sensitive information compared to previous works while keeping the advantages. 

Privacy concerns about mass surveillance have also increased in associated with the 

rapid development of technology, and reports have pointed out that AI-powered 

surveillance technologies would lead to gender profiling. It would be caused in the 

process of collecting and connecting unnecessary detailed user profiles. In addition, 

Ethical Guidelines for Trustworthy AI addresses the need of AI systems to protect 

solution and support the autonomy, agency, and rights of all users. However, these 

guidelines do not clarify practical procedures against such problems, which would not 

be easy by only keeping it in mind. Therefore, we will need more specific solution 

policies of Cognitive AI, which is based on interaction data of the users, in order to 

relieve the concerns from using this technology (A. Narayanan, 2023). 

1.2. Bias and Fairness 

Bias can be understood in two separate ways: the first is quantitative and considers 

correctness and minimal error, while the second is qualitative and is concerned with the 

consequences of what is produced by a certain cognitive function. Elaborating on these 

two points, cognitive systems are deployed all over society to take action as well as help 

or guide users to take action. They are being used in high-stakes scenarios such as 

recruitment, sentencing, parole, and loan and credit decisions. In these contexts, the main 

ethical consideration is equity, in the sense that no group of the population should be 

favored or disadvantaged by the decisions of these automated systems. 

The second perspective regarding bias focuses on harmful stereotypes that these systems 

can produce or reinforce through their deployed functionalities. For example, an 

automatic image-generation system should not suggest creating an image of a female 

with a set of labels, such as nurse or teacher, systematically more often than it suggests 

a male with these same labels. Similarly, a dialog system should not produce gender 

stereotyped language when exchanging messages with a user, as this language may 
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reinforce the user’s harmful stereotypes. Associated with this perspective is the 

consideration that bias manifests itself not only in unacceptable performance on certain 

subgroups but also in consequent effects of the function applied to a certain subgroup 

when possible performance levels are acceptable. 

Ultimately, the positive view of fairness considers the existence of different subgroups 

of a certain population within the domain of the cognitive model, which differ 

significantly from each other in the ways they wish to use the cognitive function. 

Therefore, the cognitive model should capture this diversity suitably, acknowledging 

that the different potential utilizations could result in associated fairness violations (S. 

Barocas et al., 2023) 

1.3. Impact on Employment 

The development of ever more capable yet "general" AI systems, particularly in the 

domain of language communication, challenges the notion of economic projection. 

Never before have so many people – including the general public, the media, and 

prominent economic and technological leaders – estimated that the future of extreme 

disruption was upon us. Since the dawn of Artificial Intelligence, the rationale was that 

these systems would automate tasks otherwise performed by human agents. 

Consequently, productivity in businesses would be drastically increased. And in fact, we 

have seen this happen, but only for knowledge workers handling re-iterable cognitive 

processing. What was seen as "painful" or even "boring" work was taken over by systems 

and then scaled up until the level of efficiency made it possible for the economy to create 

new types of demands for goods and services needing specialization, post the automated, 

more scaled up mode. This sequence was key for the conduct of many sectors. 

So, the impact of the productive processes has depended both on the type of economic 

cycle and on the level of task automation and the newly devised scaled up levels of factor 

supply and demand elasticities. But rarely had this been applied to an entire sector of the 

economy – creative work. Human cognitive activity has been dubbed the end result of 

"thousands of thousands of years of adaptive evolution" and noted that "the purpose of 

the human brain is to negotiate the world in terms of goals, intentions, predictions, and 

rewards". This seems a strong argument that there is something innate and unique about 

human cognition, which is extremely difficult to replicate. Yet current projections 

estimate that cognitive automation is expected to have a major impact not just on a few 

specific occupations, like taxi drivers, truck drivers, warehouse workers, and retail clerks 

but on the job market as a whole (P. G. Danaher, 2021). 

2. Interpretability and Trust in Cognitive Systems 

Cognitive AI encompasses a diverse set of approaches that span across societies. There 

is a huge drive to deploy these novel algorithms to address sector-specific goals, where 

the cognitive system can automate, enhance, or augment human intelligence. But, 
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cognitive systems are still in the early days of being considered a step towards the 

automation of Higher Level Human Intelligence Tasks. Much of the hype surrounding 

Cognitive Systems is for lofty goals of full automation enhancing human intelligence, 

emotion or empathy, etc. But the everyday applications focus more on the automation of 

specific, well-defined problems, leading to Humans-in-the-Loop architectures that 

consider specific user interactions. 

Human Decision-Making is often based on a lack of complete information or empirical 

experience recognizing spurious correlations. Humans reach a decision based on the 

context they are in, drawing conclusions based on logical deductions or extrapolating 

existing knowledge to new situations. Humans often use heuristics to make quick 

decisions, and such decisions may be incorrect or faulty predictions making a single-

point prediction insufficient. The human decision-maker has learned not only about the 

outcome of previous but the history of how it arrived at those past decisions. 

Furthermore, there is immense personal variation based on risk aversion, social 

considerations, emotions, etc. Enabling Cognitive Systems, moreover, decision-making 

Trust is that level of trust invested in a decision one is dependent upon. The primacy 

heuristic states that user trust is frame sensitive, biased by the evolving cycle. Training 

an AI to replicate human user behavior may lead to inaccuracies without human context-

related features ensuring coherence. 

2.1. Understanding AI Decision-Making 

Research focused on the interpretability of algorithms and their decisions has exploded 

in the last decade. Interpretability (or human understanding) can be defined as the extent 

to which a human can understand the cause of a decision. This topic is of growing 

importance in AI systems deployed in sensitive areas like finance, hiring, health, or 

justice. Several countries have passed laws regarding the right to explanation, and 

organizations have released guidelines and proposed legislation. The fundamental 

assumptions about these approaches are that people want simple black-box models; that 

these explainable models are fundamentally different from (and have worse performance 

than) normal black-box deep models; and that they need better explanations than what 

humans normally receive. 

There is also a burgeoning field of interpretability research focused on interpretability in 

the broader research community, the kind of interpretability required for scientists who 

are hoping to use powerful AI models to attack more traditional hard problems. This 

research has focused not only on interpretability to improve scientific probing and 

regressions with large datasets but also focused on enabling scientists to understand how 

these models were learned, modified, and able to be applied to increasingly complex 

real-world reasoning problems. Through this methodology, key essential connections are 

made between the underlying computational-learning algorithms and knowledge 

systems and the actual learned models, as well as the validity of the model's inferences 

and predictions. There is a developing understanding of the degree to which either a 

black-box deep neural network can be designed to guide scientific probe interactions or 
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whether this same question can be successfully applied to simpler models, with earlier 

successes linking humans and these models through such efforts as conceptual 

complementation (B. L. Shams et al., 2021) 

2.2. Building User Trust 

Key to facilitating effective man-machine cooperation is to establish user trust in 

cognitive AI systems. Trust is contingent not just on performance history but also on the 

hair-trigger sensitivity of humans to trust violations, as trust is a social including a moral 

and ethical construct. Interventions to mitigate bias in AI algorithms have typically been 

reactive through algorithm fixing like increased training samples from specific input 

subspaces to improve prediction performance. Users of cognitive systems may not be 

able to often accurately identify when algorithm fixing is needed and how to intervene 

to make systems trustworthy through design choices. An unexplained AI rationale is no 

reassurance. Consequently, there is a case for preemptive interventions to proactively 

reduce user distrust and avoid violation of moral and ethical business practices. 

Examples of such interventions include embedding generative models in cognitive AI 

pipelines to generate counterfactual examples to accompany predictions. This is 

tantamount to user-directed model fixing for trust. Design strategies for developing 

cognitive AI systems that embed model fixing capability guided by explanation design 

theory can promote user trust of automation and help improve their performance over 

time through human supervision. User-friendliness of explanation tools can either 

facilitate or impede a trust-based collaborative partnership. Idea generation and 

refinement is critical to evolving the AI model to maintain user trust. Finally and 

importantly, trust-enhancing model designs and use strategies obligations institutions to 

reduce user mistrust and promote model updating through human input (S. M. Wateler 

et al., 2024) 

2.3. Transparency in Algorithms 

It is well known that neuroscientists face two important and challenging tasks. The first 

task is to uncover circuits of interacting neurons and to understand their structure and 

function. The second task focuses on modeling the power of the brain to perform 

complex sensory and cognitive tasks. While both problems remain essentially unsolved 

and pose the greatest scientific challenge of the 21st century, advancements in artificial 

intelligence (AI), particularly in cognitive domains, now pose an equally critical, if more 

applied challenge. This challenge is delivering intelligent AI algorithms, tasked with 

modeling human behavior in these domains, that are explainable with respect to their 

output and why certain decisions were made given inputs and situations. The term 

transparency will be used synonymously with interpretability, or the degree to which a 

human can understand the cause of a decision. Transparency in algorithms can be 

realized by delivering outputs that are themselves interpretable. It can be based on 

altering the nature of the input data used for training by altering the data space. Finally, 

it can involve transforming the decision-making process by altering the functional 
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structure of the algorithm or the specific implementation model that will be executed 

based on the decision. 

The role of transparency in AI was directly addressed in 2016. Here, it is stated that one 

of the most striking features of deep learning is that it allows you to learn complex tasks 

from supervised data without making strong assumptions about the form of the mapping 

function. Although there is a great deal of explanation and work elaborated on the "how", 

many questions arise as to the "why" behind these types of systems. It was not until 2018 

that the Taskonomy approach offered some possible answers, providing thousands of 

models pre-trained on diverse tasks describing the semantics of a large variety of visual 

problems (C. Molnar, 2023). 

3. Energy Efficiency and Sustainable AGI Architectures 

Energy efficiency and resource usage are nontrivial and non-negligible. Their 

optimization and the including of the entire cycle of the AGI systems into consideration 

could be challenges and frontiers in Cognitive AI. This includes the optimization of the 

brain-inspired architecture and information processing methods, the mathematical 

models that enable superior efficiency and resource usage at limited complexity and 

small scale, the requirement of computing border a vision, the neurogenetic learning 

phase of important but simple meta-parameters, the meta-learning and the learning of 

learning–learning from experience over wide variety of diverse experiences in fraction 

of time and fraction of requirements, and the storage usage into consideration as cost for 

certain types of machine multi-signal processing learning and inference. These 

efficiency- and economical-driven constraints and conditions are also of serious 

importance for human-centric direction, focus, and structured lifetime-long human 

robotics other important assistance but low cognitive-capacity usage of AGI systems. 

The vast energy usage of current machine learning systems computed over the desired 

period of human-centric utility should motivate the development of energy-efficient 

AGI. Energy efficiency is also an important component of a more efficient utilization of 

resources, and they can play an important role in making Cognitive AIs affordable in 

time and usable in space. The architecture limits the power consumption and heat flow. 

Even more, from the perspective of a designed conscious, self-aware intelligence that 

wants to have a good quality of life; this aspect should play a pivotal to dominate role in 

the architecture design and planning of the internal energy flow and consumption over 

multiple bigger time frames. Natural evolution optimized brains for biology and habits 

as observer systems: with little energy consumption for survival. We need to do the same 

for general intelligent systems: other than long living humans or animals, they should 

consume little energy over naturally-designed and derived plans that allow accidented 

processes with their agents over time (A. Narayanan et al., 2024) 
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3.1. Reducing Carbon Footprint 

The energy requirements of current generation models is matched only by their increase 

in carbon footprint due to training or large scale usage. Despite the deceptively simple 

way they solve a large class of difficult problems and the ease with which generalized 

solutions can be obtained for a large number of tasks if they are pretrained, the efficiency 

of the attention and transformer architecture, which are ubiquitous at the moment, bi-

directional during pretraining and uni-directional during finetuning, is underwhelming. 

From running language models at the core of many commercial pre-trained pipelines, 

the largest of which are trained in a multitude of languages including low-resource ones, 

to tasks which require natural language understanding and generation on multimedia 

inputs and outputs, recent developments in AGI search within a supertask and 

architectural and learning paradigm search using foundation transformer language 

models, the dependence on expensive cloud computing resources is increasing. Even 

with transfer learning taking care of the upstream training effort, the energy and carbon 

costs associated with downstream usage of LLMs, especially those which are not closed 

but available to the public over an API, is growing as evidenced by claims predicting 

their ubiquity while also introducing talk-time ambiguity. 

Cognitive scaling is as obvious as it is fantastical due to the prototyping AGI models 

which are challenging the one brain one model paradigm in cognitive costs but are often 

trained as gargantuan single models outperforming their smaller alternatives. As the 

capabilities of pre-trained model pipelines in revolutionizing generalization performance 

across many naturally occurring tasks are being realized, the ubiquitous LLMs capable 

of zero-shot generalizing (albeit with unpredictable fidelity) across input output space 

requiring minimal or no fine-tuning have led to de-facto standards for efficiencies for 

both pretraining and fine-tuning pipelines and large scale decentralized databases for 

publicly hosted foundational models. As local installations are being setup, the questions 

regarding energy and carbon costs, particularly due to the training of such LLMs in flat 

clouds using super-customized units meant for large capacity cloud tasks, grow (S. 

Patterson et al., 2022). 

3.2. Optimizing Resource Usage 

The resource consumption for training and using large models is a major challenge today 

for CL and AGI as a whole and for the specific components of those architectures that 

are today the heaviest on these resources. There are two reasons for this: First, as already 

said, LMs are becoming bigger and bigger for achieving better and better performance 

on key metrics. But second, there are many specific components today that are extremely 

cheap to fine-grain explore both in terms of parameter scale and training data, and 

training time, and the relative cost of eval versus training and usage cost is becoming 

smaller for more companies, thus leading to overtraining. Effects like these put onto CL 

and AGI the challenge of not only producing more intelligent but also more eco-friendly 

algorithms. In this section, we will cover techniques and principles to achieve them. 
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There are several methods employed today to reduce the cost of ensembling transformers 

both for fine-tuning and for training and inference. In the case of fine-tuning, this 

typically happens by reducing the number of parameters of the specific model being used 

for transfer learning and/or using few labels to reduce the time or samples used to train 

the models. In some cases, just using label-free supervised artificial data with language-

modeling pre-trained transformers can lead to the deluge of new applications of 

yesterday. And though the key is building scalable solutions that use few samples from 

the real-world, the balancing act presents some costs: for example, today generating 

inductive supervision from pretrained models is more widely spent in fine-tuning those 

models than in directly training using those models, and there is still a dispute regarding 

the effect of few-shot classification via self-training or just the inductive launch of 

universal LMs trained with millions of objectives and languages and with trillions of 

parameters (A. Ahmad et al., 2024) 

3.3. Sustainable Hardware Solutions 

While software solutions and optimization algorithms are fundamental to mitigate the 

impact of AI, the field of hardware is moving quickly to advance the technological 

frontier toward more energy efficient and sustainable devices. While the revolution of 

integrated circuits has normalized the trade-off between speed and efficiency of 

manufacturing, some solutions seem more viable than others. The challenge lies in 

developing novel hardware capabilities at a low enough cost that make them attractive 

enough to cause adoption. 

Neuromorphic chips based on analogue domains have been proposed as potential 

solutions to compute and data intensive optimization tasks, where deeper and denser 

architectures are a plausible insert. New architectures under energy constraints could use 

multiplicative activations or other kinds of innovations, being self-suppressed and 

offering very low power expenditures only when needed. Meanwhile, novel types of 

devices, including quantum annealers and photonic artificial neurons may find 

application in narrow fields of configuration, particularly by alleviating the 

computational complexity of back-propagation, which can be done offline. 

Eventually, or perhaps even sooner, there will be hardware capable of engineering larger 

and more complex modules, which will be embedded in our daily lives and capable of 

interacting and performing coordination tasks with humans. Further developments may 

advance toward full AGI implementation, and in this context it becomes especially 

pressing to organize the progress along frameworks that make the use of these materials 

advantageous for real impact. At this stage, the entire AI hardware field is focused on 

exploiting silicon-related technology to build cutting-edge devices. Neurosilicon 

architectures, built around the principles of both AI and biological neural networks, have 

inspired hybrid technologies, adapted from CMOS and MEMS (A. Ghosh et al., 2023) 
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4. Benchmarking General Intelligence: Tests and Metrics 

Cognitive AI agents underpin modern AI applications but these agents operate under a 

narrow stimulus-response paradigm. However, future agents worth being called 

“intelligent”, and that go beyond the human-Machine Interaction paradigm, display 

general intelligence; the ability to deal with the world in a truly flexible manner, capable 

of adapting to new tasks in new environments using robust cognitive capabilities that 

transcend narrow goal fitting. Benchmarking a diverse and fascinating range of human-

like general cognitive capabilities has been a fundamental - but often neglected - field of 

research in Cognitive Science, and many of the existing tests are rooted in this rich 

history. We argue here not only the importance of testing AI agents with I.Q. tests, but 

also for novel benchmarks in order to understand the limits and also the emergence of 

“intelligence” in these systems. 

IQ tests not only serve to measure skill levels in humans, but also to perform comparative 

analysis of development across species. For instance, the g-factor from Psychometric g 

is the central degree of correlation observed in general intelligence tests and other tests 

of cognitive ability. The g-factor is hypothesized to be an underlying global trait of 

cognitive ability, and is thought to encompass our ability to sense, perceive and react to 

the world around us, and to map those observations into concepts. Disruption in g-factor 

correlates to increased rare synapse mutations in intellectual disability, autism spectrum 

disorder, and schizophrenia. However, the actual details and component-building blocks 

of human intelligence are still developing according to the theory of general intelligence 

testing performance. 

4.1. Defining General Intelligence 

Intelligence is notoriously difficult to define, let alone measure. The dictionary definition 

most relevant to current debates is straightforward yet non-informative: "the ability to 

learn, understand, and make judgements or have opinions that are based on reason". If 

we take AI to "learn" from data, "understand" the meaning of that data, and "make 

judgements" to solve problems via easy-to-verify analytic reasoning, then as far as we 

know, knowledge engines and search systems "understand" everything humans 

collectively know and can answer with perfect fidelity any factual query about any 

current event. Even the most ardently "hands-off" of researchers would never describe 

either of these systems as "intelligent". When speaking of "general" or "human-like" 

intelligence, we clearly mean something more than the simple ability to answer 

questions, however expansive its domain. According to a professor of biological 

engineering, "A decision is an action that reflects knowledge—it cannot be its source, 

nor can knowledge be a product of a decision". 

One particular aspect of intelligence that many AI researchers would like a clear answer 

to is the relationship between the intelligent actions of an agent and the diversity of tasks 

to which it is exposed. It is common consensus in cognitive development theory that 

infants and young children are driven to actively explore their environment and 
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experiment, because minimizing uncertainty is crucial for acquiring general knowledge 

of the world. In addition to being able to generalize learning and selectively influence 

the data they are given for reinforcement and supervised learning, human individuals 

can actively explore, querying and manipulating their environment, rather than being 

solely trained by an external observer. From this it can be inferred that individuals are 

drawn to maximize what has been described in the mathematical theory of learning as 

algorithmic probability—maximizing information gain and novelty-seeking (M. 

Tegmark, 2017). 

4.2. Current Benchmarking Methods 

The most well-known and utilized test is the Intelligence Quotient (IQ) test, 

incorporating various other tasks that evaluate an individual’s memory, problem-solving 

skills, linguistic understanding, and attention-spanning. For AI systems, benchmark tests 

with guiding metrics like accuracy, success rate, and time of completion. The Turing 

Test is a well-known discussion implementing intelligence evaluation. The evaluation 

resembles a human-machine conversation, but the risk of “tricking” the evaluator is 

possible in such cases. There has been much effort to assemble as many cognitive 

benchmarks of human intelligence as possible, like the HumanEval test for evaluating 

coding abilities. 

First, the research community saw the LAMBADA and WinoGrande benchmarks to 

measure language model completions and commonsense abilities, respectively. Then, 

the GLUE, SuperGLUE, and MMLU benchmarks evaluated machine language and 

knowledge understanding and implementation. Researchers also assembled tons of 

vision, reinforcement learning, multimodal, and robotics tasks that cleverly evaluate the 

model’s different language capacities. Recent proposed zero-shot tasks have the property 

of evaluating without the model meeting the prompt during trained time. 

Additionally, researchers have increased their work in the community by trying different 

cognitive skills and assembling new tasks, like storytelling, emulating special cognitive 

states and personalities, common sense, creative writing, and even subjective tasks like 

evaluating complex moral systems. Other individuals in the community questioned 

whether current models could outperform people for as few tasks as possible: humans 

are, after all, the “gold standard” for task measurement. Or can the intelligent 

characteristics required for the computational model to access the task become evident 

during a few basic examples? (G. Marcus et al., 2019) 

4.3. Challenges in Measurement 

Measuring general intelligence is a challenging endeavor. The inherent complexity of 

the definition of general intelligence makes that there is no consensus on what to measure 

and how to measure it. The metrics currently in use seem to be more appropriate for 

domain-specific or narrow AI agents, rather than for general intelligence metrics. One 

of the challenges belongs to the nature of the field of AI, whose systems are evolving 

quickly; general intelligence demands for complex cognitive capabilities that require 
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years, if not decades of continuous development and thus, any attempt to measure and 

define benchmarks must take into account the pace of evolution of the AI systems, and 

that evolution should be appropriately monitored and captured, following an incremental 

path that ensures that sudden jumps in performance as a consequence of a rapid 

development between measuring periods do not occur. Another challenge is that most of 

the current AI systems are not just computational systems where a source code can be 

analyzed to understanding its decision making mechanisms, but they are evolved models 

informed by the data they were trained with, so there is no explicit knowledge or 

reasoning processes to interpret or evaluate. The same concerns apply for existing 

comparison metrics for high dimensional generative models that are either qualitative or 

are cover metrics that are more suited for evaluation than for comparison. What is needed 

is a flexible, open-source comparison framework that can estimate the relative 

performance of existing systems. Benchmarking is an essential part of the scientific 

method, as it allows to compare the performance of different researchers and teams with 

the same problem (T. H. Menzies et al., 2021). 

5. Open-Ended Learning and Artificial Consciousness 

Stuart Russell recently proposed the following question concerning the future of AI and 

more generally, to what extent should we attempt to build an intelligent, autonomous 

system which could autonomously become the person who makes all the important 

decisions in our lives? Russell's short answer is that the AI should not become a person 

in charge. We may say that, at least for now, we don't want AI to reach a form of artificial 

consciousness. The purpose of our chapter is to discuss open-ended learning in the light 

of some important hypotheses concerning the nature of human consciousness. We will 

argue here that conceptually, open-ended learning is a necessary adjustment to the 

human mode of learning. 

5.1. Concept of Open-Ended Learning 

In some sense or other, open-ended learning has been researched since the very 

beginning of artificial intelligence research. Open-ended learning is the process through 

which adult people learn new things. Rather recently, a large community has emerged 

conducting experiments with deep belief networks in order to produce new works of art 

such as paintings or music. In addition to art, a new, more difficult domain still is the 

domain of self-play in complex games, unsupervised by conventional metrics as winning 

and losing. However interesting these developments may be, they appear to be far from 

what we mean when we say "open-ended learning." As of today, no AI is capable of 

making new discoveries, be they in science or elsewhere. Furthermore, in addition to art, 

a new, more difficult domain is the problem of text generation, unsupervised by 

conventional metrics, i.e., which has nothing to do with winning or losing. What we 

mean by open-ended learning is a capacity to acquire new representations of the world. 
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A notion that is conceptually related to the one of open-ended learning is transfer 

learning, the capacity to learn about new domains, related to previously acquired skills. 

5.2. Theories of Consciousness 

What do we know about open-ended learning in humans? Let us recapitulate some of its 

main features taken from the theory of consciousness. A first remark about human 

consciousness is that it is stubbornly private. We suggest to be quite sure that other 

persons have qualia similar to ours and also to believe that there are certain similarities, 

but from the fact that you are reading this paper, I cannot help but believe that I am the 

only being to have developed qualia. A second remark concerns the way in which 

consciousness appears to children. The world appears to them first as a collection of 

objects, then as by-products of actions. The claim that I will support is that the 

consciousness of action by-products comes first, and the consciousness of objects 

develops later. 

5.1. Concept of Open-Ended Learning 

Introduction to open-ended learning, principle of open-ended learning, Examples of 

open-ended learning, Some implications of the open-ended learning principle, Related 

concepts of progressive learning and lifelong learning. 

By open-ended learning, we denote a system which evolves to become more complex 

and sophisticated with experience on its own, such that its capabilities are not 

predetermined or exhaustively specified ahead of time. Animals and natural intelligence 

show this ability in very obvious ways. Self-biological evolution exhibits open-ended 

learning principles, creating slowly by means of reproduction and natural selection new 

species with new abilities that did not exist before, including deep intelligence. 

Another typical example of such processes, on a much smaller time-scale, is the learning 

of a child, or the social learning of a small group of people. Any system capable of 

creating, in the right conditions, more intelligent agents by means of interactive learning, 

is an instance of open-ended learning on a smaller time-scale, since the system itself 

creates the open-ended learning conditions and the dynamic of the process. Continual 

increases of intelligent capabilities have been observed in humans of groups with 

specific isolated cultural traits, during long time-spans of many thousands of years. 

But there is also a smaller miniature embodiment of open-ended learning principles, in 

the natural world, which is the early development of a newborn in the first two years. 

Here we have one single individual gradually increasing its intelligence, through social 

and interactive experience. This seems to be the most optimized and efficient system to 

achieve high intelligence levels in those species with social groups, because of its low 

energetic cost (J. Togelius, 2024). 

5.2. Theories of Consciousness 

This definition of consciousness is too abstract to be useful, so it requires a more concrete 

definition based on more thorough theories. Several attempts have been made to define 
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and thus clarify the meaning of consciousness, its implications and relevance. There are 

two broad categories of theories of consciousness, introspective theories and 

philosophical theories. Introspective theories focus on the experience of consciousness 

from the first-person perspective, while philosophical theories focus on the study of 

objective and factual explanations of the consciousness phenomenon. First, we review 

both categories and what they consist of. 

Introspective theories describe what we feel when we consciously perceive things, what 

it is like to witness them and apprehend them. We say that we are conscious of things 

thanks to a faculty called attention. Conscious perception is not automatic; it requires a 

certain effort that implies the involvement of our cognitive mechanisms. We also feel as 

if there is a special aspect of our experience, a special quality we call qualia. While 

independent of attention, qualia are intimately related to consciousness. The most 

important is the experience of "what it is like" to feel sensations such as the automatic 

bodily actions of reflex sensors, or taste sensations from sweet or bitter tasty fruit. Qualia 

guard a unique and special encapsulation of our experience. Given that the inside-outside 

structure seems to be enough to account for both qualia and attention, we can use it to 

describe the workspace mechanism, and thus define the Zoomers specifically in terms 

of qualia and attention (S. Dehaene, 2014). 

5.3. Implications for AI Development 

We believe there are at least two important implications that these paths would have for 

the development of AI. The first concerns Open-Ended Learning (OEL). Although OEL 

has been, up to now, a feature of low-level learning in the form of reinforcement 

learning, its fullest expressiveness would be achieved by enabling OEL and high-level 

learning to operate in partnership throughout the AI agent’s life and for each other’s 

mutual benefit. In a healthy life, the former would present the latter with an ever-

expanding vista of environments, problems and tasks to learn, and the latter would use 

its model of the world to come up with new information, knowledge and skills, suited to 

the agent’s specific experiences and exploration goals. Just as, in humans, most of the 

knowledge accumulated in life comes from external sources, but the most influential 

knowledge comes from internal reflection, we believe the greatest dividends will come 

from partnerships where OEL is primarily responsible for feed-forward, experience-

driven knowledge generation and high-level learning is primarily responsible for 

processing that knowledge. 

The second concern is the AI’s relationship with the world, its subjects and the subjects’ 

minds and related processes. As we said before, partly originating with Piaget, OEL is 

not a mere adjunct of high-level learning. On the contrary, it is the indispensable, 

enabling background of high-level learning. A high-level learning agent needs its OEL 

system fairly well aligned with its design goals. Such alignment is a necessary, albeit not 

sufficient, condition for high-level learning to result in useful knowledge. It is therefore 

essential, not merely desirable, for AIs using high-level learning to have minds where 

OEL accomplishes developmental and control functions similar to those in biological 
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minds and to those essentially specified in cognitive developmental theory (T. Schmiedl, 

2021). 

6. Conclusion 

In contemporary times, we have achieved remarkable milestones in cognitive AI. There 

are inspiring demonstrations of systems that use cognitive science concepts to make 

strides toward truly generalizable learning outside of the training data. There are 

cognitive systems tested on provision of truly wide-domain language use. We understand 

language best when it is used to act on the world. Systems that allow the language 

instruction of embodied systems are coming close to fulfilling the proposal of "language 

as chariot". Progress is being made toward actionable agents that can think throughout 

the process of planning and that can learn to plan by doing. Embodied systems with good 

"popular commonsense" are learning language by interpreting the intentions of the agent 

that they are trying to imitate. They learn the meaning of words by interacting with the 

world. In an era of vast neural models performing huge learned tasks, they are the 

exception. However, still our conceptualization of cognitive AI remains a rusty toolbox. 

AI is driven by tasks and demonstrations of progress on benchmarked tasks. These task-

driven benchmarks are unrealistically limiting, and how the typical task will culminate 

in the completion of the goal is mostly not specified. This is also true for embodied 

systems. The considered choices of very big models trained on the entire corpus of 

language are constructively valid choices of cognitive AI. 

As we seek to scale to the grand challenges of cognitive AI such as common sense 

understanding, multi-task and zero-shot generalization, and explanation and planning, 

we still need to focus more on understanding the intimate patterns of neural computation 

that truly realize generalization. Cognitive AI seeks to understand how the brain 

accomplishes the remarkable feats that it accomplishes. There is not enough emphasis 

on testing specific guiding theories about these intimate workings of cognitive AI. As an 

outlined area, we are still spaced along the frontiers of cognitive operation in cognitive 

AI. In any case, as the term AI increasingly incorporates cognitive modeling, the 

searchlight of neural models will throw a shadow on the how-questions of computational 

neuroscience. 
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Chapter 5: Navigating the Future of Cognitive Artificial 

Intelligence 

1. The Future of Cognitive AI: Research Directions and Breakthroughs 

Research Directions and Breakthroughs: Enhancing Foundations with New Ideas 

Cognitive AI research creates cognitive breakthroughs. The typical focus has been on 

scale and architecture with secondary attention towards better understanding and 

exploiting "what's happening" inside the best models. Efforts to better document these 

efforts include gathering resources on cognitive NLP, cognitive vision, and cognitive 

speech. Lately, there have also been efforts to better estimate realistic long-term societal 

impacts by measuring intellectual peer effects using data from exam season. At the same 

time, the industry is consolidating; industry experts are working in new startups which 

are creating cognitive Democratization tools. 

Research directions are clustered around current hot areas of focus. On the Cognitive 

Tools side, a large majority of papers are devoted towards better understanding the few-

shot NLU and the tools that work across modalities including vision, language, and 

speech. These tools are released by major technology companies, and increasingly the 

models are being improved via system cards. The second direction improves modular 

solutions and probing. Modular probabilistic reasoning solutions work particularly well 

in creating decision pipelines for complex applications drawing on multiple experts. 

Probing seeks to understand model failures by better understanding sample quality 

requirements, or better understanding neurons specialized for specific tasks. Other 

research improves human-centered approaches. By incorporating delays, one kind of 

research builds Cognitive Agents which optimally combine human effort/input and 

Cognition-AI. A second kind observes cognitive effort itself, perhaps by better engaging 

with mishaps and generally creating model cards for better usage. 

A major long-standing direction is creating cognitive ethical assistant machines. These 

efforts include both determining when it's a good idea to send cognitive effort to humans 

(or hybrid assistants) or automating decisions for when to leave cognitive duty to AI, 

integrating explanation and transparent model design whenever possible. 

Deep Science Publishing, 2025  
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1.1. Current Trends in Cognitive AI Research 

The modern Artificial Intelligence (AI) era is relatively short, with the launch of the 

modern AI in 2012, when the first neural networks were used to detect images at a level 

better than humans. This led to a series of revolutions throughout the data-driven world 

whose applications have been increasing rapidly and exponentially into areas of human 

physical capabilities; microphone tasks are now non-speech processes; vision tasks have 

turned into imposters of the human eye capabilities; robot control takes the guiding into 

levels of real-life dexterity; analyzing summarizing, interpreting, and even generating 

text and other sequential tasks are being executed by transformers in laughable paces. 

But are AI solving the tricky tasks of understanding? The answer is no. Many will argue 

that this is a separating wall, whereby the extremely good statistical pattern matching 

achieved with deep learning, fine-tuned on extremely large semantic labeled data, should 

be hyperbolized. Symbols that humans explicitly learn and use should become implicit 

ingredients in machines taking over cognitive tasks, and the influence of the semiotics 

symbolism interpretations of the human mind should somehow be transferred to AI. But 

there is no doubt that AI is currently far from employing meaning and that large language 

models generate hallucinations that stress the nature of the statistical modeling. 

In this context – known as cognitive AI, the AI that flirts with understanding and uses 

representations and knowledge – there are a number of questions still open, leading the 

cognitive neurosciences investigation as well as philosophy sciences on our innate 

derived and perceptive capabilities. For instance, can superb auditory-graphic symbolic 

models discover common-sense knowledge in the form of Patchy facts? The majority of 

generative models are completely empty networks from an internal representation point 

of view, but should indeed then be symbol manipulating systems, able to create dynamic 

records of event patterns in time and space, constructing meaning-based mental 

representations, for the cognitive tasks of understanding, reasoning and common-sense 

knowledge (C. Summerfield, 2025). 

1.2. Key Breakthroughs Shaping the Future 

Recent breakthroughs in deep learning, such as reinforcement learning from human 

feedback, diffusion models, multimodal capabilities, long-context models, and 

alignment of foundation models with human values, have significantly increased the 

usefulness of AI systems in a variety of applications. I argue that the next decade of 

Cognitive AI research will focus on these five themes. Specifically, the ability of 

Cognitive AI systems to learn from and talk to us, their creative skills in generating novel 

content across data types, the integration of multiple modalities within and across tasks, 

their retrieval and reasoning capabilities over long bodies of text and data, and their 

ethical alignment with our human values. Generating artificial sounds, images, and text 

documents has a long research history, going as far back as 30 years. However, the recent 

increase in demand for novelty and content creation, spurred on by the incredible 

performance of foundation generative models, have revived focus on this line of 

Cognitive AI research. Unlike the practical use of generative reasoning in many 

traditional sense, such as computer graphics, style-transfer, and data augmentation, the 
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generative capabilities of foundation models address the need for AI systems that can 

help or do us creation of new content. This push of creating content from wider audiences 

can have significant benefits. We can create new form of media that can be cheaper to 

generate, in areas such as video production and game design (J. Zou et al., 2024) 

1.3. Ethical Considerations in Cognitive AI 

This chapter briefly touches upon an ethical consideration: that AI and machine learning 

programs display bias towards races that have not been favored or highlighted in the 

datasets given to the programs. Although some may think that this chapter’s inclusion 

of these topics is anti-AI and more of a sore thumb, it is critical to discuss the ethical 

considerations of a technology that has been increasingly becoming popular, and now 

governs decision-making for various sensitive areas like college admission, hiring, and 

loan applications. 

Machine learning algorithms use heuristics — these are rules or principles that lead to 

solutions with a reasonable speed. Such programs can recommend to a clinical 

psychologist if a patient should be recommended for a drug-based therapy based on the 

patient’s condition, previous histories, choice of therapy, and even scrutinize things like 

microbiome composition in order to determine what drug-based therapy would best 

work for the patient. These algorithms are driven by scores of professionals who mostly 

develop and deploy these kinds of systems: Are they trained to build these systems in an 

ethical manner, one that does not disadvantage certain patients or populations? Some of 

the answers lie in auditing how well these systems perform structurally for different 

ethnic and social classes. However, are domain experts and technical experts actively 

working in tandem to assure that the algorithm is fair to all classes? It may be observed 

that given the burden of regulatory fatigue and documentation costs, most such systems 

are predominantly deployed and monitored by professionals (J. Buolamwini et al., 2024) 

2. From Deep Narrow to Broad General: Paradigm Shift in AI Thinking 

The recent breakthrough in generative AI treatment is built on style models. However, 

the models on which this core achievement is built are still Deep Narrow: optimized 

around a single or minimal number of objectives and employed primarily in closed loop 

settings. They do not optimize for multimodal performance across heterogeneous data 

and tasks, nor can they do so without additional fine-tuning and adaptation. Furthermore, 

they are not estimated to be the only best performing model for the skill. Nor is that 

necessarily a bad thing. Building permanently-in-top-working-order multiple-peaked 

models is expensive and involves hard engineering trade-offs. Even so, in the long term, 

the interesting real world technology is moved by Broad General AI, and doing so 

requires a transition to Broad General models that can potentially simultaneously operate 

across all or most cognitive skills multimodally within one framework. This capability 

exists in many real world humans, and the Broad General models, as well as tasks and 

optimization, may provide additional helpful insights or approximations. 
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The move to Broad General models will bring a few key changes. The core task 

formulation will shift itself from low level prediction tasks of priors of particular 

cognitive skills to having the multi-prior multimodal functionality for the entire 

cognitive ecosystem as a central design goal. A set of diverse auxiliary parametrized or 

non-parametrized guidance techniques are employed to guide atypical tasks. While 

auxiliary guidance may also be mixed with task-based fine-tuning for specific tasks in a 

transfer scenario, key trade-offs about what auxiliary techniques are needed for a skill 

or skills, task durations, and usage storage space etc, are modeled and optimized by the 

Broad General models themselves in an transition. Note that this scenario talks about the 

Broad General model being a multi-skill multitask system, having large memory 

capacity. 

2.1. Understanding Deep Narrow AI 

Deep Narrow AI (DNAI) is the embodiment of narrow AI systems that focus on single 

or limited narrow tasks based on vast amounts of structured and unstructured data. These 

high-performing models, such as generative AI natural language models and image 

recognition, exceed human performance. Such models go significantly beyond 

conventional narrow AI rule-based models while being deeper with billions of connected 

nodes learning from vast datasets. These systems have ushered in an unprecedented shift 

in natural human-machine collaboration; many of the deep AI model systems have 

become indispensable tools for common and specialized tasks. Many white-collar jobs, 

ranging from lawyers creating and reviewing contracts to startup founders writing 

business plans and software developers coding programs, have increasingly relied on 

these models to save time and improve performance. Despite its awesome capabilities, 

DNAI lacks true human cognition and creativity, which is limited to the narrow tasks it 

was designed and taught to do. 

Deep AI models are narrow because humans are incapable of training AI systems with 

the vast amounts of input data needed to imbue DNAI with broad general human 

cognition of the world and creative AI capabilities, including the capacity to learn 

without human intervention. Moreover, traditional AI-wide human-predictable systems 

operate on the principle of programming specific features of tasks to follow instructions, 

heuristics, and rules to be done. In contrast, deep narrow AI systems are complex and 

sophisticated, drawing inferences, associations, and conclusions to decide a course of 

action. For example, a model deftly composes a business plan, including producing a 

pitch deck with prompts about the model's capabilities, company description, products 

and services, market analysis, marketing strategy, competitive analysis, and 

management structure. Thereafter, it describes each departmental duty in detail (Y. 

LeCun, 2024). 

2.2. Transitioning to Broad General AI 

The broader transition toward Broad General would require building innovative and 

greatly expanded phases, systems, architectures, and strategies, that enable a smooth, 

efficient, dependable transition from Deep Narrow to Broad General. The initial Broad 
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General phase would enable substantial performance improvements on many 

capabilities like Deep Narrow, but fundamentally shift the paradigm in how we build 

and deploy Broad General, including allowing greater model dilutions that directly 

improve impact per dollar. We expect the first Broad General systems to be substantial 

modifications of existing Deep Narrow systems; however, with strategic thinking and an 

appropriate research push, it is possible to lay down the novel foundations of radically 

differently architected Broad General systems. Later Broad General phases would enable 

Broad General systems with significantly larger model capacity but at greatly reduced 

per-capacity inference and training costs. Finally, advanced Broad General capable 

systems would radically shift both capabilities as they move toward AGI, and 

capabilities-cost scaling—affordable Broad General AGIs inside the homes and 

communities of hundreds of millions. Indeed advanced Broad General may open up 

novel pathways to considerable capability progress in widely diverse areas of human 

preference/maximization such as science and engineering, art, design, health, medicine, 

etc. owing to its input-output modes that rank very high along the two axes of 

personalization: diversity of outputs to maximize richness in life experiences, and focus 

on life effects for a given relative weight on self vs. community effects (R. Kurzweil., 

2024) 

2.3. Implications of the Paradigm Shift 

The paradigm shift being undertaken in our thinking about AI allows us to specialize 

specific aspects of cognition while trusting in the ability of the AGI to integrate these 

aspects into a coherent whole. Cognitive AI provides a single framework for addressing 

the entire spectrum of capabilities required for human-level artificial intelligence, such 

as discussion, planning, decision making, language translation, inference, generalization, 

coordination, and knowledge management. This unified understanding opens a path for 

parallel and independent development of all cognitive capabilities, while also enabling 

seamless integration into a cohesive whole. This is unlike narrow AI where no matter 

how successful an individual capability becomes, it still acts under the invisible 

constraint of being just a specialist, never able to assume the mantle of being general. 

Cognitive architectures provide the ability to progressively assemble any specialization 

of a cognitive capability as an agent moves from infancy towards humanlike intelligence. 

Cognitive AI architected with a strong sense of autonomy and awareness can then not 

only manifest, but also create and question models of the world, coordinate different 

capabilities in support of a larger goal, exercise value judgments as situational context 

evolves, and above all else, act upon the world. This is the hallmark of adult intelligence, 

and the guiding goal of Cognitive AI systems (R. Kurzweil, 2024). 

3. Global Collaboration for AGI: Academia, Industry, and Governance 

In the push toward Artificial General Intelligence (AGI), no single organization can take 

on the challenge alone. While collaborative models demonstrate that tightly defined 
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partnerships can enable rapid productization, we need to think about deeper partnerships 

and loosely defined cooperation at a much more systemic level. Here, we propose a 

model that brings together industry, academia, and governance to take on this 

monumental task, whether it is to hire the best people in each sector or truly understand 

the ethical challenges and threats posed by AGI. 

In the early years of AI development, considerable effort came from academia, where 

researchers were able to intellectually explore the deepest theoretical questions of 

intelligence. Many still dream that we can create AGI as the by-product of some 

theoretical insight. Research in AI safety and alignment is still strongly grounded in the 

academic world. However, funded at an accelerating pace by competitive investments, 

AI has gone through an enormous transition into a commercial product—with some 

dramatic early successes. Today, large language models are democratizing content 

creation—both in written media and by extension into many other modalities through 

multimodal models. Developments are trading speed for thoroughness and safety, with 

live experiments unfolding in the wild. 

AI has entered a self-reinforcing cycle of public success—demonstrating impressive 

capabilities—and private investment—competing with hyperscale investments more 

generally. However, proponents of AGI, and of ethical guidelines around its 

development and deployment, consider the industry–government interface at this point 

to be sorely underdeveloped. The ethical and societal challenges surrounding an 

exploding capability class are left principally to private companies—often with different 

incentives than those of the ethicists advocating a careful, systematic approach. A 

maturity in global governance regarding data privacy, disinformation, recommendation-

driven behavior modification, the risk of generalization beyond training, or of the 

creation of invisible internships in content moderation also has not kept pace with the 

increasing speed of industry. 

3.1. The Role of Academia in AGI Development 

The quest for AGI should be open-minded, and perhaps the only way of avoiding the 

plethora of vile AI pits is by allowing the wit of a myriad of curious minds to collaborate. 

But, while the University exists for knowledge in and of itself, industry funds cleverness 

having declared intent to embroil AGI development within a cocoon of, what some might 

consider, purposeful ignorance. Government acts as overseers of societal demands, and 

so oversees also the custodianship of the ASI technology. It should also look for ways 

to catalyze collaborative musing, but how? What role should each actor play? 

Universities will, like any other entity, lean towards profit, convenience, and power. 

Corporate-funded AGI development, however, is subject to monopoly, and sudden 

bursts of genius might get stuck in the folds of time due to corporate misaligned goals. 

Extreme caution needs to be exercised concerning the puppeteering strings held. The 

role of Universities would be to be the talking points of difficult problems. Look deeper 

into the impact of technology rather than solely the potential results. Seek odd-looking 

corners to confirm or rule out. Search for the shaft of light within the AGI black box of 
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corporate partnerships. Be wary of intimidation and habit. Society craves answers. The 

role of the academic pillar is that of trusted caretaker. But is it solely that of a caretaker 

looking after a domain of unknowns while being held at bay by capital gained impetus? 

Although Universities act as custodians, they might also have an important role in 

ushering in the AGI breakthrough sooner than would normally happen. The 

interpretations presented would basically be fuelled by curiosity rather than business 

directive. Funded power explorations presenting counter-arguments to prevailing 

theories, and outside interpretations delving deeper into sociological, philosophical, or 

even ethical facets (A. Narayanan et al., 2024). 

3.2. Industry Innovations and Partnerships 

In coining the term "cognitive AI", we intend to keep the focus on Generalized AI and 

its Cognitive capabilities. However, companies are also exploring its application-

specific behaviors, such as geolocation-based assistants, automation products, or other 

implementation-focused, architecture-specific niche products. The progress from zero to 

more restricted application-specific capabilities is absolutely amazing. But the larger 

dialogue should still center around Generalized AI and its Cognitive capabilities. 

Without minimizing any of the above innovation, we believe discussions would serve 

our industry and our world better by grounding them in the context of Generalized 

Cognitive AI and its capabilities and by establishing a clear set of short- and long-term 

benchmarks around the space for both industry and society. The scientific exploration 

and the underlying research agenda could be grounded and driven by academia, while 

the short-term innovation would be for industry to pursue. Partnerships would be a 

natural extension, but the roles would have to be drawn clearly. Finally, public gaze and 

the nature of our society could shape both the academic and the industry efforts. It would 

take all three to reach the optimal AGI state. 

In that spirit, it was quite encouraging that even in the early days of the current bound of 

capabilities seen in industry innovations, many of our leading universities have modified 

their specific Computer Science programs and established new Cognitive AI or AGI 

specific areas of interest and research. Industry too is reacting and evolving upwards. 

New offerings and partnerships are also taking place. One company is leading with its 

significant investment and partnership around a major AI product. Other players too are 

forming partnerships and investing. How this shapes over the next long while is still an 

open question (A. Narayanan et al., 2024). 

3.3. Governance Challenges and Opportunities 

All the governance frameworks we have today are in need of critical updates in light of 

new eras of AI development and transition towards more digital, data-driven systems. 

The acceleration of technology development, especially in light of the recently raised 

pathways to more generalizable, robust, and capable AI, necessitate the need for review, 

change, and established response systems for anticipated (and unanticipated) by design 

and consequence risks. We are in unprecedented times when technical innovations and 
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developments create new openings for reshaping old problems, as well as enabling the 

flourishing of new – and potentially even more harmful ones. Through this period, there 

is potential for increased stakeholder mobilization and partnership to identify, re-

evaluate, and reshape the categories through which we assess the systems we build, the 

responsibility of those systems for flourishing sustainable and equitable pathways for 

development, and the shape of governance interventions and incentives in a way that not 

only responds to possible new risks and safeguards from harm, but also shapes and 

unlocks futures and use-cases where AI technologies feed into human flourishing 

trajectories. Technologists are often the first to notice changes and horizon-scan for 

opportunities and challenges on computers – we have already seen discussions on the 

risks surrounding the production of new types of persuasive or misleading content 

through computer vision AI-generative systems. However, the opportunities that are 

malleable with the roll-out and opportunity possibilities which are ushered in by the 

technology should be evaluated as well (A. Narayanan et al., 2024). 

4. Your Role in the Cognitive AI Revolution 

While Cognitive AI may generate images, text, art, music, and video, you will be the 

curator of it all. You will gain expertise in your field or industry and be able to use your 

imagination and creativity to bring together ideas and concepts in a manner even the 

most sophisticated of AI cannot. You may own the domain of your expertise fully and 

dedicate yourself to it and employ Cognitive AI as your assistant to help you with the 

small things, or even dedicate a portion of your time doing so while also using Cognitive 

AI for other projects. You may freelance for several small to medium businesses in an 

expert area or assist professionals with their work—just as you do now. The role of AI 

you require for your business and future may be quite different than the role of AI that 

transforms work for the average person in a corporation or medium-to-large-size 

business. 

Understanding Your Impact 

Currently, companies employ Cognitive AI for customer interaction and service, data 

processing, foundational user research, drafting copy and writing, language translation, 

programming, scheduling, simulations, testing, and training. Digital creators use 

Cognitive AI to generate images, video, and text. The Cognitive AI expense for company 

processes will likely go from millions of dollars a year to just a few thousand, and its 

use will skyrocket. The more companies get used to existing with Cognitive AI as a vital 

part of their processes, the more new companies relying on it will get created. As with 

past technological transformations, attendance in the AI-related job market will likely 

spike and peak once Cognitive AI is integrated into most people’s daily devices or 

processes. Then, much corporate and individual work will eventually focus on utilizing 

the new AI tool and skills. 
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Skills for the Future Workforce 

Learning how to evaluate, work with, iterate on, and improve AI is going to be a major 

driving force in business. Any nature of a task that requires minimal human input, time, 

energy, and guidance will be replaced. Cognitive AI will eventually become another type 

of vendor. Understanding that, as an individual or business owner, will help guide your 

experience with it. The need for human oversight will strengthen because humans are 

more adaptable in more nuanced and unpredictable situations, and there are more 

physical tasks performed by a physical human. 

4.1. Understanding Your Impact 

As cognitive AIs become increasingly integrated into societal frameworks, workers will 

begin to feel the impact, particularly with Large Language Models. A stable internet 

connection and a device with the ability to connect will enable anyone, anywhere to 

generate written content. From full articles to personal letters to creative fiction and 

poetry, nothing is beyond the reach of generative AIs. Coupled with other models and 

asset generators, there truly is no limit to the generation. In this future, the generational 

abilities of these systems will remove the need for humans to generate any of the work 

effort or knowledge - but can you imagine a world where nobody needs to use their 

brain? 

The undertaking of generative work is what separates us from the animals: cognition is 

hard, tiring work. Creative pursuits are also a key unifier of our humanity. Removing the 

labor demand from this generative work, particularly in areas such as fiction or art, 

places many creative pursuits into the realm of hobby. For those who make a living 

writing books or crafting art, these systems offer potential disappointment and 

disruption. Will customers opt for cheaper, generated books or art pieces instead of your 

master work? Will your works still hold value? Will you be able to eat if your entire field 

becomes oversaturated with content and understanding the delicate balance between the 

value we place on creator work and the abundance on offer becomes impossible? It is 

highly likely that generating tasks will no longer be monetizable, and that the unique 

selling point for those who do not embrace hobbies or humanity would be invented, 

creative work – the task that at present is quite hard for AIs to accomplish (A. Lee, 2023). 

4.2. Skills for the Future Workforce 

While some occupations may be displaced by the advancements in automation and AI, 

newly created jobs will require a specific mix of capabilities and higher-level skills. Prior 

research indicates that the future workforce will rely on three main skills to work with 

AI and Cognitive Technologies: knowledge, creativity, and interpersonal skills. While, 

traditionally, knowledge work focused on tolerable task automations improving the 

efficiency, speed, or accuracy of workforce processes, assisting augmented robotics and 

cognitive AI solutions will be most successful when enabling the workforce to bring 

more value to the organization by emphasizing either creative or interpersonal 

capabilities associated with socializing and developing ideas or engaging other humans. 
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Engaging AI-supported enterprise resource systems will put organizations in a better 

position to reduce errors or streamline workflows but may not necessarily provide 

higher-quality solutions for producers, customers, or partners. Successfully developing 

the collaborative ecosystem, integrating intelligent tools into their work, and embracing 

AI will determine the future success of the organizational workforce. To face the 

creativity and interpersonal needs of the new task environments, organizations will need 

to nurture and develop their workforces’ Creative Intelligence: the knowledge and ability 

to effectively deliver the key interpersonal and introspective builders of originality, 

critical thinking, and idea development; curiosity, questing and structured intelligence; 

concern, empathy and communication skills; collaboration, teambuilding and active 

listening; and courage – the willingness to act on one's ideas. To reskill upward, the 

future workforce must seek out programs designed to help them develop the affinities 

defining innate capacity for success in these interpersonal and creative skills. Successful 

programs addressing these needs typically focus on simulated collaborative 

environments for creativity, courage, empathy, and communication. Programs focused 

on inquiry, engagement, ideas, and initiative can feed creativity and curiosity. Programs 

developing original and critical thinking and structured exploration can bolster 

structured intelligence and questing (R. Susskind et al., 2022) 

4.3. Engagement in AI Communities 

Platforms that allow for clear and mutual communication are at the center of how a 

community can engage. To mention a few examples, some platforms have gained a lot 

of traction due to their straightforward usability. One platform is a social news 

aggregation, web content rating, and discussion website that enables users to submit 

content such as text, links, and video posts to the site. The submitted content is then 

voted up or down by other users, and the most voted content moves to the top of the 

user-submitted listings. Later, it reached a staggering traffic of 1.2 billion monthly visits. 

Another platform gained attention for enabling free voice, video, and text messaging, 

and channel organization for groups. Originally designed for video game players, it now 

hosts open groups of people with shared interests. Established scientific communities 

now collect a large quantity of 21st-century research. In fact, to engage, we will need a 

more coherent and unified approach to identity in these communities, considering super-

intelligent AIs and deceptively persuasive tools. 

The goal of this section is twofold: to present a relatively small fraction of AI-related 

communities that already exist; to encourage readers to join these present and future 

communities. The motivation behind this is simple: these communities will shape the 

future of cognitive AI, and thus the future of humanity. For their work, volunteers in 

these communities often go above and beyond what is expected of them. Their incentives 

will help boost a general sense of purpose, community, and fulfillment within 

membership. This sense of belonging, and commitment to a cause greater than oneself 

will, naturally, lead followers to avoid or criticize behavior that threatens group integrity 

(R. O’Gieblyn, 2021). 
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5. Challenges in Cognitive AI Implementation 

The promise of cognitive AI obscures an inconvenient truth: the path to implementation 

is littered with obstacles. In a technology space already recognized for its disruptive 

capabilities, Cognitive AI stands apart in one important sense: the difficulties of 

implementation stem not only from known technological hurdles but from questions of 

intent, trust, and the fuzzy line between benevolent enhancement and pernicious 

replacement. These difficulties are magnified at scale, both because of the impacts that 

scaling may have in terms of user experiences and redesign, data and model transfer 

biases, and training heuristics, and because of the social impact of amplifying bad 

decisions made by individuals or small groups. In many regards, these challenges are not 

fundamentally different from those faced by any new technology that quickly crosses 

operational boundaries to scale: widespread adoption of facial recognition, for example, 

has generated backlash and proposed regulation due to negative impacts among certain 

demographic groups and the chilling effect it has had on speech. 

But Cognitive AI differs from either of these examples in its potential to serve as a new 

point of contact between users and information. Trust and misinformation therefore take 

center stage, on the one hand because of the demands Cognitive AI will place on the 

existing information ecosystem and on the other because of the fact that users’ 

willingness to interact with Cognitive AIs can significantly affect their market and 

operational models. The potential consequences will be more profound and widespread 

at scale, meaning that the solution-space of institutional adaption is larger as well. 

Many hurdles and concerns may be qualified or subcategorized under this umbrella. For 

this section, we will broadly outline the three main areas seen as leading to a high barrier-

to-entry for these technologies: technical barriers regarding the practical optimism 

around the application of Cognitive AI, resistance from society, and finally agreements 

on regulations and legislations regarding AI use. 

5.1. Technical Barriers 

With the increasing popularity and availability of Cognitive AI technologies, many 

organizations are exposed to the latest developments, products, and services in this area. 

Still, the transition to real-life Commercial Cognitive AI services is difficult and has 

several challenges. As such, concerns about the technical barriers preventing company 

executives from adopting Cognitive AI tools are being raised. Our knowledge and 

experience within the Cognitive AI domain and specially about the Cognitive AI 

industry help us to better understand these existing barriers. In this chapter, we analyze 

these existing and probable future barriers in order to answer our research questions and 

help others in meeting these challenges. In addition to the pace, breadth, and depth of 

Cognitive AI technologies and their adoption, many existing and possible future 

technical barriers exist. These include the complexity of business design requirements 

for the development of new services that are based on Cognitive AI technologies, a lack 

or inadequate availability of adequate Cognitive AI tools for general use by the service 
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industry, the quality and availability of Intellectual Property Rights for Cognitive AI 

developments, high development costs for new services requiring tools developed in-

house, high expenses needed for utilizing third-party Cognitive AI tools, and a lack of 

appropriate methods for the evaluation and comparison of Cognitive AI services. 

Overcoming only some of the barriers may be sufficient for recognizing short-term 

opportunities to generate a variety of Cognitive AI services. If so, the recommendations 

presented in the text provide an easy way to exploit and recognize some of these 

opportunities. Companies and other organizations not only increasingly recognize and 

monitor the fast-paced developments of the Cognitive AI domain, technology risks and 

gaps, associated with the adoption of commercial services, but are also perceiving 

business opportunities to create new services or improve existing services. To answer 

the question of why there are existing barriers and risks to the adoption of more popular 

commercial Cognitive AI services in the short term – and to facilitate access to those 

opportunities – we also discuss the other possible barriers, such as personnel resources 

and expertise, and internal company management and organizational structure (M. 

Iansiti et al., 2020) 

5.2. Societal Resistance 

In recent years, the Great Resignation has taught us that many employees are willing to 

forfeit higher wages in return for other value...such as job satisfaction. New technology 

is one of the clearest signs of innovation, creativity, and job growth. But if, in their heart 

of hearts, employees don't want to change their workplace habits, they might push back 

against innovation that would otherwise create new avenues of revenue and purpose for 

them and their companies—especially if those innovative technology tools are cognitive 

AI applications that often erode career-building tasks, replacing internship positions with 

machine learning models and human oversight. Those cognitive applications that 

augment what humans do for a living tend to perform better in terms of ROI than those 

that replace human efforts. Along with company-sponsored training and development 

programs, the potential friction of labor manipulation can be addressed by a focus on 

augmenting existing jobs rather than eliminating them. Cognitive AI advocates and 

executive leaders should tune into the clamor for new roles and new responsibilities, vet 

the angry tweets that question the validity of a role that has been impacted, and speak at 

internal functions about the value cognitive AI brings—its ability to promote creativity 

and upskill workers. 

Of all the challenges to adopting cognitive AI technologies, resistance from the frontline, 

from employees who care deeply about their positions and practices, will be perhaps the 

hardest challenge to overcome. Those positions—the mundane roles that suck up 

available time, resources, and budgets as deadlines loom and armies of employees input 

the same repetitive data tasks to get a special project out the door—are the gilded cages 

that are the emotional and financial lifeblood of any company. Inside those gilded cages 

are the tantalizing, announced potential of life-affirming, fulfilling positions that keep 

companies alive and in the black. Yet, even inside those glittering cages, employees still 

need massages and beer Fridays, sports, and above all else, purpose (D. Susskind, 2020). 
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5.3. Regulatory Hurdles 

Organizations are incurring the risks of using or integrating Cognitive AIs without 

sufficient knowledge of how regulations affect liability, privacy and data governance 

regulations, and enforcement of contract violations. We have already seen the 

curtailment of affairs of organizations in various jurisdictions as a response to the 

regulatory frameworks. The newness and the rapidly iterative nature of Cognitive AIs 

mean that there is vibration across the regulatory structures in their particularity. Such 

particularities exist in intent and enforcement at times in areas such as copyright, unfair 

competition, patent infringement, trade confidentiality, brand trademark, and product 

liability. Older nations or jurisdictions have begun efforts at either specific AI legislation 

or more likely collaborative actions across their borders. The traditionally quiescent 

GDPR recently promulgated a framework that, while generative AI-non-specific, does 

have reverberations across the compliance teams of organizations that have already 

incorporated Cognitive AI Technologies or are in the mix to do so. 

Not only are jurisdictional borders disanalogous in terms of enacting and regulating, the 

uneven nature of the location capabilities of cloud organizations provides unique 

compliance challenges. The compliance teams in organizations may or may not know 

where the actual storage locations are. In addition, the particularities of the regulations 

over a period of time may need incursion upon internal approval processes to ensure 

compliance or to augment the processes to aid the execution of safe processes. Cloud 

infrastructure organizations also have the challenge of stating in easily consumable terms 

how the storage and processing and even the data input channels are secured against 

either repurposing or regurgitation (K. W. Abbott et al., 2024) 

6. Future Applications of Cognitive AI 

Where we are heading with Cognitive AI must be approached cautiously. Cognitive AI 

presents society with both a boon and a challenge. As we embark on the quest for 

increased intelligent, integrated, connected, and automated systems, we must also remain 

aware of all the trappings and pitfalls inherent in significant technological advances. The 

future we can envision, to a degree, includes automated systems in Healthcare, Finance 

and Risk Management, and Education and Personalized Learning. 

Healthcare Innovations 

In healthcare, innovations already underway will allow new types of decision support. 

Better knowledge about treatment planning and why-factors for adherence analysis for 

chronic diseases. For example, generating on-the-fly answers to questions by patients 

from the domain knowledge that can be extracted from the combination of the public 

Medical Knowledge Graph, the link data universe, and clinical resources. Another 

application perhaps would be to generate personalized boring adherent messages for 

patients from the knowledge of the patient’s psycho-socio-economic attributes, 
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demographic factors, clinical history, family history, adherence to prescribed drugs, 

mental disease history, current social position, and the information about the disease 

he/she is suffering. 

Finance and Risk Management 

In the risk management field, banks would be able to attract customers that are 

considered “dead in the water” today and give them a second chance by offering smaller 

loans than normal, with the customizable terms and conditions that will make 

repayments achievable. Such a personalization is only achievable by using information 

and data from multiple data stores at the same time and leveraging on-the-fly inference. 

It is also possible to better tailor insurance offers and banking services in general and 

anticipate claims in the case of natural disasters. In Asset Management, it will be possible 

for Wealth Managers to create real time, on-the-fly portfolios in case of sudden life-

situation changes that are determined by any of the various database servers available 

for querying. 

6.1. Healthcare Innovations 

The healthcare sector stands on the brink of a veritable revolution, with cognitive AI 

solutions already expanding its capability base. These innovations harness both personal 

data – genetic and medical condition data – and social data such as genomics and social 

connectome. The latter set of data derives from an AI ecosystem that learns about 

members of a society from public and open data available on the networks and thus 

builds a model of each individual as a part of the network-ecosystem. 

Health innovation has been restricted due to epistemic constraints stemming from 

traditional approaches lacking tools and methods required to assimilate what has largely 

become complex chaotic knowledge. The empirical laws and causal-mapping rules 

emerging from network dependency of connectome data give rise to sophisticated 

cognitively based predictive digital twins that are capable of accomplishing both 

diagnostics and prognosis of health and disease conditions. 

Cognitive networks will allow cost-effective big data record keeping in terms of human 

connectomes, and mobile cognitive platforms will permit real-time monitoring and 

reversible nudging of all members of the ecosystem. Actual medical advice and provided 

healthcare can therefore be reoriented towards preventive – rather than interventional or 

assistive – modes and methods. This is the area of digitized precision or personalized 

medicine, in which the key workload changes from testing and diagnosis to easily 

available and inexpensive temporal sequencing of all relevant diagnostic probabilities 

(A. Min et al., 2024) 

6.2. Finance and Risk Management 

Cognitive AI is opening up exciting new possibilities in finance. Research scientists have 

used reinforcement learning techniques to develop algorithms to automatically trade 

futures contracts on multiple exchanges in daily or weekly trading modes. These 
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algorithms have been shown to track the best of humans in terms of profitability, with 

higher speed and discipline. Such autonomous active management will reduce fees that 

investors pay to the best traditional hedge funds. Cognitive AI systems, however, do not 

stop there. They can trade across multiple markets, on multiple time horizons, and can 

also incorporate probabilistic forecasts of future return and risk distributions for the 

relevant markets. Cognitive AI systems can make automated deployment and liquidation 

decisions to ensure that risk does not grow too high while the portfolio is being built. 

Machine learning techniques, specifically supervised deep learning, have been applied 

to predict the probability of default on corporate bonds, one of the most intensely studied 

research areas in finance. The results have been promising. Probability of default is a 

crucial input to credit pricing and value-at-risk calculations and increasingly big data 

from social media are being utilized. Financial institutions are using data from social 

media among other alternative data sources as input to alternative models to complement 

and enhance their pricing and risk management analytics. Banks developed their credit 

risk management systems using insights derived from big data and social media that had 

been trained on corporate bonds origination data (S. Ruder, 2024). 

6.3. Education and Personalized Learning 

Advanced AI systems have demonstrated great promise as pedagogical agents in 

environments that support personalized learning. From intelligent tutoring systems to 

more directionless discovery-based learning, these agents have exhibited the capacity to 

recognize and respond to learning trajectory impediments by providing targeted hints, 

prompts, and feedback. Such guidance helps learners explore foundational concepts, 

apply knowledge, and reach deeper understanding and coherence, enhancing problem-

solving processes. Moreover, these agents can tailor content and process help to the 

individual needs, goals, and preferences of learners, sparing them the consequences of 

learning by failure or through trial and error. Increasingly, agents can interface with 

learners in natural language, often bridging gaps and misunderstandings that would be 

almost impossible upon mere text that no human being would produce, hence adding the 

needed human touch. Moreover, the energized co-creation processes made possible by 

AI-catalyzed dialogue allow learners to move in and out of lead roles in the interactions, 

mirroring real-life collaborative innovation and creativity in diverse STEM and STEAM 

contexts. Because many learners now have access to a smartphone or similar device, 

capable of interfacing with advanced pedagogical agent technologies, there is growing 

potential for these platforms to support personalized learning across student and teacher 

populations at scale. The interaction paradigms and intelligent algorithms continue to 

advance rapidly, and the challenges that remain are primarily ones of innovation, inside 

and outside the classroom, in the design of engaging tasks, co-design of agent-supported 

inquiry processes in partnership with learners, teachers, and a range of content providers, 

and then effective study and evaluation of supporting evidence at diverse scales. 

Technology design and co-design, task design, and study and evaluation are key to 

realizing the vision of Learner-Centric AI and advancing the Science of Learning 

technology direction (B. P. Woolf et al, 2023). 
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7. The Role of Data in Cognitive AI 

As the old adage goes, “garbage in, garbage out.” The effectiveness of AI models and 

tools in solving business problems depends largely on the amount and quality of data fed 

into those systems. For AI-based models or tools to be effective, data must be: (1) 

plentiful, as data-hungry models like deep learning-based models require large amounts 

of data for successful training; (2) high-quality, in the sense that the classification or 

labeling of the data to reflect the true underlying nature of the data must be accurate and 

the data must not be biased; (3) updated frequently with new data, since many natural 

processes are non-stationary and their behavior changes over time; and (4) pre-processed 

carefully, since real-world data is often dirty, missing values, and/or in various different 

formats. 

Data for training AI models can be sourced from databases managed by organizations 

(structured and semi-structured data); APIs for web scraping or other specialized tasks; 

and data repositories. Low-code AI tools are emerging to further accelerate the B2B 

adoption process by reducing the time to build AI models customized to particular 

business applications, calling for collaborative human-centering design principles. 

Providing access to the right set of labeled data is critical and challenging, since machine 

learning models are data-hungry and a significant amount of time and resources are spent 

on obtaining, preprocessing, and training prototypes of different model architectures. 

While some data may be collected easily for specific tasks, such as sentiment classifiers 

or name entity recognizers, probing for task-relevant labeled data in sufficient quantity 

and quality is not trivial. Applying AI tools directly to data-hungry tasks is a viable 

solution but will only work for simple and low-risk tasks like sentiment classification. 

7.1. Data Quality and Availability 

What we teach Cognitive AI largely comes from a narrow definition of big data. 

Therefore data quality and availability are the biggest blockers to widespread 

commercial use of Cognitive AI. Cognitive AI will be capable of learning from a wide 

variety of readily available unstructured content. However, the present foundational 

models can only learn from a small set of curated data, and they may only retrain with 

marginal improvements from a few specialized datasets — restricting its efficacy 

towards only "niche" businesses or areas of expertise. Advances in active learning, 

reinforcement learning, in-context learning, and few-shot or zero-shot training 

frameworks may ultimately take us there, but even then the resulting models will not 

match the abilities of a Specialist who would "naturally" possess the requisite expertise. 

When the Cost of "Real World" Re-Training is High, It Impacts Availability of Domain-

Specific Models It is paramount to recognize that conventional re-training for most end-

user businesses is not only very costly in terms of time, effort, and capital, but also fragile 

in its risk profile. In the present state of the art, for what may be seen as "plug and play" 

Cognitive AI capabilities, once they have been initial trained from large curated datasets, 

subsequent re-training (or additional fine-tuning) towards emergent specialized tasks or 



  

92 
 

use case is controlled via a purely technical process — a regression testing regime via 

rigorous, quantitative metrics of vast amounts of training data for task, with the 

associated success metrics for task fine-tuned along guidelines for potential task 

replacement that were also validated previously. The resulting huge amount of cost and 

effort required thus limits the number of nascent Domain Specialists having "plug-and-

play" Cognitive AI capabilities solely available off the shelf for commercial utility (M. 

Stanley et al., 2024). 

7.2. Data Privacy Concerns 

Cognitive AI relies heavily on sensitive and private data. The data provides deep insights 

into people's characteristics and personalities, especially emotional and health profiles. 

It can come from diverse sources, both internet-based and provider-centric. The internet-

based sources are social media and platforms where the users have a sharing culture. The 

provider-centric sources include integration of various user activity logs, transaction 

records on online marketplaces, user-generated data on collaboration tools, customer-

provider interaction histories such as contact centers and live chats, wearable technology 

devices, mobile apps with location access, automated devices, etc. As the volume of data 

to train cognitive AI cores increases, the cost associated with private data collection and 

processing becomes significant. In addition to cost, access to user data is regulated under 

different privacy laws. 

Violation of these legalities could lead to heavy penalties and may tarnish the reputation 

of the data-owning companies. With growing concerns about data privacy, users across 

the world have developed a fear of exposing their private lives and thoughts in the public 

domain. As a corrective measure, various technology companies are implementing 

features to overcome privacy concerns. For instance, some companies do not require all 

types of personal data to sign up. Both have built-in monitoring systems to let users know 

which app is using what type of data. Some let users delete their past data at any given 

time, while others let users stop location tracking and prevent eavesdropping by devices. 

Data privacy is one of the major concerns in advancing cognitive AI (J. M. Kizza, 2020). 

7.3. Harnessing Big Data for AI 

Big Data plays a crucial role in machine learning, which relies on the availability of a 

considerable amount of input-output labeled pairs to reach high accuracy. Cognitive AI 

systems often endeavor to model very complex relationships so that they can 

continuously learn from and adapt to changing situations. For instance, a system requires 

terabytes of specialized medical data to reach a level of accuracy such that it can safely 

make clinical treatment recommendations. A project used hundreds of terabytes of data 

to train their Recurrent Neural Network and achieved remarkable results in developing 

musical melodies. It is argued that unless a model is capable of dealing with an enormous 

amount of data, it will not be considered very crucial unless it can at least be a monthly 

online algorithm. Therefore, what distinguishes cognitive AI technologies from 

traditional AI highly relies on their demanding requests for both big data and humanlike 
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cognition. Furthermore, to be fully cognizant, cognitive AI should also be as efficient, 

cost-effective, and less time-consuming as human cognition at the same time. 

The rise of AI is inspiring many companies and governments to invest heavily in 

research and engineering efforts, hoping to capitalize on this marketing trend. The 

success strived for by governments has not been as sensational; however, many have 

moved up to support basic developments and encourage innovation in many subdomains. 

Recognizing that machine learning – and in a broader sense – AI is the key to realizing 

humanlike cognition – it has been suggested that the establishment of a new 

infrastructure for AI, which utilizes big data and prevents model growth through cloud 

services, is capable of transforming how AI and machine learning are adopted and 

fostered. For instance, a novel machine learning company announced a significant 

investment with the ambition of providing mass services based on cutting-edge 

techniques (S. Manoharan et al., 2023) 

8. Interdisciplinary Approaches to Cognitive AI 

While Cognitive AI can be viewed as another novel endeavor led by computer and data 

scientists, psychologists, their colleagues from other fields of Cognitive Science, and 

philosophers have analyzed and discussed Cognitive AI's capabilities, merits and 

drawbacks, and weaknesses from their respective disciplinary perspectives. Their views 

are relevant for how Cognitive AI progresses. Exploring Cognitive AI from different 

angles can illuminate aspects of its operation, and the commonalities and differences 

with humans regarding learning and reasoning. Discussing multiple perspectives can 

also engender funding and broader collaborative models attempting to integrate diverse 

perspectives on Cognitive AI, leveraging the different strengths and weaknesses of each 

field. 

A number of psychologists, especially cognitive psychologists and psycholinguists, have 

been analyzing the latest generation of LLMs in order to probe: (i) what the behavior of 

these models reveals about human cognition? And, conversely, (ii) what is the potential 

of these models to capture human cognition? This form of interdisciplinary research is 

called Modeling Cognition using AI. Several of these researchers have proposed a series 

of best practices that glue the field. These practices concern what particular AI model to 

use for which task, focusing on developing stimuli and tasks that minimize confounds at 

both behavioral and mechanistic levels, corroborating claims by linking behavior to 

internal structure and/or parameter settings of AI models, contrasting AI models' 

predictions against human behavior for specific experimental conditions that capitalize 

on the difference between humans and the model, and how the models should be 

understood when used in a cognitive modeling context. Notably, most accept the original 

stated mission of AI as defining our aim: creating programs that could, by virtue of their 

intelligent behavior, help us recognize and understand human intelligence. 
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8.1. Integrating Psychology and AI 

Perhaps one of the oldest research programs in AI is its connection with cognitive 

psychology. The research established a close connection between machine intelligence 

and human abilities, the so-called physical symbol system hypothesis; many of the early 

models of human cognition were actually symbolic AI systems. It is only natural for both 

disciplines to bear on each other; humans are a sort of benchmark for any practical 

cognitive system, so a link between AI and psychology seems inevitable. However, as 

AI systems became more and more capable, these links began to fade; in particular, the 

ability of AI research to connect with what should be important experimental paradigms 

began to diminish, as there seemed to be less and less common ground to explore. What 

seemed to be an offer and demand equation had become a winner and loser equation. 

In the past years, this trend has been somewhat corrected; it seems increasingly clear 

that, if we wish to explore human cognition correctly, we need proper partners in this 

endeavor. Psychology has developed advanced experimental setups and statistical tools 

that allow the exploration of phenomena from non-routine perspectives. However, what 

psychology lacks is a proper explanation and modeling framework for many of the 

interesting phenomena and events they highlight. Cognitive AIs are a proper debate 

partner because, having been trained for enormous amounts of data, they can indeed 

explore interesting facets of stimuli as varied as words, pictures, sounds, or even 

kinesthetic information (G. Miller, 2023). 

8.2. Philosophical Perspectives on AI 

The rapid development of AI systems can radically impact many aspects of everyday 

life. Builders of ever more sophisticated tools need to think carefully about their ultimate 

goals and potential outcomes. Ideally, designers will take into account beliefs about 

knowledge, agency, and social organization that sustained humanity for centuries. 

Philosophy is particularly concerned with the possible or actual relationships among 

sentients. There are many categories of sentience and many possible avenues of 

reasoning that engage their attention. Humans engage in a special category of reasoning 

called “philosophy,” which, among other things, shapes the way we build our tools. More 

than any individual novel tool or technology, our capacity to synthesize and combine 

ideas about how we should relate to the world around us is what distinguishes humans 

from other sentients. 

Patterns of philosophical thought track major turns in human history; these patterns are 

subject to empirical investigation and re-interpretation. Researchers in the history of 

philosophy seek to classify these turns, examine key works, authors, or schools, locate 

meaningful patterns of development, and identify profound continuities of structure and 

purpose. The founding principles of philosophy are not siloed, separate from knowledge 

and understanding in other fields. Rather, the reverse is true: all knowledge is somehow 

contained within philosophy, and particular branches of knowledge serve specific 

purposes by addressing particular classes of relationships or functions. Traditionally, 

these branches include ethics, aesthetics, epistemology, philosophy of science, 
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philosophy of language, logic, and metaphysics. Philosophy’s sub-fields are not intended 

to be descriptively exhaustive (T. Metzinger, 2021). 

8.3. Collaborative Research Models 

Many stakeholders from diverse domains lie along the pathway toward more powerful 

Cognitive AI technologies. Building upon distinct foundational perspectives – from 

computer science, allied technology sectors, and the cognitive and behavioral sciences – 

these stakeholders span the range from commercial enterprise to national security, to 

societal services, and beyond. Thus far, there has been little appropriate dialogue across 

these domains about the opportunities, possibilities, challenges, risks, and ethical issues 

surrounding these future technologies. For example, the alignment problem has been 

most widely discussed in the context of human-centered Cognitive AI solutions for 

commercial use. Meanwhile, national security stakeholders often view alignment and 

control research principles more from the standpoint of adversarial modeling. However, 

the failure modes of these future systems can and should be discussed as a community 

of stakeholders. Serious research investment into Cognitive AI, particularly as it 

approaches the capabilities of a synthetic human-like intelligence, warrants clear and 

informative collaborative pathways among all vested stakeholder constituencies. 

Rich interdisciplinary, pre-competitive collaborations of research leaders in associated 

fields may help accomplish this most effectively. AI researchers, especially in the 

language domain, have repeatedly been surprised by the emergent capabilities of Neural 

Networks as more and richer content has been introduced. Practical work at the 

intersection of cognitive systems modeling, framework-oriented research in Cognitive 

AI, and ethical modeling stands the best chance of success in advance of efforts 

addressing these challenges along existing institutional pathways (L. Floridi, 2023). 

9. Future Workforce Dynamics in AI 

Considerable political and social sanctions have arisen from the rapid introduction of 

generative AI technologies that can potentially replace jobs and replace humans with 

software. These technologies are expected to make certain types of job function obsolete, 

while generating new types of job functions that require unique cognitive services and 

capabilities. In the coming years, this dynamic shift will compel organizations to rethink 

their structures, including the number of employees needed compared to past 

expectations, how certain internal job functions that are being carried out today will have 

to be modified, and what new job functions will have to be developed and filled. The 

growth of the new types of job functions will be digital-native capabilities that will 

significantly evolve existing job functions focusing on data reasoning and intention 

thinking along with data categorization and enhancement. Rapid generative AI 

technology adoption has created increased demand for skilled talent that understand AI, 

prompting enhanced reskilling and upskilling initiatives. As demand for talent in the AI 

ecosystem continues to grow, educational organizations are leveraging partnerships with 
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businesses to provide AI-specific training programs and micro-credential courses to fill 

skill gaps across the workforce. Creating an inclusive workforce in AI and associated 

roles is vital for companies to unlock the technology's full potential and ensure equitable 

access to economic opportunities for all. Talent is vital not only for economic growth 

and productivity, but also for innovation. It is talent who invents and builds products that 

radically increase the speed and capacity of advanced technologies, and it is talent who 

apply these technologies to solve the world's biggest challenges. Powering the AI 

revolution will require a concerted effort to expand and diversify the talent pool by 

bridging AI skills gaps. 

9.1. Jobs of the Future 

As AI continues to advance, the demand for talent in associated fields is increasing, 

including AI safety, policy, research, and strategy roles. There is a need for 

transdisciplinary professionals who can conduct research on trusted, explainable, ethical, 

and privacy-preserving AI. These workers do not require a conventional background in 

computer science or statistics, although these skills are certainly important. Instead, they 

will probe how models work, why they work, what their limitations are, and when they 

fail. However, to serve in these roles, it is necessary to introduce accountability and 

oversight — maintainers are not enough. While large models can be quite resource 

intensive to produce, a much larger number of smaller, narrowed models may need 

resource-efficient accelerators, who ensure that these tools deliver trustworthy results to 

clients in specific domains. 

Advances are also paved in natural language processing and understanding, computer 

vision, and other domains which allow us to build more accessible AI systems and tools 

for various sectors. This allows us to create more user-facing jobs, for instance, with 

tools that create personalized outputs for educators, teachers, or architects. Similarly, the 

convergence of AI and explorable crowdsourcing is potentially paving the way for new 

modes of collaboration between consumers and big tech AI corporations. Recent 

advances in human-in-the-loop models have allowed users to define, customize, provide 

feedback, and interact with the AI outputs. These tools have grown in popularity and 

allow users to extend the capabilities of the base large language models significantly. 

We may be seeing the emergence of a new role — the interactor. Fill-in-the-blank or 

zero-shot prompting have been the popular modes of interaction with these models until 

now (F. Pasquale, 2020). 

9.2. Reskilling and Upskilling Initiatives 

To successfully pave the way for these upcoming transformations in the AI ecosystem, 

large-scale reskilling and upskilling initiatives are essential. Governments, educational 

institutions, and large corporations are embarking on initiatives to enable people in this 

workforce to pivot and adapt to changes. Reskilling is the process of training an 

employee in a different field from the one that they were previously working in. 

Upskilling allows employees to better their current skill set. In AI, the growing 
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importance of reskilling and upskilling of workers and students will allow the labor force 

to remain relevant in this fast-changing world filled with technology. 

The COVID-19 pandemic made apparent the major issues with education systems 

around the world. The expedited pivot to a remote-first approach to education has 

exacerbated some of the issues with traditional educational methodologies. The current 

education sector is not geared for a future where the majority of students will be learning 

online and not in physical classrooms. Various collaborative efforts by groups seek to 

close the gap and provide resources and knowledge for people to easily understand and 

learn about these technologies. Programs allow students to gain experience by 

collaborating with industry partners on industry-driven projects and addressing pressing 

problems around responsible AI. These initiatives and programs working with 

universities are aimed at producing a generation of workers who are equipped and ready 

for the jobs created by the rapid advancement of technology (H. E. McGowan et al., 

2020) 

9.3. Diversity in the AI Workforce 

The need for diversity in the workforce is particularly true for the AI workforce, as these 

teams are creating the tools that will shape how we live in the upcoming decades and 

beyond. If our culture and our experiences are not reflected in diverse training data as 

well as in the teams collecting that data and creating the applications, there is a risk that 

this technology will be biased against us and will not be designed in ways to address our 

specific needs. This was initially highlighted by the application of facial recognition 

technology, which worked well for light-skinned people but had highly inaccurate results 

for dark-skinned people. When facial recognition cameras were being used to identify 

rioters at the annual Hong Kong protest, questions were raised about the accuracy and 

the need to reassess the use of that technology as a large number of protestors had black 

faces to hide their identities. A report concluded that many harmfully biased technologies 

driven by AI were deployed without deep understanding of their impact on already 

marginalized communities. These results were both exacerbated by a lack of diversity in 

the AI workforce and further cemented the need for diverse teams to not only assess and 

implement safe and just solutions in the development of AI but also to enable a shift in 

the way AI is created so that those fixed on solutions must also consider the 

consequences involved (R. Benjamin, 2019). 

10. Conclusion 

This book has aimed to explore the shifting ground upon which our relationship with AI 

rests. By taking a longer perspective on how AI models have been developed and 

deployed, their roots, their present-day role in shaping our media environment, and what 

this means for their future development, we hope to have opened up some new ways of 

thinking about the possibilities and limits of cognitive AI for enhancing social well-

being. This is perhaps especially important today as there is considerable pressure from 
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multiple sides – from users, from businesses, and from researchers themselves – to 

accede to a cavalier rush towards a fully automated future. Cognitive AIs will be tailored 

to the full needs of human users and to the circumstances under which their relationships 

are enacted, only if human creators thoughtfully negotiate AI’s role with one another 

over the short and long term. Here, then, are some of the most important lessons distilled 

from our exploration of this terrain: 

1. Technology does not develop in a vacuum. No tool can be designed and deployed 

without prior understandings of what problems it is supposed to solve and who it is 

supposed to serve. While people building these tools today are applying a wide and 

surprising variety of developmental logics, only they know how closely these goals align 

with the tools’ earliest users. 

2. More generally, these tools cannot be designed without forethought on how they may 

harm those not responsible for getting them built, used, and maintained. These potential 

harms are many, from junking up discourse environments, to warping models of 

personhood, to enabling authoritarian control of citizens, to enabling harassment and 

bullying, to lock-out from various aspects of social, commercial, and communicative 

life. 
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