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Preface 

Oceans cover over 70% of our planet's surface and play a pivotal role in regulating 

climate, supporting biodiversity, and enabling global commerce. Yet, despite their 

significance, our understanding and monitoring of oceanic systems remain limited—

largely due to the vastness, variability, and inaccessibility of marine environments. 

In recent years, the convergence of Artificial Intelligence (AI), the Internet of Things 

(IoT), and advanced marine technologies has enabled a transformative shift in how 

oceans can be observed, analyzed, and understood in real time. This book aims 

to serve as a comprehensive reference and guide for researchers, engineers, 

environmental scientists, and maritime professionals who are leading or 

supporting this digital evolution of the oceans. 

The book is organized into nine chapters, each addressing a critical dimension of the 

smart ocean ecosystem—from sensor architectures and AI-based forecasting models to 

marine pollution detection, ethical concerns, and future technological trajectories. It 

incorporates practical case studies, global initiatives, and emerging standards to ensure 

relevance across academic, industrial, and policy-making domains 

.

  Mohanraju Muppala 



Table of Contents 

Chapter 1: Introduction to Digital Oceans .................................................................. 1 

1. The Need for Real-Time Ocean Monitoring ............................................................................. 1

2. Role of AI and IoT in Marine Systems ..................................................................................... 2

3. Overview of Technologies ........................................................................................................ 3

3.2. Edge computing ............................................................................................................ 4

3.3. Satellite Links ............................................................................................................... 4

4. Global Initiatives .............................................................................................................. 5

4.1. OceanObs ...................................................................................................................... 6

4.2. UN Ocean Decade ......................................................................................................... 6

5. Challenges in Ocean Monitoring .............................................................................................. 7

6. Data Management and Analysis ............................................................................................... 8

7. Impact of Climate Change on Oceans ...................................................................................... 9

8. Marine Biodiversity and Conservation ................................................................................... 10

9. Economic Implications of Digital Oceans .............................................................................. 10

10. Policy and Governance in Ocean Monitoring ....................................................................... 11

11. Future Trends in Ocean Technology ..................................................................................... 12

12. Public Engagement and Education ....................................................................................... 13

13. Case Studies of Digital Oceans Projects ............................................................................... 13

14. Collaboration between Academia and Industry .................................................................... 14

15. Ethical Considerations in Ocean Monitoring ........................................................................ 15

16. International Cooperation on Ocean Issues .......................................................................... 15

17. Technological Innovations on the Horizon ........................................................................... 16

18. The Role of Citizen Science ................................................................................................. 17



19. Integration of Marine Data Sources ...................................................................................... 18

20. Impact Assessment of Digital Oceans Initiatives ................................................................. 19

21. Recommendations for Future Research ................................................................................ 19

22. Conclusion ............................................................................................................................ 20

Chapter 2: AI in Ocean Sensor Networks ................................................................. 22 

1. Architecture of Smart Sensor Networks ............................................................................ 22

2. Sensor Calibration Using Machine Learning Algorithms ....................................................... 23

3. Anomaly Detection in Sensor Data......................................................................................... 24

3.1. Salinity Monitoring ..................................................................................................... 25

3.2. Temperature Analysis ................................................................................................. 26

4. Use of Federated Learning for Distributed Sensor Intelligence .............................................. 26

5. Case Study: Smart Moorings and Drifting Buoys .................................................................. 27

6. Future Directions in Ocean Sensor Networks ......................................................................... 28

6.1. Integration of IoT Devices .......................................................................................... 29

6.2. Advancements in Sensor Technology ......................................................................... 29

7. Challenges in Ocean Sensor Networks ................................................................................... 30

7.1. Data Privacy Concerns ................................................................................................ 31

7.2. Scalability Issues ......................................................................................................... 32

8. Impact of Environmental Factors on Sensor Performance ..................................................... 33

8.1. Effects of Weather Conditions .................................................................................... 34

8.2. Influence of Marine Life ............................................................................................. 35

9. Data Management and Storage Solutions ............................................................................... 36

9.1. Cloud Computing for Sensor Data .............................................................................. 36

9.2. Edge Computing Applications .................................................................................... 37

10. Real-time Data Processing Techniques ................................................................................ 38

11. Collaboration Between Institutions for Data Sharing ........................................................... 39

12. Regulatory Framework for Ocean Sensor Networks ............................................................ 39



  

 
 

13. Ethical Considerations in Sensor Data Usage ....................................................................... 40 

14. Public Engagement and Awareness ...................................................................................... 41 

15. Conclusion ............................................................................................................................ 42 

Chapter 3: Predicting Ocean Currents and Tides .................................................... 44 

1. Introduction to Ocean Dynamics ............................................................................................ 44 

2. Data Collection Challenges in Oceanography ........................................................................ 45 

2.1. In-situ Measurement Techniques ................................................................................ 46 

2.2. Remote Sensing Technologies .................................................................................... 47 

2.3. Data Quality and Validation ....................................................................................... 47 

3. Neural Networks for Current Velocity Prediction .................................................................. 48 

3.1. Overview of Neural Network Architectures ............................................................... 49 

3.2. Training Data Requirements ....................................................................................... 50 

3.3. Model Evaluation Metrics ........................................................................................... 50 

4. Time-Series Models for Tidal Behavior ................................................................................. 51 

4.1. Harmonic Analysis ...................................................................................................... 52 

4.2. ARIMA Models .......................................................................................................... 53 

4.3. Comparative Analysis of Time-Series Models ........................................................... 53 

5. Integration with Oceanographic Simulation Models .............................................................. 54 

5.1. HYCOM: Hybrid Coordinate Ocean Model ............................................................... 55 

5.2. ROMS: Regional Ocean Modeling System ................................................................ 56 

5.3. Coupling Neural Networks with Simulation Models .................................................. 56 

6. Forecasting Use Cases ............................................................................................................ 57 

6.1. Applications in Shipping ............................................................................................. 57 

6.2. Search and Rescue Operations .................................................................................... 58 

6.3. Environmental Impact Assessments ........................................................................... 59 

7. Conclusion .............................................................................................................................. 60 



  

 
 

Chapter 4: AI Applications in Marine Weather and Storm Forecasting ............... 62 

1. Introduction to Marine Weather Forecasting .......................................................................... 62 

2. AI in Forecasting Cyclones..................................................................................................... 63 

3. AI in Tsunami Prediction ........................................................................................................ 64 

4. AI in Extreme Weather Events ............................................................................................... 65 

5. Ensemble Learning for Atmospheric-Ocean Interactions ....................................................... 66 

5.1. Overview of Ensemble Learning ................................................................................ 66 

5.2. Applications in Marine Forecasting ............................................................................ 66 

6. Satellite Imagery Analysis Using Deep Learning ................................................................... 67 

6.1. Techniques in Image Processing ................................................................................. 67 

6.2. Deep Learning Models for Weather Analysis ............................................................. 68 

7. Real-Time Alert Systems with Edge AI Devices .................................................................... 69 

7.1. Architecture of Edge AI Systems ................................................................................ 70 

7.2. Implementation in Marine Weather Forecasting ......................................................... 71 

8. Future Directions in AI and Marine Weather Forecasting ...................................................... 72 

9. Ethical Considerations in AI Applications ............................................................................. 73 

10. Comparative Analysis of Traditional vs. AI Methods .......................................................... 73 

11. Challenges in Data Collection and Processing ..................................................................... 75 

12. Collaborative Efforts in Marine Weather Research .............................................................. 76 

13. Conclusion ............................................................................................................................ 76 

Chapter 5: Monitoring Marine Pollution .................................................................. 79 

1. Introduction to Marine Pollution Monitoring ......................................................................... 79 

2. Detecting Oil Spills Using Satellite-AI Fusion ....................................................................... 80 

2.1. Overview of Oil Spill Detection Techniques .............................................................. 81 

2.2. Satellite Imaging Technologies ................................................................................... 82 

2.3. AI Algorithms for Oil Spill Detection ........................................................................ 83 

2.4. Case Studies and Applications .................................................................................... 84 



  

 
 

3. Image Segmentation for Plastic and Debris Detection ........................................................... 85 

3.1. Importance of Plastic Detection .................................................................................. 85 

3.2. Image Segmentation Techniques ................................................................................ 86 

3.3. Integration of AI in Image Processing ........................................................................ 87 

3.4. Field Applications and Results ................................................................................... 88 

4. IoT-Enabled Smart Buoys for Chemical Sensing ................................................................... 88 

4.1. Design and Implementation of Smart Buoys .............................................................. 89 

4.2. Chemical Sensing Technologies ................................................................................. 90 

4.3. Data Transmission and Communication ..................................................................... 90 

4.4. Real-World Deployment and Outcomes ..................................................................... 91 

5. Predictive Modeling for Algal Bloom Events......................................................................... 92 

5.1. Understanding Algal Blooms ...................................................................................... 93 

5.2. Data Sources for Predictive Modeling ........................................................................ 93 

5.3. Modeling Techniques and Algorithms ........................................................................ 94 

5.4. Impact of Predictive Models on Management ............................................................ 95 

6. Data Integration with Environmental Protection Platforms .................................................... 95 

6.1. Overview of Environmental Protection Platforms ...................................................... 96 

6.2. Data Integration Techniques ....................................................................................... 97 

6.3. Collaboration with Stakeholders ................................................................................. 97 

6.4. Case Studies of Successful Integrations ...................................................................... 98 

7. Challenges and Limitations in Marine Pollution Monitoring ................................................. 99 

8. Future Directions in Marine Pollution Monitoring ............................................................... 100 

9. Conclusion ............................................................................................................................ 101 

Chapter 6: Data Pipelines from Buoys to Cloud Analytics .................................... 103 

1. Introduction to IoT Communication ..................................................................................... 103 

1.1. Overview of IoT in Marine Systems ......................................................................... 104 



  

 
 

1.2. Importance of Communication Technologies ........................................................... 105 

2. LoRa Technology in Marine Applications ........................................................................... 106 

2.2. Use Cases in Marine Environments .......................................................................... 107 

3. 5G Communication for Marine Data Transfer ...................................................................... 107 

3.1. Benefits of 5G in Marine Systems ............................................................................ 108 

3.2. Challenges and Limitations ....................................................................................... 109 

4. Satellite Uplinks for Remote Monitoring ............................................................................. 110 

4.1. Overview of Satellite Communication ...................................................................... 110 

4.1. Overview of Satellite Communication ...................................................................... 110 

4.2. Integration with Marine Data Systems ...................................................................... 111 

5. Real-time Data Ingestion Techniques ................................................................................... 112 

5.1. ETL Processes in Marine Systems ............................................................................ 113 

5.2. Stream Processing Frameworks ................................................................................ 113 

6. Cloud Platforms for Analytics .............................................................................................. 114 

6.1. Overview of Azure IoT ............................................................................................. 115 

6.2. AWS Greengrass for Marine Applications ............................................................... 116 

6.3. Google Cloud Platform Solutions ............................................................................. 116 

7. Data Visualization for Marine Stakeholders ......................................................................... 117 

7.1. Importance of Data Visualization ............................................................................. 117 

7.2. Tools and Technologies for Dashboarding ............................................................... 118 

8. Security and Privacy Concerns ............................................................................................. 118 

8.1. Risks in Ocean Data Streams .................................................................................... 119 

8.2. Best Practices for Data Security ................................................................................ 120 

9. Case Studies of Successful Implementations ........................................................................ 121 

9.1. Case Study 1: Real-time Monitoring ......................................................................... 121 

9.1. Case Study 2: Real-time Monitoring ......................................................................... 122 

9.2. Case Study 1: Data Analytics in Action .................................................................... 122 



  

 
 

10. Future Trends in Marine Data Pipelines ............................................................................. 123 

10.1. Emerging Technologies .......................................................................................... 124 

10.2. Predictions for the Next Decade ............................................................................. 125 

11. Conclusion .......................................................................................................................... 125 

Chapter 7: Building a Smart Ocean System: Design and Deployment ................ 128 

1. Introduction to Smart Ocean Systems................................................................................... 128 

2. Choosing Sensors and AI Models ......................................................................................... 129 

2.1. Types of Sensors for Marine Environments .............................................................. 130 

2.2. Selection Criteria for AI Models ............................................................................... 131 

2.3. Integration of Sensors with AI .................................................................................. 132 

3. Hardware Considerations in Marine Environments .............................................................. 132 

3.1. Durability and Environmental Resistance ................................................................. 133 

3.2. Power Supply Solutions ............................................................................................ 134 

3.3. Communication Technologies .................................................................................. 135 

4. Interoperability and Open Data Standards ............................................................................ 136 

4.1. Overview of OGC Standards .................................................................................... 136 

4.2. Understanding netCDF Format ................................................................................. 137 

4.3. Data Sharing and Interoperability Challenges .......................................................... 138 

5. Deployment Lifecycle: Pilot to Full-Scale ........................................................................... 138 

5.1. Planning and Feasibility Studies ............................................................................... 139 

5.2. Pilot Deployment Strategies ...................................................................................... 140 

5.3. Scaling Up: Challenges and Solutions ...................................................................... 140 

6. Lessons from Global Marine Tech Deployments ................................................................. 141 

6.1. Case Studies of Successful Deployments.................................................................. 142 

6.2. Common Pitfalls and How to Avoid Them ............................................................... 143 

6.3. Future Trends in Marine Technology ....................................................................... 143 



  

 
 

7. Conclusion ............................................................................................................................ 144 

Chapter 8: Ethical, Legal, and Societal Considerations in Marine Environments

 ..................................................................................................................................... 147 

1. Introduction to Marine Ethical and Legal Frameworks ........................................................ 147 

2. Data Ownership and Sovereignty in Marine Environments ................................................. 149 

2.1. Concept of Data Ownership ...................................................................................... 149 

2.2. Sovereignty Issues in Marine Data ........................................................................... 150 

2.3. Case Studies on Data Sovereignty ............................................................................ 151 

3. Ethics of Autonomous Marine Systems ................................................................................ 151 

3.1. Overview of Autonomous Marine Technologies ...................................................... 152 

3.2. Ethical Implications of Autonomy ............................................................................ 153 

3.3. Regulatory Challenges and Solutions ....................................................................... 154 

4. International Maritime Law and Sensor Deployments ......................................................... 155 

4.1. Fundamentals of International Maritime Law ........................................................... 156 

4.2. Legal Framework for Sensor Deployments .............................................................. 157 

4.3. Impact of Sensors on Marine Ecosystems ................................................................ 158 

5. Engaging Local Communities and Ocean Stakeholders ....................................................... 158 

5.1. Importance of Community Engagement ................................................................... 159 

5.2. Strategies for Effective Stakeholder Engagement ..................................................... 160 

5.3. Case Studies of Successful Engagement ................................................................... 161 

6. Interdisciplinary Approaches to Marine Ethics .................................................................... 161 

7. Technological Innovations and Ethical Considerations ........................................................ 162 

8. Policy Recommendations for Ethical Marine Practices ........................................................ 163 

9. Future Trends in Marine Ethics and Law ............................................................................. 164 

10. Conclusion .......................................................................................................................... 165 

Chapter 9: Exploring the Future of Artificial Intelligence in Ocean Monitoring 

and Management ....................................................................................................... 167 



1. Introduction to AI in Ocean Monitoring ............................................................................... 167

2. AI for Autonomous Marine Ecosystems ............................................................................... 168

3. Digital Twin Oceans and Simulations .................................................................................. 169

4. The Role of Quantum Computing in Ocean Data Modeling ................................................ 170

5. Next-Gen AI-Powered Marine Robots and Smart Fleets ...................................................... 171

6. Data Collection Techniques .................................................................................................. 172

6.1. Remote Sensing Technologies .................................................................................. 172

6.2. Underwater Drones and Robotics ............................................................................. 172

7. Machine Learning Algorithms in Ocean Data Analysis ....................................................... 173

7.1. Supervised Learning Applications ............................................................................ 174

7.2. Unsupervised Learning for Pattern Recognition ....................................................... 175

8. Artificial Intelligence in Predictive Analytics ...................................................................... 175

8.1. Forecasting Marine Conditions ................................................................................. 176

8.2. Species Distribution Modeling .................................................................................. 177

9. Challenges in AI Implementation ......................................................................................... 178

9.1. Data Privacy and Security ......................................................................................... 178

9.2. Integration with Existing Systems ............................................................................ 179

10. Ethical Considerations in AI for Ocean Management ........................................................ 180

10.1. Impact on Marine Life ............................................................................................ 181

10.2. Regulatory Frameworks .......................................................................................... 182

11. Case Studies of AI Applications in Ocean Monitoring ....................................................... 182

11.1. Successful Implementations .................................................................................... 183

11.2. Lessons Learned ...................................................................................................... 184

12. Future Trends in AI and Ocean Management ..................................................................... 184

12.1. Emerging Technologies .......................................................................................... 185

12.2. Collaborative Efforts in Research ........................................................................... 186

13. Conclusion .......................................................................................................................... 187



  

1 
 

 

Chapter 1: Introduction to Digital 

Oceans 

1. The Need for Real-Time Ocean Monitoring 
Real-time, continuous ocean monitoring or ocean observation is essential for a 

number of reasons. Firstly, the oceans cover approximately 71% of the Earth’s 

surface. This vast expanse may be remote and hard to reach, but it has a huge 

impact on global weather and climate patterns as well on the life and activities 

of humans inhabiting the land. When referred to as Global Change, the fast 

changes in the Earth’s natural systems that are now of utmost interest to the 

entire world include sea level rise, increasing ocean acidification, ocean dying 

due to loss of oxygen, melting polar ice caps, increasing frequency of cyclone, 

hurricane and typhon gestures, coral reef erosion and general loss of 

biodiversity, desertification, and glacial recontras. Many of these changes are 

due to the rise of the levels of greenhouse gases in the atmosphere, particularly 

carbon dioxide, resulting from man-made burning of fossil fuels, or alterations 

in the natural systems of the Earth due to man-made or natural influences. As a 

result of the alarming increase in frequency and severity of unsafe global 

change phenomena such as tsunamis and cyclones, and changes in weather and 

climate patterns, continuous monitoring of the oceans is becoming increasingly 

important. 

Technology advancements made it much easier for humans to communicate 

instantly with each other, confer information and share progress in all fields. 

Ironically enough, this technology could not be easily made to operate for the 

oceans simply because it was too challenging to deploy and maintain the 

systems. So far, monitoring of the oceans was mainly done through periodic 

sampling by research vessels, or acquisition of limited information from 

satellite remote sensing, equipped with sensors that could only acquire surface 
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information. However, it was only in certain regions where the ships could go 

or where the satellite sensors could focus that any meaningful data could be 

collected. These methods are inherently slow compared to real-time 

communication devices such as radars. While the talk was going on in 

computers, sensors in satellites and radars observing the atmosphere of the 

Earth, there were no systems that could provide similar data for the oceans. 

 

2. Role of AI and IoT in Marine Systems 

The oceans are an important factor in climate change; however, we have very 

little knowledge of what is happening there. What we do know has been learned 

essentially using traditional instruments and research ships, which are relatively 

few and move at seas at low speed, returning data that is, on the whole for 

geographical logistic and economic reasons, relatively sparse and sporadic in 

time. The big data revolution allows the oceans to be studied better with many 

more data from many more sensors, returning knowledge that were until 

recently impossible. Such knowledge is important not only for science, for 

understanding the evolution of life on earth, and what we need to do to 

understand it better, but also for society, which has maritime activities that have 

economic repercussions. The combination of sensors that are installed at sea or 

on ships, make large numbers of observations and transmissions of data either 
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to shore or to satellites returning data, and algorithms that analyze the data 

allow large amounts of information to be derived from them. This allows us to 

advance in the knowledge of oceanic dynamics and the improvement of 

services such as shipping, risk management such as tsunamis, cyclones, pirates, 

or pollution, surveillance and defense of coasts and deep waters, tourism, or 

support for infrastructure maintenance. Smart Oceans is important in the use of 

new approaches based on AI, ML, DL, and econometrics, which learn 

parameters from Big Data and extreme statistics that so far are not understood 

or only very crudely estimated. 

3. Overview of Technologies 

3.1 Sensors  

Sensors are used in many Digital Oceans applications to gather data on 

environmental conditions, chemical properties, marine mammal populations, 

and equipment performance. A wide range of different sensor types are 

available, including: optical, motion, conductivity, magnetometer, 

interferometer, meteorological, pressure, ADCP, hydrophone, bioluminescence, 

and eDNA sensors. These sensors are often characterized by their size, power 

consumption, and sensing capacity. Size and power limits depend on whether 

the sensors are mounted on mobile buoys and autonomous vehicles or on 

powered vessels. Performance limits are set by noise, baseline accuracy, and 

temporal and spatial resolution, all of which vary within and between sensor 

classes. Historically, many sensors were designed to be used in conventional 

data collection experiments. When sensors were deployed on cabled and 

underwater autonomous vehicles, they were often continuously sampled. More 

recently, the emergence of low-cost commercial sensor packages and low-

power vehicles and buoys has allowed researchers to collect data in the ocean 

on time scales that were previously impossible. For example, commercial 

electrochemical sensors can measure oxygen tension, macronutrients, and trace 

elements every 30 minutes. Autonomous surface vehicles equipped with 

cameras can continuously map the ocean surface in visible and infrared 

wavelengths. The scale and speed of these combined sampling efforts have 

transformed understanding of the ocean’s spatial scale and variability, but 

challenges remain on how to best relate hyperlocalized, rapidly varying 

observations with slower, basin-scales ocean conditions. 
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3.2. Edge computing  

Edge computing is a distributed computing paradigm that reduces latency and 

improves performance by processing data closer to its source rather than relying 

solely on a centralized cloud server. This architecture is well-suited for smart 

ocean applications where real-time decision-making is essential and 

communications are intermittent and expensive. In recent years, systems 

adapting edge computing principles have proliferated in smart ocean 

applications, especially in examples that manage scarce bandwidth by 

transmitting first at the edge. Bandwidth is limited for ocean environments 

because there are few cell phone communications volume. Adopting edge 

computing not only aligns with these constraints; it is also arguably more 

efficient by offloading some of the processing tasks to smaller devices, 

comparing favorably to a traditional cloud-centric architecture. Designing new 

hierarchical models that balance processing loads among devices and servers 

with varying capabilities is an emerging area of study. 

One concern unique to ocean edge computing is how to manage distributed 

devices, which might be sea-surface buoys, subsurface floats, or sensor 

networks installed on seafloor or moored mounts. Each device may perform 

edge processing yet also upload results and model inputs for distribution. Doing 

so would centralize oversight on the cloud, but with intermittent 

communication, devices must know when to wait for uploads, how to prioritize 

their data, and how to minimize the overhead during upload opportunities. 

Portioning model inputs across multiple devices would reduce communication 

loads. Charged and pre-empted by each device’s battery life, devices might also 

startup, run, then submit models perhaps only seasonally. Overall, ideas from 

coalition game theory, data fusion, and distributed routing in sensor networks 

will help cover these facets of edge computing in the Digital Oceans. 

3.3. Satellite Links 

Satellite Internet and cloud computing resources are necessary to make Digital 

Oceans a reality. Ocean regions located far from land and not serviced by 

traditional commercial telecommunications mostly are left out from the digital 

world. Satellite communications technology has matured, bandwidths and 

number of satellites increased dramatically in recent years, to the point where 

established and new operators are now offering low-latency, high-bandwidth 
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solutions to challenging geographical areas. Large sections of oceans are now 

reachable with fast and inexpensive Internet links. 

Several disruptive new developments are at different stages of maturity. Mid-

density but higher power satellites operating in Ku-band are beginning to offer 

commercial services, with big low Earth orbit constellations. LEO 

constellations reduce latency considerably; at the same time, they employ 

techniques to avoid the jamming and noise that LEO satellites suffered from in 

the past. Programs are looking to build more powerful and selective 

connectivity systems with larger high density satellites and Ultra High 

Frequency band. While these very small satellites won’t be able to deliver full 

broadband Internet for the time being, they do have a niche covering areas with 

small to mid-density traffic requirements. Finally, small satellites are being 

explored by mobile operators. 

4. Global Initiatives 

There are a number of international/global initiatives working to support 

possible implementations of some of the concepts described in this book. This 

chapter introduces two initiatives that are related to our work. First, the 

OceanObs community is a major ongoing global activity around ocean 

observing systems. Second, the UN Ocean Decade initiates programs for 

societal transformation for the ocean. Both of these organizations work at an 

international level and deal with many different topics related to the ocean. 

These organizations are likely to be in alignment with some of the specific 

initiatives that may be created on the timescale of the Decade. 

OceanObs is a convening activity of the ocean observing community for the 

design and evolution of the global ocean observing systems. It happens every 

two years through a conference, which results in a large number of white papers 

that collectively describe our vision for the development of the ocean 

observation systems. The initial OceanObs conference, held in 1999, first 

brought together the satellite and in situ communities towards a more integrated 

approach to supporting societal activities. It was at that event that we first used 

the term “Integrated Ocean Observing System.” Because of the interest 

expressed by conference participants, a conference proceedings volume was 

published. That volume brought significant attention to that first conference and 

its main messages and helped attract support for the next conference, which 
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took place in 2001. These two conferences initiated a series of conferences that 

include OceanObs’03, OceanObs’09, and OceanObs’13. 

4.1. OceanObs 

Sustained and comprehensive ocean observations, data synthesis, and predictive 

capabilities are critical for addressing urgent societal needs and drawing 

benefits from the ocean. Effective action requires science that supports sound 

decision-making in a timely, regular, and reliable way. The commemoration of 

the launch of the Global Ocean Observing System renewed commitments for 

sustained and comprehensive ocean observations organized in an 

internationally-coordinated Ocean Observing System. 

Initiated in 1999 and culminating in international planning meetings, OceanObs 

is the primary international forum for stimulating the design, implementation, 

and coordination of the Global Ocean Observing System. The OceanObs 

meetings are convened every two years to review experiences with ocean 

observations; enable collaborative development of ocean observing priorities 

and requirements and the collective development of strategies for meeting those 

requirements; and motivate the development of innovative, sustainable, and 

equitable ocean observing systems. The next in the OceanObs series will be 

hosted in 2025 in Paris. 

A first requirement is to promote the partnerships and effective action that are 

essential to enable a sustained and comprehensive GOOS underpinned by long-

term collaborations involving space agencies, national and international ocean 

observing agencies, philanthropic foundations, the private sector, academic and 

research institutions, Indigenous and local knowledge-holders, and the wider 

coastal and ocean business community. Further requirements concern sustained 

and comprehensive GOOS delivery. These include setting and implementing 

international ocean observing priorities, policies, and protocols; enhancing 

equitable access to ocean observation data and products, and supporting data 

assimilation and model validation and calibration; and enabling innovation, 

adaptability, and readiness to meet new challenges as they arrive. 

4.2. UN Ocean Decade 

The Decade is a common program that brings together a broad community to 

fully connect for the first time in a century to a unified charter for global ocean 

and marine geography, research, and observation to peer into the future. The 
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2030 Agenda for Sustainable Development emphasizes the need to strengthen 

the knowledge base through the Decade, “in particular at the scientific level, to 

inform decision-making, strengthen resilience, develop solutions and build 

partnerships”. The Decade’s vision is to create the need and capacity for the 

development of sustained ocean and coastal observations and research by 

spearheading an innovative process to develop the research, ingredients, and 

institutions to empower Member States, regional entities, and experts to use this 

toolkit to overcome global challenges of sustainable development. 

Understanding the ocean’s warnings of impending danger is key to responding 

to disaster mitigation needs. The need to engage and empower people is key to 

developing sustainable and committed partnerships and collaborations. 

Progressively identify priorities of the partner countries and achieve tangible 

results of deploying observations-decision-making-collaboration-science 

partnerships locally, collaboration, and state-of-the-art observations and results. 

Connect diverse national and international ocean science communities working 

on scientific warm and cold water hooks and specific ocean observation 

applications and political goals. Create a multidisciplinary ocean with sustained 

open access for baseline scientific and societal-informed marine research and 

observations covering the ocean in a continuum from modeling feasibility for 

all vertical oceans, forecasting response to the 2030 Agenda for Sustainable 

Development Goals while enabling all of the nations to adhere to their 

respective Charters of Collaboration. 

5. Challenges in Ocean Monitoring 

Ocean monitoring remains a challenge, and there are many reasons why the 

solution to this problem is presently difficult to implement at scale. The first 

reason is the state of the art on ocean monitoring technologies. There are some 

observational technologies available on the market. The most prominent ocean 

monitoring solution is the mooring buoy. Mooring buoys have been widely 

used for different purposes through many decades. The buoy operates typically 

as a floating platform that supports a variety of sensors that have been deployed 

at different depths in the water column. Some parameters monitored by systems 

of multi-depth marine mooring buoys include the meteorological, wave, sea 

surface and underwater currents, and sea surface and underwater physical and 

optical properties. However mooring buoys are relatively expensive, hard to 

deploy, and have some important constraints such as reducing the accuracy of 
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wind field measurements, considering that they are point measurements that do 

not capture the wind field variability, and additionally have a limited survival 

time. 

Remote sensing is an important alternative to monitor the oceans, with several 

satellites continuously acquiring images of different parameters of interest. One 

important limitation of several remote sensing techniques is that they are only 

able to address some specific physical and chemical parameters, such as color, 

temperature, current, and velocity surface maps with low resolution in the 

spatial and temporal variability. However, there are some gaps in space and 

time, and given the limitations and constraints, satellite data is not enough to 

properly monitor the oceans. Given this scenario, there is an urgent need to 

develop new ocean-concept designs that are able to overcome the limitations of 

previously described approaches. The ocean sensor networks concept is one of 

the most promising solutions to address this challenge. 

6. Data Management and Analysis 

Managing data from smart ocean activities and projects may be challenging - 

including storage, access, analysis, and integration of the sensor content and 

other data sets. The following principles may help the activities and project 

leaders to better manage the data for their projects. 

Data Management Plan. Projects should include a Data Management Plan 

explaining how the data will be stored, made available, preserved, and shared 

among the researchers and with the general public. The data may require 

substantial storage and network transfer capacity, personalized access, complex 

file structure organization, financial resources for archiving, shared-data long-

term durability, as well as providing access and sharing procedures. 

Pay Attention to Metadata. The data sets should contain extensive metadata – 

data about the data – for enhancing their discoverability and analysis. The 

power of the data lies in the capability and techniques that will be developed to 

analyze and visualize the immense volume of dynamic ocean-related data from 

diverse sources. Analysis and visualizing techniques impose constraints on how 

to store and structure the information. These techniques should be selected in 

advance, and indeed the capturing and storage system should optimize the data 

structures for the intended data analysis and visualization. 
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Harmonize the Data. The integration and fusion of diverse data sets – from 

different areas of the oceans, research projects, sensors, and organizations – can 

generate new knowledge and visualizations that would not be possible based on 

separate data content. Interaction between the various ocean data holders should 

be encouraged to discover the best ways to combine their services. In particular, 

the data holders should agree on data structuring and organization conventions, 

especially for the standardized metadata and the sensor and platform data 

description models. 

7. Impact of Climate Change on Oceans 

Climate change can no longer be regarded as a distant foreboding. Its impacts 

are echoing through the environment, increasingly influencing weather patterns, 

augmenting water levels, and shifting ecosystems around the world. As much as 

94% of the excess heat trapped by greenhouse gases has been sequestered in 

inherently volatile ocean waters, triggering profound alterations within global 

currents systems, prompting melting glaciers and polar ice caps, and evidencing 

devastating climate events across the planet, from extreme droughts to lingering 

floods. It has also conspired in the rise of natural hazard events, petrifying non-

linear predictions of future catastrophes. Climate change impacts the entire 

ocean and its associated systems, from coastal evolution to marine ecosystems 

and natural resources. 

The ocean plays an essential role in life on Earth, regulating weather and 

climate, connecting countries and continents, hosting and nurturing manifold 

living organisms, storing vast quantities of energy and carbon, and providing 

resources and services for many societies worldwide. However, we are rapidly 

destabilizing the balance of this ostensible infinite blue system with 

anthropogenic emissions of greenhouse gases. Climate change impacts are 

expected to alter many of the physical and ecological properties of the ocean 

throughout this century and beyond. Physical changes due to climate change 

already observed or projected for the future include ocean warming and this 

will continue, with broad implications. The ocean has absorbed about 30% of 

the CO2 released by human activities since the 1750s. These changes are 

fundamentally altering the fundamental properties of the ocean. The ocean 

stores about 93% of the heat accumulation due to anthropogenic greenhouse 

gases. The loss of ice by melting is the cause of sea level rise. 
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8. Marine Biodiversity and Conservation 

The ocean is Earth's last biological frontier, and home to the largest diversity of 

life inhabiting a variety of environments, including extreme habitats such as 

dark ocean trenches and hydrothermal vents. Marine life supports and regulates 

global climate and weather patterns, and provides enormous wealth in the form 

of marine resources and services; all life on Earth depends on it. However, the 

multitude of species and ecosystems that make up marine biodiversity, and 

perform essential functions for the well-being of humanity and the planet, are 

being lost at an unprecedented rate due to extensive human activities. These 

pressures are then exacerbated by the accelerating impacts of climate change. A 

better understanding of global and regional patterns of marine biodiversity and 

how biodiversity responds to anthropogenic pressures, however, is possible 

thanks to the robust, sustained, long-term and repeatable ocean observations 

that are performed by the ocean observing community. Observational activities 

may be augmented by the success of scientific maritime voyages of exploration, 

provided by today's Ocean Big Data, assisted by Artificial Intelligence. 

The conservation of marine biodiversity is now a priority for many nations 

around the world, with ambitious national and global targets to expand the area 

of ocean protected from human activities, adopting policy frameworks, and 

encouraging public-private partnerships, while trying to ensure that these efforts 

are adequately planned, financed, and managed. Novel solutions to support the 

Blue Economy are being explored to foster sustainable development, and 

therein and through corporate social responsibility, sub-national and 

decentralized government engagement, citizen science, and international 

collaboration, spatiotemporal aliasing of the observing networks can be 

alleviated. Addressing these challenges, while guaranteeing equitable real-time 

access to Ocean Big Data for all, ensuring that it meets the needs of the end-

users, and integrating it into transdisciplinary projects, are the next steps to 

using these sustainable ocean observing systems, and the technology they 

promote and are bounded into, to make smart oceans dedicated to the 

conservation of marine biodiversity. 

9. Economic Implications of Digital Oceans 

Through its discussion of economic speed and social innovation, business and 

growth, we have shown how society benefits through economic advances which 

come through careful smart investment. Although Smart Oceans without doubt 
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cost society, and may in fact currently be more costly than the current ways of 

investing in the ocean, we have also shown ways in which the Smart Oceans 

program can make economic sense. Moreover, and more importantly, investing 

smartly in the oceans pays not just through short-term economic growth or 

business success. These investments in Smart Oceans are also investments in 

the long-term future of humanity. These investments in Smart Oceans build an 

oceanic platform for greater well-being. They bring the ocean into the systems 

of education, social service fulfillment, community-building, and ecological 

service which maintain and advance human well-being, by bringing the 

prodigious oceanic help – revelations, archaeology, resources, transport, 

correction function – which promote greater economic performance, closer to 

modern humans. By connecting people with both the freeing creative potentials 

of new ways of understanding and shaping their interactions with the seas 

which comprise two-thirds of the global surface and their historical legacies, 

and with the broad-ranging benefits which these investments make available – 

revelations, robotic work, objects over which property can be claimed, 

corrections of the forces changing the planet, socially-helpful ecological 

functions – we make investments which will bear positive returns also long 

after business and GDP figures level off or decline. 

10. Policy and Governance in Ocean Monitoring 

Introduction The ocean is not just a vast blue backdrop behind the events of life 

on land; it is also a connected ecosystem that significantly influences land life. 

This is why it should not be surprising that the national policies that guide the 

human interactions with the ocean are diverse, detailed and complex. Oceans 

provide transport routes, influence the climate, generate and absorb atmospheric 

gasses, are the base of the oceanic food web, support fishing, and provide a 

significant percentage of the protein consumed by humans. Oceans are 

international transport routes, whose security and safety have to be ensured. 

Oceans also absorb a significant share of the carbon emissions due to human 

activity. All these services provided by the oceans are increasingly under threat, 

from pollution, to reduction of biodiversity, to climate change. Consequently, 

the policies that govern human actions on the ocean need to cover all aspect of 

the oceans systems, their links to terrestrial biogeochemical systems, the threats 

to these interactions, and how these interactions can be preserved. But even if 

the oceans have been always present in the policies of Nations, over the last 
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decades the impacts of human activities on the oceans are gradually becoming 

more central to the overall objectives of ocean policy. 

Ocean Policy and Governance: The Evolving Agenda Ocean governance can 

simply be defined as a set of mechanisms that establish a framework for 

implementation of policies for ocean management. It is more often and more 

appropriately considered as a set of processes with or without formal processes 

for making and implementing decisions about management of marine resources 

and space that establishes a set of rules for all users of a defined marine area. It 

operatively manifests itself as ocean policy. Over the last decades the reduction 

of biodiversity, climate change, human impacts on coastal and ocean processes, 

the links between oceans and terrestrial and atmospheric processes have started 

to appear at the center of ocean policy. 

11. Future Trends in Ocean Technology 

Modern human society is entering a new era of rapid technological evolution, 

equally transformative to earlier centuries' information and energy revolutions. 

Is historical precedence a valid reason to expect this decade's rapid computer 

and communications development, which the pandemic turbo-charged, to 

extend to ocean and climate development - where breakthroughs are essential to 

solve climate's and ocean biodiversity's challenges? 

Climatology's and oceanography's advancement have only tempered prior 

skepticism about cybersecurity and information technology next-generation 

performance boosting sensor-aided, -sized, solar-powered robot development. 

Isn't it both logical and likely that exponential surveillance, monitoring, 

experimentation, and navigational enhancement will ultimately spillover into 

the oceans? Certainly, the growth of ocean science talent and the individual 

investment advantages associated with these enabling devices underlying 

present technology are factors boosting the science and public commercial 

desire. 

Although protective legislation might inhibit or delay investment, the potential 

for ocean production work dual-use devices, combined with the vast, deserted 

ocean, may lure interest, stimulating innovation, and leading toward rapid 

growth in the generation and space-time scale of robotic data collection. Such 

an event may lead to dramatic improvements in ocean knowledge, permitting 
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breakthrough predictive capabilities and better informed predictions of the 

impending crises. 

12. Public Engagement and Education 

The ocean is home to an incredible diversity of life, and as such it has many 

stories to tell. The disciplines needed to study and monitor biodiversity and 

ecosystems are wide ranging and complex. Workshops, collaborations, and 

citizen projects have been initiated to develop a greater public understanding 

about what worlds live below the surface, the technologies we use to visualize, 

study and learn from, and the pressing need to preserve this complex and 

integrated web of life. Involving the public in ocean exploration and science 

allows people to directly experience what it is like to explore the ocean using its 

many diverse technologies. Transmitting that experience, through public talks, 

engaging documentaries, in-school educational materials, outreach projects and 

knowledge exchange workshops helps to close the gap between what scientists 

do and what is understood. How to engage the public from diverse cultures and 

locations not only requires creativity and outreach but also commitment and 

resources. The positive engagement of the next generations through available 

programs helps to develop a broader understanding of ocean biodiversity and 

experience with the tools and technologies that are involved, but it also prepares 

our next generations for the position of custodians of the ocean. 

An understanding of basic oceanography can help anyone traveling near coastal 

communities of harvest to know the importance of potential nutrient loading, 

and how a collecting event can effect long-term damage due to the inability of 

communities to recover from non-compliance or lack of respect for subsistence 

and praise for symbiotic services essential to local economies and ecosystem 

health. Citizens can also imply policy changes. New interests with politicians 

who wouldn't normally be pro-science may come from an interest in the tourism 

economies associated with ocean exploration. 

13. Case Studies of Digital Oceans Projects 

Modern ocean exploration and subsequent scientific studies would not be 

possible without sophisticated instrumentation and methodologies. New 

technologies emerging in diverse, but related areas, such as smart and 

congested sensor networks, cloud computing, autonomous vehicles, remote 

monitoring, machine learning, etc., provide ways to advance ocean exploration 
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at scales, time frames, and the granularity of detail currently not feasible. These 

new advancements allow launching a fleet of autonomous vehicles to conduct 

seafloor exploration missions over large ocean areas in concert with diverse, 

distributed, networked sensors deployed onto the seafloor or tethered to the 

seafloor for long durations. We discuss various, but diverse, at times disparate, 

aspects of ocean exploration in the coming sections. We begin with a survey of 

a few representative smart ocean system projects. 

Smart (and congested) Sensor Networks in the Ocean: The Ocean Observatories 

Initiative deploys new distributed smart sensor networks in the oceans as part of 

a funded initiative. It deploys a suite of sub-systems in 3 specific regions, 

funded through separate mechanisms and still under deployment: Coastal and 

Global Scale Nodes and arrays of surface moorings with distributed buoys that 

tolerate severe weather conditions; and an Interactive Northern Hemisphere 

Component nodes in an ice and weather sensitive region close to the arctic 

circle. These diverse components will provide a combination of fixed and 

mobile platforms that leverage new, autonomous sensors in the oceans to enable 

long-term, sustained ocean observation. 

14. Collaboration between Academia and 

Industry 

A large portion of research and development investment goes into developing 

sensor systems, communication technology, processing, and supervisory 

expertise with the goal of detecting ocean events. The operational capability of 

these systems is hard to assess. Ideal conditions for evolvement of new sensor 

suites, their demonstration at a small scale, and their integration into stand-

alone or networks of systems have customarily been undertaken at significant 

expense and over long timescales using funding. In this model, private industry, 

which operates under the pressure of profit, and academic institutions, which 

pursue knowledge as a societal good, cooperate with intelligence capital 

accruing to each in a division of labor. Over the past generation, the trend has 

been to devolve more functions to for-profit industry, resulting in economic 

returns to industry, growing capital surpluses, and national advantages in 

manufacturing. The process has been accelerated in the wake of rising deficits 

in funding for scientific research for societal good exacerbated by growing 

budget deficits. 
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Access to new ideas and the nurturance of young scientists have been important 

motivations for business investment in the physical sciences. Stimulation of 

commercial application of scientific research is a policy goal for both 

government and universities in return for the access and support offered 

business. Moreover, as we move toward a future that features fewer mega-

hazards and more local catastrophes driven by quarrels over diminishing natural 

resources—fuel and water, climate change, and the spread of infectious 

diseases—the experimental leadership, rapid prototyping, and new design 

phases of commercial partners may be more advantageous. 

15. Ethical Considerations in Ocean Monitoring 

When conducting ocean monitoring, special ethical considerations apply. We 

address three kinds of moral concern which we argue deserve special emphasis 

by researchers in ocean monitoring: actively thinking about the consequences of 

your work, diligence in safeguarding data from potential harmful usage, and the 

ethical implications of sociotechnical research. Although these considerations 

apply to scientific and technological research more broadly, we argue that they 

are more acute in the case of ocean monitoring due to the pervasive character of 

many ocean sensing methodologies in use, the typical association of such 

projects with some kind of broadly conceived practical ethics, and the position 

of ocean monitoring technologies as possible enablers of subsequent 

interventions which may themselves be normatively evaluated. 

Liability for the consequences of research then present a very different concern. 

Ocean monitoring typically operates via satellite, sensor-embedded buoys, or 

elaborate robotic vehicles. As such, deployed sensors can measure 

environmental and ecological conditions all over the world hour by hour. For 

the most part, this monitoring is done without local permissions, oversight or 

trust building relations with the communities experiencing the consequences of 

climate change. While there are certainly good intentions to mitigate climate 

change from various projects – and using our best understanding of the oceans 

to assist those impacted is a moral good. 

16. International Cooperation on Ocean Issues 

The sea is a physical and regulatory barrier that separates land-dwelling human 

societies, but it also brings us into contact with each other, serving as a conduit 

for the movement of people, ideas, and goods. Throughout history, cross-border 
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interaction and exchange have occurred at certain locations on the littoral, and 

to a limited extent, farther inland by river and lake travel. The social networks 

established by coastal trading have expanded over time and now encompass the 

entire globe. Similarly, the seas have long been exploited by nations of all sizes 

and development states for transport, communication, fisheries, exploration, 

and other activities. These interactions on and above the surface of the ocean 

are generally governed by international conventions, treaties, and agreements. 

Below the surface, however, there is little systematic ongoing cooperation. 

While many nation-states claim territorial rights, through both historical 

precedent and legal treaty, to a narrow band of countries just offshore, the vast 

bulk of the world's oceans are claimed as open seas. Nations are rapidly 

expanding their effort to understand, exploit, and service resources below the 

surface of the deep open ocean. The creation of the Smart Ocean infrastructure 

and the Ocean Face technology transfer beacons combine to offer novel 

methods for fostering broader international cooperation on the specific science-

related issues, while benefiting the many countries that do not yet have the 

capacity to actively pursue research. 

17. Technological Innovations on the Horizon 

When we think of innovation, we usually think of the most recent developments 

in technology that are not yet in common use. Yet there is much more at each 

level of W. Brian Arthur’s “Twelve Levels of Technology”, where the most 

basic is the laws of nature, and the most elaborate is the worldwide economic 

and technological system. Over the past decades innovations in our 

understanding of the oceans have been at increasingly more advanced levels -- 

at Level 2 with better boats, optics, sensors and nets; at Level 3 with means of 

assemblage like electronic composites, addon devices, hybrid robots that allow 

remote and automatic operations; at Level 4 with increased scientific and 

engineering knowledge for monitoring physical, chemical and biological 

processes in the ocean; Level 5 with integration of sensors and communications 

back from the ocean into our social infrastructure; Level 9 with variation 

seeking algorithms that allow autonomous adaptive exploration; Level 10 

mathematical models of ocean behavior, and state observations for inference of 

ocean dynamics; Level 11 with models to infer habitat and abundance of ocean 

animals from partial observations; Level 12 with the entire system for 

fashioning the right incentives for protecting the viability of oceans while at the 

same time recognizing the uses and benefits of their resources; innovations for 
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the balance between management and exploration. Here are some promising 

current examples of innovations at all of these various levels. For basic 

scientific discovery, satellites measuring the distribution of phytoplankton 

pigments, improving understanding of upwelling zones, and the global carbon 

cycle. For advanced algorithms using much more observational capability to 

infer the distribution of ocean animals -- fishes, marine mammals -- and the 

locations of commercially viable concentrations of pelagic fishes. For new 

sensors for measuring chemical and biological parameters in the ocean, 

miniaturization and standardization opening whole new observing avenues. For 

insight-adaptive exploration with large flexible robotic sensor floats, sensing 

remotely from the atmosphere, conversion of floats into supersonic balloons or 

near supersonic gliders, many advantages beyond acoustics, and for many other 

kinds of disruptive innovation bringing down the cost of exploring and 

observing the ocean. For complementary advances in earth observation from 

satellites and aircraft, probably the most powerful and fastest developing means 

for measuring ocean and coast processes over a wide range of space and time 

scales: remote sensing using electro-optical, microwave, radar and lidar systems 

for detecting aerosols and atmospheric humidity, ocean surface winds, ocean 

wave height and direction, ocean surface currents. 

18. The Role of Citizen Science 

Citizen science, a term that designates voluntary contribution by laypeople or 

non-experts to scientific activities and processes, may come to play an 

influential role in closing the gap imposed by the limited availability of skilled 

scientists and specialists currently active in OOS, as well as in maintaining and 

developing local capabilities for Ocean Observing Systems. Citizen science, 

especially in the form of environmental monitoring campaigns, has experienced 

a significant impulse in the past few years, coming to fill the gaps in scientific 

knowledge and uncertainty due to limited scientific capacity, resources, and 

time. In most encounters with the public, the need for monitoring coastal areas 

is repeatedly pointed out, especially in terms of visual and informational 

information systems to track indicators for potential anomalies in coastal or 

marine ecosystems. 

As important as these collaborations may be, the efficiency of enhanced 

monitoring programs chiefly relying on non-trained participants may be limited 

mainly due to the reliance on informal training, and more importantly, to the 
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unpredictable availability of volunteers that will vary according to factors, 

including season, training, awareness, and motivation, the outcome from local 

training may have on society engagement with the process. Currently, the tasks 

and procedures fulfilled by citizen science deals mainly with data collection and 

not with the analysis and integration of these data, which may, further down, be 

considered and weighted, for example, in the context of the need for validation 

and anchoring of modes for downscaling in the context of seasonal processes 

from climate modeling or assessments of climate impacts or projections. Such 

studies may consider the contributions made by volunteers engaged in these 

networks for the observed differences, effectively stratifying the levels of 

participation in the correction function. 

19. Integration of Marine Data Sources 

Marine research is diverse and, to be honest, somewhat chaotic. There is a 

broad range of sciences that may study different aspects of the wide marine 

ecosystem. The marine ecosystem encompasses such varied scientists and 

collaborators that it needs this broad classification: profile photos from Robots, 

buoys, submersibles, ROVs, AUVS, and others immersed into the marine 

ecosystem; in-situ data from offshore platforms to monitor the atmospheric 

fluxes; satellites and radars covering the broader view of the ocean surface 

state; shipborne campaigns and floating array programs with their periodicity; 

and animal murses carrying sensors in their biology as they navigate the ocean 

either accidentally or on purpose. There are even “special forces” of the military 

who deploy surveillance and monitoring devices in the vastness of the high seas 

for ambiguous purposes. 

Also astonishing is the amount of data being generated, much of its stored in 

different repositories using various formats and file structures, and with distinct 

protocols to access it. It has come to the point that some scientists only focus on 

the data access and integration to make sense of the values. Fortunately, some 

agencies and private companies have recognized this gap and developed 

products that consolidate and integrate some of the diverse data sources, often 

applying machine learning techniques to reach such goals. The ability to easily 

access all these data sources as a single coherent system will pave the route to 

understanding the ocean system behavior through all the temporal and spatial 

scales. AI methodology is at its best for research in very diverse and volatile 

systems such as the ocean. Further, the happy spurious correlations of “big 
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data” driven AI methodologies have been shown to work well in all of the great 

initiated projects for ocean research, in spite of not being known exactly how. 

20. Impact Assessment of Digital Oceans 

Initiatives 

Digital Oceans Initiatives (SOIs) are activities that use advanced information 

and communication technology (ICT) to address ocean-related challenges. 

Many problems experienced in the oceans since time immemorial are at risk of 

exacerbation due to developing megatrend dynamics, accelerating globalization 

risk, and changing ocean ecosystems. Therefore, adopting SOIs has become 

increasingly important, creating monitoring and alert systems for decision-

makers and managers on the land and sea. This paper suggested an analytical 

framework, an illustration of the approach, and future works to impact assess 

SOIs focused on information impact results concerning interested parties. The 

results also showed metrics to assess partnerships by incentive-seeking SOIs 

based on the application of the DART Model to a particular type of SOIs, 

MHDM-Gemini. 

SOIs generate more concrete impacts when SOIs disrupt public and private 

sector organizations' activities of DOMAINS of OCEANS, i.e., further risk 

mitigation from their decision-makers and managers. We illustrated the SOI 

impact assessment and demand assessment methodologies through an impact 

assessment of the development of Socio-Energy Systems (SES) based on 

MHDM-Gemini based on OCEANS 2.0 and the impact assessment of the 

recent research group on Non-Reciprocity methods of Main International 

Scientific Centers Collaboration based on the DART Model. We suggested 

three stages of SOI impact assessment in the roadmap and conceptual schema 

for Action-Oriented Action Research on SOI impact assessment, proposing an 

initial three-career, SPE&MET-Aagasy-ICSURS research roadmap towards a 

SOI assessment road for future works. 

21. Recommendations for Future Research 

The Ocean has played a fundamental role in our world’s development: it has 

been a source of food, an origin for many diseases, and a scene of many 

adventures. It continues to influence our climate, regulate life on Earth, and be 

the mean for world trade, providing a conduit for the large flows of goods and 

products that sustain our economies. Yet we remain largely ignorant of the 
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ocean and its inner workings. This chapter ends by summarising some potential 

future research topics, with special emphasis on the ocean data framework that 

could provide. 

Remote Internet of Things sensing of the Ocean adds to the traditional in-situ 

methodology to gather data. Enhanced and extended traditional measurement 

campaigns and protocols: adding already existing networked systems including 

WAMs and buoys, enhanced mooring infrastructures, ship-hull buoys, 

Saildrone-operated remote measurements or advanced glider platforms. Smarter 

ocean infrastructures are of key importance to gather more advanced real-time 

data about the Ocean and its dynamics. These could help improve weather 

predictions, gaining more insight into phenomena such as El Niño or Hurricane 

generation, supplying interface information to satellites. They would provide 

better predictions of extreme events and their spatial-temporal incidence: 

hurricanes, marine heatwaves or undersea earthquakes. All of these aspects may 

help improve the predictability of Ocean function and climate change, assisting 

towards the Blue Economy. 

22. Conclusion 

We write this conclusion in a heavy mood. As outlined in this work and 

revealed in the diverse chapters contributed by different authors, we know that 

climate change is capable of triggering dangerous tipping points, of crossing 

thresholds beyond which it cannot come back anymore, or it cannot come back 

to the status quo of a few years ago. Ocean warming and acidification, 

deoxygenation, weakening of the Atlantic Meridional Overturning Circulation, 

or melting of ice sheets are only some of these climate anomalies. It seems that 

costs of climate change are externalized on the oceans more than on any other 

part of the globe. Moreover, despite the importance of the oceans, data scarcity 

makes ocean climate change debate even harder, because almost 90% of the 

ocean volume is sampled from about 1% of the ocean area. 

As we write, we are very close to the Ocean Conference in Lisbon, Portugal. 

There, the UN will relaunch the Decade of Ocean Science. In this decade, it is 

crucial to enhance the ocean observing system, not only to record and measure 

climate change effects but also to generate knowledge on physical, biological, 

biogeochemical, and ecological processes and phenomena in the marine 

environment. Knowledge is key for the definition of effective and climate 

change alleviating policies. The more we know about the functioning of the 
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oceans, the more we will be able to define policies and mitigation strategies to 

maintain the planet within safe operating boundaries, as proposed by the 

concept of planetary boundaries, or to make it recover from dangerous tipping 

points. Additionally, the more we know about the ocean functioning, the more 

we will be able to properly manage the oceans in order to transfer their valuable 

goods to future generations. The Smart Ocean Initiative goes in this direction. 
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Chapter 2: AI in Ocean Sensor 

Networks 

1. Architecture of Smart Sensor Networks

Smart sensor networks combine sensing, computation, communication, and 

actuation. They span a large number of spatially distributed sensor nodes and 

collaborate to monitor and control physical environments. Composite backbone 

structures are adaptively built of the sensor networking and a hierarchical data 

interlink to a main controller based on critical application needs of specific 

scenarios. Such a structure provides adaptive macro and improve global view 

digital observability to the composite system. Internally, spatial context is 

maintained using data cooperating protocols, while the regional actuators and 

processing components allow nano scale local behavioral controller systems. 

Smart sensor networks are often embedded and dispersed in application areas 

for safety, security, environment, and health and military monitoring. The 

ability to directly embed active sensors in the monitored area distinguishes 

smart sensor networks from terrestrial sensor networks. Many applications 

require reliable long-term unattended monitoring. These applications demand 

low-cost sensors with reduced power and information processing capabilities. 

Distributed monitoring, detection, classification, and refinement of observed 

phenomena are the key characteristics of a typical smart sensor network 

architecture. The network is a low-cost collaborative set of spatially-distributed 

heterogeneous digital devices with processing, computing, and communication 

capabilities. 

Deep Science Publishing, 2025  
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In addition, there are critical national needs for the discovery, application, and 

use of smart sensors to enhance operational effectiveness. The smart sensor 

technology developments provide many advantages, capabilities, and 

technologies for the collaborative miniaturization of sensor component and 

system development. The smart sensor networks have much potential influence 

in areas of intelligent surveillance, physical layer monitoring, and people and 

personal activity tracking due to the availability of short-range and low-cost 

imaging devices, geo sensors, and uncooled thermal devices. 

 

 

 

2. Sensor Calibration Using Machine Learning 

Algorithms 

An essential component of the SENSORS architecture is the sensor calibration 

task. Sensors are cost sensitive systems, which are not maintained regularly 

once they are deployed. For long term deployments, such devices do require 

recalibration, in particular due to drift effects. Data fusion algorithms have been 

applied to estimate deviations from the expected sensor characteristics. 
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However, models assume sensor characteristics are relatively constant between 

updates making them unable to calibrate short term behavior, and are sensitive 

to process and measurement noise covariance initializations. Filters are 

traditional approaches to sensor calibration, and there have also been efforts to 

apply smoother algorithms. 

Dealing with the shortcomings of models, we have proposed a data driven 

approach in describing the sensor behavior or calibration facets, as a function of 

time, and to employ machine learning algorithms to build the model leveraging 

data fusion to derive the functional model. Using entropy metric of the sensor 

measurement distributions, we cluster the measurements from a number of 

devices, and apply density estimation to generate the probability distribution. 

However, the estimation high computational complexity means we are limited 

in the spacial/temporal resolution for grouping a potentially large number of 

measurements together. The corresponding bandwidth selection also affects the 

quality of the calibration. Though data driven approaches do not share the 

burden of initializing the covariance terms but they need a larger number of 

data points to avoid overfitting. The resulting machine learning approach could 

then, for a device, either learn from cached calibration information of previous, 

or nearby, observations or from a general database resulting from using a larger 

number of devices to learn the general device behavior. 

3. Anomaly Detection in Sensor Data 

While monitoring the target phenomena through ocean sensor networks, it is 

crucial to monitor the satellite sensor data as well as the sensor node data to 

ensure that any changes that occur at in-between depths are properly captured. 

The monitored phenomena should be validated as well. The monitoring and 

validation tasks are critical because the sensor devices have several issues, such 

as energy constraints, communication limitations, short hardware life, 

functional failure, sensor drifts, biofouling, and measurement saturation, all of 

which may result in lowering the data quality. For example, when aquatic 

biogeochemical activity increases, certain sensor nodes having faults may 

return similar temperatures for a long time compared to the corresponding 

satellite sensors. Therefore, we should detect anomalies in the sensor data 

associated with the target phenomena over time. Furthermore, we should also 

determine the cause of the anomalies in case we find the sensor hardware faults. 

Salinity Monitoring 
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Before we analyze the satellite salinity data for unusual behavior, we need to 

eliminate the unexplained features. Concurrently observed rainfall data are used 

to filter out the high salinity data before and after any rainfall. Salinity data 

associated with the heavy rainfall or assumed freshwater entry into the sea in 

excess of 0.05 meter depth per second and associated with the tidal cycle based 

on the phase compared to the satellite passage window are filtered out. 

Furthermore, salinity data in a profile that are associated with a slope of more 

than ±0.07 per meter are also filtered out. This way of cleaning the satellite 

salinity data allows for the smoother salinity transition along latitude or 

longitude over several months or years, which is similar to what is expected 

along those directions. 

3.1. Salinity Monitoring 

Sea salinity is an important variable that has been monitored for many years 

through measurements from buoys, satellites, and vessels. Salinity is one of the 

variables required to calibrate conductivity-temperature-depth sensors and 

satellites. Ships have traditionally been used to take water samples, but 

measuring ocean temperature and salinity continuously across a wide area from 

various sensor types, including CTDs and radiometers, for many years allows 

for an analysis of variations in ocean dynamics on month and longer time 

scales. Salinity and temperature are optical properties of water, and salinity 

monitoring can be conducted without sending a vessel. Optical sensors allow 

for response times in the range of seconds. While salinity is measured across 

the full depth of the ocean by ice-breaking vessels in the Arctic, there has been 

little salinity measurement integration along ocean surface paths. U.S. Navy 

and other research vessels have calibrated sensors to enable salinity extraction 

from near infrared signals. A deployed radiometer, capable of monitoring 

salinity with an accuracy of 0.3 psu, detected salinity anomalies in the Florida 

Straits during the first cruise of the underwater gliders. Satellite salinity data, 

despite their lower spatial resolution, are well correlated with buoy data. 

Temperatures indicate the presence of shallow atmospheric fronts that might be 

sampled by ships at risk. A radiometer developed for laboratory use was 

capable of conducting salinity monitoring for less than $200. However, the 

secondary reflexion step was too large. 
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3.2. Temperature Analysis 

Temperature is one of the primary variables that both characterizes and drives 

many biological and chemical processes in the ocean. Ocean temperature 

impacts the growth rate of marine animals and is a major driver of ocean 

circulation and mixing. The ocean plays a major role in the regulation of the 

Earth’s temperature. Increasing temperatures because of climate change are 

leading to melting of ice caps, extreme weather events and natural disasters. As 

such, accurate estimation of ocean temperature is crucial. Understanding the 

temporal dynamics of ocean temperature is a special focus of climate and 

marine sciences. Anomalies in ocean temperature can indicate phenomena such 

as natural disasters, or abrupt shifts in climate. Detecting sudden perturbations 

to sea temperature would help the emergency preparedness against disasters 

such as heat waves, hurricanes, and wildfires in coastal areas. The ocean 

temperature is highly dynamic in terms of both space and time. In addition to 

the regular periodicities of daily and yearly temperature changes, the seasonal 

temperature may also be influenced by certain oscillations. 

A major limitation of sensors that have been deployed in the ocean is that they 

provide rather noisy observations of temperature. Sensor observations are 

typically subjected to noise, as the sensor goes through cycles of undetected 

fouling. In addition to the variations in the temporal properties of the 

temperature-field, the very low spatial density of the temperature sensors 

deployed in the ocean additionally leads to dramatic drop out of sensor 

measurements in space and time which exacerbates the sensing noise problem. 

In this section, we investigate the applicability of using machine learning 

methods to the problem of anomaly detection in ocean temperature data 

streams. 

4. Use of Federated Learning for Distributed 

Sensor Intelligence 

Federated Learning is an innovative approach that has come to revolutionize 

typical Machine Learning. The idea is to create a model using data that is 

distributed geographically instead of using a centralized hub to pool data 

together. In the case of oceanographic applications, it makes sense to leave the 

data at the source. A variety of science applications can exploit the use of FL 

for various reasons: privacy, bandwidth, and trust. In many cases, solutions are 

developed without communicating raw data, primarily to protect confidentiality 
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or intellectual property restrictions. Such solutions require highly symmetric 

trust settings, meaning that all parties trust each other probably equally. In other 

cases, the typical concern related to FL is bandwidth. For distributed 

deployments that send high volumes of data over the internet, it can be faster to 

extract model parameters and use them instead of raw data for training on a 

centralized server. Finally, asymmetric scenarios are those that make federated 

solutions truly unique. It is possible to leverage a trusted third-party monitor 

other custodial partners to achieve efficient learning through central modeling 

without transferring data. 

The main differentiation is that in federated/split learning, rather than all parties 

collaborating to evaluate a joint model, the third-party entity uses local services 

to train a global model from its partners’ predictions of each local model. Both 

Machine Learning models can be learned remotely, without sharing the 

sensitive data over the network, and only outputs and associated labels need to 

be exchanged. Local model parameters can be specific to the individual partners 

and benefit from reduced computation and network bandwidth usage, but which 

compute no useful information alone. Yet optimally trained from the central 

entity, this joint model can accurately perform the task relevant to the 

collaboration. FL provides a feasible solution that addresses the resource 

constraints of edge devices and the security protection needed for the data 

stored in partners’ local systems. 

5. Case Study: Smart Moorings and Drifting 

Buoys 

A number of recent oceanic observation efforts and systems have been named 

“Smart” because of their use of mobile devices, control technologies and, last 

but not least, their capability of personalized adaptation to different users and 

needs. These new generation smart oceanic observation systems foresee the 

networking of autonomous underwater systems and paying attention to dynamic 

groups of users, in addition to the technological enablers mentioned in the 

above paragraph. These systems converge into the first Operational 

Oceanography facilities for the Mediterranean Sea, as envisioned by a number 

of different projects and programs. 

The Smart Mooring and Drifting Buoy systems, which have been largely 

implemented and utilized over the last decade according to the concepts briefly 
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outlined above, are presented here as a “Case Study” of the themes and 

concepts put forward in this work. Specifically, the application of AI, computer 

engineering and data allocation systems within the SMDM system (Sensing-

While-Driving, or Sensing-Dynamic-Movable groups of Users) is sketched out. 

Smart Moorings and Drifting Buoys (SMDM) are Ocean Systems gathering 

data or helping a users group with data, technology, knowledge and information 

useful for the fulfillment of their personal, scientific, entertainment, or visiting 

desire. Specifically, some applications for Smart Moorings and Drifting Buoy 

systems are here detailed relative to the Mediterranean Sea with a focus on the 

Sicily Channel for their development as an implementation of Research 

Infrastructures capable of receiving and hosting external and distant users. They 

are implemented according to data and communication protocols that allow 

them to be integrated at different levels according to the user needs and their 

budget. 

6. Future Directions in Ocean Sensor Networks 

As we look toward the future of OSNs, it is clear that the deployment and 

usability of modern Internet of Things devices will play an important role in 

influencing capability, complexity, and interest in these systems. The utility of 

OSNs will certainly grow as we find more and more applications for 

significantly deeper routes through the world's oceans. The addition and 

integration of modern, even lower-cost IoT devices will open up many new and 

unexplored research areas as we increase sampling density in space and time 

and create unique opportunities to leverage large networks for collaborative 

work in areas as diverse as exploration, infrastructure monitoring, optimization 

and routing of ships engaged in fishing, commercial transport, or inventory 

replenishment, and of course, study of climate regulation and other critical 

processes affected by the flow of waters through the oceans. 

However, a number of challenges remain that may influence their utility in the 

work proposed within this chapter. The issues of long-term operating accuracy 

through unreliable calibration, low-bandwidth data reporting mechanisms, 

questionably dependable communication links, and issues unique to marine 

sensor design such as reduction of biofouling and other marine growth, and 

development of low-cost, low-power consuming energy harvesting technology, 

have slowed growth and practicality of extending these powerful IoT devices to 

the global marine environment. In this section, we will discuss some anticipated 
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improvements in these areas, and how these sensor devices may evolve to be 

integrated with a larger OSN. 

6.1. Integration of IoT Devices 

The Internet of Things (IoT) has created many opportunities to advance the 

global technological potential needed to resolve issues related to climate 

change. IoT offers a new vision of a cross-sectional network of physical 

objects, in addition to components that either share sensor data or connect this 

data with cloud computing systems or other resources that allow us to execute 

algorithms using machine learning or artificial intelligence. One of the ways 

that the possibilities of ocean sensing can be significantly increased is by 

integrating IoT with underwater and near-ocean sensor networks. Such 

networks can enable persistent observation of selected ocean phenomena; our 

understanding of many such phenomena would increase significantly if we had 

centimeter-depth temporal-resolution observations of any physical variables 

that might inform us about their dynamics. For example, the data-volume 

signature from earthquakes, tsunamis, mudslides, rogue waves, deep ocean 

currents, biological blooms, and even the oceanic tide are at a time scale of 

minutes. In other cases, there may be longer time scales but with nonetheless 

sharp time-domain signatures, such as large fluctuations in surface waves from 

storms. These variations are often missed in the typical long-everything “black 

box” designed for ships, satellites, and buoys that dump data into large data 

volumes for months or years and that are almost never reconstructed by 

condition-extraction algorithms. 

Surely, a strategy of discrete sampling of selected sites in time does not appear 

to be a particularly strong or wise use of data or resources. Nonetheless, before 

we can design a better architecture that could match the minutia of observation-

space occupation, both space and time, we need reliable data from well-

calibrated sensors. The observation-space criteria determine the number of 

sensors, their coverage, and the resolution in critical observation zones, such as 

the seafloor over which earthquakes and landslides may originate or propagate. 

We also need flexible and multimode sensor capabilities, compatible with 

resource and power constraints. 

6.2. Advancements in Sensor Technology 

In recent years, novel sensor technology has led to advancements and 

miniaturization in the sensing capabilities of ocean sensor networks. Initial 
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deployments of ocean sensor networks employed large, expensive instruments 

designed and calibrated for long-term deployments to map and measure various 

physical and biogeochemical properties of the ocean, including temperature, 

salinity, chlorophyll, and sediment concentration. Initial deployments of glider 

networks required the use of large temperature and conductivity sensors 

calibrated for long-term deployments, while novel designs for lightweight and 

compact sensors meant that low-cost gliders could be deployed for extended 

missions; these sensors suffered from drift and inexact resolution but were 

comparable to more expensive sensors for short-term deployments. 

Similarly, the increasing resolution of smartphone sensors such as MEMS-type 

light sensors and accelerometers has enabled their use in small and inexpensive 

mobile ocean sensors. Although such low-cost sensors are unsuitable for certain 

applications such as long-term deployments, they have not only reduced the 

price associated with each observation, but have also enabled positioning 

optimization and tighter schedules when large or expensive sensors are used in 

ocean observation networks. Moreover, the increased use of silicon 

microelectromechanical systems, optical sensors, and other devices are 

demonstrating the potential for low-power, low-cost, underwater sensor systems 

for a wide variety of measurements including the monitoring of biosecurity 

assessments. 

Advances in sensor technology enable the next generation of ocean sensor 

networks, and will certainly expand the range of applications in which these 

technologies can be leveraged in the future. Recent work on identifying areas of 

interest for environmental, biological, and water quality consequences, in the 

absence of buoy data, showed the potential for novel low-cost, small, and 

distributed sensor networks to identify algal blooms and flooding disasters. 

Trajectories of mobile sampling sensor deployments can be optimized and 

modified to take advantage of areas of interest identified from lower temporal 

resolution sensors placed in a network; advanced AI initiatives currently allow 

for near real-time and reliable detection within camera images, while recent 

work on new AI algorithms utilizing tagging data has shown modest agreement 

with predicted detections. 

7. Challenges in Ocean Sensor Networks 

Owing to widespread deployment of interconnected sensors over ocean and 

coastal regions, Ocean Sensor Networks (OSNs) face a set of technical 
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challenges not previously encountered in terrestrial sensor networks. 

Additionally, OSNs are meant to support online monitoring of target 

phenomena, while every other kind of sensor network is exploited for offline 

purposes targeted by either a few researchers or a particular group of 

investigators. For example, land-based sensor networks are mostly used for 

surveillance, event detection and other such atypical cases; so other during 

these events, sensor data is scarcely made available to a large number of users 

and it is not such a large volume that the reliability and energy constraints are at 

stake. In this section, we discuss some challenges which are unique to OSNs, 

exploring reasons those challenges are more significant in OSNs as compared 

to their counterparts. 

Privacy concerns over sensor data even before they are uploaded to sensor 

databases have an impact both on the adoption rate of such systems by users as 

well as the incident response effort by authorities for keeping check on the 

various malicious activities. The main reason for the presence of such concerns 

is the fact that passage or transportation of sensor data is not as secure from the 

influence of the user at all times as classified data over wire-based networks 

and services. The threat is aggravated in OSNs because of the tendency of users 

to be unaware about the terms of usage during certain private events at sea, 

such as barter of illegal contraband goods, human trafficking or unauthorized 

immigration. Dissemination of sensor data has severe implications in OSNs 

because of the unpredictable cost of communication at all levels – sensor node 

to processing gateways, processing gateways to support gateways – both in 

regular situations as well as during such negative events. At all levels, solution 

to the problem relies on use of processing power in an efficient manner, which 

enhances the cost of processing. The potential users of OSNs are highly diverse 

and there are often visible collaborations between these users. Due to vastness 

of the ocean and for the benefit of users, it is desirable to have as many sensors 

as possible, particularly in sensitive areas such as commercial shipping lanes or 

international borders. 

7.1. Data Privacy Concerns 

The use of ocean sensor networks raises important ethical and legal questions 

that need to be addressed. These networks generate large amounts of data, 

which can be used for multiple purposes that greatly exceed the expectations of 

the sensors’ owners, who to this end should be aware of various dimensions of 

risk regarding data access and may need to be informed about the communities’ 
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interests. The ocean horizons could be violating the privacy of third parties. 

Geolocated databases are a well-known privacy risk that the extreme 

performance of the sonar-based nodes and sensor networks could exacerbate. 

Moreover, we may expect that other networks operating in territories and 

remotely controlled by particular communities would generate borders’ 

protection concerns. Some protocols used in ocean contexts allow node data 

interception without authorization. In our view, these ethical and legal issues 

are not necessarily barriers to the establishment of monitoring networks in 

ocean areas, although more and deeper reflection on the kind of data generated 

and the possible risks involved for private and public actors sharing that area is 

required. 

More specifically, the particular monitoring capacity of sonar-based ocean 

sensor networks poses risks to areas’ data privacy that ought to be considered 

before and during network deployment. The interest in the kind of data 

accessible to nodes and networks installed under delicate sovereignty 

conditions should involve both the actors deploying and operating the nodes 

and the actors perceiving the risks of that accessibility. These and similar issues 

are more sensitive because despite international regulations protecting national 

frontiers from incursion by means of illegal activities, oceans do not seem to be 

protected by similar regulations, allowing the deployment of nodes and 

networks of dubious transparency. Sensitive data also come from the possibility 

that node information could be shared without simulating spoofing attacks 

inquiring on border coverage. 

7.2. Scalability Issues 

The scalability of a system is its limiting capacity for future growth. In the case 

of OSNs, the number of ocean sensors will only increase in the coming decade, 

leading to an increasingly high volume of varied data on the sensors. Data from 

different ocean domains will be presented and scaled to network AIs within the 

OSN AI module. The OSN AIs in this module will be simultaneously sending a 

multitude of requests for various ocean data acquired from the multitude of 

sensors to other networked AIs. Hence, the communications between the OSN 

AIs and the network AIs must be efficient enough to scale up and down with 

the events happening in the ocean so that network users could have timely 

access to the data that they need at that moment. 
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The use of autonomous intelligent agents in the OSN has two potential 

problems. The first is that, due to the complexity of intelligent agents, the 

number of agents will be much greater than the number of physical agents. The 

AI module will consist of multiple OSN AIs that work with a number of 

externally networked AIs. However, a single AI cannot be dealing with the 

multiple events in multiple regions of the ocean, concurrently at the same time. 

Hence, do we have an intelligent module exclusively dedicated to the handling 

of tasks related to OSNs? A second potential problem is whether simply 

communicating with a network of users would affect the scalability of the OSN 

AI module. A pragmatic solution would be to communicate only when 

necessary, while using the individual network users’ data to train the OSN AIs. 

The second approach would ensure that the scaled data queried by the users are 

up-to-date. However, at what user density would the number of network AIs 

and OSN AIs be dynamically increased and decreased? The module has to 

operate at very low energy use and cost when there is only a small number of 

users. 

8. Impact of Environmental Factors on Sensor 

Performance 

Various optimization methods can be used to efficiently manage sensor 

networks. However, during the process of optimizing by different strategies, it 

is often neglected that sensor nodes may not perform optimally at all times. 

This is due to the influence of various physical factors existing in the real 

world, mostly effects of environmental conditions and the presence of marine 

life. Significant local changes in temperature, salinity or pressure can cause 

sensor nodes to serve erroneous and inaccurate measurements. Physiological 

functions of marine lives such as excretion, respiration, feeding, communication 

and reproduction cause changes in amplitude, frequency, or both of acoustic 

signals. Sudden changes in acoustic signals beyond normal variations can cause 

inaccuracies in sensors response. These environmental factors can impose 

questions on the credible and accurate monitoring performances of the sensor 

nodes. 

It has been shown that changes in environmental conditions affect calibrated 

sensors and these changes can be detected using appropriate data methods. 

Unexpected variations in operational sensor response can be associated with the 

different weather conditions. Sudden changes both in amplitude and phase of 
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acoustic signals at the temperature sensor positions can be found. Variations in 

responses mean that stresses due to waves and currents affect the salts solubility 

and therefore the sensor response. The implication is that the sensors are still 

operational, but the calibrated transfer functions require corrections. The 

durations of these corrupted signals correspond to instantaneous different wind 

and wave conditions. There are no weather checks available to correct for 

different weather conditions. An appropriate dynamical approach should be 

developed by using wind and wave condition parameters, and also using 

appropriate natural frequency shifts. Furthermore, there are indications that 

high winds can make calibration necessary. If this statement is true, additional 

checks should be made simultaneously while actual measurements are 

executed. 

8.1. Effects of Weather Conditions 

Effect of Long-Duration Rainfalls. There are two main types of long-duration 

rainfalls and each of them has different effects on the buoy sensor. One is rain 

at a very slow rate, less than 1 to 2 mm hour-1, with a long duration time, more 

than a few days, and large volume, usually more than several hundred mm of 

the total. Such buffy water resulting from sediment resuspension has negligible 

effects on the source term calculations because this is a rare event. The other 

type is near-instantaneous, large-rate rainfall, greater than 5 to 20 mm hour-1, 

and has very short duration time, less than a few minutes, and low volume, 

usually less than 2–7 mm. Such events are more common and the effect of such 

quick buffy water may be significant for the source term calculations. Also, as 

buoy sensors cannot measure SPM accurately during these quick events, 

generation of SPM data using a traditional SPM-Rainfall or SPM-Rainfall-

Discharge model is difficult. 

Effect of Typhoon and Storm Events. One of the most appreciable effects on 

the long-term suspended sediment concentration SC measurements made by 

buoys is the change in sensor performance due to the damage caused by tropical 

typhoon and monsoon chaotic storm conditions. Large-rainfall events generated 

by these meteorological conditions usually produce a quick and large increase 

in particle concentration in the water column and possibly cause a large amount 

of sediment resuspension and washing-out effect, regardless of the 

concentration decrease after the typhoon or monsoon event. The improper 

performance by the buoy sensors, due to, for example, the strong turbulence 
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condition, causes difficulty in dependable sediment data generation 

immediately after the typhoon or nor’west monsoon period. 

8.2. Influence of Marine Life 

The characterization of the ocean is traditionally based on the measurement of 

physical parameters related to temperature, salinity, and pressure, but for a 

complete understanding of the mechanisms acting in the ocean, other 

parameters, such as ocean color, spectral absorption and backscattering 

coefficients, chlorophyll concentration, phytoplankton community structure, 

light penetration depth, depth of the euphotic zone, phytodetritus, primary 

production, dissolved organic matter, suspended particulate matter, nutrient 

concentration, atmospheric and sea-surface temperature, surface wind speed 

error, and sea-surface salinity, are also involved. The capability to measure a 

wide range of parameters, some of which are characterized by very low signal-

to-noise ratios, has been extensively developed in the last few years, and also 

autonomously powered distributed sensor network capable of operating in 

operationally based deployment environments have been developed. The large 

number of sensors capable of simultaneously measuring a wide range of 

parameters allow data integration and development of complex parameter 

relationships over large datasets which are necessary to enhance the accuracy 

and reduce the uncertainty of models. 

Marine ecosystems are dynamic processes producing complex variations at a 

range of temporal scales and creating variability in the optical properties of 

seawater. Variability at shorter time scales (from minutes to years) is due to the 

effect of phytoplankton dynamics, primarily related to bloom development, 

collapse, and the sedimentation of associated detrital particles. Variability at 

longer periods can be due to interannual variations in the wave height, wind, 

river discharge, or currents, which can contribute to the suspension of inorganic 

particles and influence fluctuations of sediment plumes both spatially and 

temporally. The interactions between the atmosphere and the ocean, which can 

also introduce variability in radiative transfer, must be understood, and 

establishing correlations is essential for the interpretation of ocean-related 

physical and biogeochemical processes. 
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9. Data Management and Storage Solutions 

The data generated by Ocean Sensor Networks (OSNs) are considerably great. 

Furthermore, certain applications of an OSN must manage data out of real-time, 

which may be temporarily stored, and after processed apply machine learning 

models to detect or predict certain attributes of these processes. The ingestion 

of large datasets, storage problems, postprocessed of generated data, data 

accessibility, and security are potential challenges to these solutions. To 

manage the challenges of transferring and processing data, edge and cloud 

computing have been successfully utilized in conventional wireless sensor 

networks. Thereby, cloud and edge services could possibly be deployed to 

OSNs. 

Cloud computing provides highcapacity services that accommodate OSNs data 

management problems. For instance, cloud services offer unlimited and near-

unlimited storage capabilities. Depending on the cloud service provider, the 

OSN can apply a pay-as-you-go model that reduces costs for an OSN regarding 

the income generated from its services. These platforms offer services for data 

storage and visualization. Mainly Object Storage services allow for storing 

variable-size files, which very often is the case with raw sensor data and 

specific datasets after postprocessing. Cloud databases are services that can be 

easily integrated into your application, and most of them support a wide 

database variety. Although using the cloud has many advantages, it also has 

disadvantages. Initially, cloud storage is not suited for applications that need 

near-real-time response capabilities since the data latency from the sensor nodes 

to the cloud is added to the time from the cloud to the user. 

9.1. Cloud Computing for Sensor Data 

Largely thanks to companies such as Google, Amazon and Microsoft, the 

concept of Cloud Computing has become a big part of the current technology 

landscape. With practically infinite storage and processing capacity available 

on-demand, cloud computing brings almost limitless scalability, disaster 

recovery, redundancy and cost-saving solutions to many industries, and Ocean 

Sensor Networks (OSN) applications are no exception. 

Recent research has investigated the use of Cloud Computing for sensor data 

collection and management, while Cloud services have emerged, both working 

towards incorporating OSN applications. The objective is to achieve a flexible 
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and robust architecture on top of the existing model, where data is cheap to 

store, ease and flexible to access. The features that allow for cost-efficient 

sensor data creation and processing provide the flexibility and reliability to 

allow OSN applications to use them for real-time storage and processing of 

sensor data, while gaining insight into the collected data. 

An implementation of the architecture is presented. They propose a 

combination of a wirelessly disconnected and a cloud-connected temporal 

aggregation of sensor data to reduce communication costs, thus paving the way 

to larger and longer existing OSN deployments. Moreover, through empirical 

analysis of a deployed wireless sensor network monitoring in-water 

phytoplankton and nutrient concentration, they investigate the trade-offs of 

timing and aggregation strategies. Results show that at sensor data rates below 

15 kbps, the long-term storage of sensor data in the cloud is enabled. 

9.2. Edge Computing Applications 

Despite the many advantages of cloud computing, it may be ineffective for 

small, time-sensitive processing needs. Moreover, as sensor networks are 

widely being used for high-rate monitoring of ecosystems, which could 

potentially result in very large data sinks, edge storage solutions to handle data 

management for sensor networks have become an area of active research. 

Lower bandwidths for wireless communications may also present opportunities 

for edge filtering and summarization. In this approach, only the differences 

between measurements made at two different times are sent to storage, since the 

measurements at the first time could be cached. Because the volume of data 

generated by such networks is so large, it is practically impossible to store all of 

the data until after the event. 

Data volume reduction at the edge is most suited for applications where the 

sensor data change slowly. Several filtering methods can be employed to 

temporarily cache old measurements until new sensors report measurements 

with significantly large differences. Different environmental features have 

different time scales during which changes in their signatures at sampling 

points occur. Therefore, flexible distinct filtering thresholds need to be set for 

different features. These thresholds should be dynamic functions of time and 

the location of the sensor relative to the feature. These considerations advocate 

the necessity for application-oriented stored data reduction schemes. The above 

solution is very generic and could be applied for any data type. A similarity-
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based data reduction could be employed assuming some prior knowledge such 

as the sensors and their approximate locations for which the data is being 

cached on the edge rapidly evaporating. 

In-learning-based edge management, edge caching is generally primarily 

handled by fixed and hardcoded algorithms and is unable to adapt to the 

dynamic gameplay of the present-day technology in a service. It cannot 

comprehend important variations in the traffic behavior and delimit resource 

spending on the edge. 

10. Real-time Data Processing Techniques 

One of the essential tasks of ocean sensor networks is data processing. The 

elaboration of data collected by sensor nodes must yield relevant information 

and be completed in a suitable time. For example, if a rough sea condition is 

detected, currently, the trend followed is even to try to stop the acquisition of 

data by the sensor nodes until the sea state becomes predictable and steady. 

This clearly illustrates that data processing must be performed in a real-time 

manner. Another challenge that real-time data processing faces is the trade-off 

between local and centralized processing. It is innate in ocean sensor networks, 

especially under long-term monitoring scenarios, which often implies scarcity 

of battery resources. 

The best way to face these challenges is to use cooperative data processing 

architectures in a distributed fashion. The data must be properly processed as 

close to the data source as possible both in space and time, but centralized 

processing is unavoidable in certain cases. Given the small size of the battery, 

the last resort is to protect and improve the battery life of the nodes, therefore 

globally increasing the time between maintenance periods. We provide 

described techniques that can be used to provide more quality information both 

in an immediate manner and in a future time, like forecasting, which can even 

increase the accuracy of the bottom-level data abstraction. 

Low-level processing techniques usually convert sensor measurements into 

calibrated data, and some actions are taken based on the calibrated data. Not all 

the data generated through the ocean observation process travel to the 

centralized server. In particular, special events such as detected alarms, 

threshold-violation data period, or anomaly detected by local processing must 

be announced to the centralized node. 
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11. Collaboration Between Institutions for Data 

Sharing 

The information presented here serves to illustrate the possibilities and 

advantages that a collaborative mapping effort can deliver for the science 

community. We discuss joint problematics with the infrastructure capable to 

support a trustworthy collaborative approach to data sharing. Ocean 

observations are intrinsically interdisciplinary, linking Earth system science to 

human health by means of its interactions with the atmosphere, land and 

cryosphere, while striving to compute the effects of ocean acidification and 

pollution, regulate global temperatures and climates, explore extreme 

phenomenon prediction, among many others. 

For data intensive fields of research, such as the ones involved in the study of 

the ocean, there is an increasing feeling of urgency for observations to be made 

available, analyzed, and shared among institutions and individuals. The 

explosive growth of sensor networks pose substantial technical and policy 

challenges for ocean and coastal information systems, even in a climate where 

much of the world’s scientific research emerges from translation, rather than 

novelty, and where a substantial majority of research partners as organizations, 

and individuals expect their preparations to either share or be handed 

exclusively whatever funders deem suitable, and conceive data hoarding or 

misusing as scientific misbehavior. However, despite the rise of global 

mandates and numerous funding agency policies, and the expectations of 

publications describing the data, to our collaborative mapping effort capable 

infrastructure to trustworthy modular data services, where distinct agencies 

efforts would dispense all user data misfortune overconfidently. 

12. Regulatory Framework for Ocean Sensor 

Networks 

Regulatory concerns affect all fields of human activity. The genesis of these 

rules and laws aimed at regulating individual actions and defining powers and 

responsibilities of individuals, either in relation to the group or to other 

individuals, may go back to the romantic thought of a philosopher who was the 

first to describe the hypocritical character of rules focused on protecting 

individual interests rather than collective well-being. Initially in the form of 

symmetrical and implicit norms, and subsequently, with their evolution into 
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laws, these regulations should be based on creating social value. Unfortunately, 

however, this is not always the case. The origins may date back to individual 

utility maximization, followed by collective interest formalism generalized 

under political economic theory. 

The original purpose of the creation of a regulatory framework can be found in 

economic theories showing that the market mechanism does not always lead to 

the best outcome. Divergences often happen in the presence of externalities, 

markets with monopoly structures, asymmetric information, and equity 

concerns. In a situation characterized by market failure, government 

intervention, in the form of pricing or regulation, is often justified. Widening 

Redundant Sensor Networks set up a scenario where the conventional ideas of 

regulation are challenged. As opposed to those conventional ideas, in the case 

of Research & Development-and consumption-based networks, it has been 

identified that these networks can be susceptible to over-regulation. To achieve 

these goals, it is important that partnerships including private enterprise, 

government, and universities are established and supported. 

13. Ethical Considerations in Sensor Data Usage 

Modern-day AI is applied to various data types and diverse domains. 

Simultaneously, there have been moves to make sensing data openly available, 

including citizen-sensed data, both of which have raised new challenges, 

including cyber-security concerns and privacy challenges inherent to the usage 

of sensor data. So too are these concerns also relevant to sensor data used in 

Ocean Sensor Networks, particularly from marine wildlife. In this chapter we 

cover the ethical implications from using sensed data, with a focus on animal 

tracking data. Many long forget issues from traditional wildlife research are 

made increasingly more relevant now that they can be downscaled and 

conducted at lower cost. At the same time new issues from data-intensive and 

AI-based approaches have also appeared that were previously not so much 

matter of scientific concern. 

Tracking the movement of animals has been a central subject of ecological 

research for many decades. Although the ethics of wireless tracking are widely 

discussed in human contexts, the same is not true for animal tracking. The 

discussions that do exist frequently focus on concerns about the length of time 

or degree of invasiveness of collaring devices or about risks that extra weight 

may entail for species that fly, glide, or swim. Research regulations for animal 
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movements thus often emphasize the importance of collecting data that may 

yield essential contributions to the discipline and of strictly adhering to the 

concept of the three Rs: replacement; reduction and refinement. Regulatory 

aspects of tracking critters are straightforward yet leave quite a few ethical 

concerns unaddressed. The associated debates about ethical frameworks are in 

stark contrast to growing public criticism of research studies that informantly 

use tracking devices to measure and model movement patterns and that go 

beyond pure exploratory explanations. 

14. Public Engagement and Awareness 

Ocean sensor networks provide a wealth of information about the environment 

that is usually hidden from sight. Instruments that measure currents, winds, 

temperatures, salinities, chlorophyll, and a host of other variables allow 

everybody to better understand how marine environments function and perform. 

Over time, the visibility of continuous, near real-time data in public forums has 

increased the general public awareness about ocean science and research. Tide 

gauges or CTD measurements are publicly available to visualize underwater 

currents, temperature, and salinity. Similarly, a myriad of other instruments 

deployed at various locations measure sea surface temperature, oil and gas 

concentrations in seawater, chlorophyll concentrations, dissolved oxygen 

concentrations, pH levels, pressure levels, turbidity, and suspended solid levels. 

Whether it be a near real-time observation using a TV camera or stationary 

time-lapse observations, these measured variables have been used to document 

the existence of marine diseases, slime occurrences, and oil spills. The research 

community and the public-at-large can be involved in this process by deploying 

commercial or home-built sensors for the benefit of many users in universities, 

governmental, and non-governmental organizations. 

Today, a growing number of public groups leverage the power of networking 

services, smartphones, sensors, and other devices to act as ‘volunteers’ 

collecting various measurements in the environment. Known as crowdsourced 

observations, numerous smartphone applications exist to assist the public in 

monitoring water quality, algae blooms, marine debris, oil and gas spills, 

jellyfish blooms, and many other variable layers in the ocean explosion. By 

harnessing the ability of the public to obtain various types of measurements at a 

low cost, the research community can increase spatial and temporal coverage 
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for many ocean phenomena, often with the same accuracy as researchers with 

expensive, sophisticated, and calibrated sensors. 

15. Conclusion 

The oceans represent a continuous and competitive ecosystem composed of 

several multi-domain habitats. The need to protect this ecosystem also requires 

an increased and continuous surveillance of its conditions, in order to track any 

possible ecological disturbances and take action to mitigate their effects; 

moreover, to understand the ecosystems' functioning, to favor a sustainable use 

of the ocean resources and allow circular economy processes. Ecological 

sustainability is how societies can act collectively to preserve the ecosystem in 

order to better meet the challenges related to current issues. The ocean is a 

dynamic system where flows push nutrients, energy and matter among the 

compartments that create it. A used-based approach enables the forward-

looking management of the ocean and the coastal sustainable development of 

the sea. 

The availability of customized and miniaturized sensors has been enhancing the 

possibility as well as the costs for deploying ocean sensor networks. The 

advantages of big data systems derived from sensor network deployments have 

increased interest in real-world testing, enabling more ecology disciplines to 

eventually share a variety of resources such as data, infrastructures and 

experiments protocols. New advanced technologies fusion provides end-users 

with nonlinear ocean model simulations in near real-time that integrates 

satellites, buoys, ships and observatories. This setup reduces the uncertainty 

associated with a single observation platform. It has been shown how AI can 

support ocean observing sensor networks for understanding how and when to 

exploit these observation capabilities, and how to better design learning- and 

task strategies for distributing machine learning tasks on sensor nodes to 

optimize the budget to be used for processing data. 
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Chapter 3: Predicting Ocean Currents 

and Tides 

1. Introduction to Ocean Dynamics 

Ocean dynamics govern the movement of water within the three-dimensional, 

complicated and densely packed space of oceans and coastal waters. The flow 

field at any specific time is described by three variables, namely, the conserved 

mass of sea water and other variables which describe the mobility of the flow 

and its tendency to alter. The mass of sea water, usually called sea water 

density, is a function of temperature, salinity and pressure: it can be locally 

altered only by processes like precipitation and local temperature changes but 

there are many advective processes that depend on velocity field. The other 

field variables telling us about the mobility and disposition to alter the flow are 

the two horizontal velocity components, one vertical velocity component just 

below the water surface and the vertical gradient of horizontal velocity in the 

water surface layer. 

In about two thirds of Earth’s surface, the sea water mass is fairly homogeneous 

for considerable depths. Density and density derived features such as 

temperature and salinity can vary dramatically within a short space on the land 

surface but in the oceans these differences develop slowly and often need to be 

probed to depths of thousands of meters. Density always decreases with 

increasing temperature and increasing salinity. Pressure also influences density 

but, with temperature and salinity as variables, pressure has a negligible 

influence on surface density. In ocean dynamics, it is far more practical to 

consider the influence of temperature and salinity changes on density. 

Deep Science Publishing, 2025  
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2. Data Collection Challenges in Oceanography 

Oceanography is intrinsically complex due to the multifaceted influences of 

atmospheric, oceanic, and geologic phenomena acting at a wide range of spatial 

and temporal scales. Over time, a variety of technologies for both in-situ and 

remote sensing ocean measurement have been developed. Ocean observations 

are generally used to describe the current state of the ocean, assess performance 

of physical oceanographic models, and validate or initialize operational models 

deployed daily for operational forecast of currents, tides, or waves on different 

time and space scales. Each of these ocean state applications has different 

requirements for spatial and temporal resolution, physical processes represented 

or neglected, and acceptable levels of accuracy. These ocean state applications 

must inter-communicate to ensure product development is efficient and 

maximizes economic value. 

The collection of observational data, either from in-situ measurements or from 

remote sensing products, can be complicated by a variety of factors. The 

multifarious spatio-temporal issues are due to the deep, vast, and wide-ranging 

nature of the ocean, where data can be missing, biased, wrong, or invalid. 

Temporal sparsity comes from certain locations being visited infrequently due 

to satellite coverage or buoy maintenance and sampling restrictions according 
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to cost limitations. Spatial sparsity, particularly in the vertical dimension, is 

prevalent from moorings only able to collect data at discrete depths or logging 

modes of measurements that are not conveniently located at the ocean's 

thermocline. Data gaps can also result from sensor failure, detection limits of 

certain phenomena at specific property values, and scheduled data collection 

interruptions, including costs and constraints. 

2.1. In-situ Measurement Techniques 

Measurements of ocean properties have been made for centuries using a variety 

of primarily in-situ platforms, from wooden seagoing vessels equipped with 

sextants and thermometers to today's elaborate research ships using advanced 

Digital Sensor Systems. Most often, a ship will map a transect of a particular 

oceanographic quantity over a number of days, calibrate and spatially 

interpolate the scalar values to construct a (spatial) 2D or (temporal) 1D map 

and, afterward, continue the research with statistical studies, models, etc. Ships 

have been and will remain an important and much-used tool for ocean-

measurement campaigns during field work and longer deployments of buoys, 

and moorings equipped with shallow and deep sensors have been used 

extensively for years. More recently, physically-hardened floats equipped with 

sensors capable of sampling vertical profiles of temperature and salinity have 

been deployed around the world. These autonomous floats drift throughout the 

ocean at various depths, servicing ASVs and uncrewed underwater vehicles. All 

operators must use the proper precautions to ensure safe operations in 

increasingly busy shipping lanes while avoiding contamination of the research 

equipment through meteorological disruptions. 

Fixed and moving platforms are limited in temporal and spatial extent and 

provide only localized measurements of ocean currents. However, for accurate 

predictions at coastal and shelf locations, the bathymetry, geology, and 

hydrodynamics are complex, and high temporal and spatial resolution input 

data are needed. Submarine cables crossing continental shelves and slopes have 

been used for many years to measure bottom fishtailing motions and water 

pressure with high temporal resolution near cable locations, and, more recently, 

co-located pressure, temperature, salinity, and current velocity sensors have 

also been deployed in optical-fiber submarine cable networks for near-field 

environmental monitoring. Long-range, remote-sensing devices may be useful 

for ocean monitoring over larger spatial and longer temporal scales, such as 

hyperspectral sensors and LIDAR used for surface salinity, particulate matter, 
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chlorophyll, and dissolved oxygen, and microwave Doppler radar for near-

surface current measurements. 

2.2. Remote Sensing Technologies 

In-situ measurements are characterized by high resolution and low coverage, 

making it difficult to obtain large amounts of data. In an attempt to circumvent 

the need for high-cost in-situ observations over the entire domain of interest, 

remote sensing technologies were developed to monitor the oceans. The focus 

is set to the derivation of characteristics of ocean dynamics processes adopted 

and described for the first time using ground-based radar, such as littoral 

currents, tides, and long period waves through laboratory experiments or 

analytical models. The extracted parameters will be compared with those 

collected by traditional in-situ measurement systems, such as moored buoys, 

and evaluated for both the numerical agreement and the integrative 

characteristics. 

Remote sensing refers to the collection of oceanographic data utilizing fixed, 

moving, airborne, and satellite-based devices, including scanning laser and 

Doppler sensors, thermal emissivity measurements, infrared sensors, LIDAR, 

sonar, and radar. Remote sensing technologies have advantages and 

disadvantages concerning spatial-temporal resolution and measurement 

duration as a consequence of the limitations imposed by the monitoring 

platform. The great benefit of remotely sensed information lies in its ability to 

provide data under non-in situ conditions, as long as data retrieval is frequent 

enough. Remote sensing can be effectively used to measure distinct physical, 

biological, and chemical properties of the ocean's surface and subsurface at 

scales that are often not feasible using in-situ collection techniques. Since the 

advent of satellite-borne sensors, optical and infrared sensor systems have 

provided data for the detection of water temperature ranges, surface color, 

phytoplankton concentration, and sediment transport. 

2.3. Data Quality and Validation 

Recent improvements in sensor technology, such as decreasing miniaturized 

sizes and production costs, have led to a large number of autonomous in-situ 

and drone-based platforms used for long-duration, continuous measurements of 

the ocean’s physical, biological, and geochemical properties. More specifically, 

low-cost platforms such as drifters, buoys, underwater gliders, as well as optical 

and acoustic sensors, have demonstrated great abilities to monitor fine-scale 



  

48 
 

features of oceanic currents and water temperature time series at continuous 

time intervals. The multiplatform, multisensor measurements can cover large 

spatial domains, which is, however, still scarce in situ data compared to 

atmosphere, land surface, and shallow waters. In addition, methodologically, it 

is a challenge to match those observations, which are often at different and 

irregularly spaced time intervals, due to the different sampling strategies. 

Despite the above-mentioned efforts, the data quality of oceanographic 

measurements is again a critical topic in oceanic science, as for many climate 

records. For example, long-term records of ocean temperature or velocity are of 

essential importance for studying climate variability, but many of these datasets 

contain flagged gaps in time or bad data points. Data gaps may be filled using 

interpolation methods, spatial and/or temporal statistical models, data 

assimilation into dynamical ocean models, or empirical mode decomposition. 

However, the filled data may remain uncertain, so it is critical to assess the 

interpolation, filling, construction, or any quality control methods. In particular, 

before and after numerical treatment or before and after data assimilation into 

an ocean model, it is essential to assess the data quality and enclose the 

uncertainty estimates. 

3. Neural Networks for Current Velocity 

Prediction 

In the last two decades, artificial neural networks (ANNs) have brought major 

breakthroughs in multiple research fields, establishing state-of-the-art results in 

applications like computer vision and natural language processing; 

consequently, physical systems long thought to be unfathomable through 

conventional methods have become wholly predictable with little to no prior 

knowledge of the system. As a result of these advances, many disciplines have 

increasingly adopted ANNs as vital tools, and the ocean sciences are no 

exception. Initial interest in the application of neural networks for ocean 

predictions dates back to the late 1980s, with their use gaining momentum after 

the turn of the millennium. Neural networks have since been used to reconstruct 

hydrodynamic variables, forecast oceanographic processes like sea surface 

heights, temperatures, and chlorophyll-a concentrations, and model complex 

physical systems like hurricanes and tides. 
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Neural networks are universal function approximators: given enough time and 

data, they are guaranteed to learn a relationship between input and output 

variables of any continuous function to arbitrary precision and without 

requiring explicit knowledge of the system to be modeled, such as the 

governing equations or functional relationships. Oceanographers have exploited 

this property to create accurate multi-day forecasts of ocean currents using only 

past measurements of buildup, and multi-directional wave spectra time series to 

predict wave impacts on beaches days or even weeks ahead of time, without 

requiring any prior characterization of the domain settings, measurements of 

external forcing, physical relationships, or even experience with the model. 

Other modeling efforts have relied on coupling neural network to existing 

algorithms, either to substitute for some of the assumptions poorly represented 

in the original formulation, such as turbulence modeling, or to generate the 

initial or boundary conditions necessary to use existing solvers. 

3.1. Overview of Neural Network Architectures 

Artificial Neural Networks are function approximators that organize a set of 

non-linear elementary functions into multiple layers, ultimately modeling 

increasingly abstract functions. Each layer is fully connected to the previous 

layer for multi-layer perceptrons, but other neural network topologies exist, 

including convolutional and recurrent architectures. A neural network with L 

layers can model functions of the form: 

f(x) = gL(gL-1(gL-2(…g1(x)))) 

where g is a parameterized non-linear function, typically a polynomial, and the 

parameters are simply the weights of the network. Because of their structure, 

multi-layered systems, also referred to as Deep Neural Networks, can be trained 

to a similar or better approximation error than single layer networks using a 

lower number of parameters if the problem satisfies some conditions. This is, 

however, not always the case, since multi-layered topology is more convenient 

but not necessary to implement successively more abstract model functions. 

Artificial Neural Networks do not require data to be stationary in order to learn 

non-linear integrations between the input features and the output targets. This is 

a strong distinction with regard to both standard statistical learning techniques 

as well as many physics-based algorithms but cast doubt on the ability of 

networks to learn the relationships. Additionally, networks are typically trained 
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using samples from the dataset that are independent of each other, although 

some extensions allow for training networks on sets of dependent samples. 

3.2. Training Data Requirements 

Neural networks are non-parametric estimators which make few a priori 

assumptions. As such, they require ample training data to learn from, in order to 

have generalization capability when predicting unseen data. Also, each network 

must be trained to predict currents or tides at a particular location and depth. 

Selection of training data can impact model performance as well. To date, most 

neural network ocean current prediction models have utilized temperature and 

salinity predicted from output of conventional models. This can limit the 

temporal range and resolution of the prediction dataset. Such model output can 

be used to develop a dataset of temperatures and salinities at all depth levels for 

the training of a neural network. Networks can then be trained to predict not 

only currents at all three components, but also potential temperature and 

salinity, which can be used for model initialization. Obtaining training data that 

allows a model to be tested at conditions reasonably similar to that at which it 

was developed often determines the model’s usefulness. 

In oceanographic modeling the challenges associated with acquiring sufficient 

data density at range of conditions is exemplified by the strength, range and 

occurrence of passage of coastal fronts, that affect internal tide amplitude, 

currents and structure. To alleviate this problem, the training data can be 

augmented by perturbing the predicted data using state-of-the-art algorithms to 

improve overall model predictions and, hence, increase network training dataset 

sizes. Other neural network applications use model output remaining after 

enveloping the internal tide, which models the remaining internal tide, located 

several hundred kilometers from where internal tide energy fluxes are 

comparatively weak, validating the model. 

3.3. Model Evaluation Metrics 

Several metrics can be computed to compare model predictions to measured 

data, including coefficient of determination (R2), Pearson correlation 

coefficient (R), root mean squared error (RMSE), and normalized root mean 

squared error (NRMSE). Each metric has different advantages and 

disadvantages. For example, RMSE is particularly effective for checking 

predicted parameters against categories, while R2 is more noise insensitive and 

provides a similar percentage of variance. 
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R is defined as: 

where yobserved and ypredicted are observed and predicted values, 

respectively, and N is the sample size. 

R2 is the square of R and is defined as: 

If ypredicted perfectly agrees with yobserved, the value of ∑(yobserved,i – 

ymean)2 is zero, which makes R2 = 1, otherwise R2 will be less than 1. When 

ypredicted is a mean of the observations, R2 becomes zero. The advantage of 

R2 is that it is noise-insensitive. R2 is computed using zero mean regression, 

also called the uncentered regression. 

R and R2 can easily be computed without considering the unit systems. But if 

the model tries to replicate the units of the observations, R and R2 might not be 

very useful. In cases where the model replications are in different units, other 

metrics such as RMSE or NRMSE can be used. RMSE is defined.  

4. Time-Series Models for Tidal Behavior 

Research on tidal behavior is usually focused on predicting future observations 

of the periodic signal well. However, tidal behavior is not a standard periodic 

function. The reported tidal harmonics model the tidal behavior by linear 

combinations of periodic functions. A better tidal model is usually reached if 

more harmonics are used. A simple linear combination of two sine waves with 

appropriately selected periods and amplitudes could obtain a tidal signal 

without a constant. Unfortunately, the periodic functions that could model tidal 

behavior sufficiently well usually have periods much larger than the 

observation interval. Thus, it takes a long time to predict tidal behavior with 

sinusoid functions. A better way to predict tidal behavior is to enhance time-

series with models that do not give periodic predictions but produce a more 

generalized periodic motion shape. The standard time-series model represents 

the prediction at a given time by a mean value, an auto-covariance function 

calculated with previous data, and normally-distributed errors. The prediction is 

not limited to the periodicity. The auto-covariance is calculated over regular 

time intervals but could take different amplitudes at different points. Still, the 

model could not fit the tidal shape and, therefore, predict it well enough with a 

small number of used data, if it has large slopes. 

Harmonic Analysis 



  

52 
 

The sinusoidal model assumes a harmonic function as base, and the periodic 

function is represented by the first sum considered on the right-hand side: 

where n is the number of terms (harmonics). A better fit with observed tidal 

data is achieved with a small number of predicted terms, and the main problem 

during the fit is to establish values for n, the starting phase, and the amplitudes. 

The tidal model is made even better if n has not only integer values, but rational 

values if the amplitudes and phases have not regard to be steady. 

Tidal motion has a very long period, in relation to the observation record; the 

latter is usually composed of several periods of tidal motion. The predicted 

function could be fitted to the observed data throughout the entire prediction. 

4.1. Harmonic Analysis 

In the literature, the most advanced models for tide prediction are based on 

harmonic analysis. First developed in the 18th century, the procedure is based 

on the linear superposition of sine and cosine waves of various frequencies and 

known amplitudes and phases, as originally proposed based on celestial 

mechanics. The Fourier series was originally conceived for the case of periodic 

functions, which has the disadvantages that tidal frequencies are only well 

defined in a limited neighborhood of the actual time being modeled and that the 

harmonic components of the tidal prediction are not invariant under averaging, 

which would break down the linearity of the procedure. Further, it works best 

for locations close to the generating tide. In its most basic form, a harmonic 

prediction is expressed in the form of Sine and cosine terms arranged in two 

harmonics. Harmonic prediction is at the heart of the body of tidal tables 

published by various tidal organizations worldwide. The coefficients of the 

different harmonic terms, which are expressed in terms of apparent and 

principal semi-diurnal constituents. The program utilized is used for monitoring 

time series of regularity P (with and without epoch phase). By running the 

program to detect periods and samples of different tidal components, these data 

are used as inputs to estimate tidal coefficients and generate tidal predictions in 

harmonic form, which serve as inputs for other experimental methods presented 

in this section. The method is inexpensive, simple, generates predictions that 

can be otherwise difficult to make at locations where tide gauges are not 

available, and the results can be very useful to people who work in different 

ocean waves, meteorology, vegetation growth, bat migration, and other 

disciplines needing to predict tide level. 
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4.2. ARIMA Models 

This section is devoted to a more generalized time-series model, namely 

ARIMA. The model is a combination of a so-called autoregressive-moving 

average (ARMA) model, which is fitted to the differences of the time series, 

possibly after the time series has been transformed to ensure that it is 

approximately normally distributed, together with a term for the seasonal 

differences if the time series is seasonal. The so-called autoregressive (AR) part 

of the model indicates that the temperature values for a given day, as modified 

by the transformation, tend to be related to its own values on previous days, say 

L days earlier. 

Tidal periods are, of course, very small for most time series models, usually 

either a diurnal 24 hours or else 12 hours for those locations where the tidal 

waves cancel each other at the diurnal period. Any ARIMA model will have Yit 

correlating with Yitj at time lags equal to the period of highest or lowest tide; 

that is, the temperature will be related to its value from the previous diurnal or 

semidiurnal tidal cycle. Also, for all locations, the temperature will be related to 

its value from previous days. It is natural that tidal predictions should be related 

to weather predictions, which usually also require a multi-day time difference 

unless the frequency of measurements is very low; for example, at the Kevo 

subarctic site in Finland, the air temperature is related to its own values two 

days previously. 

4.3. Comparative Analysis of Time-Series Models 

For the work "Predicting Ocean Currents and Tides", the following is a concise 

yet coherent text for section "4.3. Comparative Analysis of Time-Series 

Models" that delivers concrete, specific, factual information relevant to the title 

for the section. 

Harmonic analysis represents a constant tuning of the parameters, and the 

learning of the network could be achieved from the input-output relationship, at 

the same time as the possibility of adaptively changing the coefficient 

parameters of the network. ARIMA models allow to statistically extrapolate the 

fitted curves to the future when the criterions used for the evaluation of the 

verification of fitting by the ARIMA process, i.e., residual analysis, are 

satisfied. On the contrary, neural networks used to learn the relationships 

between inputs and outputs allow for the building of decision models with the 

eliminations of internal residuals. For the problem of tide prediction, hedging, 
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and therefore limiting the error of the prediction at one stage, as long as the 

models to be built are quantitatively similar in the interpolation phase, we can 

say that the prediction with the minimum residual will not be the same 

according to Port, requiring models of approximate prediction for times such 

that the prediction of the two model predicting the Port above, remains 

associated. 

For the modeling with neural networks, we have to use a supervised learning 

algorithm to associate the input data with the desired output. Then, two tidal 

prediction models predicting a single data are created, for forecast horizons 

close to the time when the model is built and that separates by two values small 

enough not to invalidate the tidal prediction model on the possible subsequent 

repetition periods. Finally, by using the two previously built models, the values 

in parallel to the two Port predictions are extracted, and the corresponding 

prediction approximations are extracted. 

5. Integration with Oceanographic Simulation 

Models 

Well-calibrated numerical simulations of the ocean can provide, at times, more 

accurate estimates of ocean currents than the direct observations. Therefore, to 

obtain even more accurate predictions of ocean currents and tides in the future, 

one option is to integrate the predictions provided by a data-driven approach 

with those from a physics-based approach. In this section, we will discuss how 

to couple our predictions with real-time oceanographic model simulations, and 

their benefits. Specifically, we will focus on two hydrostatic, free-surface ocean 

models: the Hybrid Coordinate Ocean Model and the Regional Ocean Modeling 

System. 

The Hybrid Coordinate Ocean Model was developed in the 1990s primarily by 

researchers at the University of Miami. Since then, the existing core group of 

developers, operatives, and users has expanded. This model is an advanced, 

general-purpose ocean model that integrates the governing equations for the 

oceanic momentum, continuity, thermodynamic energy, salt, and biomass via a 

third-order, semimonthly, implicit Lagrangian scheme along meteorologically 

forced particle trajectories. Oceanic currents, temperatures, salinities, densities, 

and pollutant concentrations are then temporally extrapolated along Lagrangian 

trajectories during model hindcasts and predictions. An important aspect of the 
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core of any data-driven prediction system is how to inject the predicted currents 

and tides from the data-driven approach into the model. This involves spatio-

temporally varying adjustments to the momentum equations. 

The Regional Ocean Modeling System is a numerical ocean model that solves 

the three-dimensional primitive equations of motion in terrain-following 

coordinates. The model's Finite Volume capability allows it to couple the 

horizontal momentum equations using a backwards-in-time scheme and to 

vertically integrate the continuity equation to construct the 3D velocity field. 

5.1. HYCOM: Hybrid Coordinate Ocean Model 

The predictions of currents used in the LBL and BBL approaches were 

provided at the Navy’s request by the Hybrid Coordinate Ocean Model. 

HYCOM is an ocean model, as defined by a set of partial differential equations 

that govern the movement of ocean water over its 3D domain in terms of 

boundary conditions and physical initial conditions, such as salinity, 

temperature, and pressure. The state of the art in operational ocean modeling 

uses numerical weather prediction technology for numerical solution of tightly 

coupled, time-dependent, primitive equation systems of the equations of 

motion, continuity, state, and thermodynamics of the ocean. These advanced 

numerical techniques enable simulations of ocean circulation at large scales, 

from the global to the basin size but with relatively coarse resolution, as well as 

coupled numerical solutions at the regional size but with very fine resolution for 

highly dynamic areas. 

HYCOM has undergone tests over a number of years and is mature enough to 

be used in several applications, including defense-related applications. It is 

unique among operational models in its hybrid (or variable) vertical coordinate 

concept, using isopycnal coordinates in open ocean areas where stratification is 

the dominant feature of oceanic hydrography but three coordinates where 

stratification is weak, as in upwelling areas, close to land, and near the surface 

and bottom. Because of its variable, melt-compressed ice thickness 

parameterization, hybrid coordinate concept, and the fact that it is the only 

common operational ocean model, resulting in its acceptance for defense 

applications, HYCOM was chosen as the provider for all of the BBL and LBL 

results described in this report. 
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5.2. ROMS: Regional Ocean Modeling System 

The Regional Ocean Modeling System (ROMS) is a free-surface, terrain-

following, primitive equation ocean model specifically designed for modeling 

coastal and shelf seas. It is primarily developed under the direction of a 

researcher at a university and is extended and used within the framework of a 

modeling system for the marine environment. ROMS is a versatile coastal 

simulation model that solves the hydrostatic, primitive equations of motion in 

spherical coordinates with a terrain-following vertical coordinate. It uses a 

mixing closure to damp inertial oscillations while allowing longer adjustment 

time scales and potential energy solutions to be resolved. The model has been 

implemented and tested in a number of variable geometric and physical 

configurations and is designed to use available computers efficiently. 

The ROMS model system computes non-hydrostatic baroclinic flows in a 

variety of complex, unstructured, three-dimensional (3D) geographic domains 

with boundary conditions at the surface, seafloor and sides. It employs four-

dimensional (4D) data-assimilative variational techniques to make best use of 

available real-time data from the oceans. ROMS provides a computationally 

efficient tool for the time-dependent numerical simulation and analysis of 

various oceanographic flow problems, especially those related to coastal and 

estuarine regions and inner-shelf and shelfbreak processes, with realistic 

topography and bathymetry and appropriate initial and boundary conditions. In 

addition, the model provides a numeric simulation framework for coupling with 

other models such as sediment transport, wave and wind-wave dynamics, and 

fine and course particle tracking and dispersion. Moreover, the spatially-explicit 

outputs of the ROMS model provide a better approximation for the support 

footprints of the physical processes, thus providing better statistical inference 

for the model parameters. 

5.3. Coupling Neural Networks with Simulation Models 

In the previous Chapters, we have used only Neural Networks and Deep 

Learning methods to predict tides and ocean currents. These algorithms have 

performed really well and updated the short-term tide and ocean current 

predictions statistically. However, these algorithms work in the alerting mode, 

meaning service providers run them every time model outputs are to be 

analyzed, and they do not provide continuous prediction of ocean currents and 

tides. Continuous prediction is what simulation models are created to provide at 
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different time intervals. Predicting quantities at different intervals or time series 

generation is what simulation models do. 

What we propose is a hybrid method where we couple Neural Networks with 

oceanographic simulation models to harness advantages of both. We train 

Neural Networks along with outputs of the simulation model to correct for 

systemic error. Hybrid methods improve prediction skill and usually have a 

skill higher than either method used separately. Coupling simulation models 

and other data drives the optimization of the data-driven model with physics 

and the benefit of a large dataset. Implementing and integrating these hybrid 

models as software tools into oceanographic simulations systems allows 

improving forecast/nowcast skill of hydrodynamic models without internal 

changes into their components that are highly tuned. Moreover, the sand box of 

the coupled system opens interesting scientific opportunities in both directions; 

data assimilation into simulation model systems or reanalyses through methods 

using hybrid approaches. 

6. Forecasting Use Cases 

In addition to local applications, ocean current and tide forecasts can be 

valuable to many additional stakeholders, including the shipping and fishing 

industries, search and rescue operations, agencies that work with oil and gas, 

simulating the impacts of underwater disasters, and environmental protection 

agencies. This chapter will go over how ocean current and tide forecasting is 

useful to these collaborators. 

6.1. Applications in Shipping 

Maritime transportation is important for the supply chain, and during the 

foreseeable future, coastal shipping will continue to be an important component 

of world trade. Ships are becoming larger, which presents challenges when 

entering and leaving ports, along with increased impacts on local waters. 

Routing decisions are also being taken under considerations of reducing fuel 

costs and associated carbon emissions. Strong and poorly timed tidal currents 

can make these decisions even more complicated. Many ports are using 

information from the hydrographic and meteorological offices to determine 

optimum times for vessels to enter and leave locations. Continually updating 

these predictions would be a valuable service. 
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Ship routing is mostly focused on minimizing transit time. Predictions of wind, 

waves, currents, and other phenomena can be assimilated into optimal control 

algorithms that steer vessels along the minimum time route. As ships continue 

to increase in large size, these routing decisions can become even more 

complicated. 

In addition, some of the areas for increased shipping traffic during the next 

decades are new and sensitive. The melting of the west polar ice cap has opened 

the Northwest Passage and the Northern Sea Route. Monitoring the 

environmental and ecological impact of these changes will be necessary. Since 

monitoring these oceanic and atmospheric conditions can be expensive in these 

remote northern areas, the use of ocean models could be helpful. 

6.2. Search and Rescue Operations 

Search and rescue (SAR) operations have undergone significant advancement 

since the initial experiments employing radiolocation systems in WWII. Indeed, 

while the first results of the recently deployed SAR were promising, it must be 

acknowledged that no system exists which provides for all individuals at sea 

being located alive and uninjured after a prolonged period of immersion. 

Nevertheless, there is an increasing demand for longer range and longer 

duration response operations and for the use of airborn detection devices to 

assist tactical SAR units. However, policymakers need information on the 

expected duration of SAR response operations, and on contributing or limiting 

factors regarding the ability of the SAR operation to assist potential victims. 

While this information is difficult to obtain or model for land or inland 

waterway operations, some conclusions can be drawn from past maritime 

experience and these can be used to help model maritime SAR response. If 

SAR continues to be conducted using the currently employed resources, with 

the proportional capabilities and functions outlined, the decision can be made as 

to whether this is a function commensurate with the observed risk. If so, then 

the facts can be well communicated to interested parties and the risk accepted. 

The implementation of the SAR concept within Federal legislation contains an 

implicit acceptance of the risk presented by defined categories of accident, and 

provides resources in proportion with that risk. This concept is reaffirmed by 

the naming of the different agencies involved in the SAR function, and by the 

operational procedures and training which have grown around that function. If 

necessary, this risk-acceptance document could be further refined, by clearly 
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defining the infrastructure, and associated attributes, used to support the SAR 

operation – the times available should SAR be required; the various response 

times to be expected; the likelihood of a successful expedition; the degradation 

in those probabilities; how SOSUS could be used; and the efficiency of the 

response. 

6.3. Environmental Impact Assessments 

Environmental impact assessments are conducted prior to nearshore 

constructions, such as dredging, bridge construction, wind farms, oil and gas 

platforms and pipelines, and static aquaculture. Currents can shift sediments 

and redispose dredged materials. Tides exert forces on the shore and in shallow 

waters, impacting the violence of water-borne sedimentation. Aesthetic issues 

pertaining to visual impact, lighting, and stimulation of stranding fishing 

vessels are parts of such assessments. Migratory birds may be drawn to 

illuminated platforms or otherwise shift their migratory routes. Benthic 

community analyses reveal short-term marine life injuries caused by 

excavation-induced releases. 

Primary effects impact the organisms directly exposed. Water currents can 

disorient fishes during spawning and larval dispersals; relative density or 

velocity thresholds induce entrainment. Lethal need-to-burrow and plume-avoid 

threshold exceedance times can cause larval losses in shrimp stocks. Larva 

retention in inshore zones by currents induce penaeid larval seasonality. These 

cumulative larval mortality effects may be applied in risk assessment 

algorithms. Larval damage will be considerably worse in sediment-rich 

environments during storms. The severity of larval damage depends in part on 

the timing of natural abundances, which vary seasonally about ultimate peaks. 

Avoidance of intensive dredging annually during dietary requirements may 

reduce adversely affected population sizes and their recruitment-success 

shortfalls. Sediments suspended by dredging cause plumes. Plume-induced 

damage on catch will depend on plume area, local species and crowding 

densities, spatiotemporal mismatches, and local sensitivities. 

Dredging may affect upweller performances and cause benthic biological 

community alterations, disrupting the abundance-establishing natural stocks. 

Wind-turbine induced environmental impacts would also include seasonal 

disorientation exposure risks for spawning and larval dispersal fish because of 
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the turbulence near alternating- and direct-current power transmitting lines, 

especially the pylons inshore and offshore. 

7. Conclusion 

Predicting ocean currents is challenging, as a global ocean circulation model is 

difficult to derive given the number of parameters and spatial-temporal scales 

of interest. In recent years, however, it has become possible to take advantage 

of the vast wealth of data that is related to ocean movements due to the growing 

interest in ocean movement data collection, the growing computational 

resources, and the rediscovery of data-driven and physics-assisted data-driven 

methodologies. This wealth of data allows us to develop predictive models 

based on different types and configurations of neural networks, such as 

recurrent, convolutional, or autoencoder networks that map the input onto the 

output variables of interest. The growing ability we have developed over the 

years to predict ocean currents in an accurate and physically consistent way also 

allows us to predict a number of other ocean-related variables, including the 

ocean thermal state. 

Indeed, physics upon which ocean currents depend gives neuroscientists 

additional information when developing accurate predictive models. Take, for 

example, the prediction of 3D and 4D ocean temperature fields; they can be 

mainly driven by the 3D ocean current fields. Moreover, even when ocean 

temperature is diagnosed via a conservation equation rather than a measured 

temperature kernel, the convolutional autoencoder captures complex patterns 

and learns them efficiently. We can therefore expect that using an appropriately 

designed neural network and accounting for geophysical considerations will 

allow us to predict a number of geophysical variables of interest in a better way. 

Global warming has also opened a Pandora box of less frequent and yet 

extremely damaging geophysical events; unexpected floods or extreme drought 

drying regions never seen it, an increasing number of hurricanes, or tropical 

storms that impact on regions considered too cold to be affected by them. These 

and other extreme weather events will likely increase the science-related 

applications of satellites, boreholes, buoys, and other sensors and instruments 

collecting geophysical data. 
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Chapter 4: AI Applications in Marine 

Weather and Storm Forecasting 

1. Introduction to Marine Weather Forecasting 

Marine weather forecasting assists in forecasting the parameters occurring on 

and above the oceans. The dynamical processes that govern weather conditions 

(such as wind, wave, temperature, precipitation, cloudiness, humidity, 

temperature, cyclones, etc., at and adjacent to the ocean) cover a large space. 

Some reasons for studying the atmosphere are: the atmosphere gives important 

boundary conditions for the ocean (and for the climate system as a whole); 

buoyancy fluxes (and clouds) mainly come from the atmosphere (impacting 

ocean); tropical disturbances (cyclonic or anticyclonic) propagating from the 

atmosphere provide the main energy of the ocean (via Rossby waves); all 

ecosystems depend on atmospheric conditions (wind, clouds, sea surface 

temperature, etc.); the atmosphere is sensitive to oceanic changes; the 

atmospheric response to oceanic warming has a signature in precipitation 

patterns; and influences the atmospheric jet streams in winter. Physical 

processes related to long-term shifts in atmosphere/ocean coupling are still not 

well understood. Research reconstructions from marine and terrestrial 

sediments complement information from tree-ring data in explaining the 

premature 21st-century warmth relative to the last millennium. 

Most large-scale weather systems are driven by temperature gradients from east 

to west at mid-latitudes. This is related to the fact that the warmest waters are 

located in the tropics (and subtropics) and coldest subpolar regions. The 

meridional direction in which these gradients drive the atmosphere implies that 

the two oils of the North Atlantic and North Pacific are regions prone to intense 

winter storms. The capability to forecast and understand synoptic rainstorms 
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depends greatly on the data network and the availability of computer resources. 

In order to predict short-term weather events, a network of meteorological 

buoys obtains real-time observations. This enabled scientists to ascertain the 

role played by the currents in the ocean circulation. 

2. AI in Forecasting Cyclones 

Tropical cyclones are categorized as severe weather phenomena along with 

thunderstorms and tornadoes. These cyclones develop from tropical 

disturbances, and when given conducive environments, grow into tropical 

depressions and intensify into tropical storms and eventually into tropical 

cyclones. Further intensification of cyclones leads to the development of an eye 

and an eye wall. While the sustained wind speeds over the neighboring land 

areas up to 63 kmph become damaging, intense cyclone gust winds up to 275 

kmph along with storm surges and heavy rainfall over the sea and land areas 

lead to disasters. The resulting storm surge caused the loss of life of about 

1,38,000 people and damage of about $10 billion. 

It is also seen that there has been a significant increase in the frequency and 

intensity of global tropical cyclones over the past 40 years. Due to the disasters 

caused by cyclones, an early warning is a necessity of the hour. Tropical 

cyclone prediction relates to the monitoring of the formation, track, intensity 

change, lifecycles, etc. The unique complex physics and dynamical processes 

involved require the application of advanced Artificial Intelligence techniques 

like machine learning, deep neural network, etc., for enhancing predictability 

and providing probabilistic and deterministic forecasts. Recent advances in both 

hardware support and algorithmic design to utilize big data available at varied 

temporal and spatial resolutions have made the application of AI a serious 

research possibility. 
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3. AI in Tsunami Prediction 

The prerequisite stage for tsunami forecasting is the detection of earthquakes in 

the ocean. Using seismic signals because they travel more rapidly than surface 

waves, the location of an earthquake using a small number of seismic sensors is 

done in a multi-stage process. The first seismogram arrivals depression are used 

to identify the earthquake. The magnitude is determined from the amplitude 

growth of the waves arriving later. Based on the location, size, orientation, and 

physical characteristics of the earthquake, the associated tsunami is predicted 

— carried out via a computationally robust numerical model. The predictions 

include wave height, waves first arrival time, ground shaking, and more. The 

tsunami forecast is important for optimizing the messages sent to the public and 

warning the local agencies. It is not surprising that the above scope of 

knowledge involves a number of uncertainties and challenges. How to 

potentially enhance these predictions is thus a looming question. We believe AI 

is capable of helping achieve this. 

A convolutional neural network model modified to also encompass physics-

informed loss functions via automated differentiation helps narrow the above 

uncertainties. While we acknowledge the need for collaboration with both 

geophysicists and AI researchers, we present preliminary results to demonstrate 
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the knowledge gained from merely attempting to predict the tsunami response. 

The output is trained and tested on a synthetic database of tsunami waveforms 

generated via a linear-water-wave numerical model used extensively for 

tsunami research and prediction for learning the weights. 

4. AI in Extreme Weather Events 

More than two million people have died from extreme weather events in the 

past century, and over $3 trillion in property damages have been attributed to 

them. These statistics underscore the fact that extreme weather events impact 

populations all over the world. Severe storms, such as blizzards and hurricanes, 

along with associated phenomena like storm surge and coastal flooding, have 

deadly consequences. The frequency, intensity, and duration of various extreme 

events have all become more severe due to climate change. Hurricanes have 

increased in rooftop wind and rainfall intensity, and heavy rainfall has increased 

drastically in many regions. With more moisture in the air, flooding events are 

becoming more severe, affecting areas not accustomed to heavy rains. One of 

the main missions of meteorologists is to forecast the intensity of specific 

extreme weather events. Predicting their intensity and duration involves 

modeling the weather conditions that generate them. Unfortunately, it is still 

very difficult to forecast the exact influence of climate change on specific 

segments of the probability distribution of extreme events. Although we know 

that the probability of extreme events has increased due to climate change, we 

do not know exactly how long-term climate change will interact with the 

collection of processes that create specific extreme events over the next few 

decades. Due to Earth’s complexity, extreme event attribution relies on an 

ensemble of climate models and an understanding of physical mechanisms that 

still need to be more clearly defined. AI is being employed to help fill that gap 

in understanding. 
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5. Ensemble Learning for Atmospheric-Ocean 

Interactions 

 

5.1. Overview of Ensemble Learning 

Ensemble learning is one of the most successful approaches to supervised 

learning and it is widely used in many real applications. Although the idea of 

using multiple simple hypotheses to build a more elaborate model is very 

intuitive, it has many theoretical and implementation aspects that are not easy to 

understand and use. A process for designing an ensemble, which is made up of 

a number of heterogeneous prediction models, called base models, is to train the 

base models to learn the same function or a different function, and then 

combine them into a single more accurate model. There are two main phases in 

a general ensemble learning approach, the training phase where the model is 

built, and the application phase where the final model is used for prediction. 

After the training phase, the ensemble is used like a function that adds all the 

predictions from the base models to give the final predictions. The key idea 

here is that when a single model fails, there are chances that at least one or few 

of the base models in the ensemble will produce the correct predictions. 

5.2. Applications in Marine Forecasting 

Research has been carried out on the application of ensemble models in marine 

weather forecasting. In some systems models are used to collect information 

from different areas of the atmosphere and ocean, and are combined into one 

model using another statistical model. Systems that combine multiple models 

use a single and massive ocean and atmosphere model, and then use it to 

forecast in situations that would cause the single model to fail, while other 

ensemble techniques produce a forecast of a single variable, like hurricane track 

prediction, using a set of dynamic models that do not interact with each other. 

All these techniques have a cost. The dynamical models must be made to run 

and synchronize at regular intervals over a large area and time outside the latent 

region, and be able to produce and store ocean model outputs, which must be 

used to initialize the atmosphere models. 
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6. Satellite Imagery Analysis Using Deep 

Learning 

Satellite imagery has become an indispensable tool for monitoring natural 

phenomena, offering a myriad of applications in fields such as meteorology, 

hydrology, geology, and forestry. Recent advancements in deep learning, 

computer vision, and image processing have significantly improved the analysis 

of satellite imagery across diverse domains. Initially employed for commercial 

applications, these techniques are now being disseminated through open-access 

platforms and utilized for various Earth observation tasks, including image 

classification, image segmentation for land cover mapping, and multi-modal 

applications. While the extensive use of satellite imaging in several fields seems 

promising, the reliability of the products is highly dependent on their 

specifications and the capacity to accurately assess the imaging results. 

There are mainly three major techniques in satellite image processing: 

geometric corrections, corrections due to the atmosphere, and the normalization 

of the results. Satellite image segmentation in particular has been enhanced with 

applications of convolutional neural network architectures. Satellite imagery 

analysis opens up the possibility of automating weather forecasting, 

nowcasting, and simulating global weather models. Over the last decade, 

research and publications on the use of deep learning to automate satellite 

imagery meteorological data extraction are growing quickly. Several studies 

focus on creating a methodology to automate the tagging of satellite data, while 

others concentrate on simplifying multiclass meteorological-based algorithms. 

Other works use an ensemble of machine learning to preferably boost 

performance in the lightly segmented meteorological scene. When it comes to 

automating the meteorology or major events in cumulus cloud scenes, a handful 

of binary cloud masks are routinely referenced and stated as precursors to 

dedicative deep learning image segmentation networks. 

6.1. Techniques in Image Processing 

With the advent of Deep Learning (DL), the computerized analysis of satellite 

images has progressed salubriously in the last years via an increase of the 

implementation and performance of the associated DL tools and techniques for 

the proper processing of images and validation of the derived models. 

Primarily, the image processing involved has relied on certain key DL 

techniques that include Convolutional Neural Networks, ResNet, U-Net, spatial 
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attention modules, temporal information analysis from spatio-temporal data 

cubes of satellite images, Long Short-Term Memory networks, spatio-temporal 

sequential conditions, predictors or autoencoders, spatial-temporal linear 

convolution modules, image segmentation with Fully Convolutional Networks, 

No-See-Though Generative Adversarial Networks, optical data input/output of 

satellite thermal data, Explained Variance Score optimization, and wavelet 

transformations. Apart from these primary DL techniques, advanced tools such 

as Multi-Layer Perceptrons and Multi-task Learning have also been used, along 

with sensor fusion techniques as required at hand, while image-associated 

variables such as remotely-sensed sea-surface temperatures, genuineness of 

various optical and/or thermal imagery composites are also of immense 

assistance in the incorporation of proper DL techniques via concurrent band 

passing filters or certain model procedures. Certain hybrid models comprised of 

machine learning tools are also in use, thus acting to synergize and capitalize 

both procedures. 

Indeed, one of the challenges for generating the satellite-cast Data Products 

with Lower Uncertainty (DPLU) at hand for a majority of the DL attempts has 

been the validation of the used DL cachets by way of required for quality 

consideration and as input/output of a majority of the image processing 

pipelines. The higher is the parallelism of the utilized Data Products with 

respect to respective orthogonal, modeled/neuro refined/adjustments of the 

incorporated time-series imagery with respect to the events featured in the 

imagery of the survey, the increased integrity in the confidence of the DL 

attempts via the respective DPLU used is achieved in the validation by road 

learning/allocation functions for generation task. 

6.2. Deep Learning Models for Weather Analysis 

Deep Learning provides a technique of building neural networks composed of 

many layers between the input and the output layers. Deep Learning 

architectures have recently begun to improve several subjects of computer 

science. In the field of weather analysis, state-of-the-art architectures have 

shown much better performance than the existing traditional techniques. Today, 

large labeled datasets composed of satellite images exist, and it is possible to 

pre-train deep neural networks on a large dataset and then fine-tune these neural 

networks on small datasets. It has been shown that Deep Learning is capable of 

performing better predictions with fewer data than traditional technologies. 

Furthermore, the combination of using several pre-trained visualization neural 
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networks with the traditional technique – Support Vector Machine – has been 

applied to weather dataset acquisition, showing greater accuracy than classical 

techniques. Many researchers are successfully exploring the use of Deep 

Learning in weather images and data analysis. Numerous other researchers are 

also using pre-trained convolutional architectures with a Support Vector 

Machine classifier to find severe weather events. 

Techniques in weather, climate, or satellite image analysis are usually used in 

one of two ways. The first way is to use already detailed, high-resolution 

satellite images. Several studies show the capability of using convolutional 

neural networks to find deep convolutional features in already reconstructed 

clear-sky or cloudy satellite images in order to classify and retrieve cloud class, 

micro-physical, and optical property characteristics needed in numerically 

simulated, modeled, or analyzed weather, climate, and environmental data. The 

second way is to use the latest government-developed and opened, launched, 

and operated satellite imagers using coarse vertical resolution hyperspectral 

retrieval data as pretrained neural network input features, and then increase the 

horizontal resolution through the use of traditional image processing and 

Gaussian convolution methods. 

7. Real-Time Alert Systems with Edge AI Devices 

The latest breakthroughs in AI have enabled the implementation of highly 

complex models on consumer devices, such as smartphones and drones. These 

devices can execute full AI pipelines, improving the privacy of sensitive data 

and minimizing communication overhead and latency when transferring user 

data to a backend facility. Such devices are often referred to as edge devices. 

Implementing AI pipelines for Real-Time Alert Systems on edge devices is 

more complex than just transferring the AI model to an edge device. In the 

current world, a high volume of data is continuously streamed from a diverse 

set of devices. Most of this data is from IoT devices and is created with 

different sampling frequencies and on different time frames. These APIs must 

be handled to create a stream that can be input into AI models. This requires the 

implementation of various components, such as data value mapping, 

contextualization, data fusion, and rhythm coordination, forming an IoT 

Architecture. 

This chapter will briefly introduce the Architecture of Edge AI Systems and 

detail our implementation of such an edge architecture for Real-Time Alert 
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Systems in Marine Weather and Storm Forecasting. Edge Intelligence, 

combined with the Internet of Things, allows distributed data processing with 

quick data context mapping and in-device learning. Real-time applications can 

benefit from a reduced response time with low latency fragmentation and high 

clouding availability. Yet these systems need to be guided through an 

architecture, indicating the desired IoT components. We present a high-level 

architecture clustering IoT components into devices and an IoT backend. This 

architecture shows a proof of concept in the field of Marine Storm Forecast 

with observations, meteorological forecast data, and multiple AI Inference 

Models that lead to different storm identification results. With our 

implementation and the presented architecture, we show the possible 

functionalities of edge devices in a cooperation with IoT backend 

functionalities concerning a storm early warning system. Proposed future work 

aims to improve the backend system's capabilities by reducing the required 

resources and time for actual threat location and severity prediction. 

7.1. Architecture of Edge AI Systems 

The rapid advancement of artificial intelligence (AI) and its increasing 

availability and affordability have made it possible for governments, 

communities, and enterprises to build intelligent real-time alert systems to 

improve marine space monitoring and weather forecasting capabilities. 

However, anticipating disastrous marine storms from models operating only on 

computing clusters or scheduling programs on rented servers is an arduous task 

requiring months of effort and substantial expense. Notably, commercial 

companies have established an ecosystem of disaster mitigation and space 

operation services using satellites and aircraft to image, scan, monitor, and 

predict disasters. Similarly, edge AI devices could be employed to solve the 

real-time triggering problem, providing synergistic support and the possibility 

of early triggering of disastrous storm alerts for marine weather forecasting 

with less expenditure and effort. 

The present systems leverage existing resourceful models and processing units 

located at a distance, waiting for inquiries. Edge AI systems invert this process 

and provide the means and capabilities to the people most affected by the 

disaster risks using devices that are typically with them or nearby and can 

detect triggers and signal alerts earlier and even autonomously. We describe the 

architecture of these systems, tailor-made for edge AI time series-based 

detection and prediction problems, and exemplify its impact in the specific 
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domain of marine space monitoring and storm forecasting. Following the 

recurrent temporal process characterization of most weather forecasting 

problems, we show how solutions to detection or prediction applications of 

interest in marine weather alert generations at a heterogeneous sensor system 

level could be developed as multi-layered deep neural networks trained with a 

large data repository compiled according to three application-specific policies 

in transfer learning mode. A simpler one-layer version of this architecture, 

which we call the edge AI device detection box, is mostly used for edge AI 

devices for detection applications. 

7.2. Implementation in Marine Weather Forecasting 

The implementation of computing techniques in the field of marine weather 

forecasting requesting for real time alerting of “high-impact extreme weather” 

and “hard-to-forecast” local weather phenomena is an advanced AI-based 

solution at edge services with a very large thinning-out of data. This differs 

from the traditional view of AI weather applications which often funnel large 

volumes of remote sensed data, either image-based alone or image+NUM data 

from weather numerical modeling, advanced data assimilating supporting, 

downscaling for very high resolution, and data-cued based supervised learning 

setups for many different focus marine weather phenomena or areas. Instead 

presented here a contrasting view of Edge AI+alpha only solutions at NWP 

model scale resolution. The critical objective of deploying of alerting at edge 

scale, and also with very high speed, is to alert at epochs before the actual 

marine incidences stated above lead to dire consequences. These solutions use 

high performance video and tracking and simulation based on in-house semi-

Lagrangian based particle tracking capability rebuffed into enable fast particle 

tracking through very high resolution vessel cam-based volumetric fVTu 

varScoped and fVTI-varSPo temporal evolving 3D MHD model weather fields. 

AI computing for qualifying performance enablement of data-caled baseline 

cloud motion+object/feature selection and tracking+particle tracking through 

volumetric MHD flow developing over nautical HW and SW observations. This 

note details on the forecast alerting capability for small marine craft to AI 

enabled at edge device implemented precipitative cloud motion based fVTI 

horribly frighteningly high SOCK and deadly high SOAT capabilities MOT 

inferred rapid destroyer navigations through weather affected region –PCMT 

Soak, PCMT Soat, and PCMT Souk and warns against vessel maritime 

mediated timescales of observances of the associated weather induced threat. 



  

72 
 

Developed the in-house cloud motion assess capability inputting available 

NWP forecast but with the AI enabling enhanced particle tracking and cloud 

object motion track pre-processes. 

8. Future Directions in AI and Marine Weather 

Forecasting 

Among the many areas of maritime impact, we have focused attention on 

marine weather forecasting. Perhaps the most urgent challenge is to employ 

scientific understanding to guide the development of AI and ML in marine 

weather forecast settings and to address some clear scientific issues. There is no 

doubt that AI functions well in many marine issues and is growing in capacity. 

Applications and research interest are increasing and will become an important 

component of forecasting research. However, ML is not the whole answer to 

weather. AI and ML are generally concerned with surrogates and substitute 

representation of the forecast parameters, in particular, the image-building of 

different models. Because surrogates will remain for some time necessary, ML 

is likely to be frequently employed. 

Scientific understanding remains crucial to QA the ML subsystems. The final 

challenge for research will be to develop and test a more integrated information 

and data function using AI and ML noting the necessity of appropriate scientific 

constraint and tuning. Other subjects will address, among others, the increase of 

add-on parameters, the improvement of tools to deal with very long lead time 

predictions in particular seasonal and decadal and the fusion of physical and 

empirical methods. Despite these challenges and caveats, it is reasonable to 

expect that AI will be introduced in the near future as a valued member of the 

MMM forecast team. These developments will probably not occur without a 

modest series of starting projects, but by mid-century or even earlier, the 

reception of primary ideas, new regimes, and creation of new specialties in 

Forecasting Education where physicists and computer scientists will collaborate 

on diverse efforts should allow the merger of new information with traditional 

approaches. The good news is that with these partnerships, we may begin to 

improve on the existing prior economies and the users need not wait until the 

vendor volunteers improvements for quite some time. 
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9. Ethical Considerations in AI Applications 

AI has demonstrated a clear benefit in assisting forecasters to analyze and 

assess the reliability of all model outputs for a given forecast situation. AI 

techniques need to further advance by including the continuous development 

and examination of best practices, considering the application of a number of 

different techniques for any given challenge, ensuring well-documented results 

and comparisons, and providing confidence intervals where possible. AI should 

not take over forecasting decisions in dangerous situations. Instead, it should be 

designed to provide an "intelligent assistant" function, allowing forecasters to 

focus their attention on particular regions of interest or on certain models of 

interest, guiding the forecaster through the sometimes cumbersome exploration 

of conflicting messages throughout the multi-model/Multi-Analysis Ensemble 

systems. The ultimate decision must rely on trained personnel who consider all 

inputs, including situational awareness, past experience and consequences of 

potential errors. 

Training the AI techniques using datasets with human cognizance incorporated 

is essential. There are various ways to go about that, e.g., have the AI learn 

from every conference call, have the AI scrutinize manually written summaries, 

and/or manually annotate the data, examining the confidence and boundary 

cases of the AI. In addition to using human knowledge in the training phase, we 

must maintain human oversight of the AI. Ethics recommends that AI be 

applied at levels where it can still provide useful insights, while the ultimate 

decisions must reside by the expert forecasters, carefully weighing all aspects 

and potential consequences, including the avoidance of disproportionate impact 

from either false alarm or misses for vulnerable communities. Especially in the 

area of severe marine threats, AIs must be trained by humans, and the 

predictions constantly monitored. AI techniques can be dangerous as 

weather/ownership probabilities are not static. 

10. Comparative Analysis of Traditional vs. AI 

Methods 

Earthquake, cyclone, tsunami, and storm surges are natural disasters caused 

mainly due to atmospheric and oceanic phenomena. Among these, cyclones and 

storm surges are of significant concern globally because of immense 

destruction. The intensity of cyclones has increased in the last two decades, and 
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the impact of storm surges has become a serious issue because of the presence 

of large coastal population density in many littoral countries across the globe. 

Even small rain storms lead to heavy loss of life with damage to industrial 

houses, electric grid, and telecommunication systems. Old vineyards and crops 

developed in areas for decades are destroyed in no time. The information in 

documents related to earlier hit data with metrological parameters is useful to 

classify minimal or small storm-related damage to structures like electric poles, 

mobile towers, and fragile buildings. This is analyzed before the coming of any 

rain storm by AI or machine learning classifiers. The classified information is 

passed on to the local/sub local administration so that preventive action may be 

taken to prevent damage. Though it may look simple, the task given to AI is not 

simple; therefore, the document gathering is an important task and is explained 

in the successive sections. 

Artificial Intelligence applications are playing more and more crucial roles in 

each field. In doing so, they are accelerating work performance and enhancing 

skills, coming up with predictions and execution plans in all areas, which were 

only dreams to many engineers and researchers previously. Engineers are no 

longer involved in performing tedious minor tasks, because of well trained and 

applied AI functions to ease out the task. Hence, discussions are going to be 

there about these systems in future. 
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11. Challenges in Data Collection and Processing 

Climate data is generated at specific time-steps and at numerous different 

locations. The weather conditions at the created data locations will differ 

considerably in a small time interval. For instance, in winter, the temperature 

measured at a location near the coast and at a location in tropical climate is 

expected to differ significantly. The time taken for the data to be created at the 

specific location and for its availability is also important. The generation and 

availability process may also involve delays when the data is received from 

numerous different sources. Certain natural events might lead to a specific 

aspect of climate data not being collected such as not mapping out vegetation 

data in a specific period in the future. The absence of data as well as 

dissimilarity of the data may lead to challenges in data pre-processing and 

impact the model accuracy in AI training for climate applications. However, 

various data pre-processing methods can be developed to ensure more accuracy 

during data processing and effectively reduce the mentioned issues. Such 

corrections to the collected data may require high-level skills and effort. 

However, regardless of the data pre-processing method developed, data 

collection period and method, as well as data availability, can affect the success 

of AI models for climate applications. 

The success of the used AI model in predicting future values of climate 

parameters depends on the type, quality, quantity, and availability of the input 

data fed to the model. Thus, sufficient, good quality input data, available over 

long periods, and representing numerous different scenarios are crucial in the 

training of AI models for climate research. For instance, in predicting tropical 

cyclones, the available input data must be of sufficiently good quality, 

encompass many tropical cyclone scenarios over long periods of time, and also 

be relevant. Input model data for predicting such storms is generally limited in 

quantity and availability and has also been found to contain discrepancies. The 

prediction of future parameters can only be expected to a certain limit, and 

focus must be laid on other means of prediction or minimizing the associated 

prediction uncertainty. 
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12. Collaborative Efforts in Marine Weather 

Research 

The world keeps changing, and we are all increasingly interconnected. It is even 

more true since the emergence of scientific and technological development. 

Research activities are, for the largest part, driven by collaboration among 

scientists, often from different disciplines. This is a logical consequence of the 

accelerated growth of knowledge in the last decades and the creation of many 

more specialties. Effectively, to efficiently answer many of the challenges that 

we are facing or may come across in the future, interdisciplinary work is 

becoming a necessity. This chapter presents different collaborative projects that 

were launched in the domain of marine weather and marine warning in order to 

show the permanently increasing interest in that domain, and the objective of 

the scientific community to raise awareness of the importance of that natural 

element in the safety and security of persons, ships and services at sea, and also 

for some meteorological phenomena occurring far from land that can also have 

a considerable impact on terrestrial activities. 

13. Conclusion 

AI has made great impacts in storm forecasting and marine weather due to its 

unique advantages including Earth system model-assisted prediction, global 

machine learning forecast, big data assimilation and downscaling for ultra-rapid 

prediction, dynamical – AI hybrid applications, and carefully designed deep 

neural network architectures. Comprehensive assessments, in-depth studies, and 

advanced applications of big data assimilation, Earth system model hybrid 

forecasting, different optimization methods, multiscale deep neural network 

architectures, and multimodality deep learning are hot topics for future research 

in order to enhance deep learning forecasting skills. Another focus of future 

research is knowledge-based deep learning applications and dynamical – AI 

hybrid designs for probabilistic prediction of air-sea-land interaction processes. 

This chapter provided a snapshot of the rapidly developing field of utilizing AI 

to help with marine weather and storm forecasting. We mostly emphasized deep 

learning and its applications. In the future, we will likely see many hybrid 

systems and configurations that combine the advantages of AI and ML methods 

with those of physics-based and statistical models and approaches. Such hybrid 

designs are likely to be particularly helpful in applications requiring 

probabilities and quantifications uncertainties for statistical risk assessment and 
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decision making as well as for forecasting applications requiring high spatial 

resolution such as wind waves, storm induced sea surface temperature anomaly, 

wind gusts, rainfall, and storm surge, especially for landfalling tropical 

cyclones and tropical cyclones making extra-tropical transition. Over the years, 

AI and ML have matured into dynamic and useful areas for all of science and 

engineering, then it is likely that the new hybrids of AI and ML with 

established physics-based and statistical methods, and also systems that are 

careful combinations of subcomponents of each family could benefit the 

forecast skill score not only for the areas of the chapter, but also for other more 

general areas of weather forecasting for different areas of the Earth. 
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Chapter 5: Monitoring Marine Pollution 

1. Introduction to Marine Pollution Monitoring 

Marine Pollution, or the introduction by man into the marine environment, is 

overruled by any other type of pollution monitoring; in fact, marine pollution is 

only part of marine environment monitoring, considering the importance of our 

oceans on the planet. It's the oceans that absorb the major part of greenhouse 

gases and are responsible for life on the planet; about 70% of our oxygen is 

generated by Phytoplankton and, on the other hand, the oceans are the major 

important route of transport for goods all over the world. All of these play an 

important role in the life on our planet and this is why the pollution of our 

oceans has to be kept under control. (Zhang, 2015) (Kennedy et al., 2010) 

(Costa, 2018) (Flores et al., 2020) 

Oceans Monitoring has two specific objectives; the first is to identify trends and 

assess environmental change over time for key variables; the second is to detect 

major unexpected events. Marine Pollution Monitoring around the world is 

implemented by a great number of organizations, not always totally integrated; 

sometimes the lack of integration leads to unproductive activities; it is quite 

common that an oceanographic research vessel, having the same area of 

operations, does the same measurement or sampling some days before or after a 

dedicated cruise with a cruise ship. In the following pages will be niched all the 

operational oceanography activities such as physical and chemical 

oceanography; current field measurements, sea bottom and temperature 

measurements, meteorological parameters, in situ wave current meter, CO2 and 

O2 measurements, marine pollution monitoring. Thanks to work done by the 

first international institution for oceanographic studies, it is possible to have an 

overall control of the ocean monitoring. 

Deep Science Publishing, 2025  

https://doi.org/10.70593/978-93-7185-787-1 
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2. Detecting Oil Spills Using Satellite-AI Fusion 

We operate from unidentified altitude and distance, while most of the world's 

systems are probably able to detect within minutes in which corner of the world 

the first evidence of pollution is occurring. Just after the pandemic lockdown, in 

April 2020, a cluster of boat traffic density minima along in the Southern of 

France were detected, while some restrictions were reestablished and some 

boats still in quarantine. Using their shape, size, and associated meteo-marine 

conditions Small-Boat Automatic Identification System (SBAAIS) and 

synthetic aperture radar (SAR) images were compared and few examples of 

passed by - probably without any nautical record - spambots, indicating illegal 

activities, were published. 



  

81 
 

In operational manner, dishes systems were put on spaces. Along the 1980s, 

mainly looking at larger accidental spills, two oil pollution services in the 

States, the Macintosh Laboratory Automatic Detection Algorithm applied on 

both radars mode (the system update rate algorithm is able to detect a spill after 

a median time of 3.2 minutes), and the Coastal Oil Spill Detection Algorithm 

applied on Infra_RED mode. After more than forty years the main portion of 

the Remote Sensing radar-based Oil Spill Detection methods (called 

Rangescope) still use monochrome imagery either with X band or C band. 

Around 1993, with the Microlab/Toposat unearth launch by Brazil and by 

ALOS at the beginning of the millennium, many units were launched in the 

south for leisure purposes. During that initial period, some researchers tried to 

improve oil spill detection on Coast Guard / Navy patrol areas, where many 

artificial land use classification, satellite based optimization algorithms, 

coupling stained images, and neural networks methods tested, alone or coupled 

with other information or other sensors, SAR or Optical images, possible in the 

south. During the last decade studies using fine optical and synthetic aperture 

radar (SAR) opticals, satellite data are building the basis of what will probably 

soon be legally defined as oil spills. 

2.1. Overview of Oil Spill Detection Techniques 

In the past, detecting oil spills that negatively impact marine life was manually 

performed on-site by handling and employing outdated methodology. Thus, 

such monitoring is laborious and expensive. With technological advancement, 

however, substantial improvements that enhance the detection systems and 

provide real-time detection have been made. These improvements dramatically 

reduced cost, time, and human resources. Nowadays, various systems utilizing 

satellites, aerial systems, and vessels use combinations of optical, radar, thermal 

infrared, laser, and microwave sensors on-site or installed at remote stations to 

monitor oil spills and other pollutants. During the last past decades, various oil 

slick detection and analysis methods have been employed based on visual, 

infrared, microwave remote sensing data based on the models of absorption and 

scattering, polarization, volumetric backscattering model, phase shift model, 

maximum likelihood ratio test method, robust comparison method, physical-

based method, dual-polarimetric shadow-based method, discrete model-based 

method, neural network classification method, optimized block-matching 

algorithm, neural network-based retrieval method, neural fuzzy inference 
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system, pixel-based method, and in-situ surface signature model and based on 

wavelet transform, gradient, local Hessian, and photon counting. 

Spaceborne visible and infrared sensors imaging the Earth's surface with 

different spatial, temporal, and spectral resolution have been mounted on 

geostationary and polar platforms. In the visible spectrum, some parts of oil 

slicks and films have lower reflectance than water regions, while other oil slick 

parts have very high reflectance. The positions of these slicks, as well as the 

generally observed color contrast between oil slicks and waters, depend on the 

incident, observer, and illumination angles. Over the last decades, thousands of 

oil spills have been detected using various sensors. Many of the methods 

achieve excellent performance for residual clouds and haze, as well as false 

alarms and undetected spills, compared to previous works. Some spill detection 

methods have been implemented on different satellites over sea, lakes, and 

rivers. However, the detection of small oil slicks less than 1 km2 remains a 

challenge. 

2.2. Satellite Imaging Technologies 

The water-to-land optical and infrared (IR) imaging spectral bands have been 

available for several decades via polar-orbiting and geostationary weather 

satellites. The advantage of this long-established capability is a global overview 

of the world’s oceans on a daily or near-daily basis. The immense disadvantage 

is the low spatial resolution of satellites with imaging capabilities in these 

spectral ranges. The best presently available capabilities in this spectral range 

are around 325 meters. An additional disadvantage is that the IR bands are 

affected by the presence of microdroplets that are also the characteristic feature 

of rough sea states and, as a consequence, cannot differentiate between the 

rough seas with microdroplets and spilled slicks that are also rough. Almost all 

the available information on oil pollution in the open sea and especially on 

shelves and near coastal zones in the early post-accident period is based on 

visible light satellite imagery. Banksofting and other capabilities present and 

projected are derived from a set of high-resolution optical and infrared imaging 

satellites, operating simultaneously and including Reflectance, Franco-German 

PLEIADES, and China’s GaoFen include both proprietary and commercial 

satellite operators. The latest generation of multispectral high-resolution optical 

satellites use panchromatic optical wavebands as well as RGB channels and 

their multi-mission synergy has been confirmed by data availability studies and 

real-time detection of hovering oil pollution. 
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New-generation satellites with hyperspectral sensors have recently become 

operational. However, hyperspectral band usage is much more limited than their 

multispectral alternatives, especially for the study of oil spills in the optical and 

spectral near-wave infrared bands, where the hyperspectral rule permits wave 

band absorption and where detection is usually the least problematic. Their 

additional advantage is that due to the very short time-scales of the first 

information on suspended matter characteristics features compared to those 

based upon visible or thermal emissions from the spill surface, more timely oil 

sleeking detection is possible than with conventional multispectral imaging 

processing procedures. 

2.3. AI Algorithms for Oil Spill Detection 

AI tools such as support vector machine (SVM), artificial neural networks 

(ANN), logistic regression (LR), Random Forest (RF), and convolutional neural 

networks (CNN)-based models have been extensively used for oil detection 

from satellite images. In this section, we briefly introduce these tools. Further, 

we discuss some of AI-based models with significant results. 

Support Vector Machine (SVM) Algorithms for Oil Spill Detection Support 

vector machine (SVM) is a supervised binary classification algorithm. It is 

particularly beneficial in cases when the input data does not have too many 

features. The SVM algorithm casts the original input space into a high-

dimensional space by applying a kernel function. In this space, the binary 

classification problem is solved by finding a hyperplane that maximizes the 

margin separating two classes. The classification of a previously unseen input 

point in the original input feature space can be performed by applying the 

learned SVM model and the kernel function. The SVM algorithm training and 

classification speed is linear concerning the number of samples in the input 

data, which makes SVM models attractive for big data applications. 

Researchers have reported good results in using SVM algorithm in detecting 

LI-W SSC from SAR images. 

Artificial Neural Network and Logistic Regression Algorithms for Oil Spill 

Detection In ANN algorithm, the input data features are supplied to the input 

layer, which is connected to the next layer through weighted connections. The 

output values of the current layer become the inputs values of the next 

connected layer. The final output layer produces the classification of the input 
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data. The weights associated with the connections among the different layers 

are learned by minimizing a suitable cost function for the training data samples. 

2.4. Case Studies and Applications 

Near real-time detection of oil spills is the first priority in an oil spill 

emergency; however, oil slicks cannot be detected until the vessel causing the 

spill has completely vacated the area. The time of oil slick formation is not 

known, and oil slicks are generally more difficult to detect in windy conditions. 

However, trouble is less likely to be caused to the wildlife or tourism in windy 

conditions when the oil slicks are becoming thinner and less visible. Although 

the time of slick formation is not known, research has shown that oil slicks may 

disappear from the sensor detection within days depending on weather and sea 

conditions and on the type of oil involved. 

The use of visual and infrared sensors in the detection of oil slicks is limited to 

the detection of oil coating on the water surface. Oil slicks are easily detected 

using synthetic aperture radar sensors, which send microwave pulses toward the 

surface and receive backscatter energy. The indirect detection algorithm was 

used to develop the first oil spill detection algorithm. Many SAR sensor oil spill 

detection algorithms have been put to use to decrease the number of false 

detections. The role of AI in the development of SAR oil spill detection 

computer programs is expected to enhance the detection capabilities of AI-

based oil spill detection algorithms. 

Studies using multiple satellite systems report oil slick detections over the past 

30 years. The advanced process reported the first operational satellite detection 

of oil slicks. The use of AI is adequate for training classifiers on radar oil spill 

detection reflectance. Hybrid AI was also found capable of joint training of oil 

spill and sea surface wind data useful for oil spill and wind speed 

characterizations. The hybrid AI model could be used to parameterize ship 

reflectance to allow higher probability of oil slick detection. Studies are being 

conducted on the use of hybrid AI in the development of ocean surface 

classifications with the goal of producing computer tools capable of 

characterizing surface conditions. 
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3. Image Segmentation for Plastic and Debris 

Detection 

Plastic and debris pollution in marine ecosystems has become a major 

environmental issue. It accumulates on coastlines, floating in the water column. 

In addition, submerged, broken down, and degraded plastic pieces impact the 

organisms’ behavior and health. Physical accidents, broken fish gear, offshore 

production, and ship traffic create pollution, accidents in harbors, oil spills, and 

marine geysers generate more damage and disperse floating debris in marine 

environments. Accumulated marine debris can become a navigational hazard, 

cause damages on vessels, and create financial losses and environmental 

degradation. Optical and infrared sensors on board aircraft and satellites are 

widely used to detect oils, plastics, algae, sediment, and other specific marine 

features in different spatial and temporal scales. Still, the usual task is to 

characterize the area with intercalated features while cannot distinguish marine 

debris from other features. 

Traditional image processing applied to feature detection, digital techniques 

such as spectral signatures and color indices are not efficient. AI recently 

inclines to be the most efficient tool for this task, by automatically learning the 

most discriminative spectrum indices to separate marine pollutants from 

background noise. More and more supervised algorithms using satellite, aerial, 

and drone images have been developed and correctly applied. However, the 

unsupervised methodologies could be the solution when labeled data is not 

available or rare. We focus here mainly on the supervised methodologies: 

neural network and support vector machines classifiers. Their performance has 

been extensive but needs validation using a large dataset concerning time/space 

scales. Several satellite platforms available provide free or non-expensive 

multispectral images frequently and automatic machine learning approaches are 

being developed. 

3.1. Importance of Plastic Detection 

Marine pollution is one of the highest priority problems for climate change 

mitigation, with great impacts on biomonitoring and bioindicators of these 

ecosystems. Various types of pollution can be found in the marine environment: 

sediment plumes, heavy metals, oil and gas discharge, eutrophication, marine 

litter, plastic, etc. On a global scale, records indicate that 80 to 90% of all 

marine litter consists of plastics. Plastics are strong, light, flexible and resistant 
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materials, commonly used for packaging and consumer goods. Unlike other 

materials, plastics have very low decomposition rates, which contribute to a 

large accumulation of this debris in natural environments, causing adverse 

effects on wildlife, ecosystems and human health. Plastic debris can be found at 

every corner in the world’s oceans, from coastal areas to the most remote 

islands, from surface waters to the depths of the seabed, in the North Pole and 

in the Antarctic. Marine species mistake plastic for prey items, affecting their 

food intake and fitness, or can become entangled or perforated, creating wounds 

that can develop infectious diseases. 

Due to their impact on ecosystems and human health, the detection, monitoring 

and quantification of marine plastic debris has become a major objective of 

many international programmes. These monitoring and quantification efforts 

take place at different spatio-temporal scales, from microplastics (submillimeter 

size) to large debris (>1 m) on beach regimes, along-shelf and cross-shelf 

transects (down to a few hundreds of meters depth) and to the deep sea basin 

(up to 10000 m depth). These surveys take place over different time scales, with 

a focus on single events, seasonally and on a multi-year basis. Various tools are 

employed to perform marine debris detection and analysis both at global scales 

and at specific locations, including citizen science litter clean-ups, low-, mid- 

and high-resolution remote sensing, aerial and underwater photography, ROVs, 

and static and dynamic buoy networks, among others. 

3.2. Image Segmentation Techniques 

The study of ocean pollution and the application of image processing began in 

1978, with the photographs of the land using satellite data. From that instance, 

science took a step towards testing new models, techniques and the use of the 

deep learning approach to detect and monitor objects in the ocean and other 

continents. Image segmentation is a vital and important process in detecting and 

recognizing specific marine objects, because the extraction of segmented 

objects has a major significance both in terms of classification and in terms of 

further analysis. There are several methods for segmentation in the literature, 

but there are two methods that are globally studied and used more. The first 

method is based on a threshold, that is responsible for creating a binary image, 

where it creates two levels: a level outside and another inside the object. In this 

way it produces the exact shape of the object. The most used method applied to 

the ocean is threshold Otsu, because it works pretty well with problems in 

which foreground and background present a bimodal distribution. 
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The second method is the segmentation based on regions. Regioning methods 

usually divide the image into coherent regions with respect to a set of criteria. 

There are several possible segmentation criteria, but the most known methods 

are those that produce as a result the maximum similarity between colors in a 

region, both first-order and second-order statistics. The major objective of these 

methods is to partition the image into coherent regions that are integrable and 

correspond to natural schemes of objects. These methods are also called region 

growing. These methods assume that each object in the image can be identified 

with a closed representation, and generally end by presenting a segmentation 

which is less precise than that offered by classical pattern extraction 

methodologies. However, they have the advantage of how the image is divided 

into closed regions, in which the internal criteria set are similar. 

3.3. Integration of AI in Image Processing 

In the last decade, the technological developments in the field of AI have 

significantly impacted the field of image processing, more specifically, image 

segmentation where deep learning has led to remarkable strides. Seminal works 

in the tasks of object detection and image segmentation have popularized 

CNNs. A few enterprising works have applied these on remote sensing images 

and have shown that, with some modifications, the performance gain is 

immense in geophysical applications too. The reason why deep learning 

approaches performed exceedingly well can be attributed to two aspects. 

Firstly, deep networks learn a hierarchy of features from data, and these 

features, in the case of CNNs, are shifts and affine transforms in position space. 

This property of CNNs makes them extremely suited for tasks in the domain of 

image processing. Secondly, the availability of large labeled data sets has 

contributed to the success of deep learning applications. 

In the case of satellite-based optical images, the Earth is often considered a 

repeating conveyor belt where several phenomena recur and this feature is 

another boon that helps us augment our data size drastically. The data 

augmentation approaches can be based on affine transformations, rotations, 

color jittering, or a combination of any of these common transformations. For 

some specialized applications, we can synthetically generate images using a 

physics-based model. With the availability of dedicated spectral data for a 

phenomenon, we can also resort to transfer learning by doing some fine-tuning 

on small data sets. 
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3.4. Field Applications and Results 

Currently, there are several systems in existence that utilize aerial and/or 

terrestrial images and some form of image processing to quantify plastic debris, 

the majority of which are reliant on machine learning and/or computer vision 

techniques. A vision-based system deployed in the Northern Pacific to assess 

microplastic concentrations floating in the water column makes use of a 

specific model. However, predominantly, systems deployed for aerial imagery 

analysis incorporate deep learning models to be applied ‘in the wild’. With 

regards to these plastic debris image detection systems, some results have been 

achieved on the classification of plastics and debris relative to a number of 

classes (non-plastic, plastic, vegetation, sand…) from aerial images and RGB 

terrestrial images, while other works detect disturbances in terrestrial images to 

identify plastic pollution in urban settings. 

In the present work, we present results from satellite, aerial, and terrestrial 

systems that apply various deep learning models (those comprising real-time 

instance segmentation algorithms). These systems are deployed in three 

different settings; urban, through terrestrial images, seaside, through aerial 

images, and marine, where the observations are conducted through a specific 

float system. For the terrestrial site we present some preliminary results 

utilizing high-resolution aerial images to detect plastics within a test retrieved 

from the read after the flooding of a river. Subsequently, we deploy the systems 

over the terrestrial images collected at a beach. Additionally, we show results 

from a previous work that utilized two variants of the system to assess plastic 

pollution from different float altitude-relations. Results from both groundtruth-

creation procedures are presented as artificial and authentic scenes. Moreover, 

we present results over additional deployment realizations, carried out during 

testing, from both architectures, to increase their plastic debris quantification 

coverage. 

4. IoT-Enabled Smart Buoys for Chemical 

Sensing 

Collaborations between experts from different disciplines in science and 

engineering are critical to designing the sensor technologies necessary to 

support sustained sensing and monitoring of chemical pollution in the ocean. 

Buoys add to the sensor network in the ocean or lake supplying near-real-time 

data over long periods, reducing the cost of shipboard visits and deployments. 



  

89 
 

Collaboration between scientists, engineers, and ocean experts creates sensors 

that make in-situ, long-term chemical monitoring practical and cost-effective. 

Smart buoys have been developed to continuously measure pH, salinity, and 

temperature in various regions, chlorophyll in coastal areas, and other 

parameters around the world. These buoys can be equipped with sensors to 

measure nutrients, dissolved organic matter, dissolved oxygen, and total 

hydrocarbon gas concentrations. They provide a platform for a large number of 

chemical sensors monitoring a wide range of compounds over long periods. In 

addition to buoy logistics, challenges include waterproofing components, 

choices of power and communication methods, data validation, sensor 

accuracy, and sensor lifetimes. Sensors are provided by multiple commercial 

vendors, optimized for shipboard or island applications, and capable of near-

real-time reporting. Shipboard and autonomous vehicle sampling demonstrated 

accuracy compared to laboratory methods, with shipboard samples validated 

against the arrays in place. 

4.1. Design and Implementation of Smart Buoys 

Novel chemical sensing systems that are IoT-enabled can be deployed onboard 

buoys located in bodies of water, capable of detecting unseen and harmful 

events and transmitting information in real-time. Design considerations must 

account not only for power consumption and communication capabilities but 

also for regulatory standards and safety requirements; buoy stability and 

endurance are relevant, especially in aquatic environments. Temperature ranges 

and other conditions of such systems affect performance and must be 

considered in threshold detection limits. Sensor selection and integration are 

also important, as different chemical sensors require different intervention 

methods; e.g., electrochemical sensors require electrode cleaning, while optical 

sensors require interrogation at a specific time, which may not be suitable if the 

device is moving. The environmental sensing system is composed of a buoy 

and an electronic unit. The buoy was crafted using acetal material via a 3D 

printer at exclusive proportions, resulting in a lightweight, high buoyant 

strength, buoy-shape object. The dimensions of the buoy were carefully 

selected based on the maximum weight of the integrated components, electrical 

buoyancy, and measurement capabilities. A floating configuration was chosen, 

in which two-thirds submerge below the water level. The embedded electronics 

inside are associated with two critical characteristics: signal acquisition and 

transmission. Currently can be applied to real-time environmental monitoring, 
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experimentation, development, testing, and implementation of different sensing 

technologies for monitoring of several parameters and sensors utilized for the 

sensing purpose. Released data will help assess water quality and pollution with 

the integration of optical, electrochemical, and physical sensing devices and aid 

decision making in the treatment of contaminated aquifers and oceans. 

4.2. Chemical Sensing Technologies 

Chemical sensing technologies have developed rapidly in recent times. 

Recently proposed optical and electrochemical meters suffer either from analyte 

pre-concentration, temperature dependency, sensitivity, high cost, mass, and 

power consumption, or they are not transportable. Successful deployment of 

electrochemical sensors in the harsh marine environment has been reported. 

The first deployed cost-effective sensors were thick-film versions incorporating 

screen-printed electrodes and thus allowing for low fabrication cost. However, 

these devices did not deliver the desired accuracy and drift performance. 

Presently, batch and more recently, 3D-printed miniaturized versions of 

commercial low-cost electrochemical sensors have demonstrated their 

suitability for the long-term quantification of particulates and/or the continuous 

analysis of dissolved metals in sea and river water. The price of commercially 

available ruggedized optodes has increased so that deployment at long time 

scales becomes affordable. 

Sensing technology must be chosen according to the specific requirements and 

constraints of the individual chemical mission. Requests for marine monitoring 

include continuous online pollution monitoring, i.e., continuous, automated 

sampling and analyte quantification to record the variations and trends, for 

diagnosing potential causes of pollution incidents and quantitatively inferring 

the input of pollutants into the water; time- and cost-effective collection and 

storage of water samples and then analyzing a set of analytes and/or particularly 

toxic species at fixed time points, requiring temporary storage of water samples, 

and/or autonomous or manned bioassay campaigns to detect toxicity that 

degrade the water quality without necessarily quantifying the analytes involved. 

4.3. Data Transmission and Communication 

Over the course of several decades, many wires, radios, satellites, and so forth 

have linked up to form the Internet. Now the Internet joins up with the physical 

world, so we have the Internet fulfilling the old notion of a Fourth Dimension 

linking Space and Time together. IoT has become, in its short-headed way, the 
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web connecting all of the world’s sensors, including the vast majority of 

floating buoys and near-bottom sensors such as sediment traps. The enormous 

excitement about internetting smart devices without wires, the vast reduction in 

size, weight, and costs lie behind the internetting of sensors. The revolution of 

law has just begun. Already, for example, smart devices have begun to drive 

cars. So the Internet essentially connects sensors, actuators, and computers, 

whether separate devices in different physical locations around the world, or in 

a common device in the same location and computer carried by the device 

itself. When smart sinking devices started monitoring sedimentation at oil 

drilling sites, the communication could be done through a cable to a buoy 

sitting on the water surface, then floating up with the fish or drifting to the 

beach. 

The deployment of Oil Slick Blockers for mitigation of oil spills amounts to 

hundreds of vessels. These devices could be called micro-probes. If the oil 

layer’s thickness exceeds the preset threshold value and lingers for a sufficient 

length of time, a Fast Communication Boat is dispatched to the designated area 

in a smart manner. It communicates with the mini-vehicles of sludge wiping oil 

spills, guiding them to the oil field. The communications in the oil field are 

organized in a multi-hop manner using visible light. Thus, sensors can be 

installed on the vessels and the mini-vehicles. 

4.4. Real-World Deployment and Outcomes 

We deployed two sensors available for lake monitoring in close proximity from 

each other to evaluate the sensing technology and the wireless communication 

of the system. The two IoT-enabled smart buoys were deployed for 2 months 

during the summer of 2021. The data collected were temperature and pH levels 

as baseline parameters using low-cost on-board logging sensors for buoys. In 

the evaluation, higher resolution recorded data for temperature and pH collected 

by the buoys were validated against a portable sensor that was used to collect 

point data in the vicinity of the buoys. The results showed good correlation with 

point measurements for temperature data through time series validation since 

the patterns of temperature changes were similar. However, for pH data 

collected by the buoys, the data did not correlate well, since sensor drift was 

visible. Therefore, the buoys were recalibrated every other week to get on-board 

sensor readings back to baseline and increase the confidence in the data. 
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The deployment resulted in two lessons learned. First, the pH sensors in the 

buoys experienced drift. Although drift is a problem for any pH sensor, better 

on-board systems would result in highly trusted pH data collected by the buoys. 

Second, the buoys could be improved to better support the sensor systems to 

take samples at prescribed intervals, such as once every 10 minutes, to allow 

local data collection and distribution to multiple observers with local data 

needs, as well as having the data observed for data from any area in the country 

where such data could be obtained. We believe that our approach, lessons 

learned from the deployments, and the next improvements could be 

generalizable to other activities in a variety of environments enabled by using 

low-cost Internet of Things-enabled networks. 

5. Predictive Modeling for Algal Bloom Events 

Despite intensive research over the last century and a half regarding the causes 

and origins of algal blooms, little consensus exists. For predictive models of 

HABs to be effective in predicting specific future bloom events, several basic 

conditions must be met. First, the model used must be capable of predicting the 

spatial and temporal scales associated with specific bloom events in the region 

of the model implementation. The spatiotemporal scale of the model must 

match the characteristics of the predicted events. Many of the longest time-

series records of blooms have been primarily based on field survey observations 

and tend to show much greater variance in amplitude and frequency over time 

than the satellite-based records, which compute the timing of potentially 

reproducible algal bloom events. However, these satellite-based climatologies 

tend to suggest that the proposed state of HABs is related to dynamic climate 

variability. This also may not be an accurate representation. Because of the time 

series records, these may predict different results than those of satellite images. 

Understanding Algal Blooms Data Sources for Predictive Modeling Modeling 

Techniques and Algorithms Impact of Predictive Models on Management 

Future research will be needed to provide high-resolution validation data for 

modeling predictions, particularly for unexplained or unique blooms, using in 

situ measurements at time of satellite overpasses to the fullest extent possible. 

By processing and validating a significant number of coincident event images 

versus in situ data, more predictive accuracy may be achieved. In addition, 

HAB specialists must agree on a nomenclature of algal bloom definitions that 

enables researchers to communicate clearly as opposed to being species-
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specific. Moreover, models must also incorporate future projections such as a 

climate model's effects on local physics, particularly nutrient loading, 

temperature, salinity, wind-driven currents, precipitation, and water column 

mixing. This inclusion will enhance predictive capabilities, especially for 

projections that indicate increases in temperature, nitrogen loading, and reduced 

salinity, conditions favorable to promoting bloom proliferation. 

5.1. Understanding Algal Blooms 

One of the more visually striking and threatening phenomena of the coastal 

ocean and large lakes are harmful algal blooms. These events can kill fish and 

marine mammals and injure or kill people who swim, eat shellfish, or breathe 

air tainted by toxins. Certain algae produce domoic acid, which is dangerous to 

marine mammals. Although humans have reported disease from algal blooms 

for centuries, it is only in the last few decades that these blooms have caused 

human morbidity and mortality. Increased fertilizer runoff, especially 

phosphorus, from farming and urbanites living in coastal regions and changes in 

nutrient delivery from freshwater river and stream flow, especially during 

flooding and drought, have made blooms of microcystin producing 

cyanobacteria more frequent, longer, and widely distributed. 

In addition to surface blooms of cyanobacteria, algal blooms of dinoflagellates 

make many of our oceans and lakes famous during summer for their beauty. 

Other toxic, but non-HAB, diatom and archaeomonad blooms or dispensers of 

ichthyotoxins also cause problems to marine and lake life. Within America’s 

waterways some localized areas, influenced by semi-enclosed land masses, are 

naturally enriched and predisposed to bloom more frequently through processes 

of circulation, high nutrient concentrations, light attenuation, salinity, and 

temperature. Potential nutrient pollutants have become much more biogenic. 

Again, an increase in phosphorus and nitrogen from animal and human waste, 

fertilizer runoff, wastewater treatment plants, and urbanization are rich sources 

of inputs. 

5.2. Data Sources for Predictive Modeling 

To develop a predictive model, it is critical to have the right data and choose the 

correct algorithm. Predictive analysis is based on historical data of past events, 

which is then used to determine the future events based on the algorithm 

chosen. However, to create accurate predictive models using data, large 

amounts of quality, heterogeneous satellite data are essential. Satellite data 
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provides better temporal and spatial coverage and consistency than local in-situ 

sampling. Level 2 products are the most commonly used source for developing 

HAB models on the water quality and algal bloom dynamics. Level 2 data are 

available from various sources. These products contain quality assurance flags, 

which help to filter out bad data, such as cloud covers over data. However, the 

products are not a complete solution to data collection. To create a full picture 

of algal blooms and water quality, multiple satellites need to be combined. 

Additionally, to incorporate the water quality prediction model into a decision 

support tool, archival data spanning decades for historical validation would be 

needed. 

Different satellite missions and data products over the years have been 

synthesized to investigate and analyze algal blooms in the Black Sea. There is a 

unique opportunity to have archived data products from various satellites over 

time for the same locations. The synergistic use of all these satellite missions 

and data products can provide valuable information for the validation of 

forecasting models for HAB satellite detections. 

5.3. Modeling Techniques and Algorithms 

While early models for predicting algal blooms were based on statistical 

comparisons among in situ and satellite data, most of the current models rely on 

a combination of physical/biogeochemical models and artificial intelligence 

models. In the last few decades, a diverse family of modeling approaches and 

associated algorithms have been developed for predicting algal blooms based 

on a multitude of inputs and scales. A current challenge is modeling algal 

bloom species which often go beyond the methods typically used in ecological 

forecasting, such as the standard output from NPZD or any of the derivative 

models for phytoplankton, notably dynamical systems or statistical models 

driven by observations on varied scales. 

The first groups of regression algorithms are based on either generalized linear 

regression models or further generalizations like hybrid models. These methods 

estimate how the temporal dynamics of phytoplankton concentrations depend 

on a set of explanatory variables. Random forest or boosted regression tree 

models are closely related, but they perform more complex tasks of data 

adaptation, searching the best way to combine trees in ensembles. Advanced 

data mining methods like classification-regression approaches lead to a very 

efficient tool for data complexity reduction and handling, which is then easily 
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upgradable to a different configuration. Recently, machine-learning approaches 

using recurrent artificial neural networks or Long Short-Term Memory RNNs 

have been applied successfully to the emulation of various geophysical tasks, 

probably due to their intrinsic capability to deal efficiently with the complexity 

of temporal dynamics. 

5.4. Impact of Predictive Models on Management 

Finally, predictive models for algal blooms could also help bolster outreach 

efforts for citizen science programs and the use of mobile apps that might 

increase early detection of blooms through user-generated data. Few predictive 

models have been used to develop or inform decision support tools for 

management authorities. Predictive tools are available for freshwater systems, 

but are rarely used for coastal marine waters and seldom for open ocean 

locations. A potential barrier to the use of predictive models is that they use 

output from numerical model simulations that require a steep learning curve for 

many end users and the models might not include important physical and 

biogeochemical processes known to trigger blooms or modulate bloom 

dynamics. 

The current decision support tools that have included any model output as a 

component primarily address freshwater systems. Difficulties associated with 

monitoring sensors in the open ocean may have contributed to the lack of 

predictive tools for open oceans. Alternatives for using the coastal shoreline-

seeking sensors are constrained to specific nearshore locations without the need 

for accurate prediction of the actual site of bloom initiation. Feedback from 

managers of coastal and ocean properties should be incorporated into the 

development of any predictive models to ensure that the necessary information 

is included in the models. The predictive capabilities of existing bloom models 

should be carefully validated for a variety of bloom conditions and for the 

required time and space scales. 

6. Data Integration with Environmental 

Protection Platforms 

In order to make the best use of the data and products generated by a 

monitoring or modelling system, it is crucial to integrate it with platforms that 

have been developed for the specific purpose of tracking, analysing and 

reporting on pollutant information streams. Environmental Protection Platforms 
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have been developed as part of the continuing evolution of environmental 

reporting at both the national and transnational levels. Although they have 

evolved independently, these platforms have similar structures and goals, and 

would benefit from coordination and sharing of data and services. By 

integrating citizen science monitoring and modelling efforts with these 

established platforms, the data becomes part of a trusted system at the primary 

quality assurance level that is already integrated, at higher levels, with 

transnational and national data management systems. 

Environmental Protection Platforms have been developed to track a variety of 

water quality indicators. To ensure a common consistency in monitoring and 

communicate with the integrated platforms, monitoring efforts must provide 

data that obeys the data standards for the specific indicators. Partnerships with 

established agencies and groups are key to developing this national and local 

monitoring capacity. Three become involved generally. First, monitoring and 

research institutions must align their protocols with the Water Information 

Systems to integrate on the same data reporting structure. Second, established 

organizations are needed to encourage people to get involved in the monitoring. 

Third, the community needs to gain experience, and receive support and 

training to build the local capacity. 

6.1. Overview of Environmental Protection Platforms 

Environmental issues like air and water pollution or global warming need 

sustainable technical and social systems solutions. Governments, municipal 

authorities, and scientists are working hard to protect the environment against 

human activity, from international treaties to legislation to prevent harmful 

substances from being emitted. Information and Communication Technologies 

play a crucial role in ensuring the connection and coordination of the different 

players involved in these solutions. Environmental Protection Platforms are 

such solutions, which combine sensor networks, sensor data, and other 

information sources, with the purpose of tracking, and helping mitigate, 

environmental degradation impacts. 

The emergence of Relational Database Management Systems, Cloud 

Computing, and Web 2.0 brought a shift from proprietary expensive solutions 

for Disaster Management and Environmental Monitoring for research 

institutions, to low-cost solutions available to anyone. Modern, flexible, and 

cheap solutions to build Environmental Protection Platforms available to 
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environmental research scientists and enthusiasts, while allowing the secure 

integration of remote environmental monitoring and satellite data with other 

knowledge sources, such as high-resolution meteorological and climate 

predictions, are scarce. Governments need channels to guarantee an informed 

society involved in environmentally related issues, and help technology 

developers innovate under a sustainability perspective. 

6.2. Data Integration Techniques 

Various environmental protection approaches and techniques involve a 

significant number of management information systems, environmental and 

pollution control databases, knowledge-based systems, and sensor networks. 

The adoption and transition to environmental decision-making depend on the 

availability of existing reported data from globally-distributed environmental 

resources, the level of standardization of their formats and procedures, the level 

of integration among the tools specified, and their user-friendliness. Several 

organizations exist that collect environmental data. However, there is no single 

organization that is the owner of the entire life cycle for all data. Furthermore, 

they usually do not share their data, as there are no commonly agreed protocols 

or data standards regarding shared data and there are ownership issues. 

Data inconsistency is another issue. In any field, we expect that different data 

sources provide us with some varying reports of a certain event. However, it is 

not uncommon for different data sources to supply contradictory information 

regarding the occurrence of some events. This overwhelming amount of 

inconsistent statistical data formed the context in which researchers birthed the 

area of information fusion. Information fusion may be defined as a process that 

combines or fuses information from different sources in order to create a more 

accurate and consistent report on a certain event. Some researchers define data 

fusion as an integration of those multiple sources of information that takes into 

some shared knowledge and produces data of higher heritage quality than was 

available from the individual data sources. 

6.3. Collaboration with Stakeholders 

The platforms discussed in this chapter were developed without any research 

team or organization collaboration. The main goal is to share their expertise and 

expand their use by scientists and managers for marine pollution monitoring. 

The projects are open for collaboration. Users may offer their customized 

sensors that could be adopted on the platforms. In this option, each user may 
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have its own sensors in the field to collect the exact data which may be 

necessary for the discussed monitoring. Data can be shared in common time 

slots, with some frequency adapted to the event. The idea is to sign a contract 

specifying each partner's obligations in terms of data sharing or sensors sharing 

during the whole project or in specific time windows. 

The most feasible option is to develop additional data processing chains on the 

platform. These processing chains will probably remain closed for security 

issues. However, the final data products can be shared and used by many users 

on long time scales. This approach will be feasible if the interested party has a 

larger database of missions covering the time slot of the satellites. For such a 

use case, the interested party may fund the implementation of the dedicated 

processing chains to develop expertise in specific fields. 

With the collaborations established for oil slick monitoring applications, the 

provided algorithms were implemented on the platform. These collaborations 

were all focused on oily slick detection through a transfer from the uses on 

ships to the use of the platform in satellites. It consisted mostly of insuring that 

the database provided its performances, and that some data filtering was easy to 

achieve. These collaborations have been really convincing. This is how the 

team managed to implement the platform. The database could be shared and 

protected with authorized practices. 

6.4. Case Studies of Successful Integrations 

Data integration is a necessary step for checking and responding to alarm events 

from EPPs. We explored several different case studies of systems providing a 

successful realization of integrating seafloor and seawater information from 

autonomous observatories and buoys into several different EPPs. 

Plone is a proven open-source, web-based content management system that has 

a robust set of online site management tools organized to facilitate ease of use. 

The Cyprus Institute hosts a Plone EPP, with information on beach cleanliness 

and water quality at several swimming areas along the southern coastline of 

Cyprus, measure reports are regularly made available on the system. The 

automated EPPs (seafloor and buoy platforms) data integration into the Plone 

application is achieved in two steps. The first reads the data from the private 

database at the Cyprus Institute at pre-defined intervals and automatically 

inserts it into an XML file, and the Transforma module transforms it into an 
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RDF document with a proper ontology. In Poland, in 2009 the Research and 

Academic Computer Network established the Coastal Research Centre. The 

EPP is developed on a smaller scale to present values coming from sensors 

considered for the sea water suspicious states but is based on similar ideas as 

the ones from the above project. The integration of data from the autonomous 

EPPs and buoys with the main home page of the Marine and Coastal Research 

Center is achieved on the base of web services. 

Critical data has been provided to respond to a large scale of oil spills for 

decades. The Environmental Response Management Application is a mapping 

tool used by agencies and partners to aid in response planning and real-time 

response operations for oil discharges into navigable waters. The present aim is 

to speed up and facilitate data intake into the application for use during the 

response for a possible suspicious state by adding integration of the key 

parameters from EPPs and buoys. Data are obtained from autonomous 

monitoring at its coastal waters. The addition to the application is realized by 

using the existing data service. 

7. Challenges and Limitations in Marine Pollution 

Monitoring 

Monitoring marine pollution is essential to understanding the impact of human 

activity or natural phenomena on the marine environment. The vastness of the 

oceans and the diversity of the pollutants excluded the possibility of exhaustive 

analyses. Thus, over the last decades, sensor technology and wireless sensor 

networks have been developed and started to be applied to marine pollution 

monitoring. This is a relatively new topic that raises many challenges and 

limitations. This chapter is meant to be a starting point for students interested in 

Marine Traffic Monitoring. There are several deep technical limitations and 

challenges, such as quality of sensor data and cost of deployment. This chapter 

only briefly discusses these issues, focusing on the more general societal 

aspects of marine pollution monitoring. 

The study of Marine Pollution covers a wide range of topics. The development 

of Sensor Island technology, a distributed sensor network deployed in remote 

locations, has started to produce new and relatively inexpensive information 

sources about the physical, chemical, and biological features of seawater. These 

Sensor Islands are remotely controlled and monitored and allow the exchange 



  

100 
 

of data in near real time. New types of self-organizing Wireless Sensor 

Networks have also started to be deployed. These WSNs allow more 

inexpensive measurements with heterogeneous sensor nodes but face several 

reliability and quality issues. 

8. Future Directions in Marine Pollution 

Monitoring 

True progress in marine pollution monitoring will only occur when it is 

coordinated nationally and internationally. In the current paradigm of marine 

pollution monitoring, where national interests and commercial motives drive 

individual activities, contradictions and unfulfilled objectives arise. Priority-

setting and resource allocation are currently the prerogatives of individual 

countries and agencies. While many marine pollution problems are common to 

several countries, coordinated multinational efforts are rare. Yet such efforts 

would be more efficient than separate, uncoordinated efforts. However, such 

multinational efforts are subject to jurisdictional problems and varying country 

priorities. To aid in international agreements for pollution monitoring, we 

propose a protocol for marine pollution monitoring. The protocol specifies 

standards for quality assurance/quality control, data submission to 

internationally accessible databases, procedures for data access, minimum 

periods for data access exclusivity, and re-analysis. The protocol will provide 

guidance to ensure compatibility in measurement procedures, reduce data 

discrepancies, and ensure data quality to maximize the usefulness of the data 

generated. 

Research on emerging pollutants, microplastics or nanoplastics, including their 

effects in tissues and cells, biogeochemical cycling, and vectors for transfer is 

increasing rapidly. Directed research needs to be more systematically 

implemented in marine pollution monitoring programs. Host animal and sample 

collection programs must be designed creatively to include these. Such 

knowledge will be particularly important for marine animals and the general 

public, who face exposure and risk via contact and consumption. Thus, the 

collection of biomarkers of exposure and effects in host animals and 

development of exposure characterization and risk assessment procedures will 

be needed. More extensive integration of biological measures, such as who, 

what, when, and where of exposure, will help link contaminants in tissues and 

fluids with effects. Using biological measures of pollution exposure and effects 
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along with chemical measures will help more fully characterize both the 

temporal and spatial distribution of exposure. 

 

9. Conclusion 

 

Monitoring marine pollution is a major challenge for all present and future 

generations. Exploration of the sea and the ocean, essential for our security and 

protective sustainable strategies against pollution and climate change, requires a 

huge effort on a blatant multi-disciplinal research, ground in the knowledge of 

nature, reactions on the ecosystems, circulation of the atmosphere and oceans, 

the knowledge of the thermodynamic windows transcending transports of 

energy and matter and transfers from the marine systems to our atmosphere. 

Development of new detection tools combined to high frequency analysis over 

long durations require a lot of investments. While several pollutants are 

measured constantly at coastal marine stations, alas, more fragile pollutants 

remain to be measured. Development of new tools able to measure emerging 

pollutants automatically in the open ocean or the coastal sea is a vital objective 

for the coming decades. And the long chain of pollution impacts and 

consequences could not be possible without the access and the massification of 

new techniques being developed inside the information technology. These 

techniques created by humans can also destroy and pollute our environment, so 

we must develop automatically, inside this long chain of pollution impacts and 

consequences, the same machine learning approaches to estimate the good 

balance between our development and our pollution. 
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Chapter 6: Data Pipelines from Buoys to 

Cloud Analytics 

1. Introduction to IoT Communication 

Over the last decade, the Internet of Things (IoT) has matured into a broad 

array of technologies and applications. These systems often contain unique 

aspects of design when considered at the edge, but still are generally responsive 

to protocols designed for the unique needs of the IoT realm. Much progress has 

been made in the development of IoT systems in marine environments, as they 

are well-suited for the construction of IoT devices that are long-lasting, 

autonomous, resource management, and enabling collaborative frameworks, as 

well as the efficient assessment of common pool resources such as fisheries or 

the seabed, and the provision of data for scientific research. In this chapter, we 

focus on the aspect of IoT communication through the construction of sensor 

buoys that relay data over long-distances to cloud architectures through cellular 

data networks. However, IoT devices configured for short-distance transmission 

to a local relay, and local relays configured to forward data to a cloud 

architecture through WiFi, can also easily be utilized for marine applications as 

needed. (Agrawal, 2016) (Zehnder et al., 2020) (Lorenz et al., 2020) 

Wireless communication is critical to the utility of IoT devices for data 

collection without an intrusive physical presence or constant maintenance 

needs. Perhaps unsurprisingly, basic wireless principles of the last century are 

still relevant in the appraisal of currently available communication devices for 

IoT applications, as new radio technologies are coupled to advanced 

information technology infrastructure. There are many decisions to make when 

developing a communication system, from the low-level protocols constructing 

raw data into understandable packets, to the coordination of many devices 

Deep Science Publishing, 2025  
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relaying and querying packets over shared frequencies, to the management of 

long-range packets carried to the cloud by cellular data networks, or satellite 

communications. Here, we describe the primary devices available for relaying 

data from buoy-based IoT data collection efforts to cloud architectures. 

 

1.1. Overview of IoT in Marine Systems 

Marine systems are at the same time the protection and the target of an 

increasing number of human activities, and this is putting a burden on our 

oceans and seas that is difficult to manage. The seas contain about 70% of the 

surface of our planet and they are being increasingly exploited for purposes 

such as aquatic resources like fish, oil, and new sources of renewable energy 

like offshore wind farms, marine transport, coastal and offshore tourism, but 

they are also susceptible to threats caused by anthropogenic activities, such as 

shipping accidents with oil pollution or more complex geo-political scenarios 

based on armed confrontations. Protection from these threats involves using a 

combination of traditional and non-traditional sensing and surveillance means, 

such as surveillance radars, coastal surveillance systems to monitor commercial 

traffic and possible illegal traffic, the use of AUVs and USVs for local 

detection, as well as the use of satellites or aircraft, which have a much larger 

coverage area, to characterize what is happening at higher altitudes. 
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Traditionally, Information and Communication Technology has been mainly 

terrestrial, but more recently it has extended to include marine and aerial 

domains as well. Interconnected devices and sensors are no longer limited to 

traditional terrestrial applications in fields such as commercial and industrial 

automation, but address other sectors such as health, energy, transport, or 

logistics to mention just a few. The paradigm of the Internet of Things should 

also allow us to transform a difficult environment such as the marine from a 

sensory-poor environment to a sensory-rich one. As with any difficult 

environment, in order to apply the Internet of Things paradigm in the marine 

domain, it is necessary to address the implementation of efficient means for 

data ingestion, transport, and processing with the aim of achieving real-time 

and continuous monitoring of the targeted events of interest. In particular, 

researchers in the field of marine ICT have focused on the challenges posed in 

the phase of enabling the ingestion and transport of IoT data, mainly referred to 

as Delay and disruption Tolerant Networking. 

1.2. Importance of Communication Technologies 

Communication technologies are a pivotal element of IoT systems, where data 

is sensed, captured, transmitted, processed, and acted upon. Challenges 

commonly arise due to the need for long-range communication with severe 

bandwidth restrictions, low power availability and budget considerations, and 

the need for increased node system density. In addition, the harsh and 

sometimes unpredictable environments found in marine systems pose additional 

operational challenges. Every link in the setup — from buoy to cloud — must 

be carefully designed and tested to provide reliable, cost-effective operation 

over long periods, even under adverse conditions. This section describes some 

of the main communication technology considerations associated with data-

driven marine systems. 

The choice of protocol stack is a major decision. Several IoT-specific lower-

level protocols have been developed to meet the requirements of low power, 

mobility, and scalable heterogeneous networks with many or all nodes sharing 

radio spectrum, including various protocols. Lower layers include MAC 

protocols for dealing with multiple concurrent users, and at the network layer, 

path selection and network configuration protocols, network hosting 

capabilities, and support for Quality of Service guarantees are important in 

ensuring good performance. Higher layers serve a variety of purposes, from 

presentation transformation to multipoint communication, and from network 
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agent and supporting services — timing, naming, discovery, and localization — 

to application and middleware support. Further layers allow new capabilities 

such as security and low power modes to be attached as needed, and the 

satellite lower layers address the problem of significant delays and errors 

associated with interconnecting low earth orbit satellite networks for IoT traffic. 

2. LoRa Technology in Marine Applications 

 

2.1. Technical Overview of LoRa 

LoRa is a low-power wide-area network (LPWAN) technology designed for 

long-range, low-rate data applications. Proprietary LoRa modulation is a 

spread-spectrum technique based on CSS (Chirp Spread Spectrum), which 

optimizes link budget relative to competing solutions, enabling better range, 

capacity, and battery requirements. Today, LoRa networks are commonly used 

in single-channel gateway (LoRaWAN) mode but can also support star-daisy 

chain architectures, with TSMP gateways, which enable real-time, bidirectional, 

low-latency communications and are easy to integrate with existing cloud 

systems. A power-sensitivity study confirmed that the best optimization 

condition for the LoRa wireless system for underwater monitoring applications, 

which demand low power and a long range, is a spreading factor (SF) of 10, a 

bandwidth of 125 kHz, a transmitter power of 14 dBm, and an omni-directional 

antenna at both ends: both the communicator and the receivers. 

LoRa technology allows for simple, single-channel gateways capable of 

receiving data from multiple sensors and transmitting it to the cloud through an 

Internet connection. In recent years, LoRaWAN technology has emerged as a 

standardized protocol widely used for sensor networks in several fields, 

including medical, agricultural, transport, and industrial applications. In the 

domain of marine environments, it has recently been proposed for use on ships 

for cargo location tracking. In these initial works, the complete LoRaWAN 

reference stack was used. These works have described maritime-constraint 

ships, used LoRaWAN nodes, and developed LoRaWAN end-to-end testing 

using LoRaWAN packet forwarders, gateways, and network servers. They also 

used low-cost commercial off-the-shelf LoRaWAN components, such as 

Raspberry Pi configured as LoRaWAN gateways, as well as commercial 

LoRaWAN transceivers and a LoRaWAN packet forwarder. Some previous 
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works developed a prototype, in non-LPWAN mode, consisting of a sensor 

connected to an Arduino microcontroller and an integrated LoRa IC but did not 

evaluate the radiosensitive sensor underwater. 

2.2. Use Cases in Marine Environments 

Marine environments are considered extreme for many human activities; 

nevertheless, a big amount of buoyancy devices are deployed in the sea, and for 

a wide range of applications. The needs for increasing the coverage, security, 

and reliability of wireless communication networks have the effect of raising 

the costs of offshore investing. Until today, the most widely used 

communication technology for buoys is satellite data link, through the 

mechanisms and systems that store data collected at the buoy until a satellite 

pass that allow battery recharge and data transfer or, in the best situation, using 

satellite modem or router that provide a constant data link between buoy and 

shore stations. The extreme amount of costs related with the implementation of 

satellite data link buoy systems pushed some researchers to propose and 

implement the use of short range RF mesh networks; these systems manage to 

remove from the buoy the costs of satellite modem, but have the inclusion that 

only very close buoys can communicate with each other, use local networks 

that are in some sites of no feasible utility, due to tower and buoy locations, and 

at the end use relaying points that are usually ais stations, which cost less than 

satellite but not much less. Other possible alternative are the many gateways 

installed in shore, and the use of the buoys as end nodes for reporting to these 

shore gateways their condition, the relaying of some environmental parameter 

like chlorophyll a or kok value at some close buoy to base station use, or 

monitoring conditions at the end of the deployment using communication. 

Many researches are dedicated to different aspects of buoys talking with shore 

gateways. Some tests were performed to evaluate flow, direction, air 

temperature, and ambient pressure during some time in the deployment corridor 

of the buoy in order to determine what exists as flow and correction of errors 

like time misalignment between the devices and bad radio link condition. 

3. 5G Communication for Marine Data Transfer 

This chapter focuses on 5G telecommunication supporting mobile marine data 

applications. Collecting ocean data at scale is hampered by communications. 

Current satellite systems are slow and expensive. 5G is being deployed globally 

on land, supporting phones, IoT devices, remote sensors, and more. 5G was 
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designed for land features and is not yet available over oceans for buoy and ship 

Internet-of-Things sensor communications. 5G networks are expensive to build 

out, so communication over non-populated areas will be slower for longer - 

delayed until satellites can be deployed to cover oceans - but each coastal area 

will see increased speed of service sooner as user density increases. Speed of 

service for coastal and on-vessel communications is also likely to be delayed as 

rules are developed to include 5G communications on or near vessels at sea. 

For buoys, the advantages of 5G include data upload rates faster than for 

traditional satellite solutions and download rates faster than can be managed 

using legacy systems. These speedy data transfers are critical not just for 

necessitating live, user-facing data applications but also for enabling more 

complex models to be developed which require more data to be transferred for 

training, development, and calibration. In addition, the short messaging 

intervals of 5G technology are of interest in transient sample contexts where 

sensors risk missing time-sensitive events like tsunami swells or microburst 

winds. 

3.1. Benefits of 5G in Marine Systems 

Mobile internet access is ubiquitous in onshore settings but, traditionally, 

difficult in offshore locations. Satellite communications have been the standard 

for transmitting numeric data, with 2G-4G communications emerging since the 

late 2010s as a viable alternative for buoys and some marine vehicles. These 

systems were limited in capacity, range, and data speeds. Untethered, mobile 

areas of the environment have relied on its own published set of 

communications capability based on Wi-Fi and similar protocols. The advent of 

5G-Advanced, a more technically diversified technological framework than 

typical in mobile telecommunications, is set to change both commercial and 

non-commercial placement of data loggers in the ocean environment, especially 

the “blue water” that is the largest untapped reservoir of climate data on Earth. 

Data flows to shore may be improved and more anonymous; the 5G principle of 

excess capacity allows an 8Gbps connection to a cloud service or NOC; 

ubiquitous TCP/IP networking allows any entity to create an unmanned or 

manned shore-to-buoy communications relay and share that capacity with the 

operator of interest. Flexible frequency use; more lower-bandwidth devices; 

more-specific beam steering from satellites; several beams directed toward a 

moving platform, at least some of which are pointing toward the satellite; 



  

109 
 

constellation-level globe-ranging; and mobility management all help 5G-A 

improve remote connectivity. The operational costs of sending and processing 

sensor data on and near the water are drastically reduced, though data 

transmission costs still outweigh traditional time-series storage. Companies are 

making waves in commercial network systems in marine remotes; as more 

ships are placed in the waters, costs will fall and commercial logging will 

finally become commonplace. 

3.2. Challenges and Limitations 

Recent developments in wireless communication technologies have progressed 

at a staggering pace. The ongoing rollout of fifth generation (5G) wireless 

communication has claimed to meet the ever-demanding connectivity 

requirements of society in tandem with the continuous exponential increase in 

consumption of data. More specifically, 5G systems will support a new 

generation of wireless maritime operations due to their lower cost, reduced high 

delay time, and increased data rate capacity. 5G marine use cases correlated 

with the maritime economy include digital twins and avatars for container and 

ship tracking, ship remote monitoring by real-time and high-definition video 

transfer, and augmented/virtual reality access for remote expert console-based 

support to crew. 

Despite its utility, the adoption of 5G technologies in maritime use cases faces a 

number of challenges. Indeed, the use of marine wetware currently operates on 

private satellite connectivity, high-cost data transfer, and multi-day or weeks 

delays for input data access, thereby reinforcing a choke hold. It is important to 

reframe marine specific communication requirements for remote areas that 

spatially approximate the marine infrastructure services and submerged assets 

to both terrestrial and space-based infrastructure. Furthermore, Terrestrial 5G 

architecture may have limited performance, either due to lack of terrestrial base 

stations or interference due to non-communication specific equipment operating 

on similar electromagnetic frequencies. Hence, it is critical that elevated mobile 

network structures on buoys, ships, or undersea communication cables be 

utilized to augment 5G terrestrial capacity at targeted areas that operate during 

peak infrastructure use. 
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4. Satellite Uplinks for Remote Monitoring 

4.1. Overview of Satellite Communication 

The number of marine buoys transmitting real-time environmental data exceeds 

1,500 globally, with many deployed in ocean waters. The utility of real-time 

data, transmitted directly from the buoy, is clear in research, industry, and 

public safety. Data from geophysical buoys are used in trending and in 

modeling efforts, used by agencies for marine and weather monitoring, and of 

course for fishing, sailing, and recreational diving. The cost of data 

transmission by satellite continues to decrease, and the service has become 

ubiquitous. Reliable, low-power uplinks are enabling the deployment of 

increasingly diverse sensors in remote areas, and in tracking and mobility of 

both corporate and government services. 

Satellite uplinks enable two-way service for monitoring, deployment, and 

transmission of information on demand, with redundancy and recovery, and for 

periodic updates sent in the event of an alert condition. In the first case, 

operators can update the microcontroller firmware by restoring the buoy to a 

known state, or adding telemetry logging and processing more sophisticated 

data. Recovery without a wet-well or monitor switch for switches is possible 

using vibrational sensors for boats or other large vehicles, and using auxiliary 

logging and processing to trip a monitor switch. In the second case, the buoy 

can be instructed to periodically log additional data, e.g., from a fluorescence 

sensor or nutrient chemistry pump that cannot be powered continuously, with 

ease for the new generation. 

Through either case, remote buoy monitoring is critical for maximizing 

operating life and vessel safety. The buoy can track hurricane path, inform the 

buoy owner for predictive deployment or fuel needs, and be instructed to collect 

additional information when it is hardest to deploy the buoy. Sufficient 

monitoring capacity enables adiabatic, autonomous predictive deposition of 

buoys, data loggers, and monitoring resources, without the need to have vessels 

on site. 

4.1. Overview of Satellite Communication 

While commercially available satellite communications systems have been in 

use for more than half a century, there have been major innovations in recent 

years that continue to change and enrich applications that are practical on a 
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global basis. The story begins in 1962 with a satellite launched into a low 

elliptical orbit. From that time forward numerous satellites have been placed 

into geostationary orbits, appearing fixed in space above the surface of the 

Earth. Because of the directionality of microwave communication, well 

designed and properly applied, these satellites have provided nearly unlimited 

coverage for telephone conversations and video broadcast. Unlike the numerous 

direct-to-home television satellites, the space segment of these satellites is 

usually designed for multi-channel operation, serving different communications 

companies around the world. The large fixed dishes that are conventional on the 

receiving ends of such services are not suitable for mobile station use, but 

travel-in-motion antennas have been built and used successfully on ships and 

trucks. 

The technology has matured to the point that high-data-rate services via these 

satellites can be provided at moderate cost. To which data system will be 

applied the capabilities of the satellite systems in the near future? Certainly the 

burden is on the ground system design. Any communication channel has its 

unique characteristics which must be matched by the requirements of the 

signals being transmitted, to achieve the most efficient performance. In the case 

of the geostationary satellite, its particularly long channel delay imposes 

restrictions on the type of modulation that can be used. Error correcting and 

other signal structure details must match the available errors. Satellite channels 

may have a relatively large variation in carrier-to-noise ratio, which may be 

minimized at the expense of a reduced overall capacity. 

4.2. Integration with Marine Data Systems 

A wide variety of satellite providers now supply many forms of remote 

connectivity to install marine sensors. The choice of satellite system to use 

depends on many factors: data volume, timing, structure, and cost; location, 

power consumption requirements; logging system, device or functionality to be 

integrated with the satellite service; provisioning process and duration, 

contractual requirements and duration; SLA requirements, maintenance, and 

service support. Deployment costs and order size will also influence the choice 

of satellite service, and in many cases multiple diverse sources of satellite 

uplink could fit well within a data pipeline’s distribution workflow. 

The design, architecture, and capabilities of the satellite system and its protocol 

greatly affect data timeliness, latency, redundancy, and costs. Gaps in 
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availability for stored retrievals can occur if callbacks are not possible, if wide 

bandwidth reset requests are not tracked by a local timer, if the commands 

become discontinued, or if server-packet processing is delayed. Limitations on 

data gathering capability can also occur from hiccups in sensor sampling or 

logging device comms, and adjustments could be incorporated within the sensor 

sampling and operator logging file transfer strategy, or the backplane return 

window of the satellite store-and-forward callback. In some cases, external 

factors could prevent utilization of callbacks and wide-bandwidth requests 

through the satellite relay, leading to long gaps in data recovery from the 

sensor. Some architectures can have long intervals on resets, and should be 

avoided for timely satellite scenarios. 

5. Real-time Data Ingestion Techniques 

In the Marine Web we find high volumes of real-time heterogeneous datasets 

collected over disparate Earth System Observing Systems and their nodes. 

Although the open Web allows the free access of these datasets, their discovery 

and query involve high technical overheads. As a result, observation science 

and marine research communities tend to use proprietary systems that limit 

scientific collaboration and repeatability of research work. In particular, 

ingestion and processing of real-time data from sensor nodes deployed at sea 

and in oceans are important steps of marine observatory open Data Pipelines. 

On the one hand, open Data Pipelines should provide and maintain 

continuously real-time Ocean data services. On the other hand, such Data 

Pipelines should at least facilitate but also automate the collection of custom, 

hybrid, and historical data services offered through a variety of distributed Data 

Providers. In the practice of marine systems, there exist several tools based on 

ETL processes performing regular intervals batch updates. In particular, 

facilities periodically produce gridded fields and other dataset representations 

from point-based data and provide Data Services APIs for customizing the 

variable options. Stream processing frameworks can accommodate dynamic 

event data units build, filter, and process operations needed to create real-time 

high-frequency parameters series using data from proprietary and public open 

data APIs. This type of implementations of the Ingest/Process primitives of the 

Marine Data Pipeline model are used for Data Providers embedded in the 

Service-oriented Architecture. The uses stream processing frameworks for 

building prediction models, and to provide transformation algorithms to be 

embedded in Sensor-Driven Workflows through Web Services. 
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5.1. ETL Processes in Marine Systems 

Marine life study or monitoring systems are traditionally organized in Long 

Term Observatory Programs, although new types of services are starting to be 

offered based on the needs expressed by niche types of Researches. These 

systems collect and store data and have a long time persistence, while newer 

ones are instead based on a more task-oriented approach, allowing a higher 

balance and optimization among costs and quality of the service. For what 

concerns the data pipeline processes we can identify different kind of designs. 

Very often a set of distributed buoys are deployed to acquire different data 

streams; these data streams are then periodically retrieved, organized and stored 

in a dedicated repository. If we consider a more advanced configuration, where 

each buoy is equipped with more powerful computational resources and 

capabilities, we may have a more complex type of processing, based not only 

on data retrieval from those nodes, but also involving data analysis and mining 

strategies in extreme edge conditions; these more sophisticated frameworks 

result in buoys that implement a more efficient role of data pre-processing and 

basic analysis in a distributed way, with a certain level of independent 

intelligence. 

In the last decades, several challenges in the management of the marine data 

pipelines have been addressed, attracting the interest of the scientific 

community, focusing their attention both on the optimization of specific 

components of the pipeline architecture - staging, buffering, transfer - and on 

the definition of the architecture itself, mainly with reference to the complexity 

and engineering of the edge nodes performing storage and/or processing. 

Solutions have been proposed with reference to resource constrained networks 

as those that connect the sensor nodes, through the terrestrial transport. 

Oriented to satisfy specific requirements of the marine domain or information 

other than the data, as for example techniques or Metadata. Present also 

different categories of sensors’ data in terms of format type for which resources 

and solutions have to be added or design. Adaptation to specific conditions or 

events either at network level or node level have been also addressed. 

5.2. Stream Processing Frameworks 

One of the oldest and most frequently used ETL technologies in analytics, 

whether in the cloud or on-premise, is the Extract-Transform-Load (ETL) 

process that transforms the source data prior to ingestion and loads it together. 
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It sits in contrast with ELT processes that load the data into the destination store 

first before transformation. As the volume and velocity of the datasets continue 

to increase, streaming analytics has gained ground over traditional batch 

processes in both the cloud and in big data technologies such as Spark. 

However, in addition to the real-time aspect of scraping the web for fresh 

datasets and frequently loading them onto cloud services, streaming analytics 

differs in the cloud from those offered in on-premise and hybrid environments 

because of cloud geographic specialization and the need for streaming 

localizations. In comparison to traditional ETMs with structured operations, 

often referred to as traditional ETL operations, streaming analytics also allows 

for complex event processing, or CEP. 

Streaming data pipelines can be built to issue alerts on events as they are 

streamed through the pipeline and before they are accessible in the cloud, on 

conditions specified as event patterns by the user. A pattern that is detected to 

have occurred real-time, such as excess phosphorous or dissolved oxygen in the 

case of an algae bloom, can be passed before saved onto storage into a CEP 

machine. In addition to being passed on, which could take up considerable 

resources, it could also simply use the alert to trigger a script, such as post on 

social media or execute an action website, monitoring a position, or even 

transfer to load clouds suitable after further processing. 

6. Cloud Platforms for Analytics 

In this section we discuss three cloud infrastructures that marine researchers can 

quickly get started with to collect, exchange, and analyze buoy data. In addition 

to these core infrastructures, all three cloud providers have a variety of tools for 

developing, deploying, and maintaining applications. These toolsets form an 

ecosystem with strong support for artificial intelligence (AI) and data analytics 

applications. Data service capabilities on the three platforms have a lot of 

overlaps. The strengths of each service differ based on the specific use case and 

costs. We recommend doing a cost benefit analysis comparing the approaches 

in this document and the semester to make the right decision. 

Microsoft Azure offers tools for data collection and analysis that are ready for 

deployment at each stage of the data flow, from buoys to visualization. Azure 

IoT Hub is the deployment on the cloud for connecting to devices sending 

messages, and the time series data is added with an Analytics worker that is 

polling messages from the IoT Hub queue. Azure Event Hubs can also be used 
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for the aggregation of incoming message streams, and it is used in applications 

that need very fast ingestion speed. The time series data is then moved to Azure 

Data Lake Storage, which is optimized for storing large amounts of 

unstructured data on the cloud. The data travels over to data explorers and 

application developers through Azure Search Indexer over a plugin to the data 

lake link, where users can annotate the data with tags. Workers for the 

Analytics are locally deployed in each buoy using Azure IoT Edge that is used 

to route messages among modules and update images in the pipeline from the 

cloud image repository. Modules can be developed on a development setup 

running on a local IoT device emulator using the same underlying Linux 

container architecture. 

6.1. Overview of Azure IoT 

The design of the Azure IoT Hub is a service within Microsoft Azure that 

connects, monitors, and manages Internet of Things (IoT) assets. We utilize 

many associated Azure services to quickly and efficiently process stream data 

from our assets, which are geared toward real-time analytics for visual 

appearance, location, and performance. Stores such as Azure SQL Database and 

Blob Storage hold back-end data in a manner that makes it easily retrievable for 

further data analysis. Our goal is to conduct forensic analysis on Pipeline Data 

after a completion event in order to extract valuable information from this large 

data set. We adapt other vehicle-related cloud templates for both Pipeline Data 

and forensic analysis. The Azure portal offers a graphical and easy solution for 

setting up stores such as Blob Storage, SQL, and Geospatial. Part of the work 

we are doing is to provide reference architecture for other teams executing 

Cloud Pipeline Data with Compression onboard the Buoy Vessels, and these are 

templates that we would reproduce for these teams. 

Temperature, pressure, and other buoy measurements are efficiently streamed 

to Data Lakes with continuous Data Factory transfers. At the same time, they 

are moving to SQL Databases for real-time analytics of the data just received. 

The CLI for Azure Data provides efficient transfer. The Microsoft Azure 

Services make sense for our work for several reasons, even considering support 

for other Cloud Platforms. Azure allows us the flexibility to measure what we 

need at lower Power until we need larger Data. There are less complex setups 

available from Azure that also allow a full-fledged monitoring of our devices 

with a Real–Time view, along with easy transfers, while C2 offers limited 

direct capabilities. Sharing the same Azure services minimizes cloud 
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interconnect fees, while its regional reach minimizes latency with a close-by 

Data Center. 

6.2. AWS Greengrass for Marine Applications 

In AWS IoT Greengrass, some of the AWS Lambda programs run on IoT 

devices instead of the cloud. AWS provides a module to put the AWS Lambda 

runtime on IoT devices, including Amazon's Snowball Edge, which is used for 

physically transported bulk data processing and transfer, as well as Raspberry 

Pi systems. An AWS service called Greengrass Device Management can help 

deploy and manage the Greengrass module on these devices. You can imagine a 

small computing structure with Snowball Edge at a port for a bulk data 

transmission ship and AWS IoT Greengrass modules running on Raspberry Pi 

systems on the bulk carriers or fishing boats. The AWS Greengrass IoT system 

registers the Raspberry Pi sensors/actuators and indicates the runtime AWS 

Lambda programs and the schedule of which processing should be executed 

when and where. 

A distributed IoT system like this is useful for the marine environment. But it 

would also have some severe drawbacks related to the cloud services of AWS 

IoT Greengrass and Edge AI. For example, the marine hardware would not get 

updated automatically because IoT Greengrass does not support a package 

manager, so enrolled devices need a custom solution that uses the Linux 

command line. AWS IoT Greengrass is offered in public clouds, but facilities 

that want to use this service have to request general access to these IoT edge 

management services. These would probably take a month or two to be 

available, which is a bottleneck to the deployment time of a new IoT module in 

a new working location. Security is another big issue because access to core 

functions would need to be restricted with firewalls. AWS Greengrass can also 

be difficult to use in harsh marine environments that are very different from 

land settings. 

6.3. Google Cloud Platform Solutions 

Google Cloud has several components that can be used to create analytics 

pipelines for buoys and other marine systems. While there are common tools 

across cloud platforms, the way they work together is often specific to the cloud 

provider. 

The primary components are listed below. 
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• Google Cloud IoT Core: Secure device connection and management. 

• Google Cloud Pub/Sub: Global messaging service for event-driven systems. 

• Google Cloud Dataflow: Process data in any combination of batch and 

streaming modes. 

• Google Cloud Storage: Durable, highly available object storage with strong 

consistency. Suitable for storing raw data. 

• Google BigQuery: Fully managed fast SQL analytics to analyze large datasets. 

• Google Cloud Functions: Function as a Service serverless code execution that 

can process Cloud Pub/Sub messages and customize an application. 

• Google Kubernetes Engine: Managed scalable container environment that can 

run a microservices architecture application. 

• Google Cloud Data Studio: Productivity tool for fast dashboard creation. 

• Google Cloud Vision: Image and video recognition for analyzing photographs 

and video. 

• Google Cloud Build: Fast build pipelines for compiling applications so that 

they can be deployed. 

The IoT Core is a central part of the overall solution to securely connect buoys 

to the cloud, where Pub/Sub is the central event bus between all of the services. 

An inexpensive, low-power processor on the buoy sends messages from the 

sensors and to Bleed CPU at an appropriate polling interval. Messages from the 

buoy are sent via Pub/Sub to a Dataflow pipeline that writes the raw messages 

to Cloud Storage. Ingested images and videos are processed by Cloud Functions 

and use Cloud Vision for analysis. The resulting messages are sent on to 

Pub/Sub for further processing and storage as needed. 

7. Data Visualization for Marine Stakeholders 

7.1. Importance of Data Visualization 

Marine stakeholders need to be able to visualize buoy-sensed data in an 

accessible manner so that they can learn from and utilize insights contained in 

the data. For example, fishermen may want to identify when surface waters are 
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at stable temperatures, stable salinities, and low chlorophyll abundances, and at 

what depths these conditions occur, as an indicator of stability in the euphotic 

zone where fish want to eat and where they are easy to locate. Fishermen may 

also turn to sea surface salinity and chlorophyll trends north of the Gulf Stream 

for answers to questions about supply and demand on the Mid-Atlantic fishing 

banks. Forest service scientists may want to see more complex relationships 

between buoy data and land fast ice conditions or review model results that are 

fused with buoy data to seek ways to improve models. Modeling scientists may 

want to visualize buoy data that they have assimilated to improve model output. 

Academic researchers publishing papers on buoy data or results of machine 

learning with buoy data may want to visualize machine learning thresholds for 

classification of buoy data or where machine learning methods could have been 

improved. Environmental watchdogs may want to compare mini-buoy or 

mooring data with satellite or model MET data from the same years to assess 

correlations and differences. 

7.2. Tools and Technologies for Dashboarding 

Many software technologies allow the presentation of sensitive geolocated data 

in open-source dashboards. The computational and visualization framework of 

choice for this work is a scripting language used for building interactive web 

applications. It is integrated with R code embedded with visualization packages, 

including Leaflet, Highchart, and ggplot2. It can clean or reshape data in local 

text and CSV files or access data at a distance from a web API. It offers both 

client-side and server-side processing, enabling it to deal with heavy processing 

tasks such as creating a graph or customizing a map background with ggplot2 

that typically might be too processor-intensive for web clients. Its reactivity 

allows for clear organization and coherence between UI and server design 

elements that any developer with minimal coding experience can handle, and 

it’s possible to build complicated applications purely using this framework. 

While many platforms require long-term financial support from user groups, 

apps can be free as long as they’re hosted in the cloud on the open-source 

server. 

8. Security and Privacy Concerns 

As data pipelines become more ubiquitous, security and privacy issues will 

increasingly become important factors in deciding which systems and assets to 
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deploy to the cloud or allow accessible from the cloud. Uses of ocean buoy data 

pipelines can be co-opted for malicious things either instead of or in addition to 

scientific research, ocean observing system management, and engineering 

resource design and safety. Counterintuitively, malicious usage could stem 

from good intentions by some perpetrator utilizing buoy data toward research 

with good intentions and without the racial, ethnic, socio-economic, or political 

divisions that polarize people working toward a common goal. But the immense 

potential for both good and harm from the data pipeline automatically implies 

an urgency to ensure that the data pipeline has a sufficient security system in 

place to prevent navigational hazards, other ocean users inadvertently acting 

without appropriate coordination through lack of timely distrust monitoring, 

and waves, currents, seas, coasts, and everything else in the oceans remaining 

healthy. While we envision security systems to minimize conduct risk, 

enforceability risk, and external risk with the data pipeline will be a 

decentralized autonomous organization, decentralized finance, or some 

combination of the two, technology creates challenges as well as resolutions. 

Buoys could either be hacked and the data invalidated or hacked and data 

streams altered, and having complete faith and trust in the security systems in 

play would seem an unsustainable fantasy. While the best approach may vary 

depending on circumstances, best practices include least privilege, defense in 

depth, assume breach, monitoring and logging everything, web application 

firewall, and distributed denial of service remediation. These best practices 

would need to start with onboard processing and deployment security cameras 

on buoys dedicated to these two functions, and the onboard processing and 

deployment security camera data along with vehicular data would be validated 

off-buoy and archived onto a permanent storage medium whenever the buoy 

boat came within range of telecommunication. 

8.1. Risks in Ocean Data Streams 

In this short section, we will explore the possible risks of manipulating ocean 

data streams. The primary details of our deployment and configuration are 

based on a project developed to expose filtering modules and aggregation 

methods for a data-centric IoT platform architecture. In particular, we will focus 

on the presentation methods and the authentication across the layers of the IoT 

systems. 

The data collected by intelligent buoys has different types of signals containing 

information that is interesting for data scientists. When this data is ingested in 
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the cloud, it is manipulated and prepared for research. The ocean data streams 

contain some sections that are composed with empty and useless data. This 

empty section time is detected in real time and sent to the researchers. 

Moreover, there are time sections where the anchor in the ocean bottom by the 

buoy was on and it is not interesting since it does not contain data for research 

(the signals are always zero), but other signals, such as sea surface temperature, 

are not zero. These specific situations have to be monitored and filtered 

according to the awaiting for the inferred research. These particularities will be 

highlighted along the chapter. 

The buoys, based on the control architecture that transports the digital signals, 

can also be exposed to various kinds of attacks, including replay attacks, 

spoofing attacks, remote scanning, and so on. These attack types could make 

the sensors compromised to deceive the forum system. Falsified data can have 

different nasty implications ranging from a loss of safety through potential 

privacy breach. The Operating System for sensor nodes must provide cost-

effective data protection mechanisms to fight against compromised data by 

using control channel traffic monitor strategies. 

8.2. Best Practices for Data Security 

Adopt a layered intruder defense strategy. Perimeter security includes firewalls 

and protection against distributed denial of service attacks. Intrusion detection 

systems raise alarms when intruders are detected trying to penetrate the system 

from the outside or to move around the system from within. Payload security 

prevents other system users from reading or modifying each other's data. 

Multiple solutions have been used successfully, including access control lists 

and certificates. Detection of pipeline-level faults, such as loss of data quality, 

is necessary. Preventative approaches include monitoring for availability, 

integrity, and authenticity as data travels through pipelines. The use of hashed 

passwords, cryptographic data-signing tools, and cryptographic hash algorithms 

is encouraged. 

Researchers should employ a data protection plan with court-ready 

documentation. Data producers must create formal usage agreements with data 

consumers that specify security requirements, data protection plans, data 

sharing plans, and data backup requirements. The guidelines differ depending 

on the type of data: forcing focus on both how the data pipeline is built and how 

the security capabilities are implemented; open data and net benefit make cyber 
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security caveats more complex; and final archiving is specified as a minimum 

basis for data protection plans. 

Most importantly, researchers should try to create deterrence by legally 

demanding the consequences of inappropriate actions through well-crafted 

agreements that effectively support trust but verify. For the principal 

investigator, this means acquiring the consent of the data providers, particularly 

for private data like tracking information. The responsibility of the private 

entity that provides the data to the principal investigator needs to be assessed, 

and the extent of the data security should be determined as well. 

9. Case Studies of Successful Implementations 

In this section we provide two case studies from real project implementations. 

These cover applications that either relied on realtime data or collect either live 

data from buoys or download data to run post-processing analysis with DTM 

software. The reasons triggering those choices are indicated. 

9.1. Case Study 1: Real-time Monitoring 

The real-time monitoring of the bay of La Paz uses a buoy named S-1, which 

started operating in October 2003 with a sampling period of 15 minutes for sea 

surface and water column temperature (from 1 to 35 meter depth). The buoy 

downloads regularly the data after each sampling period. The installation of 

data pipelines from buoy-to-a local server and data-to-the-cloud followed the 

original guidelines on the use of DTM software. Those provided data, about 

9500 days long, are continuously used for real-time monitoring, and have also 

been reliable for post-processing of extreme event analysis, climate variability, 

and atmospheric–ocean models’ calibration. 

The buoy has been operating mostly in real-time since 2008, including the full 

support of the data pipeline. The buoy uses an Aanderaa data logger to measure 

wind speed/direction, air and water (at 1 meter depth) temperature, barometric 

pressure, and a RDI ADCP for currents and temperature in the water column. 

The real-time data pipeline runs continuously and recover any possible 

erroneous value and message generated by the buoy. For that, the DTM 

software is responsible for daily and per-sensor validation of the data from the 

channels being studied. Using the original work recommendations, additional 

statistical and temporal validation procedures have been implemented, as well 

as a set of external trained engineers that take care of local procedures (e.g., 



  

122 
 

float calibration, urgent buoy recovery). A backup buoy using only wind and air 

temperature remembers errors either locally or via satellite, so other local 

partners could be supporting the buoy during strong winds or any other adverse 

environmental scenarios. 

9.1. Case Study 2: Real-time Monitoring 

In the following two sections on "Case Studies of Successful Implementations", 

we present some of our historic work and learnings in setting up reliable, low-

latency data pipelines and in building out monitoring dashboards to visualize 

timely, useful information from the data. These projects, gathered and initiated 

over many years, helped in guiding development for the eurus pipeline and 

dashboard design. Based on our previous recommendations to collaborators and 

clients and our early experiences with the Data Pipeline and Visual-Monitoring 

Pipeline, we initially focused on getting simple monitoring dashboards up and 

running and then built in additional complexities, including more cameras and 

data sources, labels based on data-driven approaches, database storage of 

findings, and custom APIs offering limited accessibility. 

As one of the first, simplest examples, we describe here a project we did to 

follow a local initiative to gather data on climate change and its effects on the 

fragile conservation region around Garibaldi Provincial Park. The framework 

consists of four critical buoys anchored just outside of the Garibaldi Park area. 

They are outfitted with sensors that measure the speed, direction, temperature, 

and humidity of the air above the water, amongst other components. Weather 

station sensors deliver important local research data as poor data from 

inaccurate far-away stations that do not factor local microclimates. The delivery 

of local microclimate data is important for ensuring the sensitivity of our 

region’s fragile ecosystems and the health of the lichen growing on Blackcomb 

Mountain, where researchers are trying to learn more about climate change and 

its effects. 

9.2. Case Study 1: Data Analytics in Action 

The implementation of Data Pipelines from Buoys to Cloud Analytics was 

conceived first to answer the question “What happened?” at a very broad scale. 

IPv6 addressing allowed rapid promotion of hundreds of analysis simulation 

output files stored in facilities to hundreds more rent and governed nationally, 

and their relationship to tidal currents in populated estuarine regions occupying 

most of the New England’s shores. Undertaking the task of unifying and 
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extending these probative datasets, it was determined to publish the resulting 

available data products widely, freely, and openly, where appropriate and to 

anticipated individualized discovery and download through special projects. 

As the offshoot of Real-Time Monitoring, and as it anticipated analysts' further 

efforts, Data Analytics in Action took input from data monthly, looking back no 

further than the past few weeks, and reviewed presence, duration, intensity, and 

frequency of conditions. For each of two sensors at the base of two strategic 

buoys – Woodstock and Underhill – variable sigma-I thresholds determined the 

total integrated bands on vertical emission. A lot coded according to band 

isolation determined when conditions appropriately revealed fine structure or 

whitecap transitions on 0.67 and 0.78 µm radiation. Rainbow-banding in 670nm 

light while insisted on the Moon on 755nm radiation, both bands considered on 

a 0.09µm scale, enabled response type discriminations as surf cap or fine 

transit, respectively. Cored in ten-minute intervals, bytecoded images were sent 

to commodity storage while remaindering the data-rich PNGs. 

10. Future Trends in Marine Data Pipelines 

In the future, intelligent data pipelines will emerge and become interactive 

"conversational data pipelines," enabled in part through the adoption of new 

machine learning techniques and capabilities. Adaptive sampling from marine 

sensors will continue to increase, inferring data needs for different phenomena 

on shorter time scales and trigger sampling on demand. For example, for water 

quality management at an embayment, a predictive model will drive the 

sampling rates at the buoy. The buoy will sample more frequently if a storm-

generated flow into the embayment is predicted and on a lower sampling rate at 

other times. Systems will also work better with less frequent and lower quality 

remote sensing, determining areas in need of groundtruthing through sensor 

measurements at nearby buoys or coastal stations. Innovations in drones, 

autonomous surface craft, fixed platforms, and marine vehicles will enable 

measurements of processes that are poorly resolved at the patch-scale of 

floating buoy data but are critical for models of how, for example, fronts and 

eddies break down and impact exchange of heat, carbon, and momentum. 

Different marine and coastal environments place different demands on sensor 

components, data transmission, processing pipelines, and analysis. Data 

pipelines will adapt to these differing conditions and requirements as the 

sensors evolve. Cloud business models will provide the incentive for ecosystem 
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innovations and for solutions that actively reduce the cost of hosting and 

delivering broadband service such that the needs of the country for climate and 

weather monitoring are met in an equitable manner, alongside business and 

recreational requirements. The next decade will also see transitions to new 

observables and new platforms: new conditions call for different measurements 

to optimize for their effects; new issues call for the infrastructure to optimize 

for observations. 

10.1. Emerging Technologies 

Planning for the future of any endeavor requires understanding of the trends in 

emerging technology. For marine science, technology in general has enabled 

more automation, smaller sensors, and the gathering and analysis of more data 

than was ever possible before. Here, we review several important trends in 

technology that are of interest for the development of future marine data 

pipelines. 

Increasingly autonomous decisions can be made by sensors deployed in the 

environment. Edge processing allows for more intelligent decisions to be made 

in near real-time at the sensor: for example, an underwater acoustic recorder can 

make a decision about whether any cetacean vocalizations were present in a 

given time slice and only transmit the most relevant data across the all-too-

narrow bandwidth of satellite communications, instead of sending a huge 

volume of audio data that has to be transmitted and then processed. On another 

augmentation of this concept, machine learning models can be executed on 

floating platforms collecting near-surface data, thus reducing the amount of 

near-real-time data to be transmitted to cloud compute resources for more 

comprehensive processing. 

More modular and smaller sensors are changing the types of deployments 

possible for collecting in situ observations, as well as the amounts of data that 

are able to be collected. Innovations in energy harvesting technology, low-

power wireless communications, and energy-efficient microcontrollers and 

sensors are revolutionizing the field of environmental monitoring. Data 

collected from custom sensor modules deployed in less sensor-friendly 

locations, like the deep sea, are enabling new scientific discoveries. Data 

collected from diverse modular networks that are connected by low-power 

wireless communications, receive regular firmware and configuration updates, 

and share computing resources are revolutionizing the field of environmental 
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monitoring. The availability of more low-cost modular sensors only increases 

the flexibility for deploying sensor networks in other more diverse areas, such 

as coastal and estuarine marine environments. 

10.2. Predictions for the Next Decade 

Participation across marine data collection efforts should lead to dramatic 

increases in the variety and volume of data. The amount of data is expected to 

follow a significant growth pattern, increasing the amount of available high 

quality marine data by a factor of 100 every 10 years. Autonomous vessels are 

likely to become common, as will low-cost autonomous underwater vehicles 

(AUVs) and modular sensor suites that facilitate a wide variety of missions. 

Additional sensing capabilities, such as blue-green or hyperspectral optical 

sensors, sonar systems with increased capabilities for bathymetric, target 

detection, and classification, or detection of specific underwater features, such 

as marine mammal detection, incorporated into these AUVs need to be 

specified to ensure we are building the sensor capabilities required for 

widespread, cost-effective data collection. Many river and coastal systems, as 

well as major lakes and estuaries, remain poorly understood; should missions be 

designed to close these data gaps, and what would that mission design process 

look like? 

These factors will result in abundant marine data, with far less effort expended 

to make it available and usable than is the case today. These abundant high-

quality datasets should truly prove transformative; predictive skill in many 

areas, such as modeling coastal flooding and predicting harmful algal blooms 

and other marine disasters, should result in significant reductions in societal 

costs and disruption. Do these opportunities and predictions provide enough 

motivation for all the current players supporting the effort for Marine Data 

Pipelines? The impact of distributed networks and working groups needs to be 

evaluated, to what extent can their functionality be significantly enhanced or 

already ephemeral tasks simplified? 

11. Conclusion 

extracting raw data, whether from scraping web pages or querying relational 

databases, typically takes less time and resources than filtering, normalizing, 

and cleaning that for analysis or machine learning. Due to very different 

designs, issues, semantics, and efficiencies, building an end-to-end system for 



  

126 
 

domain-specific, built-in data, and statistical methods is not trivial, and usually 

done only by teams of expert engineers. However, those engineers rely heavily 

on library routines to do the heavy lifting. We explored in detail several 

common machine learning tasks in a domain rich with production-quality 

routines and critical mass of expert domain knowledge: oceanography. 

In this essay, we have presented a complete and full-cycle data system and 

various automated and semi-automated routines from data ingestion through 

exploratory data analysis augmented by supervised machine learning for 

building convergence maps to a few more specific applications such as noise 

estimation. The ocean optics problem of how water absorbs and scatters light is 

of fundamental interest because it characterizes natural water bodies and 

modulates both atmospheric and oceanic optics after mixing or stirring oceans 

to add foam, bubbles, and particulates. It is also of applied interest because it 

enables concurrent inference of new data from already-existing models or 

concurrent estimation of new data from already-existing models. To help 

perpetuate the circular economy of ocean optics data, we hope that this essay 

serves both as an inspiration and a foundation upon which future protocols can 

develop and build new synergistic connections to the data plumbing and 

automatic modeling-cycle systems presented here. 
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Chapter 7: Building a Smart Ocean 

System: Design and Deployment 

1. Introduction to Smart Ocean Systems 

Because of its broad impact on climate, commerce, and communication, the 

oceans serve as a commons for our planet's inhabitants, and therefore demand 

our attention as we navigate the challenges of the Anthropocene. As such, the 

oceans and the ecosystems they support act as the foundation for varied aspects 

of life on Earth, from early human settlements to the complex web of trade 

today. Consequently, understanding the ocean environment, including its 

physical/chemical properties and biological inhabitants, is essential to 

sustaining ocean health and maintaining a balance for life above sea level. Data 

obtained from the ocean guide and enhance many functions that benefit 

populated coastal areas as well as passengers transiting through. These 

functions encompass weather prediction, seismic monitoring, climate change 

mitigation, natural resource harvesting and management, and marine 

transportation. (Viegas et al., 2018) (Trevathan et al., 2012) (R. Teixeira et al., 

2021) (Geryes Aoun et al., 2024) 

Execution of these functions is currently limited due to a lack of universal 

autonomous sensing and awareness systems that can both observe and 

communicate with varying types of targets – from AUVs and submarines to 

whales and seabirds – within the uncertainty intrinsic to the ocean environment. 

Such ocean system network management and tasking operations are crucial for 

addressing the needs of the existing global ocean observation system, require 

the capabilities of smart ocean systems to interact with these data-hosting 

agents to schedule and direct their data-delivery tasks, control their motion, and 

selectively incentivize deployment of energy-harvesting nodes and buoys. 

Deep Science Publishing, 2025  

https://doi.org/10.70593/978-93-7185-787-1 



  

129 
 

Smart ocean systems provide a foundation for the decentralized management of 

a diverse set of remotely tuned, adaptable mobile and static nodes that together 

compose accelerated ocean data collection efforts on behalf of science and 

society, driven by agency and responsibility. These smart systems motivate our 

unified design and deployment effort. 

 

2. Choosing Sensors and AI Models 

Ocean monitoring and actuation may involve a diverse array of specific 

objectives and scales, requiring a variety of sensors and complementary AI 

models for critical observable quantities. Satellite imaging is essential for ocean 

color, ocean and surface temperature, and both observation and recovery of 

ocean optical properties. Specifically, sea-surface salinity and winds, 
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phytoplankton bloom development, and interaction of ocean-surface currents 

with atmospheric cyclones for hurricane forecasting have been addressed with 

dedicated sensors and appropriately-timed missions deployed for specific 

conditions or events, and this domain is a legitimate focus of the long-standing 

concept of constellation of small satellites. A convenience of such pre-packaged 

sensor packages is that they are well-prepared for processing, saving significant 

effort for selecting and tuning appropriate AI algorithms. 

As we select, calibrate, and deploy sensors, however, our focus inevitably 

broadens to a wider range of sensors and particularly to the coupling of sensors 

and AI models. The close coupling of sensors and AI models is typically 

neutral: some are sensors-first and AI models rely on special solution routes to 

provide numerical description of relevant state quantities such as wind velocity 

and sea surface height, or coastal quantities such as erosion or short-duration 

inundation zones; others are models-first and require training data from sensors 

to allow supervised learning. For procedures such as data assimilation to be 

feasible, models-first approaches demand that the observed quantities are 

reasonably captured by the AI model and that they are not significantly 

divergent during the forecast or modeled period. Both approaches are enhanced 

by high observation-frequency capabilities, and AI models are increasingly 

embedded elsewhere in the solution. For example, trained AI models are now 

able to predict Lagrangian trajectories and surface- and interior currents at 

longer time scales, as well as inter-sensor differences in ocean column 

properties being determined by other physical models. 

2.1. Types of Sensors for Marine Environments 

Sensors play a crucial role in the Smart Ocean System by measuring quantities 

of interest in the ocean. Sensor data inform AI models, which generate outputs 

to enable novel capabilities, such as evaluation of marine health. Here, we 

consider the types of sensors that are applicable to the Smart Ocean. Sensors 

measuring physical properties of the ocean serve as foundational sensors as 

they create basemaps through which all marine life interacts with the physical 

environment. Optical sensors may be complementary and add important 

information about chemical components, biological organisms, or incident 

light. 

Physical data related to the movement of water, the state of the water, and the 

manner in which heat is absorbed strongly influence how marine life interacts 
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with the physical environment. The nutrient flow, algae bloom, primary organic 

production, ocean stratification, hurricane forecasting, or guessing when an eco-

catastrophe will occur are examples of physical data that can be gathered with 

these sensors. Information on the last two examples, ocean stratification and 

eco-catastrophes, can also be gathered and could potentially be enhanced by 

other optical and chemical sensors mentioned below. 

Different measurement techniques can be used to measure the physical 

properties of water. Sensors built based on sonar pieces of equipment, which 

are referred to as Acoustic Doppler Current Profilers, measure the current speed 

and direction on different water column levels via high-frequency echoes. 

Thermistors can measure temperature. CTDs sensors can measure temperature, 

salinity, and depth. These types of oceanographic sensors can only measure 

these parameters when mounted on a moving platform that goes from the 

surface to the bottom and back. These indeed require being physically deployed 

through the water column, and they create sparse but high-quality data. 

2.2. Selection Criteria for AI Models 

The advancement of machine learning (ML) and computer vision (CV) 

methodologies has greatly facilitated understanding and pattern recognition in 

most data types. There are thousands of papers and open-source software 

libraries available that can be employed for a wide variety of different 

problems. Therefore, a sensible next question is: given that we have data from 

any position in the oceans, what are the “magic keys” that we can deploy in 

order to unlock the secrets hidden in this data? The answer lies in the 

application of the correct CV and ML methodologies. 

Sequential feature selection helps in selecting the most significant features that 

can make a prediction and compressing the amount of data that need to be sent 

back from the sensor. Combined with labels that indicate which objects from 

the classes categories are present in each sample, a spatial model can be trained 

and deployed at each sensor, to localize these three-dimensional features that 

indicate the presence of a given class. The alternative is to develop a purely 

supervised ML model. However, the latter comes with the risk of suffering 

from domain shift and the absence of training data. Both approaches require 

human intervention to one degree or another. The work described in this 

chapter seeks to propose a methodology that balances the need for supervision 

with the availability of data. The goal is to maximize prediction accuracy while 
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minimizing the amount of effort required for the data gathering and labeling 

steps. Once the correct models are validated, they can be deployed at scale at 

each sensor, to begin observing, exploring, and understanding how the 

dynamics of the ocean produce the community structure we see on a day-to-day 

basis. 

2.3. Integration of Sensors with AI 

When integrating sensors with AI, the most common approach is to connect 

different types of sensors with an AI model running on a device capable of 

receiving large amounts of data from all different types of sensors, performing 

the AI function and sending relevant information to the output. However, this 

approach has limited usage in a smart ocean system where the goal is to 

monitor a diverse and dispersed ocean environment for possible climate 

changes or for monitoring the ocean ecosystem. Spatially distributed AI is an 

emerging application of AI for edge computing environments where the data 

from local sensors is first processed by AI algorithms running on the local 

devices and only extreme data is sent to a central device for additional 

processing. We first describe this approach for integrating sensors with AI and 

then provide the possible variations in sensor types and device types being used 

for edge computing environments. In distributed AI applications such as in a 

smart ocean ecosystem, the goal is to conserve bandwidth, storage, and 

processing requirements in the smart ocean system. The latter requirements can 

be obtained by deploying spatially distributed AI applications with the different 

types of physical devices. The types of edges performing the function of local 

processing and extraction of relevant data pertinent to the AI algorithms depend 

on their capability for operating the different AI tasks and types of pre-

processing devices such as cameras or low-cost smart phones not being capable 

of processing heavy AI tasks cannot be used as edges. Supporting low power 

devices as the edge nodes also depends on the types of networks available in the 

ocean ecosystem environment and these are not universally available making 

general solutions for the problem of configuring edge nodes difficult. 

3. Hardware Considerations in Marine 

Environments 

Collectively, the contributions of the various technologies described in the 

previous sections constitute the intelligence that makes the Smart Ocean system 

"smart". New underwater, surface, and above-water hardware, specifically 
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designed for reliability and autonomy, are required in order to network and 

synthesize the data that is necessary to understand and resolve questions 

regarding ocean processes. In this section, we highlight some of the 

considerations and requirements for constructing these intelligences, with 

specific examples from the hardware developed in our own laboratory. 

3.1. Durability and Environmental Resistance. To be programmable ecosystem 

scales and resolving complex multi-variable ecosystem dynamics in space and 

time, a truly “smart”, i.e., autonomous and adaptable, ocean observatory must 

sample with sufficient spatial and temporal fidelity at time-scales relevant to the 

ecosystem processes being probed. Such systems can be deployed in the ocean 

environment for days, months, or even years, for the purpose of interrogating 

some of the underlying physics. The data required can only come from 

responsively outfitted surface, underwater, and sub-seabed platforms. These 

platforms must be able to withstand the environmental conditions of the 

specific deployments, otherwise the collected data, or lack thereof, will be 

suspect. The sensor systems require appropriate coverings for safety against the 

environment. 

3.2. Power Supply Solutions. Most of the oceanic measurements currently in 

operational use are made by systems on buoys or deployment ships that return 

to solar recharge or refuel for battery-powered sensor operation, usually every 

week to month, such that the sensor data return is highly erratic and limited in 

scale and novelty. Power consumption and management have been the principal 

impediment to operational use of many smaller sensors for continuous 

monitoring of the ocean environment from autonomous submerged and 

advancing platforms. These systems include buoys and vehicles that travel and 

or drift with the internal waves or currents while taking ocean water 

measurements that are relayed sporadically back to the shore. Thus, existing 

practices tagging and following predators is limited to only a few tagged 

animals at a time and is not practical for implementing more ambitious and 

broader scientific questions. 

3.1. Durability and Environmental Resistance 

Marine environments are dynamic and often extreme. Sensors deployed at sea 

must endure multi-month or multi-year deployments where they experience a 

steady barrage of sunlight and humidity as well as predictable seasonal swings 

in seawater temperature and pressure, the latter increasing by 1 atmosphere for 
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every 10m in depth. In turbulent locations, such as the coast, turbulence and 

breaking waves also result in additional pressure cycles for devices attached to 

the sea bottom. For underwater hardware, biofouling becomes an increasingly 

important issue with organisms colonizing equipment having been observed 

propagating within weeks of deployment. While it is possible to meet some of 

these requirements, such as sealing all hardware using industry-standard 

methods, or to coat hardware with antifoulant chemicals, doing so is often an 

expensive enterprise in both time and money that significantly drives up the 

price and complexity of all components. Furthermore, national and military 

applications may set further requirements. It is often difficult to strike a balance 

between satisfied operating time and the sensor's ability to survive in the 

environment, both in terms of physical property design and reliability. 

Thus, researchers must perform detailed physics-based modeling on various 

aspects of environmental resistance before they can settle on a design. These 

models can then inform the design by predicting the level of reliability as a 

function of design inputs. Often, the most effective design technique for 

underwater electronics is to follow existing design guidelines from the 

aerospace community where space and weight use is critical and systems 

undergo severe entropy kneading while operating above their design 

temperature between deployments. Such guidelines help improve reliability 

during critical design phases. In addition, the accelerators required for 

acceleration factors are often conservative functions from vendor data for these 

stressful use cases and more accurate use-case specific models must also be 

used once designs mature for specific applications. 

3.2. Power Supply Solutions 

The infrastructure cost of deploying a Smart Ocean System can be at a billion-

dollar cost level, yet the cost of the electronics contained within the system is 

on the order of a few million dollars. The task of keeping the system 

operational for long periods of time is non-trivial. Powering a small computing 

system continuously on at the bottom of the ocean for years on end is a tall 

order. The Smart Ocean System integrates solenoids, cameras, sensors, data 

acquisition, data processing, filtering, and communicating with the world 

above. The crucially important assumption is that the underwater electronics 

required for the system propose no more than a few hundred watts of power 

which allow powering the entire system. It is commonplace to power all of the 
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electronics from a battery for which the empirical design point used here is a 

48-V DC lead-acid battery. 

The system design restricts currents to less than 10 Amperes. This is about the 

maximum that can be drawn without the resulting voltage drop harming the 

operation of electronics, the majority of which run off of 3.3 V, and which 

would place excessive burdens on switches and connectors. Connecting all of 

the electronics on to a bus running off of a single battery representation to 

determine the total power may well attempt to switch off when the current 

drawn is on the order of 4 Amperes, so this capability needs to be kept in mind 

at all times. Any question concerning why 48 V and not 12 volts is because the 

supply is two series lead-acid cells and one needs to compensate for battery 

voltage drops. Circuit components also need to be kept at rated voltages. While 

this is being designed for a specific set of component voltages, utilizing a 

battery that consists of three series Li-ion cells is a more practical design, since 

the individual cell voltages are about 3.7 V at maximum, and may go to about 

2.4 V or 0.7 V charge/discharge at minimum levels. 

3.3. Communication Technologies 

Communication technology is a crucial consideration for Smart Ocean 

deployments. We need to address how nodes in the network share data, and the 

latency, speed, reliability, and distance requirements of the applications and use 

cases. We often focus on long range data transfer, from the ocean floor to cloud 

data centers. However, other communication needs may be just as important, 

such as communication between sensors that trigger local responses, 

communication from buoy-based mobile sensors to shore, or new local 

computing algorithms that only send the results of a calculation to the cloud. 

Many types of sensors currently deployed in the ocean utilize Acoustic modems 

to transmit data to buoys for access via satellite technology. Acoustic 

communication depends on the pressure and temperature profiling of the project 

site, data security requirements, and data transfer rate and latency. Current 

commercial products offer bandwidth of 100s kbs but with significant limitation 

on distance and depth, and 100s bps over long distance and depth, as much as 

120 km!!! 

While advances in Acoustic communication may help us extend the range and 

reliability of some chemical sensors in deep water, it still requires frequent 

access to maintain them. Similarly, some optical sensors may be more reliable 
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than chemical sensors but will require less frequent visits and eventually need 

to be replaced. New optical and pressure/temperature sensors combined with 

new optical acoustic communication capability may allow significant 

advancement in ocean monitoring by allowing for simultaneous measurements 

across different time scales as well as increased acoustical communication 

bandwidth for data transfer from deeper water columns without requiring buoy 

based mobile communication nodes. 

4. Interoperability and Open Data Standards 

Developing a smart ocean system will require the collaboration of many 

organizations and the integration of multiple data sets. To achieve this, we must 

design common data models ensuring data interoperability and reduce barriers 

to data sharing. Moreover, ocean data, like many other types of data, become 

exponentially more useful when combined with other datasets, yet because of 

differing data models, developers often struggle to integrate data produced by 

different organizations or instruments. Creating common data standards puts the 

power of building on shared data in the hands of more developers. These issues 

were long recognized by the geospatial community; in response, a series of 

open standards designed to promote discoverability and interoperability of 

terrestrial and marine geospatial data were developed. Those standards are now 

available for the benefit of other scientific domains, including sensor data. 

The netCDF format is the dominant data format for meteorological and 

oceanographic data, providing a common model and allowing a diverse set of 

sensors to produce files easily readable by any programmer, no matter the 

programming language they prefer. The netCDF software library gives 

programmers high-level programming commands that abstract the complex 

implementation details of the underlying file format and network protocols. As 

a result of these well-maintained open-source libraries and the dual standard of 

netCDF4 Classic and netCDF4 Enhanced Model formats, the netCDF format is 

supported by nearly every important math and science programming 

environment. 

4.1. Overview of OGC Standards 

The standards provide a set of rules and protocols that allow any computer to 

talk to any other computer on the Internet and exchange spatial data. The 

exchange of data following these standards allows different software 
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components to each do what they do best. These standards are often called 

"specifications" because they define the requirements for developing geospatial 

services and their clients. Specifications are similar to other technical standards 

in use for Internet and Web services. Organizations and vendors develop 

compliant services and clients that intentionally match these specifications. 

Data collected with a particular sensor, for example, can be processed by one 

vendor's software and published as a potential data layer on a map created by a 

different vendor's software. The viewer can select and control different data 

layers even though each comes from a different data catalog. 

A basic premise is that data can be better managed when it is served in its 

native format using a Web service, not simply put into another format and made 

available for download and manual transformation. In this scenario, the 

standard service interfaces are used to share or integrate spatial information 

across communities and organizations without sharing the actual data. 

Furthermore, the existence of standard digital service interfaces makes it 

possible for individuals, communities, and enterprises to select from many 

available service providers. Standards ensure that the serviced data will 

continue to be available and properly formatted. 

4.2. Understanding netCDF Format 

The Network Common Data Form (netCDF) is a data format originally 

developed to allow for the sharing of scientific data, including climate and 

forecast data. The primary focus of the netCDF format is to create a structure 

for sharing large amounts of multidimensional data that can include a variety of 

dimensions of different sizes. The end goals of the netCDF project are to 

provide self-describing and portable data, with a platform-neutral file format 

that works with both large and small datasets, and thus enabling cross-discipline 

data sharing. 

The standards established by the netCDF developers can be utilized through 

libraries to create netCDF-formatted files in other programming languages, 

including Python and C. Although it creates the least amount of overhead to 

process in the C programming language, there are netCDF libraries that ease 

processing with Python using wrapper functions. The netCDF file format has 

also been integrated into the commonly used Hierarchical Data Format (HDF5), 

which has the same goals as netCDF. 
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The primary way to determine how to structure the metadata is to look at actual 

netCDF files and their accompanying documentation. There are many resources 

that have netCDF data files and provide additional field descriptions. There are 

also the established best practices from the Climate and Forecast (CF) metadata 

conventions that go into greater detail about how to construct and represent 

variable values. These practices are the accepted de facto standard for how to 

create netCDF files that enhance their usability across diverse datasets in 

practice. However, as previously mentioned, there are no formal certification 

mechanisms for either netCDF files or the CF conventions. 

4.3. Data Sharing and Interoperability Challenges 

Ocean science has always benefited from the open sharing of data and 

collaboration among scientists. Due to shipping, plus the need for detailed 

precision mapping of coastlines in a variety of wavelengths, various agencies 

and their respective contractors have maintained an extensive collection of 

bathymetry and seafloor maps. However, detailed sea floor samples are rare, 

and getting samples of the same area at the scale of a cruise is expensive. Even 

so, valuable information is available from historic photographs, magnetometry, 

and sediment slides for archaeological and geological coring. Technology now 

allows for high-resolution maps with more datapoints than a manned 

submersible can collect, and at a lower cost than what a detailed coring or 

submarine sampling expedition would incur. 

The same is true of underwater systems that are not historically surveyed. 

Efforts have been made to encourage the open exchange of data, but this 

requires a reliable and flexible pipeline and storage structure. When the time 

comes for a question to be asked and an answer prepared, few scientists are 

willing to work on the request when the only alternative would be to work their 

way through an arcane archiving structure, with confusing filenames, or query 

each individual scientist, slowly awaiting replies accompanied by files in a wide 

variety of proprietary formats. Providing data in standard formats, using clear 

naming conventions that break the files into manageable components, and 

placing it in a single location for retrieval will enable that future realization. 

5. Deployment Lifecycle: Pilot to Full-Scale 

The primary goal of a Smart Ocean System is to transform the state-of-the-art 

in ocean services and research into a scalable system that integrates intelligent, 
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sensor-based sea-water processes, cyber-informed shore-based infrastructures 

and citizen-driven data collection. To achieve this goal, Smart Ocean will 

leverage both its existing system and ongoing blue economy activities in the 

region of Puerto Rico and the U.S. Virgin Islands. While the existing system 

has demonstrated unique data accessibility, the goal of Scalable WISE is an 

easily expanded and sustained operational readiness so that Strategic WISE 

focuses on special events and Static WISE freely collected data supports the 

research community. Both system adaptations will create persistent, smart-

ocean service that turns ocean data into knowledge derived products. 

In support of S-WISE, here we discuss several components of the S-WISE 

development pipeline. These components include pilot deployment planning 

and feasibility studies, pilot deployment strategies, and scaling up 

considerations that address various aspects associated with the transition from 

pilot- to full-scale deployment. Technical discussions and development based 

lessons from a S-WISE pilot deployment on a migrating humpback whale route 

off the coast of the United States from Massachusetts to Florida are used to 

highlight and inform the S-WISE deployment discussion since many of the 

science and technology elements described were ported from the existing 

project. 

5.1. Planning and Feasibility Studies 

While the technological development of SMART-Ocean components is 

fundamental to enable this framework, deployment in the real world poses 

additional challenges. Unlike terrestrial environments, where human needs 

result in the modification of vast tracts of land, ocean deployment must take 

into account the natural dynamics of a sensitive area in order to avoid 

unintended and possibly catastrophic interactions. These interactions are not 

restricted to the deployment of actual devices. Support vessels can also cause 

unintended interactions with the environment and its inhabitants. This is 

particularly important if we wish to deploy multiple sensor or action networks, 

or support the resupply of such a network over time. For these reasons, it is 

important to initiate the design process with a comprehensive planning phase, 

followed by pilot deployments that explore spatial and temporal scale issues. 

The planning phase will identify suitable deployment locations, as well as a 

scientific rationale for actual deployments, so that beyond collection of proof-

of-concept data, the sensors deployed can answer larger scientific questions. 

The planning phase can also identify needs for infrastructure that will lessen the 
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cost of actual deployment activities. Pilot deployment scoping then develops 

the plan into an actionable field deployment plan. 

5.2. Pilot Deployment Strategies 

It is impractical, if not impossible, to deploy a smart ocean system at full scale 

on the first try. A phased approach is warranted where a pilot system is 

deployed, tested, and iterated many times until it scales to the desired size and 

scope. The first version of the pilot system may be very simple but must be able 

to test key performance scenarios, lessons learned from these deployments will 

drive designs of future pilots. The scope of the first pilot may depend a lot on 

the project team’s expertise and the research partner’s willingness to support 

infrastructure costs and any possible raised eyebrows from the research 

community. If the incumbents push back or there is a lack of interest from the 

local stakeholders, it is not necessarily predestined that you choose the same 

pilot location forever. Dependent on the learning outcomes of the location 

switch, it may be worth temporarily clustering near incumbent or local expert 

led deployments to accelerate experience and technology exchange. 

The area that requires active discussion is the transition from small pilots that 

shift into bigger pilots and finally into the full SMART-Ocean system. This 

transition requires careful design, as it needs to reflect both scientific 

considerations, but also some form of expectation management on the industrial 

side that wants – in various guises – to see monetization opportunities and is not 

prepared to wait. What should additionally be factored into the design of 

deployment strategy is the consideration for initial system fragility and the 

limited capabilities of early sizes and shapes of the system. Consequently, any 

scaling-up strategy should carefully consider how to transition from a small 

dysfunctional system, to a first pilot and then scaling from there towards the 

size and capabilities that can credibly be considered a SMART-Ocean System. 

5.3. Scaling Up: Challenges and Solutions 

Having demonstrated that a Smart Ocean System can deliver useful capabilities 

at the pilot scale, researchers will be motivated to expand the installation 

towards full system scaling. This will involve challenges at many levels. Ocean 

elements are not evenly distributed in space or time. How can we manage 

observability gaps in time and space during expansion? In a pilot, operators are 

well known players, often residing at the site for the duration of the mission. 

What happens when we scale up and more users from outside the mission are 
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asking questions of the system? Security is also a concern. Our work has 

operated under an expectation of insider threat as the pool of capable operators 

has been relatively small. A large, expanded, external user base will expose the 

system to a greater threat of outsiders taking control of elements, likely on a 

temporary basis, in ways which disrupt. Trusted operation under large-scale 

distributed control over an extended, remote system requires capability-based 

trust for operation and also security to ensure that capabilities cannot be used to 

disrupt deployed sensors. 

The physical upscaling task also presents challenges. Deployments must be 

repeated, and increased size brings both equipment and personnel scaling 

issues. Previous work has been limited to small installations, seeking to 

prototype hardware and software designed for lower cost access, but the system 

demonstrated at small scale will not be cost-effective for global implementation 

and expansion. A nanosatellite or nanosat constellation can provide low-cost 

delivery of systems with minimal launch disruptions, but won’t deliver the 

resolution or revisit of larger systems. Creative partnerships will be required to 

provide many of the extended monitoring and in situ sampling functions. For 

passive across a range of wavelengths, the capability of existing commercial 

systems is being rapidly improved, yet the demand is greater than the capacity. 

6. Lessons from Global Marine Tech Deployments 

In this section, we will compile the various general deployment requirements 

discussed and apply them to some successful deployments of smart ocean 

systems, their enabling technologies and subsystems, to derive some general 

conclusions and guidelines for future deployments. 

We start out this section by presenting case studies of successful deployments 

of ontogenetic and ecosystemic MTS and smart ocean systems, in an attempt to 

provide a template for future deployment efforts. We also discuss what 

particular deployment aspects of these case studies are relevant to global 

deployments. We then list additional successful deployments of various 

enabling marine technologies in order to synthesize general recommendations 

from these mini case studies. Lastly, we address some additional general 

deployment issues such as the manners in which these deployments could be 

funded and how future deployments of such systems would change as 

technology becomes cheaper and broadband network capabilities become more 

ubiquitously available in open oceans. 
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The many ships, equipment, and services used to operate in oceans are an 

underutilized asset for a plethora of benefits and services that need to be 

provided to society and are difficult to be provided from land. State-of-the-art 

ship vessel and underwater vehicle capacities can be inexpensively made 

available to augment various capabilities in the oceans. The shipping companies 

and other organizations and institutions that can provide this underutilized 

equipment, with their enacted deployments, have demonstrated that if these 

resources are appropriately coordinated and coupled with geographically and 

temporally sustained sensing and actuation capabilities, the capabilities of 

oceans can be enhanced for executing many ocean-centric tasks and missions 

that generate locale-based additive economic and societal value, while costing 

and impacting the ocean-as-ecosystem less. 

6.1. Case Studies of Successful Deployments 

While there have been innumerable marine research missions executed by 

virtually all oceanographic institutions for decades, the longstanding history of 

ocean drifters, buoys, tethered or robotic platforms, AUVs and other types of 

mobile and located instruments and vehicles for remotely collecting marine data 

has emerged from multiple focused initiatives. Public and academic institutions, 

private companies, and non-profit organizations have developed and utilized 

such systems and associated radio- and satellite-based communications 

networks, already paving the way for the next generation of expanded 

capabilities. Here, we summarize a limited number of examples, spaced around 

the world, that illustrate relevant aspects of either macro- or micro-scale 

initiatives that have proven successful. The lessons learned, however are 

transdisciplinary in relevance. They are not intended to provide a detailed 

description of every such effort, but rather, high-level pointers to more detailed 

information. 

Collaborative and co-production science and engineering design of sensors 

deployed for the purposes of environmental monitoring, disaster mitigation 

associated with wildfires to seismic events, coastal management, safe aquatic 

recreational use, and tourism has proliferated over the past decade through the 

work of many principled and affected stakeholders. From coastal towns to 

neighborhoods, to ocean coastal regions and waters, it is now apparent that the 

balance of work that must be performed, and the monitoring of conditions, both 

exceedingly low-cost and seemingly simple, can be incredibly informative to 

those who need timely access to this data most. While being involved in such 
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work, whether leading or participating, is inherently gratifying, maintaining the 

health and sustainability of such efforts must wrestle with the underlying citizen 

fatigue, which often leads to apathetic conditions following such efforts. 

6.2. Common Pitfalls and How to Avoid Them 

Our work to date has focused on consulting marine technology developers on 

prototype testing and on-demand, large-scale deployment. A clear pitfall of 

prototyping is the danger of over-designing a device for a few specific expected 

applications. A mutually beneficial relationship between developers and end-

users can ideally encourage multiple device iterations prior to deployment. 

During early testing phases, with devices designed for specific jobs, operation 

and maintenance costs are borne by the developer until the device is ready for 

revenue generation. Sometimes, in such instances, it makes sense for 

developers to work closely with commercial users who have particular use 

cases whose needs differ from those anticipated by the developer. This can help 

inform the design as the market moves closer to revenue generation. 

Developers must also listen carefully to early users of the technology and make 

ready the ability to address the feedback they receive or risk losing business 

opportunities while they figure it out. More generally, a pitfall of commercial 

deployments is setting up deployments too large to fail. Commercial developers 

of marine devices must sometimes test out the marine tech waters carefully and 

be equally careful to ensure that the initial successes are real rather than a 

product of good market timing. Marine technology does not always work as 

engineers expect and we see many instances of system failure when devices are 

launched in ever-greater numbers and used in ever-wider application areas. The 

ocean is death to electronics that rely for success on assumptions of hardware 

function that are well supported on land or even in many other sea areas. 

However, ocean conditions vary considerably, and it is essential that 

deployments through which marine technology expects to commercialize assure 

operational function through an expected number of cycles. 

6.3. Future Trends in Marine Technology 

We have shown that the current rules for designing and deploying tools to 

manage our human impact on the ocean are still being written. Our Worldwide 

Ocean employs nearly 500 million people, using the ocean as a source of food, 

shelter, raw materials, commerce, transportation, and leisure. Consequently, the 

new tools of Ocean Tech, from whale acoustic detection to enforcement vessel 
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reconnaissance, hold an enormous market potential. Ocean Tech applies the 

wide array of tools and trends that have brought great benefits to our lives on 

land to our Infrastructure of the Ocean, including Fusing the Subsea and Land-

based Internet Infrastructures, Autonomous Surface and Underwater Vehicles, 

Oceanic Data and Application Clouds, and the Geo-Localization Infrastructure 

for the Global Ocean. Ocean Tech focuses these powerful resource management 

and transportation infrastructure tools on very focused problems in the 

resource-rich but poorly populated territory of the Global Ocean, such as boat 

monitoring for Search and Rescue, pollution detection for resource 

management, and bottom fishing monitoring for commerce, revenue, and 

pollution reduction. 

Many of the tools that minimize our impact, monitor compliance, and provide 

effective rebuttals rely on accuracy and low costs. In the future we can expect to 

see the better integration of AI methods in visual and other recognition tasks, 

improving the potential and ability to train ad hoc classifiers for marine and 

atmospheric tasks. However, deploying these new approaches in marine 

environments will still face many challenges, regarding the ad hoc ability to 

handle real-time requirements, low power consumption, and the need to process 

huge volumes of data with low cost for the system budget. Moreover, extreme 

environmental conditions such as storms, snow, fog, or high humidity usually 

affect the performances of the deployed technology and the trade-offs with 

some current approaches, especially for AI-enabled approaches and computer 

vision systems, will have to be properly evaluated in order to avoid failures on 

the detection and classification tasks. 

7. Conclusion 

Over the last two decades, we have gathered unprecedented data on the biology, 

ecology, and biogeochemistry of open ocean ecosystems. Today, we are faced 

with an even greater challenge: how to manage ongoing human activities that 

continue to impact these global commons. With the establishment of 

management structures for ocean activities similar to those provided by national 

states for their Exclusive Economic Zones, we have begun to address these 

challenges. New satellite-based sensors are being developed that will make it 

possible to conduct regular audits of global commons activities. The ocean has 

long been viewed as a vast expanse of empty water, devoid of life outside of a 

few pockets of actively engaged humans. But now, with new sensors, new 
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cyberinfrastructure, and a growing network of land-based and mobile robots, 

we can watch and analyze the environments of the global commons in near real 

time. 

The Sensing Capital of a nation grows with both new sensors and with novel 

uses of already decommissioned and soon-to-be-superannuated sensors. 

Additive remote sensing enriches the content of monitored information and 

opens the design space for closed loop uses of in-water mobile robots. The 

Smart Ocean System focuses on guiding the global commons toward 

sustainability, resilience, and biodiversity. Community-based Citizen Ocean 

Observatories based on freely accessible sensor data not only assist scientists 

and decision-makers, but also engage citizens in the learning and discovery 

processes essential for future generations. 
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Chapter 8: Ethical, Legal, and Societal 

Considerations in Marine Environments 

1. Introduction to Marine Ethical and Legal 

Frameworks 

Marine issues are often framed as common property resource dilemmas, 

captured in the tragedy of the commons literature, based on the depletion of 

resources that all can access, and highlighted by examples of communities self-

organising to prevent tragedy. What trophic levels are regulated, and how? 

Where does one draw lines regarding human access, landing and by-catch? 

Issues at the law and ethics nexus are complex, given the patchwork of different 

and differing global regulatory regimes, especially in the high seas, or outside 

of Exclusive Economic Zones. Marine ecosystems are intrinsically 

international, challenging traditional terrestrial notions of sovereignty, although 

these challenges are increasingly salient in other terrestrial domains with 

respect to surveillance, piracy, shipping and security issues. However, the 

pragmatic and policy approaches governments and other stakeholders have 

taken have inherited a terrestrial, anthropocentric perspective. Managing 

maritime domains for human use alone rarely addresses the needs for the 

ecosystems involved. Management for marine ecosystems, therefore, requires a 

necessarily different lens if we are to successfully implement the policies 

needed for effective ocean governance. (CILIBERTI et al., 2024) (W. Barr, 

2016) (Katona et al., 2022) (Strain et al., 2019) (Gustavsson, 2018) 

Necessary actions require international cooperation and commons based 

policies, which in turn require a re-thinking of ethics and law, a remediation of 

the anthropocentric perspective that dominates to create new frameworks for 
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marine use and development, including issues such as marine resource 

allocation, the ethics of marine knowledge generation and transfer, marine 

safety, security, autonomy and cleanness, all framed within the context of sea 

and ocean law. This text adopts a tripartite focus on counternarratives to 

traditional human-focused anthropology - relational ontologies, indigenous 

knowledge and other-than-human agency - as the foundation for goal 

agreements. The focus on ethos, rather than strict loss and gain calculations, 

allows for the possibility of having something other than personal happiness at 

the centre of analysis. 
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2. Data Ownership and Sovereignty in Marine 

Environments 

The oceans and their development require investments in terms of time and 

resources. The technologies developed for these investments are increasingly 

being developed outside the oceanic environment. It is thus difficult to divest 

data from its source, but for the scientist, these data are a commodity that 

provides scientific knowledge. Further, the public data produced by such 

research are used as validation data for commercial organizations to develop 

commercial infrastructures, sensors, and tools, that eventually are 

commercialized at very high prices. Moreover, the combination of these 

multiple, commercial-off-the-shelf, lower-cost sensors can be used to collect 

data at lower prices compared to any funded agency as well as commercial 

organization with only a single source of acquisition. This places the entities 

interested in acquiring data from the ocean at a very advantageous position. 

Increasingly, government policies are focused on mutual concern for national 

economic well-being. Underlying many ocean governance efforts are 

differences in wealth and access that result from levels of development 

achieved, and levels of investment in ocean policy and management 

established. Regaining full jurisdiction over national territorial seas is often 

important to a developing nation, and there are significant range of trade-offs 

regarding the benefits that will accrue to and responsibilities that will be 

incurred by the developed and developing nations through ocean investments. 

New technologies can assist nations in their attempts to maximize both the 

benefits accrued and the costs incurred, both individually and jointly through 

cooperative efforts with trade-off agreements. Data sovereignty addresses 

issues associated with the use of data collected within a country, usually within 

its territorial waters, exclusive economic zone, or a more broadly defined 

marine region. Emerging challenges to data sovereignty arise in response to 

technology-enabled data collection that is pervasive and inexpensive as well as 

in consideration of private sector investments in oceans which increasingly are 

greater than those investments made by governments. 

2.1. Concept of Data Ownership 

Data sharing has gained prominence with the advent of the Internet, with the 

declaration that now “information wants to be free” - data is seen as free good 

that should be openly and freely exchanged and without attribution. In contrast, 
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the Data use License relieves the data producer from liability concerning the 

consequences of the use of the data and the data user from the obligation to 

mark the products made with the data as based on the producer’s data. It is 

because of this reason, the move to share freely acquired, using taxpayer 

money, environmental data, has been the point of contention between producers 

and users of the data. Although policy demands the sharing of data, providing 

clear guidelines and fair compensation in a business model that incentivizes the 

producers while providing low-cost access to the user will create a win-win 

situation for both parties. 

Policies, such as the location privacy policy highlight where the issue of 

privacy become a point of friction, distinguishing personal from non-personal 

data and claiming that it is unlawful to collect or use personal data without 

consent, regardless whether such data has been made publicly available by the 

owner. In the maritime domain, ship data is generated from two sources. AIS is 

controlled and is a regulation by the government, and VMS is controlled by the 

ship owner, who may not consent to its public release. IMB is a private entity 

that charges money to supply data on piracy that is freely available otherwise. 

Who controls piracy data in the public domain from IMB and what is ethical 

and unlawful about charging fees to access what is otherwise free data? These 

questions that have significant business implications in ensuring that resources 

are not wasted are both about data ownership and its associated costs. 

2.2. Sovereignty Issues in Marine Data 

Vast stretches of our planet's surface lie underwater and remain unexplored and 

unseen. While new ways of observing these areas are maturing, a question 

lingers: Who owns the data collected? Many companies and academic 

institutions around the world have turned to remote sensing systems for a 

plethora of observations, from bathymetry, benthic mapping, and seagrass, to 

temperature, salinity, and other water properties, revealing a rich set of 

applications. Startups offer services derived from the collected data, charging 

for access. Meanwhile, which path should amateur researchers take? From a 

legal perspective, it is not clear who products derived from these underwater 

observations belong to. 

Considering the history of mapping the Earth's surface, a clear distinction can 

be made when this process occurred above or below sea level. Upper-world 

mapping began with explorers walking on territory and naming it for their 
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governments and sovereign naturalists detailing it in richly illustrated books. 

Spaceborne sensors later supplanted Earth's explorers for the purposes of 

topographic and landcover mapping; a few projects are seizing on the 

tremendous progress that has been made in recently generating high-resolution 

topographic DEMs and landcover maps from satellite stereo towed- and low-

cost drone aerials, offering free access to these products. How can in-water 

EUV sensors compete while satisfying sovereignty and, by extension, data 

ownership challenges? 

2.3. Case Studies on Data Sovereignty 

Two examples illustrate, in different ways, the political considerations involved 

in the idea of sovereignty in scientific data products in the marine realm. The 

first, a dispute between the United States and Canada over whether the Canada 

Department of Fisheries and Oceans could, without permission, acquire sonar 

seabed mapping data collected by the U.S. Navy, and the second, a decision by 

the British Antarctic Survey to remove the base data from its publicly available 

digital elevation model of Antarctica because other scientists misused the 

Survey’s grant-funded work. 

The Canada-United States dispute illustrates the importance of the physical 

presence of vessels or other means engaged in mapping or observing marine 

environments in the political consideration of sovereignty. A shallow seabed 

extends into the marine realm under the territorial sea of a coastal state—up to 

12 nautical miles from a state’s baseline—but only a coastal state can impose 

special permissions to enter this part of the public sea. In the latter part of the 

1980s, the Canada Department of Fisheries and Oceans began to acquire 

mapping sonar data about the southern portion of the Canada-U.S. border 

seabed. The Department of Fisheries and Oceans processed the Navy data, 

filled gaps with extra data that had been provided in 1986, and extracted 

information such as the physiographic map of the seafloor, map of sediment 

classification, and map of sand deposit forecast for northern United States and 

Canada, and published the maps in 1990 and 1991, submitting them to the 

International Hydrographic Organization. 

3. Ethics of Autonomous Marine Systems 

This chapter addresses the ethical, legal, and societal factors associated with 

marine systems and the enabling technologies. Marine Autonomous Systems, 
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and in particular Autonomous Marine Vehicle operations, are new to ocean 

science and exploration. Consequently, very few ethical, legal, or societal 

factors associated with these operations have been created or are known. We 

explore ethical implications and avenues for developing ethical policies for 

deployment in oceans across multiple sectors, and provide general 

recommendations for developing ethical guidance for deployment in the marine 

domain. Considerations for these guidelines also apply to any general 

autonomous technology but have a particularly strong impact on marine 

systems that have low human oversight. 

Overview of Autonomous Marine Technologies 

Robotic technologies such as AUVs, UUVs, and ROVs enable data collections 

through autonomously and semiautonomous unsupervised operations. Data are 

provided for a diverse array of services from scientific exploration, 

geotechnical data execution, SAR, oceanographic measurements, and 

exploration for minerals among many others. A specific robotic technology, the 

Autonomous Maritime Vehicle, enables maritime operations and associated 

maritime support activities. Several public and private organizations are 

developing, modifying, and operating their technologies. These vehicles are 

especially suited to perform remote and dangerous tasking. They can conduct 

surveillance or monitoring for extended lengths of time without the 

accompanying risk to lives and costs associated with manned assets, and 

difficult air or maritime conditions. These include monitoring and data 

collection, supporting information operations, C4I activities, among other 

mission tasking. Very large high-speed semi-autonomous vessels have been 

designed to perform transport operations at low operational costs. Robotic 

cargo transport systems have been designed to support intra-theater and inter-

theater logistics support missions. 

3.1. Overview of Autonomous Marine Technologies 

Advancements in engineering and computer science have led to the 

development of highly capable, and increasingly autonomous, systems for 

employment throughout the marine environment, including more immediate 

coastal regions and the deep ocean. Current examples of marine systems with 

low to moderate levels of autonomy include towed and anchored buoys with 

onboard sensors for remotely collecting physical, chemical, geological, and 

biological data; autonomous surface and underwater vehicles for mapping, 
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monitoring, and inspecting; and semi-autonomous craft for logistics and cargo 

transport. When deployed in small fleets, scientists can leverage swarms of 

simple, inexpensive sensor-laden buoys and vehicles to collect, process, and 

transmit high-frequency data streams while processing elements in the cloud 

perform filtering and anomaly detection. Technologies differing from vehicles 

and buoys for in situ data collection include offshore autonomous floating, 

hovering, submerging, and anchoring – some with cables and some without – 

nodes, small and large scale, with onboard intelligence and sensor payloads, for 

passive to fully autonomous and coordinated monitoring and inspection of 

oceanic physical, chemical, and biological processes, conditions, and events; 

autonomous gliders for deep ocean ballistic monitoring; and tele-operated and 

autonomous vehicles and buoys for discontinuous inspection of maritime 

infrastructure. Increasing artificial intelligence capabilities, platforms for 

assembling, launching, and recovering second generation offshore mobile and 

stationary disaggregated converged network nodes supporting edge computing, 

and enabling lighting-harshening solutions are leading researchers into all 

whether and some ideals-of-up-to-space corridors, some of them dual use, for 

building next-generation smart oceans with great computing control and 

resilience graduating from ocean sensors, and systems for resource exploitation 

and environmental remediation operating with high availability and reliability 

in persistently unaccompanied from days through months – graduating from 

present days and a few weeks. 

3.2. Ethical Implications of Autonomy 

Three general ethical considerations for autonomy are the obvious questions 

about what the role of autonomy should be for a task; whether we should even 

consider giving the authority of moral consideration to the agent; and how such 

systems could be held accountable for any activities they may engage in. Aside 

from the fact that there are general ethical questions about the deployment of 

autonomy, many marine-related applications have a specific culture within 

which they take place, i.e., they can be seen as applications within the broader 

branch of marine engineering. There are also some rather specific safety and 

security issues connected to marine robotics and some linked ethical questions 

that bear on the design stage of any of the constituent marine systems. 

Furthermore, it has to be acknowledged that the current deployment pace of 

marine robotics is rather fast; a timescale on which it is probably too late to 

redo major preparations for deployment even if it becomes evident that possible 
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issues were completely neglected. All of this tends to suggest that the ethical 

issues of current robotic deployment may place different constraints on what 

types of deployment areas an autonomous underwater vehicle might be allowed 

to operate within noise in the underwater domain. 

In this talk, we will be addressing the importance of continuing to have a role 

for human oversight, the associated consequences for speed of operational 

effectiveness, and the importance of the subsequent feedback to the 

development process itself. We will also be addressing the importance of 

continued involvement of the wider public, i.e., continued public engagement, 

and how that might affect final systems. It thus also should be a component of 

the timeline. Furthermore, we will be discussing technological requirements for 

a clear decision-making ability to be developed ahead of time; also at what 

timescale that ability be confirmed to work. This includes the developmental 

aspects and possible requirements on human – machine interfaces to allow such 

a decision-making ability to be successfully evaluated. 

3.3. Regulatory Challenges and Solutions 

Various regulatory agencies oversee the use of these marine technologies. For 

example, the Federal Aviation Administration manages the use of Unmanned 

Aerial Systems, the Coast Guard manages the use of Unmanned Surface 

Vehicles, the Navy manages the use of Unmanned Underwater Vehicles, and, to 

a certain extent, the Environmental Protection Agency manages all three 

technologies when they are used for data collection on commercial fishing. It is 

not uncommon for an agency overseeing certain air, land, or space use to 

exercise siloed control of certain marine substances. Such near exclusive 

control can create additional regulatory ambiguity, disincentivizing investment 

in these technologies and hindering technology advancement. This in-

congruency is different than air, land, and near space where different agencies 

have symmetry issues in exercising their mandates. The ease and openness of 

these other ecosystems contrasts with the comparative difficulty and obscurity 

of the marine regulatory ecosystem despite its commercially attractive features. 

For larger commercial investors and collaborators, company lawyers can help 

streamline the process of regulatory navigation. However, for public sector 

mission achievement, the difficulty in regulation can harm operations, from 

supporting the inhabitants of remote islands in times of disaster to answering 

maritime search and rescue queries. Additional regulation burden exists for 
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international voyages. Areas beyond nation control, such as micropollutant data 

collection over the Southern Ocean, are often under the jurisdiction of the 

agency responsible for international ship traffic regulation. Additionally, 

consultation of the commission is recommended to ensure finish legal 

compliance for maritime wildlife protection. Grounding approaches in 

multistep agreements can simplify the regulatory burden; however, this 

typically creates longer time frames and reduces flexibility in testing and 

missions. 

4. International Maritime Law and Sensor 

Deployments 

Between the conception of international maritime law and the adoption of the 

UN Convention on the Law of the Sea, the popular thought was that the oceans 

were essentially res nullius, completely free and free of ownership. However, 

with the population explosion, technical progress, and taking natural resources 

for granted, that position changed and intensified. The result of that change is 

that the oceans are “the common heritage of mankind.” Thus, the importance of 

their use is both individual and collective. 

In the 20th century, maritime law was based on the right to free navigation; 

however, that principle was in conflict with the interest of coastal states that 

were beginning to accede to independence and sovereignty from foreign 

exploitation in favor of the riches of their geocentric position. The result was 

that UNCLOS imposed a counterweight, whose fundamental elements became 

a protection system based on the banning and repression of certain activities 

that could disturb the tranquility of coastal states, such as piracy and slave 

trafficking, and the harmonization of what is known as maritime delimitation 

between neighboring states. In other words, respecting nautical law is a duty of 

the coastal state and foreign users. 

Under UNCLOS, maritime spaces are divided into three types: Those under 

national sovereignty; those reserved exclusively for the exercise of sovereign 

rights; and those predominantly in international traffic. Coastal states could 

unilaterally determine the extension of their territorial waters and apply their 

national laws for the exploration and exploitation of marine resources. To 

prevent the term “territorial sea” from becoming a synonym for enclosure, the 

coastal state could not impede the passage of vessels belonging to foreign 
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states, which should be governed by the rules established by said coastal state. 

Outside the area of the territorial sea was the exclusive economic zone, which 

the coastal state had the power to economically exploit but not the sovereignty. 

The high seas would be the rest of the ocean, with free access for all to carry 

out their activities. 

Deploying marine sensors should follow the framework established by 

UNCLOS: The Convention requires licensing or other forms of control over 

offshore oceanographic activities. Marine data collection must include advance 

consultation with coastal states and other states involved. Wherever feasible, 

the privately sponsored project should contribute to the costs incurred in the 

wake of the study. 

UNCLOS establishes that the coastal state may adopt laws concerning the 

identification of foreign ships and their equipment. Absent indication of 

presumed malfeasance, the coastal state should contact the flag state before 

conducting, or allowing real-time monitoring of non-consensual activities. The 

state under whose registry the ship or aircraft operates shall be liable 

accordingly. 

UNCLOS recognizes an interest in not being involved in military hostilities. 

However, the wording allows an intermediate interpretation: “The only 

protection is that instruction forbids military exercise, tests, or explanation of 

certain technologies. Also, studies can be carried out in coastal waters of states 

if there is information about imminent disasters”. Beyond that, military vessels 

have the right to carry out navigation whatever the purpose; Marine species 

respond with neutral Boucans. Any other ship making use of sensors or sonar, 

be it for tourism or commercial purposes. 

4.1. Fundamentals of International Maritime Law 

International law is a collection of rules and standards that has been created by 

treaties or customary practice to regulate the relations among States and, in 

some cases, other entities. The conduct of States, or more exactly the exercise 

of their sovereign powers, creates the basic structure of international law. In 

return, international law creates certain rights for States and other entities; when 

these rights are violated, international law statutes and procedure provide for 

international justice and remedies. International law must reflect the needs of 

the world community as it develops, and the increased interdependence and 
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interaction among all nations increases the pressure for the creation of an 

international legal structure that can respond effectively and usefully to these 

demands. International Maritime Law is that part of international law that 

regulates those areas of State interactions, which can only be applied in and to 

the maritime areas. These areas can either be the area given to each State 

bordering the sea, namely the Internal Waters, Territorial Sea and Contiguous 

Zone, or the areas which are oceanic and to which no State has any specific 

jurisdiction, namely the High Seas, the Area, or the Atmosphere. The subject 

matter of international maritime law includes nationality of ships, classification, 

regulations and technical standards, jurisdiction of coastal States, jurisdiction of 

Flag States, nationality of crews, regulation of marine security, regulation of 

maritime usage, and regulation of the maritime environment. 

4.2. Legal Framework for Sensor Deployments 

Because sensing systems rely on both launching platforms and sensor 

deployments, these systems are affected by various layers of domestic and 

international laws. As private parties deploy and operate sensors with more 

layers, multiple jurisdictions affect more aspects of sensor deployments. These 

factors cumulatively influence the data generation cost and the utility of 

deployed sensors. Sensor deployments have data generation and profit-making 

effects; thus, the traffic signs for society’s access and use of generated data 

through varying property-like rights determine the business models of sensor 

systems. 

The geopolitical notion of sensor networks describes military-security, 

economic-trade, and ecological-environmental domains of social interest that 

rely on sensor deployments. The domains summarize the general interest of 

states since they stand for national security, trade leverage, and social 

responsibility. Sensor operation modes to explore these interests can be 

delineated by sensor types, durations, intensity, distances, and locations of data 

generation. Consequently, interest sentences govern sensor deployment 

regulations and are applied at various territorial facets: a State can regulate 

access to data generation according to its own interest in the territorial sea, the 

exclusive economic zone, and the continental shelf, whereas the use of data for 

political purposes can be restricted in the area of high seas. 

As a general rule, only the territory of a State, where its sovereignty extends, is 

subject to its exclusive jurisdiction. The existing maritime law touch points 
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when it comes to sensor deployment make deployments and use of the systems 

in coastal state jurisdiction straightforward. In contrast, sensor systems in 

foreign jurisdictional domains are legally more complex in nature. 

4.3. Impact of Sensors on Marine Ecosystems 

Marine programs that deploy sensors in the oceans typically strive to benefit 

science and humanity through better management of marine systems. While the 

goals are generally enviable, the impact of deployment on marine animals, 

assemblages, and environments needs to be considered very carefully. Damage 

can stem from misplaced sensor design and installation strategies even when 

the potential for negative impacts is known. Seafloor installations, for example, 

can survive for decades and thus cause a long-term alteration of delicate benthic 

assemblages. These can be important to fishery health, coastal water clarity, and 

the carbon cycle, especially near coral reefs and sea grass beds. 

Sensors implanted in marine animals can cause pain and long-term suffering, 

particularly if the device cannot be removed, if it becomes infected, or if it 

alters the animal's natural behavior — e.g., by preventing feeding or movement. 

Any sensor that induces significant stress and/or alteration of migration and 

reproduction should be avoided at all costs, particularly for long-distance 

migratory species such as sea turtles or Atlantic salmon. Sensors designed to be 

deployed for years such as acoustic transmitters can be benign in some animals. 

However, if stress alteration is detrimental for regions of interest, motives for 

deployment should be questioned and techniques improved, as bioenergetics is 

already a major concern. Collectively working to minimize negative effects via 

innovative and sensitive ethical design, placement, and removal practices 

coupled with sensitivity to local needs and people involved is a wise decision 

that could improve the positive fate of long-term sensor programs. Fatigue 

avoidance practices, including those stemming from the new field of 

biomimicry, can provide additional benefits for animal-friendly marine 

monitoring approaches. 

5. Engaging Local Communities and Ocean 

Stakeholders 

Although we are a long way from achieving comprehensive ocean governance, 

it does not mean that the ocean is devoid of formalised systems, by laws and 

rules which, in many cases, are the result of negotiation processes with local 
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communities and their needs. Knowledge of the local marine environment by 

fishing communities has been passed down and preactivated for an extremely 

long time. Abundant marine resources offer incentives to promote marine 

migrations, and complex marine resources exploitation strategies have been 

developed in many local communities. Close attention should be directed to 

these mechanisms when placing “Anthropocene” labels on marine environment 

processes and features, and stigmatizing local communities, particularly when it 

comes to conservation issues which could put restrictions on local traditional 

practices. 

Since decision-making effectiveness is directly linked to the amateurs of the 

concerned stakeholders, the only way to guarantee support for future 

governance and decision-making for the ocean is to involve all layers of these 

societies (and not simply their leaders). The relationship between the decision-

making actors of a given territory is, in fact, an essential step in the 

consideration of local populations who enjoy their full rights, and this is where 

all the similarities between what are normally considered terrestrial 

communities and maritime communities come from. Such dialogues should 

deal with more than purely conservation issues; they should make it possible to 

reflect on a broader framework for economic development which prioritizes 

providing local communities with better living conditions; it should use marine 

resources within an ecosystem services framework. The local knowledge 

produced through these dialogues, although heavily accused of being purely 

anecdotal, could also serve as a basis for the identification of sensitive areas, 

the establishment of marine protected areas or the restoration of fish stock 

levels. 

5.1. Importance of Community Engagement 

With over 70 percent of the world’s population projected to live within 200 km 

of the coast by 2050, including some of the world’s largest cities, the ocean 

provides livelihoods for more than 3 billion people and is critical to food 

security, income, and sustainable development. Yet, ocean and coastal 

ecosystems are under increasingly unsustainable use, and deteriorating 

environmental conditions jeopardize food security and livelihoods. Many ocean 

and coastal species are in decline, including the largest sharks and rays as well 

as many marine mammals and reptiles. Increases in both frequency and severity 

of climate hazard events such as hurricanes, inundations, and sea level rise pose 

additional challenges, especially for coastal communities already confronting 
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existing inequities and vulnerabilities. Ensuring a healthy and productive ocean 

for the future will require decisive action by communities and local 

governments as well as international cooperation. Strengthening community 

resilience promises to be among the most effective methods for limiting 

damages and accelerating recovery from catastrophic storms. Building a more 

sustainable relationship between ocean coastal systems that favors inclusion 

and equity will require a profound transformation in the way many coastal and 

marine ecosystems are managed. Integrated ocean and coastal management 

with a focus on involvement of local communities in management is considered 

to be the foundation for ensuring both sustainable coastal development and 

effective ocean and coastal ecosystem stewardship. Creating a more sustainable 

relationship between coastal systems and the communities which depend upon 

them will undoubtedly be challenging, requiring as it does a melding of a wide 

host of disciplines, but the inspiration offered by nature’s resilience makes it a 

challenge worth undertaking. 

5.2. Strategies for Effective Stakeholder Engagement 

Particularly, when managing or dealing with a range of stakeholders - values, 

beliefs and priorities should be acknowledged. In order to ensure that 

stakeholders are meaningfully included in decision-making or in government-

led marine management initiatives, it is important to consider how the 

assortment of different groups and people could impact on the outcome of the 

initiative and also how they would react to the outcome. Prior stakeholder 

engagement is therefore a must in any marine initiative or activity. The 

development of an engagement plan (who to engage, how to engage them, 

when to engage them, how often to engage them, why to engage them, what 

resources will be needed) is a logical first step. Enquiry should also be made 

into pre-existing guidelines for stakeholder engagement and/or expertise that 

can be made use of. An understanding of community structures and 

implementation of appropriate incentives for participation is key. Resources 

that provide tangible support for communities can help generate and sustain 

interest in stakeholder activities or even help motivate communities to 

collaborate and share suggestions for the implementation of engagement 

mechanisms or techniques. Using non-legally binding measures that support 

small-scale social structures and factor in the notion of care can also be 

considered. 
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When engaged and given sufficient responsibility and liberty, communities can 

also typically provide significant insight and recommendations regarding 

stewardship of their unique ecosystems. Sensitive and actor-oriented 

participatory governance and the establishment of multi-stakeholder 

management bodies have proven especially effective for small-scale 

environments. Long-term management efforts of thematic and spatial relevance 

are important enablers for sustained cooperation and cross-sectoral linkages. 

5.3. Case Studies of Successful Engagement 

Case studies provide concrete examples of effective and impactful community 

engagement in ocean policy processes. Generally, most case studies identified 

through our review are external, describing a single effort with limited 

contextualization and reflection. As a complement, we identified some internal 

case studies explaining their approach to engagement in specific projects or 

programs. 

The Gulf of Maine Research Institute works to support an integrated, 

collaborative approach to fisheries management through the Fishermen Feed 

Us! program, which engages fishers and their families in discussions about the 

future of our fisheries and our food. The Fishermen Feed Us! program brings 

together commercial fishers and their families to discuss the challenges and 

opportunities of providing seafood to the US lifestyle. In this program, a venue 

is provided for fishermen to speak directly to the needs of consumers, inspire 

awareness about seafood sourcing, and educate the public on topics ranging 

from seafood fraud to what is plucked from the sea on any given day. Those 

involved in this program recognize that fishers need to better communicate the 

value, both economically and ecologically, of a well-managed access system. 

The current situation is steeped in the "if it bleeds, it leads" syndrome; 

therefore, trade groups, fisheries management councils, and agencies must 

innovate a way to present the story of the industry and its sustainability in a 

media-friendly package that becomes immune to sensationalistic reporting. 

6. Interdisciplinary Approaches to Marine Ethics 

As concerns for the oceans, marine ecosystems, and their inhabitants increase, 

an interdisciplinary approach to marine ethics is critical. As a relatively new 

area of study, marine ethics can benefit greatly from the perspectives and 

methods of other fields. Additionally, research tools from other areas can often 
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enhance marine ethical explorations. Marine ethics can benefit from literature, 

art, and religious studies in particular by enhancing the emotional and cultural 

connectiveness of marine ethics topics. The humanities, through the perspective 

of history or literature, can facilitate understanding how diverse populations and 

cultures have conceptualized the ocean and our relation to it. The arts, likewise, 

can deepen the emotional connection we have with the ocean. Finally, the study 

of religion can clarify the difference in ethical standing of the ocean's 

inhabitants, or lack thereof, by various groups. 

The social and natural sciences can also bring different but equally necessary 

perspectives to marine ethical concerns. Geography can aid in understanding 

the global disparities between the developed and developing worlds and their 

influence on marine issues such as overfishing and pollution. These disparities 

are deeply embedded in social theory. Furthermore, the involvement of the 

different community groups affected by decisions about the ocean, such as 

fishing, tourism, and oil, needs to be addressed in some manner as well, perhaps 

by political theory. In this way, the impact of culture on marine issues, such as 

the cultural importance of cetaceans to indigenous peoples against their 

hunting, can be analyzed. Finally, the natural sciences, by clarifying how 

marine ecosystems operate and the importance of balance and biodiversity 

within them, can show how human activity can impact the seas and their 

inhabitants. 

7. Technological Innovations and Ethical 

Considerations 

For centuries, people have harnessed the oceans for a variety of reasons, yet 

recent technological advances have encouraged a renewed interest in, and 

exploration of, marine environments. From mapping the seafloor and 

monitoring ongoing natural hazards to obtaining resources and storing climate-

related carbon, the oceans are being leveraged in all corners of the globe. As we 

risk unsettling delicate balances in a third of Earth's surface, we find ourselves 

again faced with questions of the ethics of what we do and how do we do it. At 

present, there is insufficient guidance among existing frameworks for broadly 

applied oversight for marine-based implementation of emerging technologies to 

allow consideration of the ethical implications before they are realized. To 

inform both those who work to change the planet—scientists, industrial 

entrepreneurs, policy makers, non-governmental organizations—and those who 
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bear the risk and potentially suffer the consequences—a more intentional 

deliberation about ethical frameworks is needed. 

Emerging technology works to change the course of human history by altering 

both the capabilities of the implementer and the natural world upon which all of 

humanity depends. Scientific and commercial interest in the oceans is further 

enabled by novel interactions or scale-up with existing techniques and by recent 

understanding of the risks imposed by both climate change and the ongoing 

pandemic. Particular considerations arise when the users are private 

corporations rather than governments, and national interests trump 

environmental protection. Areas of interest not within particular nations' 

economic zones remain relatively free of legal oversight. Furthermore, 

enhancement or alteration of an ecosystem for general benefit is an activity 

usually trumped unless particular special interest groups object. 

8. Policy Recommendations for Ethical Marine 

Practices 

Many marine-related legislations already exist, however, they are often 

disconnected, lack coherence across cultural contexts, or remove subjectivities 

from marine-related action spaces, where studies tend to be land-based centric. 

As a result, few practical guidelines exist to help marine practitioners act, apply 

for permits, or conduct research according to STEM ethics principles and 

values. For policymakers and other interested stakeholders to attempt creating 

marine-related legislation or addressing policy gaps in ocean ethics, we provide 

three accessible principles for ethical marine practices. The principles are 

contextual — they can serve as a start to inform researchers’ decision-making 

processes no matter the socioecological context or scale of study. 

First, ensure your study is driven by ethical motivation. Marine ecosystems 

provide abundant yet threatened resources. A study should focus on helping a 

community either plan for adaptation to the effect of climate change on marine 

resources, or increase the resilience of resources associated with marine 

ecosystems. Second, consider if the relevant stakeholders involved in the 

project truly reflect the wider marine environment. AI capability for the output 

of fine resolution solutions is driven by fine resolution data-collection capacity. 

These should both include within-community involvement, actual participation 

of the communities involved in the study site. Finally, ensure your study can 
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benefit the marine environment to truly operationalize the ethical principle of 

beneficence. Your study should not simply increase efficiency, or determine a 

“go” or “no go” for implementing a certain recommendation. Instead, it should 

create a suite of solutions that allow room for decision-making that will address 

environmental, resource, or community concerns. 

9. Future Trends in Marine Ethics and Law 

Increasing knowledge of our changing environment is likely to increase the 

complexity and number of regulation attempts - most attempts to ensure fair 

access to resources as well as protect the shared resource of the ocean. 

Emerging challenges in marine ethics and law include: 

- The ethical and legal implications of emerging, potentially disruptive marine 

technologies will demand broad consideration. Ethical concerns regarding 

autonomous vessels and drones - raising fundamental questions for ethics 

regarding degree of human control over technology - could relate to armed 

patrols for more aggressive marine surveillance, or autonomous vessels for 

research, travel, and cargo. Human supervision, oversight, orders, and liability 

for these autonomous vessels could be clearly delineated in laws to be 

developed, adapted, or changed. Law could govern the social liability of marine 

tech companies regarding transparency, accountability, accuracy, safety, harm 

prevention, error responsibility, and interoperability when developing such 

technologies. General ethical principles directly from relevant philosophies 

could guide the development of emerging marine technologies. The society-

wide implications of options for marine applications of prevalent machine 

learning technology could also demand ethics consideration and technical 

engagement. 

- The concept and law of the commons will undergo revitalization, 

modernization, and adaptation in response to efforts to resolve orphaned digital 

issues, in step with a revival and adaptation of philosophical interest in the 

commons. A leading effort in protecting existing, and creating new digital 

commons for our ocean has been initiated. It holds substantial promise to 

protect ocean resources of information, artwork, and writing, especially from 

threat of commodification and gating. The potential successes and failures of 

this influential future commons outside of our ocean could also guide 

development of approaches for protection of relevant domains. 
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10. Conclusion 

Protecting underwater cultural heritage is beneficial for society. Underwater 

cultural heritage benefits society both through its public good nature, in terms 

of direct use or consumption, providing either scientific knowledge and public 

education or other intangible benefits supporting community identity, memory, 

and sense of place, and through indirect use, such as economic stimulation. The 

benefits provided from the societal perspective of underwater cultural heritage 

may outweigh the cost of disallowing the area to pursue profit maximization. 

Nevertheless, some of the most significant underwater cultural heritage is 

protected from the perspective of national laws, priorities, and limits. National 

laws, priorities, and limits deal not just with preservation and protection of 

underwater cultural heritage, but also with policies promoting development and 

utilization in society’s interest, entering into potential conflicts of priority and 

determination. These conflicts are reflected in risks of either too little or too 

much protection or preservation of underwater cultural heritage. Insufficient 

protection or preservation can be physical in the sense of destruction, and its 

extent can be seen in the increase of underwater cultural heritage looting and 

private property rights claims. Such insufficient protection or preservation can 

also be financial, as when private claims disallowing or restricting public access 

to underwater cultural heritage result in significant or gross liabilities imposed 

upon society. Emphasizing the positive contribution marine spaces may 

experience from more systematic and academic knowledge from underwater 

cultural heritage helps to reduce the physical reasons for too little protection. 

Conflicting powers seeking exclusive access to seas that subsume underwater 

cultural heritage push for too little physical protection of underwater cultural 

heritage, and conflicts may also trigger too great a destruction or diminishing 

physical protection of underwater cultural heritage. Traditional distinction 

between private rights motivated by capture, fixation and concentration 

supports regarding coastal zones and ports contrast with public goods functions 

regarding marine spaces necessitating public domain regulation regarding 

preservation of underwater cultural heritage influences economic forces 

requesting special treatment, too little protection or no protection. 
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Chapter 9: Exploring the Future of 

Artificial Intelligence in Ocean 

Monitoring and Management 

1. Introduction to AI in Ocean Monitoring 

Artificial Intelligence (AI) is often described as the "new electricity". Similar to 

how electricity transformed numerous industries about a century ago, AI has 

started to create unprecedented disruptions in all domains, including 

technology, education, politics, and the economy. The technology-related 

developments in the industry, services, and economic sectors have created a 

constantly evolving environment. These developments cause rapid alterations in 

the oceans as well, with increasing effects on the ocean’s health, biodiversity, 

marine ecosystems, and the economies and well-being of coastal communities. 

Thus, intelligence-enabled data processing and information management via AI 

algorithms will help us better monitor and understand the oceans. Implementing 

AI in ocean-monitoring systems can help ocean scientists better understand the 

oceanic mechanisms and their subsequent influence on the marine ecosystem, 

which, in turn, can help them provide more efficient solutions for dealing with 

the problems faced by the oceans and humans. 

Similar to the diversity of disciplines or fields contributing to the innovation 

and improvements of AI technologies, the development of AI-driven techniques 

to support ocean monitoring and make ocean-related predictions requires 

contributions from all ocean-related and -interested stakeholders and 

communities. For example, climatology, physical oceanography, marine 

biology, ecotoxicology, and marine economies play important roles in this 

endeavor. In addition, as training AI techniques related to the ocean require 
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ocean-related data of adequate volume, quality, and diversity, it is imperative to 

ensure sustained ocean observations via already available or new, advanced, 

innovative, robust, and networked ocean observation systems, from coastal to 

open oceans including shelf seas with varying spatiotemporal scales, to meet 

both the diverse nature of the ocean and the expected improvements in ocean 

monitoring and understanding. Fortunately, these oceans observing systems 

could be enhanced through new developments in the internet-of-things or the 

sensor web for real-time data acquisition, data fusion and blending, machine 

learning as well as AI-driven autonomous data processing, and advanced data 

and information archiving and management systems.  

 

 

2. AI for Autonomous Marine Ecosystems 

Abstract. Autonomous underwater robots are the result of decades of 

development in autonomous robotics and underwater sensors. At large scale 

and with sufficient funding support covering design to deployment, 

decentralized underwater robots could provide persistent, cheap, accurate 

monitoring of diversity, mapping, enumeration, and discussion of a range of 

ocean tasks. The future of AI in Ocean is an AI-enabling and AI-using decade 

of Applied AI in the Ocean, where Theory is put to practical work and 



  

169 
 

monitoring models are put to design verification and optimization through 

feedback learning control and training. Feedback learning control and training 

are unique for AI-supported autonomous robotics in the Ocean with located 

feedback in 4D with deep learning inference and feedback control. This enables 

only partial training and update be used to position optimize and stabilize up to 

highly nonlinear ocean models. Upon deployment, learned prediction may 

enable low-power, intermittent operation, with constantly optimized low-power 

system, sensor and data reduced interfaces. 

I introduce the concept and tools of autonomous marine ecosystems enabled 

through new and applied AI for design, operations support, and training. Long 

summarize present theory and future vision roadmaps for AI in autonomous 

robotics. I describe AI tools, Autonomous Marine Ecosystems, and 

architectures, with enabling capabilities, operations, and ecosystem 

applications. My comment introduces some of the challenges that lie ahead. 

The expanded interest in investing in monitoring of the Planet Ocean through 

Autonomous Marine Ecosystems is a positive turn and provides the foundations 

to transition further into the constant online economization of the Planet Ocean. 

With this monitoring comes the need to focus on generating actions counted 

with predictive and optimal decision making for understanding the global 

temperature crisis, and supporting global security and planetary economics in 

building sustainable blue economy jobs and growth. This action interactive 

capabilities in trees is modeled through Feedback AI enabling the AI over a 

system of systems of systems, both for design and for executable Hybrid 

Control Markov interfaces. 

3. Digital Twin Oceans and Simulations 

Simulations can improve predictions of extreme weather and other events or 

phenomena associated with the oceans. However, with inherent model 

simplifications and uncertainties, climate models struggle to reproduce certain 

aspects of context and especially fine spatial-temporal details. To overcome the 

limitations of existing models, a number of Information and Communications 

Technology (ICT)-driven approaches, which can vary in their levels of 

sophistication, can be applied to create digital twins of the oceans, including 

utilization of ocean models of varying spatial-temporal resolutions, statistical 

downscaling, physical machine learning techniques, and data-assimilative 

modeling. Digital twins can further use data realistically simulating future 
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changes expected with global warming, knowledge about the functioning of a 

physical system that allows for credible estimation of important unobserved 

oceanic variables, and artificial intelligence or machine learning-driven 

techniques that can achieve closure for unresolved processes or improve 

physical representations of the system. 

Detailed simulations that digitally recreate the past and present oceans can help 

validate and improve the predictive skill of different levels of digital twins. 

Digital environments of the present, recent past, and possibly the near future 

can also support decisions around operation and investment by businesses in 

various sectors reliant on the oceans. Such descriptions can involve high-

dimensional information, including atmospheric state variables which are 

impacted by latent variables and in turn influence ocean dynamics, and the 

states of the marine fauna and flora including fish, marine mammals, plankton, 

and primary producers. By complementing efforts at monitoring to fill in the 

gaps of both in-situ and remotely sensed data and forecasts grounded in 

physical science, advanced digital twins can help inform various ocean 

monitoring and management decisions conducted in the present and near-future 

time horizons by providing further confidence regarding the current and near-

future digital twin state of the oceans. 

4. The Role of Quantum Computing in Ocean 

Data Modeling 

Ocean modeling is the calculation or consideration of specific oceanic variables 

or physical properties of the ocean or ocean-atmosphere, by means of a 

mathematical formulation and/or by translating them into numerical 

discretization. In this way, the comprehensive description of the operation and 

variability of astrodynamics especially in the long-term prediction is produced. 

Generally, the sea monitoring data are characterized by high speed, high 

frequency, non-continuous intensity, and high uncertainty. These characteristics 

have brought great challenges to how to effectively extract information of 

marine environment change via computing. Computing plays a nonnegligible 

role in this issue. 

For a long time, AI-assisted computing has been a potential solution to ocean 

data modeling, such as physical model-assisted AI seismic inversion, deep 

reinforcement learning for path planning of marine autonomous vehicles, and 
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ML for the prediction of coastal ocean currents. Sufficient labeled training 

samples are indispensable for the successful training and implementation of 

ML-assisted ocean data computation. However, the quantity of samples for 

ocean data is normally too scarce to train the ML models. Recently, quantum 

computing has been proposed as a new mode of computing and has been shown 

to have the capability of further improving the prediction efficiency and 

prediction accuracy when compared with its classical counterpart in dealing 

with a handful of supervised samples. Thus, quantum computing can be helpful 

for ocean modeling not only for the prediction of ocean dynamics but also for 

solving the uncertainty dilemma encountered by the data-hungry AI algorithms 

supported by the classic computing. Therefore, quantum computing may evolve 

into a new and promising paradigm for ocean data computation. 

5. Next-Gen AI-Powered Marine Robots and 

Smart Fleets 

Advancements in artificial intelligence (AI) have the potential to revolutionize 

the capabilities of ocean observing technologies. This transformation is enabled 

by several developments, including increasingly sophisticated robotic platforms 

for collecting ocean information, the application of AI techniques for data and 

sensor fusion, the widespread availability of AI-aided cloud-based analytical 

tools, and the existence of large datasets for training and evaluating AI systems. 

Moreover, AI can accelerate the mission performance of intelligent autonomous 

robots, such as autonomous underwater vehicles (AUVs) and autonomous 

surface vehicles (ASVs) equipped with various scientific sensors. As part of a 

sensor network, large fleets of autonomous robots may be guided by AI towards 

specific ocean regions of scientific interest to collect calibrated space-time data 

that can be confirmed or further analyzed by existing ship or satellite sensors. 

Next-generation marine robots equipped with AI will reshape how we monitor 

and manage the ocean. Intelligent marine robots will collect more ocean data, 

more efficiently and safely than conventional platform and sensor 

configurations. Fleet integration and intelligence will drive data products with 

higher resolution and better information content for scientists. New robotic 

concepts will be developed for non-traditional applications, some with AUVs 

that are small, low-cost, and specialized for a single mission. Robotic observers 

will be used in applications that are currently difficult, if not impossible, with 

traditional technologies. AI will expedite the volume of machine-measured data 
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needed to achieve the societal ocean goals. Robust, flexible, all-weather, 

intelligent, autonomous systems will minimize the risks to ship-based science 

fleets. New risk models can predict the probability of conducting shipboard 

research safely while boats remain connected to support on-site scientists. 

6. Data Collection Techniques 

Several technologies for aerial, maritime, and underwater imaging are widely 

used to monitor the oceans, namely remote sensing, underwater drones and 

robotics, and traditional shipboard methods using acoustic sensors, cameras, 

and nets. In this section, we outline the data collection techniques that have 

been critical for observing jellyfish blooms and their interactions with marine 

ecosystems. New and existing data from multiple organizations can now be 

fused in real time or rapidly analyzed through cloud computing and artificial 

intelligence techniques. 

 

6.1. Remote Sensing Technologies 

Visible, infrared, and microwave remote sensing have become useful tools for 

observing the physical, biological, and chemical properties of ocean water from 

dedicated satellites or commercial satellite constellations and, most recently, 

from unmanned aerial vehicles equipped with high spatial resolution cameras. 

Remote sensing provides wide-area ocean coverage, high spatial resolution, and 

synoptic observations from different time perspectives. Short- and long-term 

monitoring of the ocean can thus be performed. Indeed, the same locations can 

be revisited on a daily basis by a constellation of commercial-path and small 

satellites and UAVs at different places. Measurements can be integrated into 

satellite-derived iconic products that inform about jellyfish abundance, 

distribution, and ecological interactions, including surface temperature, 

chlorophyll-a concentration, and bathymetric information. 

6.2. Underwater Drones and Robotics 

Autonomous underwater vehicles (AUVs) are instruments for collecting ocean 

data, which are either remotely controlled or autonomous. For controlling the 

missions of these vehicles in the oceans, the missions are usually 

preprogrammed, and marked by underwater GPS based on acoustic 

technologies to land so that they can be recovered. AUVs are useful and 

convenient tools for many coastal and onshore/offshore ocean activities, such as 
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environmental monitoring, coastal zone evaluation, offshore structure 

monitoring and maintenance, slope design, underwater decommissioning, 

tideland maintenance, tidal current investigation, and so on, as well as the 

exploration/utilization of offshore renewable energy in, on, and under the 

waters. AUVs are also widely used in marine archaeology, finding, 

photographing, and filming shipwrecks and submerged sites, mapping the 

remain distributions, investigating protected sites, and recovering artifacts. 

Merely providing ocean data is not adequate to manage ocean environments. 

Effective management of oceanic environments requires long-term monitoring 

of oceanic processes, which can be achieved with oceanbuoy or buoyancy-

evading ocean drones or drifting buoys. These types of drones are invaluable 

for continuously measuring and describing ocean currents, meteorological 

parameters, wave heights, ocean temperatures, color, and salinity, or more 

generally, acting like robotic vessels on-site for marine and meteorological 

monitoring. 

7. Machine Learning Algorithms in Ocean Data 

Analysis 

The development of marine-based products has increased the need for the 

efficient processing of data collected from oceans. Today, oceanographic data 

collection has also been combined with advancements in sensor technologies 

and big data analysis techniques, including AI and machine learning algorithms. 

Descriptions of several recent works that utilize ML for ocean data analysis are 

summarized. 

Using ML algorithms for large volumes of complex and diverse data minimizes 

dependence on domain knowledge in feature extraction and classification 

model design. The two classical ML algorithms, supervised and unsupervised 

learning, are commonly used in ocean data analysis based on objectives. 

Supervised ML learns the characteristics of labeled data with existing 

classifications and then predicts class labels for similar unlabeled datasets. 

Supervised ML alleviates the need for a broad ocean physics background as a 

feature design guideline while partially relying on expert knowledge for the 

labeling of training data. For core areas such as biological-activity forecasting 

and ocean-climate prediction, this necessity has driven researchers to explore 

supervised ML applications. 
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Essentially, the effectiveness of supervised ML relies on the quality of the 

labeled training dataset. Data labeling is often challenging due to the limitations 

in domain expertise and the long computation times associated with numerical 

models and expert-driven approaches. Most machine-generated simulated 

training data will not match real observed ocean data due to variations in setting 

conditions and sensor placements. Thus, the generalization ability, or 

overfitting issue, is a challenge for practical applications of supervised ML. 

Another alternative is the transfer-learning method using pre-trained models. 

7.1. Supervised Learning Applications 

Supervised learning presents the most straightforward machine learning 

procedure: users annotate models with ground truth data to train and build 

predictive models potentially usable in many contexts. The ocean realm has 

benefited from supervised learning research efforts and applied predictive 

modeling to many different types of datasets and observations. Applications 

range from species tracking and detection to developing species-environment 

relationships, removing errors or noise, and classifying images. Ocean remote 

sensing has one of the richest research outputs. 

Due to the expensive and often sporadic nature of biological surveys, 

particularly within remote marine environments, monitoring of many marine 

species would be impossible without the availability of artificial intelligence for 

powered detection. Passive acoustic monitoring is one such field where 

machine learning has developed due to both the quantity of available data and a 

reliance on automated solutions to data processing. Species including whales, 

dolphins, and fish have benefitted from supervised computer vision and 

acoustic plugin services. Images captured using underwater cameras provide 

researchers with useful assessments of fish assemblage structure and dynamics, 

some fish species abundance, and habitat characterization. In these cases, the 

ability to monitor such parameters continuously and achieve high temporal 

resolution has, however, been limited by human search through, and manual 

labeling of, images, a costly, time-intensive, and often insensitive task. 

Supervised models for image analysis of underwater systems are designed to 

exploit data augmentation, parallelization of label-error reduction via worker 

crowdsourcing, recurrent convolutional structure, or majority-voting of bagged 

component classifiers to solve the issues of volume-associated biases. 
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7.2. Unsupervised Learning for Pattern Recognition 

A wide variety of unsupervised techniques have been developed for ocean 

science applications, and they can be broadly classified into three main 

categories, which are established primarily according to the representation of 

the original data: (1) dimension reduction; (2) pattern discovery; and (3) cluster 

identification. 

Dimension reduction techniques compress data to a lower-dimensional 

representation, potentially preserving some intrinsic structure that is present in 

the original high-dimensional data. Many new scientific discoveries have 

emerged from the application of dimension reduction methods to ocean 

observational data. The availability of high-dimensional oceanographic 

parameter datasets has facilitated the application of well-known 

Multidimensional Scaling (MDS) and its variants to the approximation of 

geophysical flow dynamics of complex, especially multiscale, high-dimensional 

systems. Specifically, MDS methods have been successfully applied to the 

structure approximations of ocean eddies based on measuring the geophysical 

distribution of the dynamically active angular momentum in the dynamical 

system of ocean temperature. Moreover, the more recent application of t-

distributed Stochastic Neighbor Embedding (t-SNE) method to the high-

dimensional observational temperature dataset showed the feasibility of using 

asymptotic posterior probability distributions of latent variables from Stochastic 

Dynamic Models for t-SNE-based geophysical flow modeling. 

In addition to dimension reduction, unsupervised learning techniques have been 

shown to produce unique spatial and temporal patterns for enhanced scientific 

analyses of oceanographic phenomena from available complex observational 

data. These techniques have been successfully used in discovering new 

dynamical features in stratification, waves, mixing, and coherent structures on 

2D surfaces using large high-dimensional ocean temperature datasets observed 

by sensor networks. 

8. Artificial Intelligence in Predictive Analytics 

Predictive modeling relies on algorithms combined with observed data on 

multiple determinants of a phenomenon in order to accurately predict that 

phenomenon based on the determinants. The common use of the term 

"predictive analytics" implies the development and application of predictive 
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modeling techniques to large datasets, not only in training models and 

estimating their output levels at actual locations, but also in the model 

selections and monitoring process. As descriptions of determinants of 

phenomena become more spatial, and as spatial data infrastructures and the 

compiling of large, multi-variable datasets accelerate, predictive modeling of 

spatial analyses will increasingly be dominated by predictive analytics. 

Recent research and development in applied machine learning has catalyzed the 

synthesis and implementation of predictive analytics in fields such as 

oceanography. This accelerated adoption suits the aims of predictive analytics, 

as ocean monitoring and management is challenged by not only the sheer 

spatial scale of the ocean ecosystems of interest, but also by the scale of the 

data demands associated with addressing many needs in a usable time frame. In 

reaching across the ocean surface and deep into its benthos, the need to 

accurately represent variability as a single time-series or space-filling 

representation is impossible, and the choices scientists and managers have 

available to them must be made carefully. In addition to the need for model 

output at close temporal intervals and balanced in the spatial dimensions that 

suit the intended application, the underlying models must be, to the extent 

possible, provided as a free product or service, statistically robust, predictive of 

aspects of the ocean environment of interest, and collaboratively developed or 

verified across sectors. 

8.1. Forecasting Marine Conditions 

Artificial intelligence (AI) is often described as a general-purpose technology. 

In this role, it provides a set of technologies to increase productivity of other 

technologies – production process machine learning, natural language 

processing, and robots, among others. AI in predictive products or services is 

another way in which AI can be classified, occasioning increased efficiencies 

and added value. It turns out that predictions are a very large subset of products 

and services, such that the impact of predictive AI systems on the direction of 

human behaviors and activities is likely been enormous. 

In the oceans and along the coasts, AI and machine learning approaches are 

being used to predict marine conditions, and the ecological and economical 

activity that those conditions support, for times ranging from hours to several 

months. Short-term predictions of waves and currents enables vessel guidance 

to avoid dangerous conditions, usually created by waves but also by currents or 
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a combination of both. Predictions from a few days to two or three weeks are 

useful for planning and conducting recreational and commercial activities 

supported by those marine conditions, depending on the season or the 

occurrence and intensity of nor’easters. Long-term seasonal forecasts are 

beneficial for certain aspects of economic activity, including fisheries 

management, shipping, and offshore energy development including wind and 

oil and gas. Seasonal and annual predictions of oxygen depletion are important 

not just for fish species sensitive to low or low/no oxygen levels, but also for 

those species that interact with them, such as those species that feed on or prey 

upon either fish. 

8.2. Species Distribution Modeling 

Many animals, including commercially and ecologically important fish stocks, 

migrate seasonally at large spatial scales in response to environmental 

variability. Fleet dynamics in marine fisheries can result from localized 

depletion due to high catch per unit effort. Consequently, understanding the 

migration of marine species is important for informed stock assessment and 

management activities. Historical modeling efforts for fish distributions have 

incorporated time series data on hypothesized environmental cues. Such models 

are, however, highly parametric and sample size can become an issue. 

Advances in statistics, process modeling, and machine learning make it timely 

to explore the full potential of a predictive modeling approach based on 

remotely sensed covariates and a wonderfully rich package of alternative 

statistical treatments. 

Fish are poikilotherms, which makes temperature a primary cue in their search 

for prey. Ocean floor depth is also an important driving parameter. For some 

fish, temperature, depth, and salinity affect ammonium absorption in the gills. 

For others, salinity is the only major driving parameter due to rare absorption. 

However, incorporating a long-but-dense route highway into modeling has 

many benefits. First of all, it preserves the geographic features along the 

highway. Having density along the route helps to understand the reason for the 

colonies: a high colony density can be due to a spawning fish migrating back or 

a migratory fish mustering up strength for its journey. Besides, by following the 

maturity cycle, we know what period the specific colonies are at and this 

information can help fill data gaps. Both of these benefits build confidence in 

generalizing the model results. 
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9. Challenges in AI Implementation 

Despite the numerous advantages of AI, there is a significant gap in the 

implementation of AI systems for ocean monitoring and management, likely 

due to the associated challenges in the realization of AI. Some of these 

challenges are discussed here. Although the Large Language Models considered 

here are trained on vast amounts of publicly available content that would be 

impossible for humans to read in the lifetime available to an individual, the 

handling of data that has not been publicly shared presents ethical and security 

challenges. While the training of machine learning models does not involve the 

storage of data in the traditional sense, data used for training is nevertheless 

discoverable, and this poses risks if sensitive data is inadvertently used. The 

implementation of machine learning systems in domains, such as healthcare or 

finance, where data privacy is paramount, typically involves some form of data 

scrubbing to remove sensitive information, a process that is complex and 

difficult. As AI finds increasing use in ocean monitoring, the data vacuum-

cleaner approach to data collection may disadvantage those countries or regions 

with less manpower or financial resources, since these data may be disruptive to 

sensitive ecosystems or be used as a proxy by competitors during crunch times. 

In most scientific fields, research is carried out within a loosely defined 

community, and data is collected and shared for the good of the community. 

Such is still not necessarily true for the ocean, although the creation of publicly 

accessible databases is becoming the norm. The sharing of data has still not 

produced the kind of dividends that might be expected on that investment, in 

part because data remains available in silos, but also due to issues of data 

quality and provenance. Much of the publicly accessible acoustic data relevant 

to marine bioacoustics has been collected by commercial companies or research 

groups from developed regions at varying levels of expense, and as a result, 

they are often produced for different ends, using different collection methods 

with varying success rates. 

9.1. Data Privacy and Security 

The utilization of AI presents opportunities for extraordinary enhancements in 

fieldwork operations and policy implementation efficiency and sloganing. 

While these transformations present enormous promise, the nature of digital 

transformation upon government agencies structures and institutional 

capacities, and upon measurable efforts in investing agency missions, creates a 
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new set of needs for research and implementation. Moving towards a future 

where AI agents aid human decision-makers and data collection is curated in a 

proper manner is a shared goal. However, these emerging technologies face 

challenges with anecdotal experiences often being used to convince 

governments to adopt a technology afterwards experiencing operational failure 

as no foundational work had been completed. 

Data privacy must be the leading consideration in development if agencies wish 

to be successful. Data privacy breaches can occur at any stage of the evidence 

synthesis pipeline from data collection and transfer, to the decision models used 

to analyze the results and their recommended actions, to the day-to-day 

enactment of those decisions. When trained on aggregated, individual accounts, 

hallucination can put private information at risk. Model parameters may also 

leak sensitive data. This poses a risk of exposing personal information if models 

are later run without careful anonymity guards. During the knowledge 

distillation process, secret data points may be discovered, which is a serious 

issue when developing mental model generators for utilizational systems. Users 

or agents are likely to send unique instances during general use of the AI, such 

as through social media channels. 

9.2. Integration with Existing Systems 

Integration of AI solutions with existing systems can be a challenge. For 

example, if fish aggregation devices are equipped with AUVs for monitoring, 

existing protocols for data linkage need to be reviewed and updated to include 

automated tagging and archival of data in secure databases. Furthermore, 

information technology restrictions might prevent AUV data access, slowing 

down decision-making processes. These shortcomings will need to be addressed 

for more robust use of AUVs equipped with AI solutions for ocean monitoring 

and management. AI-enabled Lagrangian observing systems deployed for 

ocean monitoring usually rely on passive tagging of particles or use of satellite 

data as a precursor, providing information on how long it may take a particle to 

reach a site of interest and guiding priority observations such as for oil spills. 

These limitations can delay decision making like assessment of near real-time 

information on whether it is authorized fishing or not for Subsurface Whirl Flux 

buoy, a system able to detect subsurface motion using machine learning and co-

array processing techniques. 
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Some commercially available autonomous systems may be modified to allow 

for rapid data exchange. With the advent of miniaturized robotics, launching 

small autonomous systems from ocean-going vessels, while heading towards a 

target location based on available data in secure cloud platforms, can be 

achieved within short time frames. These incidents highlight the importance of 

investing in interoperability of autonomous vehicles with information sharing 

features to undertake public safety missions. To facilitate successful 

deployment of autonomous systems in adverse incidents such as oil spills, some 

form of centralized command structure may be used to facilitate discussions, 

determine responsibilities, and assist with integration. 

10. Ethical Considerations in AI for Ocean 

Management 

Acknowledging the rapid advancements in AI deployment for ocean monitoring 

and management, it remains crucial that these systems be designed, developed, 

and deployed in a responsible manner. There are many key ethical 

considerations to consult when designing AI systems to interact with marine 

life and ecosystems, and frequently the discussions surrounding it are troubling 

and unregulated. This raises the potential for harm, including violations of 

privacy, lack of accountability and transparency, and even deployment of 

systems for unwarranted oppressive behavior. The review of practical 

implementations of AI for ocean monitoring, and the continuously growing 

catalog of natural and anthropogenic issues in the oceans, expose various 

scientific, economic, technical, and ethical research fronts that will need to be 

filled to advance the field. Here, we explore two pertinent topics: (i) Impact on 

Marine Life: The consideration of some monitoring and management systems 

that interact directly with marine life may require to be operated or designed 

cautiously, in order to minimize unavoidable bycatch or animal disturbance 

during learning or fielding efforts, or other detrimental environmental impacts; 

(ii) Regulatory Frameworks: An effective regulatory framework remains to be 

discussed and implemented to address responsibility and bycatch and 

disturbance mitigation. 

Marine organisms are sensitive to even small perturbations from human 

activities, especially during periods of high evolutionary and ecological 

significance, such as during feeding, breeding, brooding, and dispersal. Many 

monitoring and management missions necessitate disturbing marine life at some 
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point, either through incidental bycatch or through temporarily placing 

individuals and the environments they reside in at risk of direct or indirect 

harm. It is essential to assess how systems will operate in realistic conditions, 

including the possibility of encountering sensitive species. These challenges are 

particularly acute for learning-based methods. 

10.1. Impact on Marine Life 

Ethical consideration in AI for ocean management has made researchers 

attentive for implementation of any AI solution without series questioning of 

hidden costs. Despite the fulfillment of great task by AI in devising effective 

plans for ocean management and resource sustainability, there are some real 

costs as well. These costs about directing attention from intrinsic interest in 

ocean study to their monetary use quantification. If these ethically questionable 

applied solutions become the prey of socio-economic advantages getting allure, 

the right course of ocean study may be diverted because of significant 

performance boost by AI. Uncertainty estimation which is one of the imbalance 

in model, may induce an ethical concern when it comes to using AI for decision 

making. Future result retraction after AI predictions for offshore activity boom 

utilization could be sensitive. If AI could be fully reliable then no human 

intervention would be needed, but since it relies on machine interfaces and 

learning data which at times go wrong, this becomes a question of ethical use. 

Such issues become of greater importance for marine species and habitats that 

are already vulnerable, threatened or at risk. Marketing sensitivity, 

environmental stress and harm to species have all been cited as potential issues 

in relation to the new AI techniques. Such reactions could potentially influence 

negative response to these innovations. 

The back-and-forth nature of the interactions also raises concerns about 

misleading information being put into circulation without caution or context, 

particularly when regarding sensitive or critical topics related to the 

environment. Although the keywords set approach relied on known keywords 

for most snow crab developmental stages or early life processes, the AI model 

has the potential to explore other, less well-known keywords. Ultimately, 

awareness of the advantages and risks that come with the promotion of this 

novel technology and its algorithm functions should ensure that it is enhancing 

what is already being done, helping to fill gaps in study or knowledge and 

ensuring the risk of management or species threat are not increased. 
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10.2. Regulatory Frameworks 

The governance of AI and ML on an international and national level is still 

often patchy and underdeveloped. However, some obligations and other 

conventions, treaties, and guidelines have relevance for the means by which AI 

and ML will be deployed. Therefore, it is evermore essential to clarify guidance 

and develop more comprehensive legal, policy, and regulatory frameworks to 

facilitate international cooperation and the positive contribution of international 

law to the development and deployment of AI and ML with respect to the 

marine environment. 

There exists an abundance of AI guidelines and AI ethical values, but many of 

them are vague and overly suggestive. With respect to AI’s impact on the 

ocean, relatively few sections that connect to specific international policy 

frameworks, guidelines, or ethical codes exist. As such, marine science 

development and ocean management decisions in favor or against the use of AI 

or preference or priority for certain AI methods cannot create appropriate 

incentives or regulatory frameworks nor substantially reduce the likelihood that 

potentially harmful uses of AI and ML will be misapplied to the ocean in 

question. A focus exclusively on AI-code approaches would neglect the 

benefits of regulatory initiatives as a driver for general adherence to ethical 

considerations for the use of AI within a specific domain, which could take the 

shape of marine and ocean laws, policies, or area-specific guidelines or 

constraints operating within the testimonial conduits listed. 

11. Case Studies of AI Applications in Ocean 

Monitoring 

This paper describes some of the case studies found about Artificial Intelligence 

(AI) applications in ocean monitoring. The implementation of these cases 

benefited with the usage of AI methodologies in order to conduct the research 

or achieve a goal. More specifically, the cases refer to some advancements in 

areas of ocean monitoring, like whale or fish detection, marine geographic 

identification, climate or marine environment predictions, extraction of 

information from satellite, buoys, or floats data, visual recognition of non-

science-related underwater images, and the quality control of non-event data. 

Many AI and Machine Learning (ML) algorithms have learned with the use of 

supervised, semi-supervised, or unsupervised approaches, in order to bring 

revolutionary solutions to these ocean monitoring areas. These areas have 
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undergone advances due to the availability of methods for these existing 

monitoring problems, along with the increase in the availability of different data 

and amounts of monitoring data, computing resources, and investments in the 

AI area. 

AI’s increasing impact on society, and also on science, brings many advances to 

scientific fields through its successful implementations during the last decades. 

For autonomous and operational ocean monitoring, AI is bringing many 

solutions to recognized problems and increasing our monitoring capabilities to 

problems that have not been demonstrated until today. The autonomous 

operational ocean monitoring of predicting what marine events will happen and 

when is probably the field with the greatest technological advancement in 

relation to ocean monitoring. There is a very dynamic activity bringing together 

many research projects composed of strong consortiums individuals from 

several countries, exploring concepts over the last decade and showing 

promising results, but yet to be published for widespread use. Many of those 

cases were achieved with AI but are not labeled as AI to facilitate the 

applicability of the advances described herein. 

11.1. Successful Implementations 

In this section, we highlight eight different case studies of AI successfully 

deployed for ocean monitoring. Each of these examples illustrates the lessons 

that can be learned from how bias and error are balanced in real-world 

examples and illustrate some of the different ways that AI can be applied for 

ocean monitoring. We end this chapter with thoughts on how to more broadly 

enable AI deployment to ensure the lessons learned from these examples are 

available widely to others, enabling the next generation of AI solutions to spur 

progress towards more sustainable management of ocean health. The examples 

are listed alongside stage in the AI development cycle at which they operate, 

and stage of ocean monitoring process enabled. 

We assume the first question readers might ask is, “Why these examples?” The 

eight examples showcased here were chosen not because we felt they were the 

best applications of AI, but rather because they illustrate a variety of the 

different ways in which these technologies can be used for ocean monitoring. 

Taken as a whole, they explore a variety of technological applications, some 

demonstrating different stages in the AI developmental cycle: from prototype 

implementations to system deployments. They additionally cover a number of 
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different processes within the larger ocean monitoring workflow, focusing on 

two main steps: data collection and data extraction. Finally, we also emphasize 

a diverse number of communities submitting the material and applications to 

different ocean domains, either focused on discrete questions on environmental 

health or using AI as part of an integrated observation system. 

11.2. Lessons Learned 

Book-ending our discussion here are lessons learned from the previous projects. 

Almost all AI applications discussed here share an important insight from 

multiple stakeholders interviewed: AI is a tool and, as with all tools, it should 

not be applied indiscriminately for any problem. In general terms, AI will not 

solve problems that are not properly defined or, more importantly, for which 

data does not exist. Furthermore, AI should not be a substitute for the best 

available domain knowledge but rather a complement or a boost to it. In gift 

detection research, domain experts can create sound detection algorithms that 

do not require that training datasets be labelled, thus allowing global bias 

reduction; however, training data is the key concept for all machine learning 

techniques, as its quality and the way it was collected will directly impact the 

quality of AI models. The best solution, as pointed out, is creating models based 

on both domain experts' knowledge and AI. 

Moreover, model explainability is also an important issue that stakeholders 

highlighted. Simply using AI techniques to label species is not sufficient. 

Science is based on reproducibility, and AI models need to be able to provide 

natural explanation and influencing factors for their decisions to be considered. 

Such explanations also help model taming, a task that most AI-based models 

require when applied to a problem outside the training data distribution. In fact, 

the AI techniques described work by inferring correlations from multimodal 

datasets, an often-disregarded fact. This means it is important to consider the 

multimodality of the data when creating the technique or to apply it to similar 

problems; otherwise it can be unsuitable for problems that deviate from their 

training data. 

12. Future Trends in AI and Ocean Management 

Artificial intelligence has the potential to drive disruptive innovation in a 

variety of ocean-related sectors, including tourism, energy, marine biology, 

habitat restoration, exploration, shipping, and management. Priorities for the 
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deployment of data scientist work must focus on the needs of these sectors. 

Simple to implement decision-support tools can help drive the successful 

deployment of AI tools by non-technical investigators, and standardizing well-

tested predictive models will allow federation of predictive systems that work 

across the many borders that oceans represent. Nevertheless, the recent 

evidence of an AI winter suggests that, while early adoption is accelerating in 

some areas, user confidence in AI may need to be earned. Cross-disciplinary 

teams of representatives of end-user domains partnering with AI and computer 

vision experts allow for accurate definition of problems but also sophisticated 

understanding of modeling uncertainties which may affect the predictions years 

after they were made. So-called “embodied models”, designed to mimic human 

reasoning but containing multi-disciplinary knowledge are likely required for 

the complex ocean problems we want to address. Interdisciplinary engagement, 

including ocean modeling and ground-truthing expertise, is essential for 

effective use of AI and machine learning by the diverse stakeholders in ocean 

policy. Governments keen to accelerate the rapid and broad application of AI to 

ocean management in support of the Sustainable Development Goals may 

consider developing tax incentives and research funding programs to enable 

public-private partnerships to focus efforts on answering the complex questions 

facing the future of oceans at a time when major drivers of change challenge 

marine ecosystems. 

12.1. Emerging Technologies 

In fact, apart from funding, which in many cases is still modest, the majority of 

enabling technologies are rather more advanced. Various sets of UxVs are 

available. From sensor to decision support systems, a variety of technological 

building blocks are available. They are exploitable either directly from the 

computer science community or via a quick integration with more domain-

specific technology. Such co-designs are needed to provide satisfactory 

performances because environmental conditions in Oceanographic applications 

are particularly harsh, from high altitude and solar storm interference to 

underwater pressure or corrosive saltiness, even more when buried in 

sediments. We see two classes of enablers that are quite in an advanced state of 

maturity and will require dedicated efforts to be directly exploitable in real 

missions. 

Due to the extreme hostile environments both for electronics and human 

mounted sensors, with the proper exception to satellite-based monitoring, we 
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should approach the next decade with a combination of Smart and Big Data 

approaches. With Smart Data, we intend to encode domain-specific knowledge 

in more or less ad-hoc modeling tools, reducing the search-space complexity. 

Big Data approaches exploit the increasing computer power available and the 

number of sensors distributed that provides data and decide to take the ultimate 

choice by evaluating thousands of generated options. 

We expect that within the upcoming decade the number of missions able to 

provide raw data will really explode combining and integrating UxVs with very 

advanced onboard automatic interpretative capabilities and drastically lower 

their exploitation costs, while still being able to discover anomalies, changes, or 

specific events. 

12.2. Collaborative Efforts in Research 

A key challenge in the adoption of AI for ocean management is the 

interdisciplinary nature of much of the ocean economy, and technology 

development customs for technical disciplines do not fit neatly with those for 

social sciences or humanities. The involvement of industry partners and non-

profit ocean management stakeholders—which are not accustomed to 

undertaking technology development—are important. For example, it can be 

challenging to obtain access to the data and field sites required, there is often 

little or no funding at the proposal phase, and the results of such research can 

take years to bear fruit. However, perhaps more importantly, industry and non-

profits have much more limited experience or resources to manage long-term 

research projects in an academic-like structure nor do they have experience 

collaborating with one another or deepening the collaboration with academic 

researchers throughout the project. 

There are numerous examples of successful current collaborative efforts. One 

project saw a developed optical processor detect excavation sites on the ocean 

floor months after the event, and multiple groups have proposed or executed 

AI-enhanced acoustic and optical planning and exploration. Another initiative 

has funded several successful “Testbed” initiatives focused on the use of AI for 

unmanned aerial systems or marine autonomous surface and underwater 

vehicles for marine science. More broadly, a branch is developing custom 

computing capabilities for marine vehicles, and its partners have been executing 

an at sea research agenda with AUVs and docked vessels for various years. 

Funders are also supporting research in future military or missions. These are 
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all examples of particularly tangible future pathways for collaborative research 

into the implementation of AI for ocean management. 

13. Conclusion 

The ocean remains a poorly understood environment, primarily due to its 

vastness, inaccessibility, and unique conditions. However, the ocean also plays 

a crucial role in maintaining the Earth's energy balance, global climate, and the 

ecosystem's functioning. As a result, various oceanic processes, such as 

currents, tides, and heat content, are increasingly being investigated in relation 

to the long-term climate variability, seasonal climate prediction, and extreme 

climate phenomena. Furthermore, the ocean is an important natural resource 

providing food, fuels, raw materials, and fresh water; it supports economic 

expansion and development. As a result, the ocean is being increasingly 

exploited, and climate change, pollution, and over-exploitation seriously 

threaten its health. However, maintaining the ocean health is a necessary 

condition for ensuring the ecosystem health and the proper functioning of the 

entire Earth system. Thus, a strong and sustainable investment is necessary to 

promote the understanding, monitoring, and responsible management of the 

ocean system. 

Technological developments in Artificial Intelligence are revolutionizing the 

ocean monitoring and management. The AI-assisted implementation of 

innovative equipment and techniques such as autonomous unmanned surface 

vehicles, autonomous water sampling, water chemistry-corrected bio-optical 

measurements, and fixed and mobile platforms with optical sensors have 

resulted in dense monitoring of various oceanic features. Furthermore, AI-aided 

real-time, or close to real-time, satellite observations are crucial for proper 

ocean monitoring and management. They facilitate tracking of various ocean 

properties driving primary production, heat, gas, and pollutant exchange, as 

well as climate variability and predictability. They also support daily and fine-

scale forecasting of the oceanic features that are difficult to model. As a result, 

dense monitoring and an appropriate level of model skill would promote the 

implementation of AI tools such as machine learning, neural networks, and 

deep learning for solving various assimilation and prediction problems in ocean 

monitoring. Integrating deep learning with numerical ocean models results in 

hybrid models, which are often superior to the numerical models, generating 
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accurate forecasts and estimations for various satellite and in situ 

measurements. 
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