
C Program and IOT -
Live Exercise

T. Jones Daniel, J. Bercy Miraclin, and Kiruba V

C Program and IOT -
Live Exercise

T. Jones Daniel
Department of CSE-IoT at CITY Engineering College,
Bengaluru, India

J. Bercy Miraclin
Department of Robotics and Automation at Rajalakshmi
Engineering College, Chennai, Tamil Nadu

Kiruba V
Computer Science and Engineering at Jayaraj Annapackiam
CSI College of Engineering, Nazareth, Thoothukudi, Tamil
Nadu, India

1

Published, marketed, and distributed by:

Deep Science Publishing, 2025
USA | UK | India | Turkey
Reg. No. MH-33-0523625
www.deepscienceresearch.com
editor@deepscienceresearch.com
WhatsApp: +91 7977171947

ISBN: 978-93-7185-205-0

E-ISBN: 978-93-7185-249-4

https://doi.org/10.70593/978-93-7185-249-4

Copyright © T. Jones Daniel, J. Bercy Miraclin, Kiruba V, 2025.

Citation: Daniel, T. J., Miraclin, J. B., & Kiruba, V. (2025). C Program and IOT - Live Exercise. Deep
Science Publishing. https://doi.org/10.70593/978-93-7185-249-4

This book is published online under a fully open access program and is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). This open access license allows
third parties to copy and redistribute the material in any medium or format, provided that proper attribution
is given to the author(s) and the published source. The publishers, authors, and editors are not responsible
for errors or omissions, or for any consequences arising from the application of the information presented
in this book, and make no warranty, express or implied, regarding the content of this publication. Although
the publisher, authors, and editors have made every effort to ensure that the content is not misleading or
false, they do not represent or warrant that the information-particularly regarding verification by third
parties-has been verified. The publisher is neutral with regard to jurisdictional claims in published maps and
institutional affiliations. The authors and publishers have made every effort to contact all copyright holders
of the material reproduced in this publication and apologize to anyone we may have been unable to reach.
If any copyright material has not been acknowledged, please write to us so we can correct it in a future
reprint.

https://doi.org/10.70593/978-93-7185-249-4

2

Preface

This book invites you on a journey into the world of technology — a journey created
especially for higher secondary students who believe that education is both a source of
power and a means to promote equality. In today’s era, where technology drives our

future, learning the fundamentals of C Programming and IoT with practical experiments
for the IoT, Information Technology, Computer Science, and AI & ML departments is
not just an advantage — it is essential. This book is designed to provide that knowledge,
opening pathways to innovation and new opportunities for all learners.

Emphasis is placed on practical learning throughout this book. Built on the belief that
real understanding comes from doing rather than only reading, it offers clear
explanations along with hands-on examples. These examples are intended to simplify
complex ideas, making them easier to grasp while encouraging interactive and
meaningful learning.

Whether your goal is to design intelligent systems, develop robotic solutions, or simply
better understand the digital world, this book will serve as a strong foundation. Through
these pages, we hope readers will not only acquire valuable skills but also ignite their
curiosity and passion for technology. Ultimately, the aim is to empower students to
contribute to a more inclusive, innovative, and technologically advanced future for
everyone.

T. Jones Daniel
J. Bercy Miraclin

Kiruba V

3

Biography

Author 1:

Mr. T. Jones Daniel, M.Th, M.Tech, (Ph.D.), (9.5years
experience) is currently serving as an Assistant Professor in
the Department of CSE-IoT at CITY Engineering College,
Bengaluru. He is also pursuing his Ph.D. in the AI & ML
discipline at Kalasalingam Academy of Research and
Education (NAAC A++ Grade, NBA, nirf). Beyond
academia, he holds the role of Secretary at Light Social
Welfare Trust, an organization committed to supporting
destitute elderly individuals and those suffering from mental
illness.

His research focuses on leveraging Artificial Intelligence and Machine Learning to
extend the lifespan and enhance the quality of life for bedridden elderly individuals.

Mr. Jones journey began during his final year of B.Tech, when he was selected through
campus recruitment as a website designer and contributed to projects via the “Design

Crowd” platform, collaborating with clients in Australia, the Philippines, and the United
States. However, in 2013, he made a pivotal career shift, enrolling in an M.Tech program
with a vision of mentoring students and shaping young minds.

A life-altering experience occurred during his final year of M.Tech at Trichy Railway
Station, where he witnessed an elderly man attempting suicide. The older man was
rescued—though severely injured—after bystanders, including Mr. Jones, stopped the
train. The older man’s quiet despair left a profound impact on Mr. Jones, inspiring him

to dedicate his life to serving the elderly, mentally ill, physically challenged, visually
impaired, and other disabled people.

He strongly believes that “Education imparts essential life skills such as problem-solving
and logical thinking, which are crucial for personal growth and development, and it has
the power to break the cycle of poverty.” In alignment with this philosophy, he has
helped over 26 students from underprivileged urban and rural areas secure employment
opportunities since 2016.

Mr. Jones has authored and published numerous research papers and launched Deep
Learning book, AI ML & DL book, Applied Industrial Automation with Delta PLC, Data
Structure & IOT for students. After seven years of dedicated research, he recently

4

published a scopus indexed noteworthy paper titled “Optimized AI Bed for Maim and

Bedridden Elder Person Based on Mobile Application” (Springer Link below). He

presented this paper at an international conference in Singapore (organized by Springer
Nature), through online while his mother underwent surgery at CMC Hospital. His work
earned him the Best Paper Award.

 In addition, he developed a mobile application titled “Deaf, Dumb, and Maim Assistant

Application”, published on the Google Play Store. This application, created in

collaboration with his former students Er. Munish and Er. Mahendran, has been widely
used by people from various countries around the world, free of charge.

As of 2025, the Light Social Welfare Trust shelters and cares for 158 abandoned
individuals. With over nine and half years of teaching experience and five years as a
Research & Development Coordinator, Mr. Jones continues to guide students in
innovative research endeavors. He also runs a free educational website:

FSWD – PYTHON – C PROGRAM https://jodaeducation.blogspot.com.

Various links:

YouTube:
https://youtube.com/@lightsocialwelfaretrust5522?si=IMsPs4NYG98WTml5 Research
Old Age people:

https://link.springer.com/chapter/10.1007/978-981-97-5862-3_5 Education Web:
https://lightsocialwelfare.blogspot.com

App:https://play.google.com/store/apps/details?id=com.lightoldagehomeapplication.lig
htoldagehome

Author 2:

Ms. J. Bercy Miraclin, is currently pursuing her Bachelor of
Engineering in the Department of Robotics and Automation at
Rajalakshmi Engineering College. Like many students entering a
technical field, she faced early challenges—academic pressure,
self-doubt, and uncertainty about her future. At times, she
questioned whether she had made the right choice.

She holds a quiet belief that “In the moments we doubt our path,

every step is still preparing us for a greater purpose.” This belief

kept her moving forward even when things were unclear.

5

Everything changed when a mentor encouraged her and recognized her potential. That
moment gave her clarity, confidence, and a deep interest in her field. With a stronger
mindset, she moved forward with focus and determination.

Slowly, her struggles became her strength. Her consistent effort and positive attitude led
her to a major personal milestone: becoming the author of her book. This achievement
reflects her determination and growth, marked by the release of "Applied Industrial
Automation with Delta PLC Programming, Ladder Logic, and Control Systems."(ISBN:
978-93-7185-160-2). This achievement stands as a symbol of her growth, resilience, and
commitment.

This success would not have been possible without the unwavering support of her
parents. Their emotional and financial strength helped her move through difficult times.
Even when she doubted herself, they stood by her with unconditional belief.

Her book is not just a personal victory but also a heartfelt tribute to her parents’ sacrifices

and support. Bercy’s journey is a reminder that with faith, persistence, and the right

people beside you, anything is possible.

Author 3:

Ms. Kiruba V – A Journey of Resilience and Purpose

Ms. Kiruba is a determined and inspiring student of Computer
Science and Engineering at Jayaraj Annapackiam CSI College of
Engineering, an institution affiliated with Anna University,
located in Nazareth, Thoothukudi, Tamil Nadu.

Raised without the support of parents from a very young age,
Kiruba's life began with significant challenges. She completed
her schooling in the Tamil

medium, facing not just academic hurdles but also the emotional weight of societal
criticisms and hardships. Rather than allowing these obstacles to break her spirit, she
transformed them into stepping stones, building a path toward a brighter future with
unwavering determination.

Kiruba firmly believes that education is the key to changing one’s destiny. Her passion

for learning and self-betterment reflects her inner strength and vision. Inspired by the
selfless nature of the banyan tree, she aspires to grow strong and wide in her capacity to
help others—offering shade, support, and encouragement to those in need.

6

Her story stands as a powerful testimony to the fact that with resilience, belief, and the
right purpose, even the most difficult beginnings can lead to a meaningful and impactful
life.

7

Table of Contents

MODULE 1 ……………………………………………………………………………1

MODULE 2 …………………………………………………………………...………34

MODULE 3 ………………………………………………………………………...…52

MODULE 4 ………………………………………………………………………...…67

MODULE 5 …………………………………………………………………...………82

MODULE 6 …………………………………………………………………….……100

MODULE 7 …………………………………………………………………….……129

 1

MODULE 1

Introduction To Data Structures:
Data Structures, Classifications (Primitive & Non-Primitive), Data structure
Operations Review of pointers and dynamic Memory Allocation

ARRAYS And STRUCTURES: Arrays, Dynamic Allocated Arrays, Structures and
Unions, Polynomials, Sparse Matrices, representation of Multidimensional Arrays,
Strings STACKS: Stacks, Stacks Using Dynamic Arrays, Evaluation and conversion of
Expressions

1. Intro about- Data Structures

 How can we understand Data Structure?

A data structure is a systematic way of arranging and managing data in a computer to
enable efficient access and use. It specifies how the data is stored in memory and
outlines the methods for carrying out operations like searching, insertion, updating, and
deletion effectively.

Why we give priority to Data Structure?

• Efficient use of memory and processor time.
• Enables solving complex problems (like route finding, scheduling, etc.).
• Essential for designing efficient algorithms.
• Foundation of software development, databases, compilers, operating systems,

and AI.

1.1 Classification of Data Structures

We can broadly classify data structures into 2 categories:

i. Data Structures - Primitive

Programming languages provide these as the core components for constructing

programs.

Examples:

o Integer
o Float

2

o Character
o Pointer
o Boolean

ii. Data Structures - Non-Primitive

They are more advanced structures created using primitive data types..

• Linear Data Structures: Here sequence of data is organized seems line.
o Array
o Queue
o Stack
o Linked List

• Non-Linear Data Structures: Here, Data is organized hierarchically or
graphically.

o Tree
o Graph

1.2 C language examples for each of the primitive data types you listed:

 1 Integer (int) Stores whole numbers (positive or negative).

#include <stdio.h>

int main() {
 int age = 25;
 printf("Age: %d\n", age);
 return 0;
}

Output:
Age: 25

2 Float (float) Stores decimal (floating point) numbers.

#include <stdio.h>

int main() {

3

 float price = 19.99;
 printf("Price: %.2f\n", price);
 return 0;
}

Output:
Price: 19.99

3 Character (char) Stores - single character.

#include <stdio.h>

int main() {
 char grade = 'A';
 printf("Grade: %c\n", grade);
 return 0;
}

Output:
Grade: A

4 Pointer Save another variable’s memory address.

#include <stdio.h>
int main() {
 int x = 10;
 int *ptr = &x;

 printf("Value of x: %d\n", x);
 printf("Address of x: %p\n", (void*)&x);
 printf("Value via pointer: %d\n", *ptr);

 return 0;
}

4

Output:

Value of x: 10
Address of x: 0x7ffeefbff4ac (example)
Value via pointer: 10

5 Boolean C doesn’t have a native bool type in C89/C90 — but in C99 and
later, stdbool.h defines it.

#include <stdio.h>
#include <stdbool.h>

int main() {
 bool isEven = true;

 if (isEven) {
 printf("The number is even.\n");
 } else {
 printf("The number is odd.\n");
 }

 return 0;
}

Output:
The number is even.

Summary Table:

Data Type Example Value

Int 25

Float 19.99

Char 'A'

Pointer &x (address)

Bool true/false

5

1.3 Non Primitive Data structure

Examples in C for each of the Linear and Non-Linear Data Structures you listed,
with short programs for each:

1.3.1 Linear Data Structures

1 Array

Here’s a plagiarism-free rewritten version of your code and explanation
(logic and output remain the same):

#include <stdio.h>

int main() {
 int numbers[5] = {1, 2, 3, 4, 5}; // array initialization
 for(int index = 0; index < 5; index++) {
 printf("%d ", numbers[index]); // printing array
elements
 }
 return 0;
}

Expected Output:

1 2 3 4 5

2 Linked List

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int data;
 struct Node *next;
};

6

int main() {
 struct Node *head = malloc(sizeof(struct Node));
 struct Node *second = malloc(sizeof(struct Node));

 head->data = 10;
 head->next = second;

 second->data = 20;
 second->next = NULL;

 struct Node *temp = head;
 while (temp != NULL) {
 printf("%d ", temp->data);
 temp = temp->next;
 }

 return 0;
}

Output:
10 20

3 Stack (using array)

#include <stdio.h>
#define MAX 5

int stack[MAX];
int top = -1;

void push(int val) {
 stack[++top] = val;
}

int pop() {
 return stack[top--];
}
int main() {

7

 push(10);
 push(20);
 printf("%d ", pop());
 printf("%d", pop());
 return 0;
}

Output:
20 10

4 Queue (using array)

#include <stdio.h>
#define MAX 5

int queue[MAX];
int front = 0, rear = -1;

void enqueue(int val) {
 queue[++rear] = val;
}

int dequeue() {
 return queue[front++];
}

int main() {
 enqueue(10);
 enqueue(20);
 printf("%d ", dequeue());
 printf("%d", dequeue());
 return 0;
}

Output:
10 20

8

1.3.2 Non-Linear Data Structures

Data is arranged hierarchically or with complex relationships.

1 Tree (Binary Tree with In-Order Traversal)

#include <stdio.h>
#include <stdlib.h>

struct Node {
 int data;
 struct Node *left, *right;
};

struct Node* newNode(int val) {
 struct Node* node = malloc(sizeof(struct Node));
 node->data = val;
 node->left = node->right = NULL;
 return node;
}

void inorder(struct Node* root) {
 if (root != NULL) {
 inorder(root->left);
 printf("%d ", root->data);
 inorder(root->right);
 }
}

int main() {
 struct Node *root = newNode(1);
 root->left = newNode(2);
 root->right = newNode(3);

 inorder(root);
 return 0;
}

9

Output:
2 1 3

2 Graph (Adjacency Matrix)

#include <stdio.h>

#define V 3

int main() {
 int graph[V][V] = {
 {0, 1, 0},
 {1, 0, 1},
 {0, 1, 0}
 };

 for (int i = 0; i < V; i++) {
 for (int j = 0; j < V; j++) {
 printf("%d ", graph[i][j]);
 }
 printf("\n");
 }

 return 0;
}

Output:

0 1 0
1 0 1
0 1 0

Summary Table

10

 Structure Example Program

Array Print elements

Linked List Create 2 nodes

Stack Push/Pop values

Queue Enqueue/Dequeue

Tree In-order traversal

Graph Adjacency Matrix

Operations on Data Structures

Typical operations performed on data structures include:

• Traversal: Accessing every element of the data structure exactly once.
• Insertion: Introducing a new element into the structure.
• Deletion: Eliminating an existing element.
• Searching: Locating a specific element within the structure.
• Sorting: Organizing elements in a defined sequence (e.g., ascending or

descending).
• Updating: Modifying the value of an existing element.

Choosing the Right Data Structure

The selection of a data structure depends on several factors,

• Including the nature of the data being stored,
• The operations that must be performed efficiently,
• The limitations of memory and processing power.

For example:

• For fast lookups: use Hash Tables
• For hierarchical data: use Trees
• For graph-like connections: use Graphs
• For sequential access: use Arrays or Linked Lists

11

 Applications of Data Structures

• Managing databases (B-trees)
• Compilers and interpreters (syntax trees)
• Operating systems (process scheduling with queues)
• Social networks (graphs)
• Web search engines (hash maps, priority queues)

2. Data Structures comparison

Data
Structure

Type Key Operations Advantages Use Cases

Array Linear
Indexing,
Traversal

Fast access (O(1)),
simple

Storing fixed-size
data

Linked List Linear
Insertion,
Deletion

Dynamic size, easy
insert/delete

Dynamic memory
usage

Stack
Linear
(LIFO)

Push, Pop
Simple,
Backtracking

Undo feature,
expression eval

Queue
Linear
(FIFO)

Enqueue,
Dequeue

Fair processing order
Scheduling,
printers queue

Tree Non-linear
Insert, Search,
Traverse

Hierarchical data,
fast search

File systems,
XML/JSON

Graph Non-linear
Traverse,
Pathfinding

Represent complex
relations

Networks, maps,
social media

Hash Table
Key-Value
store

Insert, Search,
Delete

Very fast lookups
(O(1))

Databases, caches

Brief Explanation with Real-world Analogies

i. Array

Analogy: Like boxes on a shelf — each box has a fixed position you can
access directly.
Good for: When you know how many items you have and need fast access by
index.

12

ii. Linked List

1. Analogy: A line of people where each individual is connected by holding
the hand of the next.
Good for: When the size of the collection varies frequently and quick
direct access isn’t required.

iii. Stack

 Analogy: A pile of plates where you can place a new plate only on top
or remove the one from the top.
 Good for: Undo/redo actions, reversing strings, parsing expressions.

iv. Queue

 Analogy: A queue at a ticket counter where the person who arrives
first is attended to first.

 Good for: Task scheduling, managing resources fairly.

v. Tree

 Analogy: A genealogy chart where a single parent may have multiple
children.
 Good for: Organizing hierarchical data, searching quickly (binary search
trees).

vi. Graph

 Analogy: A city map — intersections (nodes) connected by roads (edges).
 Good for: Social networks, route finding (Google Maps), dependencies.

vii. Hash Table

13

 Analogy: A dictionary — look up the meaning of a word directly using its
key.
 Good for: Fast searches, like looking up a contact by name in a phonebook.

3. Which one to choose?

When you need… Choose…

Fast, direct access Array

Frequent insertions/deletions Linked List

Last-in, first-out processing Stack

First-in, first-out processing Queue

Hierarchical, sorted, or searchable data Tree

Relationship-heavy data Graph

Fast key-based lookup Hash Table

Pointers & Dynamic Memory Allocation

1.4 What is a Pointer?

A pointer is a variable that stores the address of another variable.

• Declared using *:

int *ptr;

🔷 Example: Pointer Basics
#include <stdio.h>

int main() {
 int x = 10;

14

 int *ptr = &x;

 printf("Value of x: %d\n", x);
 printf("Address of x: %p\n", (void*)&x);
 printf("Value at pointer: %d\n", *ptr);

 return 0;
}

Output:

Value of x: 10
Address of x: (some address)
Value at pointer: 10

1.4.1 Why use Pointers?

• To access and modify memory directly.
• To pass large structures or arrays efficiently to functions.
• To implement dynamic memory allocation.

Dynamic Memory Allocation (DMA)

Normally, variables are stored in the stack, which has a fixed size. For dynamic
and flexible memory allocation during program execution, the heap is used.

DMA functions are defined in <stdlib.h>:

Function Purpose

malloc() Allocate memory

realloc() Resize memory block

calloc() Allocate & zero-init

free() Deallocate memory

15

malloc()

Reserves a given number of bytes in memory without initializing them and provides a
pointer to that memory block.
#include <stdio.h>
#include <stdlib.h>

int main() {
 int *ptr = (int *)malloc(5 * sizeof(int)); // allocate space for 5 ints
 if (ptr == NULL) {
 printf("Memory not allocated\n");
 return 1;
 }

 for (int i = 0; i < 5; i++) {
 ptr[i] = i + 1;
 }

 for (int i = 0; i < 5; i++) {
 printf("%d ", ptr[i]);
 }

 free(ptr); // free the memory
 return 0;
}

Output:
1 2 3 4 5

calloc()

Like malloc(), but initializes all bytes to 0.

int *ptr = (int *)calloc(5, sizeof(int));

realloc()

Resizes an already allocated block.

16

ptr = realloc(ptr, 10 * sizeof(int)); // resize to hold 10 ints

free()

Always release dynamically allocated memory to avoid memory leaks:

free(ptr);

Comparison Table

Feature malloc() calloc() realloc()

Initializes? No Yes (to 0) Retains old

Arguments Size (bytes) #elements, size New size

Returns void* pointer

Best Practices

 Always check if memory allocation succeeded (ptr != NULL).

 Always call free() when done.

 Avoid dangling pointers (set to NULL after free).

1.5 ARRAYS and STRUCTURES

1.5.1 Arrays

 Arrays are fixed-size, contiguous memory blocks to store elements of the same
type.

Example:
#include <stdio.h>

int main() {
 int arr[5] = {10, 20, 30, 40, 50};

17

 for(int i = 0; i < 5; i++) {
 printf("%d ", arr[i]);
 }
 return 0;
}

Output:
10 20 30 40 50

1.5.1.1 Memory diagram - Array

An array of 5 integers:

int arr[5] = {10, 20, 30, 40, 50};

 Memory layout:

Address Value

1000 10

1004 20

1008 30

1012 40

1016 50

Each int takes 4 bytes. Memory is contiguous.

1.5.2 Dynamically Allocated Arrays

 Arrays created at runtime using dynamic memory allocation (malloc, calloc).

Example:
#include <stdio.h>

18

#include <stdlib.h>

int main() {
 int n = 5;
 int *arr = (int *)malloc(n * sizeof(int));

 for (int i = 0; i < n; i++) arr[i] = i + 1;
 for (int i = 0; i < n; i++) printf("%d ", arr[i]);

 free(arr);
 return 0;
}

 Output:
1 2 3 4 5

1.5.2.1 Memory diagram Dynamically Allocated Array

int *arr = malloc(5 * sizeof(int));

 Memory is allocated on heap (non-contiguous from stack).

Stack Heap (malloc)

arr → 2000 2000: val0

 2004: val1

 2008: val2

 2012: val3

 2016: val4

arr points to heap memory starting at 2000.

19

1.5.3 Structures

Structures enable combining variables of various data types under a single name.

Example:
#include <stdio.h>

struct Student {
 int roll;
 char name[20];
 float marks;
};

int main() {
 struct Student s1 = {1, "John", 85.5};
 printf("Roll: %d, Name: %s, Marks: %.1f\n", s1.roll, s1.name, s1.marks);
 return 0;
}

Output:
Roll: 1, Name: John, Marks: 85.5

1.5.3.1 Memory diagram Structure

struct Student {
 int roll;
 char name[10];
 float marks;
};

 In memory (structure s1 at address 3000):

Address Field Value

3000 roll 1

3004 name[0] … 'J'..

3014 marks 85.5

All fields are laid out together (contiguous) in memory.

20

1.5.4 Unions

 Like structures but all members share the same memory space (only one at a time).

Example:
#include <stdio.h>

union Data {
 int i;
 float f;
 char str[20];
};

int main() {
 union Data d;
 d.i = 10;
 printf("i = %d\n", d.i);
 d.f = 3.14;
 printf("f = %.2f\n", d.f);
 return 0;
}

Output:

i = 10
f = 3.14

(Note: after assigning f, i is no longer valid.)

1.5.4.1 Memory diagram Union

union Data {
 int i;
 float f;
 char str[20];
};

21

 Only the largest member’s size is reserved.
If str is the largest (20 bytes), the entire union occupies only 20 bytes, and at any point
only one member is valid.

1.5.5 Polynomials

 Polynomials can be represented using arrays or linked lists.
Here’s an array-based representation of 3x2+2x+13x^2 + 2x + 1.

Example:
#include <stdio.h>

int main() {
 int poly[] = {1, 2, 3}; // coefficients: x0, x1, x2

 printf("Polynomial: ");
 for (int i = 2; i >= 0; i--) {
 printf("%dx^%d ", poly[i], i);
 if (i != 0) printf("+ ");
 }
 return 0;
}

Output:
3x^2 + 2x^1 + 1x^0

1.5.5.1 Memory diagram Polynomial (Array)

int poly[] = {1, 2, 3};

Represents: 3x2+2x+13x^2 + 2x + 1
Memory:

Address Coefficient
4000 1
4004 2
4008 3

22

Each index → coefficient of corresponding power.

1.5.6 Sparse Matrices

 Matrices where most elements are 0. Represent them efficiently using triplets (row,
col, value).

Example:
0 0 5
0 0 0
0 8 0

Triplet representation:

Row Col Value
0 2 5
2 1 8

1.5.6.1 Memory diagram Sparse Matrix (Triplet)

Matrix:

0 0 5
0 0 0
0 8 0

Explanation:

 0 1 2

 Row Col Value

0 0 0 5

1 0 0 0

2 0 8 0

23

Triplet table:

Row Col Value

0 2 5

2 1 8

Memory:

Address Triplet

5000 (0,2,5)

5006 (2,1,8)

1.5.7 Representation of Multidimensional Arrays

 A 2D array is essentially an array of arrays.

Example:
#include <stdio.h>

int main() {
 int mat[2][3] = {{1, 2, 3}, {4, 5, 6}};
 for (int i = 0; i < 2; i++) {
 for (int j = 0; j < 3; j++) {
 printf("%d ", mat[i][j]);
 }
 printf("\n");
 }
 return 0;
}

Output:

1 2 3
4 5 6

24

1.5.7.1 Memory diagram Multidimensional Array

int mat[2][3] = {{1,2,3},{4,5,6}};

Memory in row-major order:

Address Value

6000 1

6004 2

6008 3

6012 4

6016 5

6020 6

1.5.8 Strings

 Strings in C are arrays of characters ending with a null character \0.

Example:
#include <stdio.h>

int main() {
 char str[] = "Hello";
 printf("String: %s\n", str);
 return 0;
}

Output:
String: Hello

25

1.5.8.1 Memory diagram String

char str[] = "Hello";

Memory:

Address Char

7000 H

7001 e

7002 l

7003 L

7004 O

7005 \0

Summary Table:

Concept Key Idea

Array Fixed-size sequence of elements

Dynamic Array Array allocated at runtime

Structure Group of heterogeneous data

Union Shared memory for different data types

Polynomial Represent coefficients in array/list

Sparse Matrix Store only non-zero elements

Multidimensional Array Array of arrays

String Array of characters with \0 terminator

26

1.6 STACKS

Stacks in C – Introduction

What is a Stack?

A stack is a type of linear data structure that operates on the LIFO (Last In,
First Out) principle.

Explanation: The most recently added element is the first one to be removed.

Main Operations of a Stack:

Operation Description

push() Insert (add) an element on top

pop() Remove the element from top

peek() Look at the top element (optional)

isEmpty() Check if the stack is empty

isFull() Check if the stack is full

Features of a Stack

 Linear

 Only one open end (top) for operations

 Implemented by:

• Linked Lists (dynamic stack)
• Arrays (fixed size stack)

Real-world Examples of a Stack

• Undo feature in text editors
• Browser back button history
• Function call/return (call stack)

27

• Expression evaluation

C Example: Stack using Array

A simple program to demonstrate push and pop:

#include <stdio.h>
#define MAX 5

int stack[MAX];
int top = -1;

// Push operation
void push(int val) {
 if (top == MAX - 1) {
 printf("Stack Overflow\n");
 } else {
 stack[++top] = val;
 printf("%d pushed\n", val);
 }
}

// Pop operation
int pop() {
 if (top == -1) {
 printf("Stack Underflow\n");
 return -1;
 } else {
 return stack[top--];
 }
}

// Display stack
void display() {
 if (top == -1) {
 printf("Stack is empty\n");
 } else {
 printf("Stack: ");

28

 for (int i = top; i >= 0; i--)
 printf("%d ", stack[i]);
 printf("\n");
 }
}

int main() {
 push(10);
 push(20);
 push(30);
 display();

 printf("%d popped\n", pop());
 display();

 return 0;
}

Output:

10 pushed
20 pushed
30 pushed
Stack: 30 20 10
30 popped
Stack: 20 10

Advantages:

• Simple to use
• Efficient (O(1) time for push/pop)

Limitations (array-based):

• Fixed size (overflow if full)
• Wastes memory if size is large but stack is small

To avoid this, use linked list implementation of stack (dynamic size).

29

1.6.1 Stacks Using Dynamic Arrays in C

we use malloc()/realloc() - Instead of a fixed-size array, to grow or shrink the array
dynamically.
This avoids overflow if stack grows beyond initial capacity.

Example: Stack with dynamic memory
#include <stdio.h>
#include <stdlib.h>

int *stack = NULL;
int top = -1;
int capacity = 2;

void push(int val) {
 if (top + 1 == capacity) {
 capacity *= 2;
 stack = realloc(stack, capacity * sizeof(int));
 printf("Stack resized to %d\n", capacity);
 }
 stack[++top] = val;
}

int pop() {
 if (top == -1) {
 printf("Stack Underflow\n");
 return -1;
 }
 return stack[top--];
}

void display() {
 for (int i = top; i >= 0; i--) {
 printf("%d ", stack[i]);
 }
 printf("\n");
}

int main() {
 stack = malloc(capacity * sizeof(int));

30

 push(10);
 push(20);
 push(30);
 display();

 printf("%d popped\n", pop());
 display();

 free(stack);
 return 0;
}

 Output:

Stack resized to 4
30 20 10
30 popped
20 10

1.6.2 Evaluation of Postfix Expression

Postfix (Reverse Polish Notation) is evaluated left to right:

• If operand: push
• If operator: pop two, apply operator, push result

Example: Evaluate 23*54*+9-

Steps:

2 3 * → 6
5 4 * → 20
6 + 20 → 26
26 - 9 → 17

Code:
#include <stdio.h>
#include <ctype.h>
int stack[20];

31

int top = -1;

void push(int val) {
 stack[++top] = val;
}

int pop() {
 return stack[top--];
}

int main() {
 char expr[] = "23*54*+9-";
 char *p = expr;
 int op1, op2;

 while (*p) {
 if (isdigit(*p)) {
 push(*p - '0');
 } else {
 op2 = pop();
 op1 = pop();
 switch (*p) {
 case '+': push(op1 + op2); break;
 case '-': push(op1 - op2); break;
 case '*': push(op1 * op2); break;
 case '/': push(op1 / op2); break;
 }
 }
 p++;
 }

 printf("Result: %d\n", pop());
 return 0;
}

 Output:
Result: 17

32

1.6.3 Conversion of Infix to Postfix

Infix: A + B * C
Postfix: A B C * +

Algorithm (Shunting Yard):

 1 Use a stack to hold operators
 2 Precedence & associativity decide when to pop
 3 Operands go directly to output

Code Sketch:
#include <stdio.h>
#include <ctype.h>

char stack[20];
int top = -1;

void push(char ch) { stack[++top] = ch; }
char pop() { return stack[top--]; }
char peek() { return stack[top]; }
int precedence(char op) {
 if (op == '+' || op == '-') return 1;
 if (op == '*' || op == '/') return 2;
 return 0;
}

int main() {
 char infix[] = "A+B*C";
 char postfix[20];
 int j = 0;

 for (int i = 0; infix[i]; i++) {
 char ch = infix[i];
 if (isalnum(ch)) {
 postfix[j++] = ch;
 } else {
 while (top != -1 && precedence(peek()) >= precedence(ch)) {
 postfix[j++] = pop();
 }

33

 push(ch);
 }
 }
 while (top != -1) {
 postfix[j++] = pop();
 }
 postfix[j] = '\0';

 printf("Postfix: %s\n", postfix);
 return 0;
}

Output:
Postfix: ABC*+

Summary Table:

Topic Key Idea

Dynamic Stack Use malloc() & realloc() to avoid fixed size

Postfix Evaluation Use stack to evaluate operands & operators

Infix → Postfix Use stack to reorder based on precedence

34

MODULE II

Queues: Queues, Circular Queues, Using Dynamic Arrays, Multiple Stacks and
queues.

Linked Lists : Singly Linked, Lists and Chains, Representing Chains in C, Linked
Stacks and Queues, Polynomials

2 QUEUES:

Queues in C – Introduction

1 What is a Queue?

A queue is a linear data structure that works on the FIFO (First In, First Out)
principle, where the element added first is the one removed first.:

2 FIFO — First In, First Out

Explanation: In a queue, the element that enters first is also the first to leave.
Example: Similar to people standing in a line, where the one who arrives
earliest is attended to before others.

2.1 Basic Operations on a Queue

Operation Description

isFull() Check if the queue is full (for fixed-size array)

enqueue() Insert (add) an element at rear

isEmpty() Check if the queue is empty

dequeue() Remove an element from front

2.1.2 Features of a Queue

 Linear

 Operations happen at opposite ends:

• Insertions at rear
• Deletions at front

35

 Can be implemented using:

• Arrays (fixed size queue)
• Linked List (dynamic queue)
• Circular Queue

2.1.3 Real-world Examples of Queues

• Print jobs waiting in a printer queue
• Processes waiting for CPU in scheduling
• People in line at a ticket counter
• Packets in a network router

Queue Representation in Memory

For an array-based queue:

• Front: Refers to the index of the earliest element in the queue.
• Rear: Refers to the index of the newest element added.
• In Between: Every element positioned from the front up to the rear is

part of the queue.

2.1.4 Simple Queue Program in C
#include <stdio.h>
#define MAX 5

int queue[MAX];
int front = -1, rear = -1;

// Enqueue (insert)
void enqueue(int val) {
 if (rear == MAX - 1) {
 printf("Queue Overflow\n");
 return;
 }

36

 if (front == -1) front = 0;
 queue[++rear] = val;
 printf("%d enqueued\n", val);
}

// Dequeue (remove)
int dequeue() {
 if (front == -1 || front > rear) {
 printf("Queue Underflow\n");
 return -1;
 }
 return queue[front++];
}

// Display
void display() {
 if (front == -1 || front > rear) {
 printf("Queue is empty\n");
 return;
 }
 printf("Queue: ");
 for (int i = front; i <= rear; i++) {
 printf("%d ", queue[i]);
 }
 printf("\n");
}

int main() {
 enqueue(10);
 enqueue(20);
 enqueue(30);
 display();

 printf("%d dequeued\n", dequeue());
 display();

 return 0;
}

37

Output:

10 enqueued
20 enqueued
30 enqueued
Queue: 10 20 30
10 dequeued
Queue: 20 30

Advantages:

• Simple and easy to use
• Useful for scheduling and resource management

Limitations of array-based queue:

• Even if there’s space in front of the array (after dequeuing), you can’t use it
• To solve this, we use a Circular Queue

2.2 Circular Queue

 What is a Circular Queue?

A circular queue is a type of queue in which the last position is linked back to
the first, forming a circular structure.
✅ This approach eliminates the issue of wasted space found in a regular
(linear) queue.
When the rear pointer reaches the end of the array, it loops back to the
beginning (using the formula: rear = (rear + 1) % MAX) if space is
available.

Circular Queue Example:

#include <stdio.h>
#define MAX 5

int queue[MAX];

38

int front = -1, rear = -1;

void enqueue(int val) {
 if ((front == 0 && rear == MAX - 1) || (rear + 1) % MAX == front) {
 printf("Queue Overflow\n");
 return;
 }
 if (front == -1) front = 0;
 rear = (rear + 1) % MAX;
 queue[rear] = val;
 printf("%d enqueued\n", val);
}

int dequeue() {
 if (front == -1) {
 printf("Queue Underflow\n");
 return -1;
 }
 int val = queue[front];
 if (front == rear) {
 front = rear = -1;
 } else {
 front = (front + 1) % MAX;
 }
 return val;
}

void display() {
 if (front == -1) {
 printf("Queue is empty\n");
 return;
 }
 printf("Queue: ");
 int i = front;
 while (1) {
 printf("%d ", queue[i]);
 if (i == rear) break;
 i = (i + 1) % MAX;
 }
 printf("\n");

39

}

int main() {
 enqueue(10); enqueue(20); enqueue(30); enqueue(40); dequeue(); enqueue(50);
enqueue(60);
 display();
 return 0;
}

 Output:
Queue: 20 30 40 50 60

2.2.1 Memory allocaton - Circular Queue

Imagine a fixed array of size 5:

Index: 0 1 2 3 4
Memory: [20][30][40][50][60]
Front: 1
Rear: 0

Operations:

 dequeue() at front → move front clockwise

 enqueue() at rear → move rear clockwise
When rear+1 == front, the queue is full.
When front == -1, the queue is empty.

Diagram:
Initial: Empty
After enq: [10][20][30][][]
 F=0 R=2
After deq: [][20][30][][]
 F=1 R=2
Wrap around: [60][20][30][40][50]
 F=1 R=0

40

2.3 Stack/Queue Using Dynamic Arrays

 Same logic as linear stack/queue, but allocate memory dynamically and resize
when needed.
We already showed Dynamic Stack earlier.

For a Dynamic Queue:

• Use malloc() for initial size
• Use realloc() to grow when full

Example Sketch:

int *queue = malloc(capacity * sizeof(int));
if (rear+1 == capacity) {
 capacity *= 2;
 queue = realloc(queue, capacity * sizeof(int));
}

This avoids fixed-size limitations.

2.3.1 Memory Allocation -Dynamic Array Stack / Queue

 Memory is allocated on the heap dynamically.

Initial stack:
Heap: [10][20]
Top → 1
Capacity = 2

After resizing (realloc()):
Heap: [10][20][30][40]
Top → 3
Capacity = 4
So dynamic stacks/queues grow their memory block when full.

2.4 Multiple Stacks in a Single Array

 Idea: Use one array to implement two stacks (Stack1 & Stack2) growing in
opposite directions.

41

Example Sketch:
#define MAX 10
int arr[MAX];
int top1 = -1, top2 = MAX;

void push1(int val) {
 if (top1 + 1 == top2) {
 printf("Overflow\n"); return;
 }
 arr[++top1] = val;
}

void push2(int val) {
 if (top2 - 1 == top1) {
 printf("Overflow\n"); return;
 }
 arr[--top2] = val;
}

 Stack1 grows from 0 → MAX-1, Stack2 grows from MAX-1 → 0.

2.4.1 Memory Allocation -Multiple Stacks in Single Array

 One array of size 10, divided for 2 stacks.

Initially:
Index: 0 1 2 3 4 5 6 7 8 9
Stack1 grows → ← Stack2 grows
Top1 = -1 Top2 = 10

After pushing:
Index: [10][20][30] [90][80][70]
 ↑Top1=2 Top2=7↓

Stack1 grows from left → right
Stack2 grows from right → left

2.5 Multiple Queues in a Single Array

 Similar idea as above: partition the array or use additional bookkeeping.

42

Approach 1: Fixed Partition

• Divide the array into n equal parts, each part is a separate queue

Approach 2: Dynamic Allocation

• Use a next[] array and front[], rear[] arrays to track each queue dynamically.

Example Sketch: Two Queues Fixed Partition

#define MAX 10
int arr[MAX];
int front1 = -1, rear1 = -1;
int front2 = 5, rear2 = 4;

void enqueue1(int val) {
 if (rear1 == 4) { printf("Overflow Q1\n"); return; }
 if (front1 == -1) front1 = 0;
 arr[++rear1] = val;
}

void enqueue2(int val) {
 if (rear2 == 9) { printf("Overflow Q2\n"); return; }
 if (front2 == 5) front2 = 5;
 arr[++rear2] = val;
}

 Queue1 uses indices 0–4, Queue2 uses indices 5–9.

2.4.1 Memory Allocation -Multiple Queues in Single Array

 Single array divided into 2 queues (fixed partition).

Memory:
Index: 0 1 2 3 4 | 5 6 7 8 9
Queue1: [10][20][30]
Front1=0 Rear1=2

43

Queue2: [90][80][70]
Front2=5 Rear2=7

2.5 Summary Table

Topic Key Idea

Circular Queue Wrap around end to start

Dynamic Array Stack/Queue Use malloc and realloc

Multiple Stacks Grow from opposite ends

Multiple Queues Partition array or dynamic bookkeeping

2.2 LINKED LISTS

What is a Linked List?

A linked list is a linear data structure, just like arrays — but unlike arrays:

• It does not store elements in contiguous memory locations.
• Instead, each element (called a node) contains:

o Data
o A pointer (link) to the next node

So, a linked list is a chain of nodes connected via pointers.

Why use Linked Lists?

 Arrays have limitations:

• Fixed size (you have to know the size at compile time)
• Insertion and deletion are costly because elements need to be shifted

 Linked lists solve these by:

• Being dynamic in size (can grow or shrink at runtime)

44

• Easy to insert/delete at any position (just adjust pointers)

2.2.1 Types of Linked Lists

• Singly Linked List — each node points to the next
• Doubly Linked List — each node points to next and previous
• Circular Linked List — last node points back to the first

2.2.2 Structure of a Node in C

struct Node {
 int data;
 struct Node* next;
};

Diagram:
[Data|Next] → [Data|Next] → [Data|NULL]

Each box is a node, and next points to the next node.

Features of Linked Lists

 Dynamic size (allocated on heap)

 Efficient insertions/deletions

 Can implement stacks, queues, graphs, etc.

2.2.3 Simple C Program: Singly Linked List

Create and display a linked list
#include <stdio.h>
#include <stdlib.h>

struct Node {
 int data;
 struct Node* next;

45

};

void display(struct Node* head) {
 struct Node* temp = head;
 while (temp != NULL) {
 printf("%d → ", temp->data);
 temp = temp->next;
 }
 printf("NULL\n");
}

int main() {
 struct Node* head = NULL;
 struct Node* second = NULL;
 struct Node* third = NULL;

 head = (struct Node*)malloc(sizeof(struct Node));
 second = (struct Node*)malloc(sizeof(struct Node));
 third = (struct Node*)malloc(sizeof(struct Node));

 head->data = 10;
 head->next = second;

 second->data = 20;
 second->next = third;

 third->data = 30;
 third->next = NULL;

 display(head);
 return 0;
}

 Output:

10 → 20 → 30 → NULL

46

2.2.4 Linked List Advantages:

• Dynamic size
• Easy to insert/delete nodes
• Better use of memory than arrays in some cases

2.2.5 Linked List Disadvantages:

• Extra memory for storing pointers
• No direct access to elements (must traverse)

2.3 Singly Linked Lists

🔷 What is a Singly Linked List?

A singly linked list is a sequence of nodes, where each node contains:

• data
• pointer to the next node

The last node’s next pointer is NULL.

Structure:
struct Node {
 int data;
 struct Node* next;
};

Diagram:
[10|next] → [20|next] → [30|NULL]

 Advantages:

• Dynamic size
• Easy insert/delete at any position

 Disadvantages:

• Cannot traverse backwards

47

2.4 Lists and Chains

🔷 What is a Chain?

In C programming, a chain is just another name for a linked list — a sequence (chain)
of elements where each one points to the next.

Linked lists are often referred to as chains of nodes because of their pointer links.

2. 5 Representing Chains in C

A chain is represented using pointers:

• The first node is called the head
• Each node points to the next
• The last node’s next is NULL

Example: Creating a chain of 3 nodes
#include <stdio.h>
#include <stdlib.h>

struct Node {
 int data;
 struct Node* next;
};

int main() {
 struct Node* head = (struct Node*)malloc(sizeof(struct Node));
 struct Node* second = (struct Node*)malloc(sizeof(struct Node));
 struct Node* third = (struct Node*)malloc(sizeof(struct Node));

 head->data = 10; head->next = second;
 second->data = 20; second->next = third;
 third->data = 30; third->next = NULL;

 struct Node* temp = head;
 while (temp != NULL) {
 printf("%d → ", temp->data);
 temp = temp->next;
 }

48

 printf("NULL\n");
 return 0;
}

 Output:

10 → 20 → 30 → NULL

2.6 Linked Stacks and Queues

We can implement stacks and queues using linked lists instead of arrays — allowing
dynamic size.

🔷 Linked Stack

• Insert and delete at head (LIFO)

Sample Stack Push/Pop:
void push(struct Node** top, int val) {
 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
 newNode->data = val;
 newNode->next = *top;
 *top = newNode;
}

int pop(struct Node** top) {
 if (*top == NULL) return -1;
 struct Node* temp = *top;
 int val = temp->data;
 *top = temp->next;
 free(temp);
 return val;
}

🔷 Linked Queue

• Insert at rear, delete at front (FIFO)

49

Sample Queue Enqueue/Dequeue:
void enqueue(struct Node** front, struct Node** rear, int val) {
 struct Node* newNode = (struct Node*)malloc(sizeof(struct Node));
 newNode->data = val;
 newNode->next = NULL;
 if (*rear == NULL) {
 *front = *rear = newNode;
 } else {
 (*rear)->next = newNode;
 *rear = newNode;
 }
}

int dequeue(struct Node** front) {
 if (*front == NULL) return -1;
 struct Node* temp = *front;
 int val = temp->data;
 *front = temp->next;
 free(temp);
 return val;
}

2. 7 Representing Polynomials with Linked Lists

We can use a linked list to represent a polynomial:
e.g.,

Each node contains:

• coeff (coefficient)
• pow (power of x)
• pointer to next term

Structure:
struct Term {
 int coeff;
 int pow;

50

 struct Term* next;
};

Sample Program:
#include <stdio.h>
#include <stdlib.h>

struct Term {
 int coeff;
 int pow;
 struct Term* next;
};

void display(struct Term* head) {
 while (head != NULL) {
 printf("%dx^%d", head->coeff, head->pow);
 if (head->next != NULL) printf(" + ");
 head = head->next;
 }
 printf("\n");
}

int main() {
 struct Term* head = (struct Term*)malloc(sizeof(struct Term));
 struct Term* second = (struct Term*)malloc(sizeof(struct Term));
 struct Term* third = (struct Term*)malloc(sizeof(struct Term));

 head->coeff = 5; head->pow = 2; head->next = second;
 second->coeff = 4; second->pow = 1; second->next = third;
 third->coeff = 2; third->pow = 0; third->next = NULL;

 display(head);
 return 0;
}

 Output:

51

2. 8 Summary Table:

Concept Key Idea

Singly Linked List Each node points to next

Lists & Chains Chain of nodes

Representing Chains Using struct and pointers

Linked Stack Push/Pop at head

Linked Queue Enqueue at rear, Dequeue at front

Polynomial Representation Coeff, power, linked as terms

52

MODULE-3

Linked Lists : Additional List Operations, Sparse Matrices, Doubly Linked
List.

Trees: Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees.
Text Book: Chapter-4: 4.5,4.7,4.8 Chapter-5: 5.1 to 5.3, 5.5

3 LINKED LISTS :

i. What is a Linked List?

A Linked List is a linear data structure in which elements, known as nodes, are
connected through pointers.
Unlike arrays, the nodes are not stored in consecutive memory locations.

Each node consists of:

• Data: The value stored in the node.
• Pointer (or Link): The reference to the next node in the sequence.

ii. Why use Linked Lists?

 Dynamic size (grow or shrink at runtime).

 Easy to insert and delete elements (no shifting needed as in arrays).

 Slower access than arrays (no direct indexing — need to traverse).

iii. Types of Linked Lists

1 Singly Linked List
Each node is connected to the following node through its pointer, while the
pointer of the last node is set to NULL, marking the termination of the linked
list.

Head → [data|next] → [data|next] → [data|NULL]

2 Doubly Linked List

Each node contains links to both its succeeding and preceding nodes.

53

NULL ← [prev|data|next] ↔ [prev|data|next] ↔ [prev|data|NULL]

3 Circular Linked List
The final node connects back to the first node, creating a circular structure.

Can be singly or doubly circular.

Head → [data|next] → [data|next] → Head

iv Basic Operations

Here are the main operations on linked lists:

• Traverse: Visit each node and process data.
• Insert: Add a node at beginning, end, or middle.
• Delete: Remove a node from beginning, end, or middle.
• Search: Find if a data value exists in the list.

v Advantages

 Size can grow/shrink dynamically.

 Efficient insertions/deletions compared to arrays.

Vi Disadvantages

 Extra memory for pointers.

 No direct access by index (have to traverse).

 Slower to search.

Example in C (Singly Linked List Node)

struct Node {
 int data;
 struct Node* next;
};

Example of creating a node:

struct Node* head = NULL;

54

head = (struct Node*)malloc(sizeof(struct Node));
head->data = 10;
head->next = NULL;

3.1 Additional List Operations

i. Reverse a Linked List

Reverse the order of nodes in the list, so head becomes tail and vice versa.

Example:

Before:

Head → 10 → 20 → 30 → NULL

After:

Head → 30 → 20 → 10 → NULL

Logic:

• Keep 3 pointers: prev, current, next
• Traverse and reverse links

C Code snippet:
struct Node* reverse(struct Node* head) {
 struct Node* prev = NULL;
 struct Node* current = head;
 struct Node* next = NULL;

 while (current != NULL) {
 next = current->next; // save next
 current->next = prev; // reverse
 prev = current; // move prev
 current = next; // move current
 }
 return prev; // new head
}

55

ii. Find Length of Linked List

Example:

For:

Head → 5 → 15 → 25 → NULL

Length = 3

Logic:

• Initialize count = 0
• Traverse and increment count

C snippet:
int length(struct Node* head) {
 int count = 0;
 while (head != NULL) {
 count++;
 head = head->next;
 }
 return count;
}

iii. Find Middle Element

Find the middle node’s data.

Example:

Logic:

• Use two pointers: slow & fast
• Fast moves 2 steps, slow moves 1 step

56

C snippet:
struct Node* findMiddle(struct Node* head) {
 struct Node* slow = head;
 struct Node* fast = head;

 while (fast != NULL && fast->next != NULL) {
 slow = slow->next;
 fast = fast->next->next;
 }
 return slow;
}

iv. Detect a Loop in Linked List

Check if a linked list has a cycle (loop).

Example:

Logic:

• Use Floyd’s cycle detection: slow & fast pointers
• If they meet, there’s a loop

C snippet:
int detectLoop(struct Node* head) {
 struct Node *slow = head, *fast = head;
 while (fast && fast->next) {
 slow = slow->next;
 fast = fast->next->next;
 if (slow == fast) return 1; // loop exists
 }
 return 0;
}

57

v. Sort a Linked List

Sort the list in ascending or descending order.

Example:

Before: 30 → 10 → 20
After: 10 → 20 → 30

Logic:

• Use bubble sort, merge sort, etc., since random access is not possible.

vi. Merge Two Sorted Linked Lists

Merge two sorted linked lists into a single sorted linked list.

Example:
L1: 1 → 3 → 5
L2: 2 → 4 → 6
Result: 1 → 2 → 3 → 4 → 5 → 6

Logic:

• Compare nodes and build merged list

C snippet:
struct Node* merge(struct Node* l1, struct Node* l2) {
 if (!l1) return l2;
 if (!l2) return l1;

 if (l1->data < l2->data) {
 l1->next = merge(l1->next, l2);
 return l1;
 } else {
 l2->next = merge(l1, l2->next);
 return l2;
 }
}

58

vii. Delete Entire Linked List

Free all memory and make the list empty.

Logic:

• Traverse and free each node

C snippet:
void deleteList(struct Node** head_ref) {
 struct Node* current = *head_ref;
 struct Node* next;

 while (current != NULL) {
 next = current->next;
 free(current);
 current = next;
 }
 *head_ref = NULL;
}

Summary Table of Operations

Operation Purpose

Reverse Reverse the list order

Find Length Count nodes

Find Middle Find mid element

Detect Loop Detect cycles

Sort Sort nodes by value

Merge Merge 2 sorted lists

Delete Entire List Free all memory

59

3.2 Sparse Matrices

i. What is a Sparse Matrix?

A sparse matrix is a matrix where the majority of its elements are zero.
To save memory, instead of storing every element (including zeros),
only the non-zero values along with their row and column positions are
stored.

Example Matrix:
M = 0 0 5
 0 8 0
 0 0 0

Here:

• Rows = 3
• Columns = 3
• Non-zero elements = 2 (at positions (0,2) and (1,1))

ii. Triplet Representation:

We store each non-zero element as a triplet:

Row Col Value
0 2 5
1 1 8

Sometimes the first row is metadata (total rows, cols, non-zero count):

3 3 2
0 2 5
1 1 8

This saves space compared to storing all 9 elements.

60

iii. Advantages:

 Saves space for large, sparse matrices.

 Useful in areas like computer graphics, machine learning (e.g., adjacency matrices
of sparse graphs).

3.3 Doubly Linked List

i. What is a Doubly Linked List?

A Doubly Linked List (DLL) is a linked list where each node has two pointers:

• prev → points to the previous node
• next → points to the next node

So, you can traverse both forward and backward.

ii. Node structure:
struct Node {
 int data;
 struct Node* prev;
 struct Node* next;
};

Example:

Each node has:

• data
• prev (points to previous node or NULL)
• next (points to next node or NULL)

61

iii. Operations on DLL:

 Insertion: at beginning, end, or middle.

 Deletion: of a specific node.

 Traversal: forward and backward.

Example Code (insert at beginning):
void insertAtBegin(struct Node** head_ref, int new_data) {
 struct Node* new_node = (struct Node*)malloc(sizeof(struct Node));
 new_node->data = new_data;
 new_node->prev = NULL;
 new_node->next = (*head_ref);

 if (*head_ref != NULL)
 (*head_ref)->prev = new_node;

 *head_ref = new_node;
}

iv. Advantages of DLL over Singly Linked List:

 Can traverse in both directions.

 Can delete a node without traversing from head if you have a pointer to it.

 Easier to implement certain operations like reverse.

v. Disadvantages:

 Requires high memory per node (extra pointer).

 More tough to implement.

62

vi. Quick Comparison Table

Feature Sparse Matrix Doubly Linked List

Structure 2D matrix Linear linked list

Used for Efficient storage Bi-directional traversal

Memory efficiency Saves space if sparse More memory than singly

Elements stored Only non-zero with pos Each node with 2 links

3.3 C - Introduction to Trees

A tree is a non-linear, hierarchical data structure.
It consists of nodes connected by edges.

• Root: Topmost node of the tree.
• Parent and Child: A node connected downward is a child, upward is a parent.
• Leaf: Node with no children.
• Subtree: A tree formed from a node and its descendants.
• A tree structure that consists of a parent node along with all of its

descendant nodes.

Example tree:

Here:

• 1 is the root.
• 2 and 3 are children of 1.

63

• 4 and 5 are leaves.
• 2 is parent of 4 and 5

i. Binary Trees

A binary tree is a tree where:

• Each node can have two children, called:
o Left child
o Right child

Example:

Here:

• 1 is root.
• 2 is left child of 1, 3 is right child.
• 4 and 5 are children of 2.

ii. Binary Tree Traversals

Traversal = Visiting all nodes of a tree in some order.

Types of Traversals

a) Inorder (LNR)

• Left → Node → Right
• Output for above tree: 4 2 5 1 3

64

b) Preorder (NLR)

• Node → Left → Right
• Output: 1 2 4 5 3

c) Postorder (LRN)

• Left → Right → Node
• Output: 4 5 2 3 1

Example:

Diagram with traversal:

Traversal Sequence

Inorder 4 2 5 1 3

Preorder 1 2 4 5 3

Postorder 4 5 2 3 1

iii. Threaded Binary Trees

A threaded binary tree - where threads are replaced with NULL pointers , which
point to the inorder predecessor or successor, to allow efficient traversals without
stack or recursion.

Why?

 To save space.

 To make inorder traversal faster.

65

Example:

Normal Binary Tree:

 10
 / \
 5 15

Pointers of 5's right and 15's left are NULL.

 Threaded Binary Tree:

 10
 / \
 5 → 10 → 15

• Left of 10 points to 5
• Right of 5 (which is NULL in normal tree) points to 10 (its inorder successor)
• Left of 15 (which is NULL) points to 10 (its inorder predecessor)

Types of Threaded Trees:

 Single Threaded: Threads replace only NULL right pointers.

 Double Threaded: Threads replace both NULL left and NULL right pointers.

3.2.2 Advantages:

• No need for stack or recursion during inorder traversal.
• Traversals are faster.

66

Summary Table

Concept Description

Tree Hierarchical structure

Binary Tree Each node ≤ 2 children

Traversals Inorder, Preorder, Postorder

Threaded Binary Tree Uses NULL pointers as links to predecessor/successor

67

MODULE-4

Trees(Cont..): Binary Search trees, Selection Trees, Forests, Representation of
Disjoint sets, Counting Binary Trees,

 Graphs: The Graph Abstract Data Types, Elementary Graph Operations

4.Binary Search Tree (BST)

A Binary Search Tree is a special kind of binary tree, where:

• Each node can have a maximum of two children, as in any binary tree.
• The left subtree of a node holds only those nodes whose values are

smaller than the node’s value.
• The right subtree of a node holds only those nodes whose values are

larger than the node’s value.

• This property is recursively true for all nodes.

Why use a BST?

 Allows fast search, insert, and delete operations in O(log n) time (if the tree is
balanced).

 Useful in situations where data must remain sorted.

 4.1 Example:

Let’s insert the following sequence of numbers into a BST:
50, 30, 70, 20, 40, 60, 80

Step-by-step insertion:

• Insert 50 → root.
• Insert 30 → goes left of 50 (30 < 50).
• Insert 70 → goes right of 50 (70 > 50).
• Insert 20 → goes left of 30 (20 < 30).

68

• Insert 40 → goes right of 30 (40 > 30).
• Insert 60 → goes left of 70 (60 < 70).
• Insert 80 → goes right of 70 (80 > 70).

Diagram of BST:

4.2 Operations on BST

1 Search

To find a key k:

• Start at root.
• If k == root → found.
• If k < root → search in left subtree.
• If k > root → search in right subtree.
• Time complexity: O(h) where h is tree height.

2 Insert

To insert a key k:

• Same logic as search: traverse to proper position and attach a new node.

3 Delete

To delete a node:

• Case 1: Node is a leaf → simply remove it.
• Case 2: Node has one child → replace node with its child.

69

• Case 3: Node has two children → replace node with its inorder successor or

predecessor.

4.3 Traversals in BST

Like any binary tree:

• Inorder Traversal: Visits nodes in sorted (ascending) order.
Example for above BST:
20 30 40 50 60 70 80

• Preorder, Postorder: Same definitions apply.

Advantages of BST

 Maintains order of elements.

 Efficient search/insert/delete compared to unsorted structures.

 Inorder traversal gives sorted order.

Note:

If the BST becomes unbalanced (e.g., inserting sorted data into an empty BST), it
degenerates into a linked list, and operations become O(n).

Example in C (inserting a node):

struct Node {
 int data;
 struct Node* left;
 struct Node* right;
};

struct Node* newNode(int value) {
 struct Node* temp = (struct Node*)malloc(sizeof(struct Node));
 temp->data = value;
 temp->left = temp->right = NULL;
 return temp;

70

}

struct Node* insert(struct Node* node, int value) {
 if (node == NULL) return newNode(value);

 if (value < node->data)
 node->left = insert(node->left, value);
 else if (value > node->data)
 node->right = insert(node->right, value);

 return node;
}

4.4 Selection Trees

What is a Selection Tree?

A selection tree is a complete binary tree used to find the smallest (or largest)
element from a set of elements efficiently.

It is mainly used in external sorting (like k-way merge) to repeatedly pick the
smallest of several sorted streams.

Why use a Selection Tree?

 To merge multiple sorted sequences efficiently.

 To minimize comparisons — each selection takes O(log n) time instead of
scanning all elements.

Structure of a Selection Tree

• Leaf nodes: The elements (e.g., from different sorted lists).
• Internal nodes: The winner of comparison between its two children.
• Root: Holds the smallest (or largest) element, called the winner.

This is also called a winner tree.

71

4.4.1 Example:

We have 4 sorted lists:

L1: 2 …
L2: 5 …
L3: 1 …
L4: 7 …

We want to merge into a single sorted list by repeatedly select the smallest element.

• Initial elements:

2 (L1), 5 (L2), 1 (L3), 7 (L4)

• Build the Selection Tree

Step 1 — Put elements as leaves:

Step 2 — Compare leaf pairs:

• Left pair: min(2,5)=2
• Right pair: min(1,7)=1

72

Step 3 — Compare top nodes:

• min(2,1)=1

 The smallest element is 1 (from L3).

• Next step:

• Replace the used 1 in L3 with its next element (if any).
• Update the tree: only the path from L3 to root needs to be recomputed, in

O(log n) time.

• Why is it efficient?

At each step:

• Picking the smallest: O(1)
• Updating after removing winner: O(log n)
• Much faster than scanning all n elements every time.

• Applications:

 k-way merge sort in external sorting (merging k sorted files).

 Tournament-like problems where you repeatedly select winners.

• Advantages:

 Reduces number of comparisons.

 Very efficient when k (number of streams) is large.

73

 Summary Table

Feature Description

Structure Complete binary tree

Purpose Find min/max repeatedly

Time per operation O(log n)

Applications External sorting, merging

4.5 Forests

What is a Forest?

A forest is a collection of disjoint trees (i.e., multiple separate trees).
It is a set of 0 or more trees, and no node in one tree is connected to a node in another
tree.

Example:

This is a forest of 3 trees: {Tree1, Tree2, Tree3}

74

Relation to Trees:

 If you remove the root of a tree, the remaining subtrees form a forest.
For example:

If you remove A, you get a forest of two trees:

4.6 Representation of Disjoint Sets

What are Disjoint Sets?

Disjoint sets are sets where no element belongs to more than one set.
We often need to manage a collection of disjoint sets and support:

• FIND(x) → find which set x belongs to.
• UNION(x, y) → merge two sets.

i. Representation:

We use trees and parent pointers.

Example:

We have sets: {1,2}, {3,4}, {5}

1 → 1
2 → 1

75

3 → 3
4 → 3
5 → 5

Here each element points to its parent. The root is the representative of the set.

After UNION(2,3):

We make root of one tree point to root of the other:

1 → 3
2 → 1
3 → 3
4 → 3
5 → 5

So now: {1,2,3,4}, {5}

ii. Optimizations:

 Union by rank/size: attach smaller tree under bigger tree.

 Path compression: during FIND, make every node on the path point directly to
the root for faster future queries.

4.7 Counting Binary Trees

 How many binary trees can you form with n nodes?

The number of distinct binary trees with n nodes is given by the Catalan number:

76

i. Example:

So, there are 5 distinct binary trees with 3 nodes.

ii. Example trees with 3 nodes:

• Root with left subtree of 2 nodes, right subtree empty
• Root with right subtree of 2 nodes, left subtree empty
• Root with 1 node left & 1 node right
• etc.

77

iii. Summary Table

4.8 Introduction to Graphs

A graph holds:

• Vertices (nodes): points which is mentioned in the graph.
• Edges (links): connections between vertices.

Graphs can represent networks, relationships, maps, etc.

📌 Example graph:
 A
 / \
 B---C
 \ /
 D

Vertices: {A, B, C, D}
Edges: {(A,B), (A,C), (B,C), (B,D), (C,D)}

4.9 Graph Abstract Data Type (ADT)

A Graph ADT defines a set of operations to work with a graph, independent of how
it’s implemented.

We define a graph G = (V, E) where:

• V is the set of vertices
• E is the set of edges (pairs of vertices)

Concept Key Idea

Forests Collection of disjoint trees

Disjoint Sets Manage sets with no overlap, support FIND/UNION

Counting Binary Trees Catalan number counts number of distinct binary trees

78

 ADT Operations:

 CreateGraph() — create an empty graph

 AddVertex(v) — add vertex v

 AddEdge(u,v) — add edge between vertices u and v

 RemoveVertex(v) — remove vertex and its edges

 RemoveEdge(u,v) — remove edge

 Adjacent(u,v) — check if edge between u and v exists

 Neighbors(v) — return all vertices adjacent to v

 GetVertices() — return set of vertices

 GetEdges() — return set of edges

Graph Representations:

Graphs are commonly implemented as:

 Adjacency Matrix:
A V × V matrix where matrix[i][j]=1 if there’s an edge between i and j.
Example:
For vertices {A,B,C} and edges {(A,B), (B,C)}:

 A B C
A [0 1 0]
B [1 0 1]
C [0 1 0]

 Adjacency List:
Each vertex has a list of adjacent vertices.
Example:

A → B
B → A, C
C → B

 Edge List:
Simply a list of edges:

(A,B), (B,C)

79

4.10 Elementary Graph Operations

These are the basic actions you can perform on a graph:

a) Adding a Vertex

Add a new vertex E:
Before:

Vertices: {A,B,C,D}

After:

Vertices: {A,B,C,D,E}

b) Adding an Edge

Add an edge between two vertices:
Before:

Edges: {(A,B), (B,C)}

After adding (C,D):

Edges: {(A,B), (B,C), (C,D)}

 c) Removing a Vertex

Remove a vertex and all edges connected to it:
Before:

Vertices: {A,B,C,D}
Edges: {(A,B), (B,C), (C,D)}

Remove C:

Vertices: {A,B,D}
Edges: {(A,B)}

80

d) Removing an Edge

Remove a specific edge:
Before:

Edges: {(A,B), (B,C), (C,D)}

Remove (B,C):

Edges: {(A,B), (C,D)}

e) Checking Adjacency

Check if two vertices are directly connected:

Adjacent(B,C) → True
Adjacent(A,D) → False

f) Finding Neighbors

Find all vertices connected to a given vertex:

Neighbors(B) → {A,C}

81

 Summary Table of Graph ADT Operations

Operation Purpose

CreateGraph() Initialize an empty graph

AddVertex(v) Add a vertex

AddEdge(u,v) Connect two vertices

RemoveVertex(v) Delete vertex and its edges

RemoveEdge(u,v) Delete a specific edge

Adjacent(u,v)
Check if u & v both are
connected

Neighbors(v) List all adjacent vertices

📌 Applications of Graphs:

 Social networks (friends/followers)

 Computer networks

 Maps and navigation

 Project scheduling (DAGs)

 Circuit design

82

MODULE 5

Hashing: Introduction, Static Hashing, Dynamic Hashing
Priority Queues: Single and double ended Priority Queues, Leftist Trees
Introduction To Efficient Binary Search Trees: Optimal Binary Search Trees

5 Introduction to Hashing

i. What is Hashing?

Hashing is a technique to store and retrieve data efficiently in constant time (on
average).
We use a hash function to map a key (like a number or name) to an index in a table
(called a hash table).

Example:

We have keys: 25, 42, 96, 77

If the hash table has size 10 and we use:

h(k)=kmod  10h(k) = k \mod 10

then:

• 25 → 5
• 42 → 2
• 96 → 6
• 77 → 7

We store the keys at these indices.

ii. Why use hashing?

 Fast insert/search/delete — O(1) average time.

 Useful in databases, compilers, caches, symbol tables, etc.

83

5.1 Static Hashing

What is Static Hashing?

In static hashing, the size of the hash table and the hash function are fixed in advance.
We cannot change the table size even if the number of keys grows.

Example:

Hash table of size 10, with hash function:

h(k)=kmod  10h(k) = k \mod 10

We insert keys: 23, 44, 12, 67, 34, 56

Table:
0:
1:
2: 12
3: 23
4: 44, 34
5:
6: 56
7: 67
8:
9:

Here we see collisions — e.g., 44 and 34 both map to 4.

EXPLANATION:

We’re building a hash table of size 10, using the hash function:

h(k)=kmod  10h(k) = k \mod 10

That means:
For any key kk, we compute kmod  10k \mod 10 (the remainder when kk is divided by
10).
We store kk at that index in the table.

84

Keys to insert:

23, 44, 12, 67, 34, 56

Hash Table:

It has 10 slots: from 0 to 9.

Step by step:

Insert 23:

Compute: 23mod  10=323 \mod 10 = 3
So, put 23 in slot 3.

3: 23

Insert 44:

Compute: 44mod  10=444 \mod 10 = 4
So, put 44 in slot 4.

3: 23
4: 44

Insert 12:

Compute: 12mod  10=212 \mod 10 = 2
So, put 12 in slot 2.

2: 12
3: 23
4: 44

Insert 67:

Compute: 67mod  10=767 \mod 10 = 7
So, put 67 in slot 7.

85

2: 12
3: 23
4: 44
7: 67

Insert 34:

Compute: 34mod  10=434 \mod 10 = 4
But slot 4 already has 44.

 Collision happens.
We store both in slot 4 using chaining (linked list at that slot).

4: 44 → 34

Insert 56:

Compute: 56mod  10=656 \mod 10 = 6
So, put 56 in slot 6.

6: 56

Final Hash Table:

Slot Keys

0

1

2 12

3 23

4 44 → 34

5

6 56

86

Slot Keys

7 67

8

9

Note:

What happened at slot 4?
Both 44 and 34 hash to 4 (44 mod 10 = 4, 34 mod 10 = 4), so we chain them together
at slot 4.
This is called collision resolution by chaining.

• How to handle collisions?

 Chaining: Store colliding keys in a linked list at that index.

 Open Addressing: Search for the next free slot (linear probing, quadratic probing,
double hashing).

• Disadvantages of Static Hashing:

 If too many keys → table gets overloaded → performance degrades.

 If too few keys → wasted space.
We can’t resize the table.

5.2 Dynamic Hashing

• What is Dynamic Hashing?

Dynamic hashing is a technique where the hash table can grow (or shrink)
automatically as the number of records increases (or decreases).

87

This solves the problem of overflow and wasted space in static hashing:

• Static hashing: table size is fixed → can lead to too many collisions or empty

slots.
• Dynamic hashing: table adjusts its size and structure as needed.

• Why use Dynamic Hashing?

 Supports unlimited insertions without rehashing the entire table.

 Reduces collisions.

 Efficient use of space.

• How does it work?

One common dynamic hashing method is Extendible Hashing.

We maintain:

• A directory of pointers to buckets.
• Buckets contain records (keys).
• Buckets have a local depth, and the directory has a global depth.
• When a bucket overflows, it splits — and the directory may grow.

5.2.1 Example:

 Setup:

• Each bucket can hold 2 keys.
• Hash function: h(k)h(k) = binary representation of kk, and we use the least

significant bits based on depth.

Initial global depth: 1 → directory has 21=22^1 = 2 entries.
Buckets:

Directory:
0 → Bucket0
1 → Bucket1

88

Insert keys: 5, 7, 1, 3

 Step 1: Insert 5

Binary: 101 → last 1 bit = 1
Put in Bucket1.

Bucket0:
Bucket1: 5

 Step 2: Insert 7

Binary: 111 → last 1 bit = 1
Put in Bucket1.

Bucket0:
Bucket1: 5, 7

 Step 3: Insert 1

Binary: 001 → last 1 bit = 1
Bucket1 is full, so we need to split.

 Split Bucket1:

• Increase global depth to 2 → directory doubles to 22=42^2 = 4 entries.

Directory:
00 → Bucket0
01 → NewBucket1
10 → Bucket0
11 → NewBucket1

• Redistribute keys in Bucket1 using 2 bits:
o 5 (101) → 01
o 7 (111) → 11
o 1 (001) → 01

89

Bucket0:
Bucket1 (01): 1, 5
Bucket3 (11): 7

 Step 4: Insert 3

Binary: 011 → last 2 bits = 11
Put in Bucket3:

Bucket0:
Bucket1 (01): 1, 5
Bucket3 (11): 7, 3

Final Table:

 Directory points to buckets properly, and no bucket exceeds its capacity.

 Further insertions may trigger more splits and directory growth.

 Advantages of Dynamic Hashing:

 Automatically handles growth.

 No need to rehash the entire table.

 Good space utilization.

Feature Static Hashing Dynamic Hashing

Table size Fixed Grows as needed

Collisions Must resolve Fewer due to splits

Space utilization Poor if badly sized Better

Complexity Simple More complex

90

 Advantages of Dynamic Hashing:

 Table adjusts to the number of keys.

 No overflow.

 Space-efficient.

5.3 Priority Queues: Introduction

A Priority Queue is a specialized form of queue in which every element is
assigned a priority, and removal is determined by priority instead of the
standard FIFO (First-In-First-Out) rule.

• The element with the highest (or lowest) priority is removed before
others.

• When two elements share the same priority, they are processed in the
order they were inserted.

Example:

We insert the elements:
(JobA, priority=3), (JobB, priority=1), (JobC, priority=2)

In a min-priority queue (lower number = higher priority), the removal order is:
JobB → JobC → JobA

Operations:

 insert(x, priority) → insert an element with priority.

 deleteMin() or deleteMax() → remove the element with highest or lowest priority.

5.3.1 Single-Ended vs Double-Ended Priority Queues

i. Single-Ended Priority Queue

• You can insert elements anywhere.
• But you can only remove the element with the highest priority.

91

Example:

Queue:
[(JobA, 3), (JobB, 1), (JobC, 2)]

• Insert: new job with priority 4
• Delete: removes JobB (priority 1)

This is the standard Priority Queue.

ii. Double-Ended Priority Queue (Deque or DEPQ)

• You can insert elements anywhere.
• And you can remove both the minimum and maximum priority elements.

Example:

Queue:
[(JobA, 3), (JobB, 1), (JobC, 2), (JobD, 5)]

• RemoveMin: removes JobB
• RemoveMax: removes JobD

This is useful when you need to process both extremes.

Applications:

 Single-Ended → job scheduling, shortest path algorithms.

 Double-Ended → interval problems, simulation, event scheduling.

5.4 Leftist Trees

A Leftist Tree (or Leftist Heap) is a type of binary tree used to implement Priority
Queues efficiently.

92

i. Properties of Leftist Tree:

 It is a binary tree, but not strictly balanced.

 It satisfies the heap property: each parent has lower (or higher, for max-heap)
priority than its children.

 Leftist trees are skewed to the left, ensuring the shortest path to a null child is
always on the right.

We maintain a property called null path length (npl):

• npl(x) = length of shortest path from x to a node with no two children.

ii. Why use Leftist Trees?

 They allow merge of two priority queues in O(log n) time.

 Insert and delete operations are also efficient.

5.4.1 Example of Leftist Tree

We want to create a min-priority queue.

We insert: 10, 20, 5, 15

 Insert 10 → becomes root.

 Insert 20 → compare with 10, stays as right child.

 Insert 5 → 5 is smaller, becomes new root.

 Insert 15 → merged to maintain heap & leftist properties.

Final structure:

 5
 / \
 10 15
 /
 20

93

 Here:

• Parent ≤ children (min-heap)
• Left child’s npl ≥ right child’s npl

5.4.2 EXPLANATION:

Leftist Tree: Rules

• Heap property: Parent ≤ children (min-heap).
• Leftist property: null path length (npl) of left child ≥ npl of right child.
• Always merge in a way that keeps the tree left-heavy.

Step 1: Insert 10

We start with an empty tree.
Insert 10 → it becomes the root.

 10

 Heap property is satisfied (only one element).

 Leftist property is satisfied.

Step 2: Insert 20

Now we merge 20 into the tree.

Compare 10 and 20: since 10 < 20, keep 10 as root, and merge 20 to the right.

 10
 \
 20

Now check null path lengths (npl):

94

• Left of 10 → null → npl=0
• Right of 10 → 20 → npl=0

 Leftist property already satisfied since both children have equal npl.

Step 3: Insert 5

Now we merge 5 into the tree.

Compare 10 and 5: since 5 < 10, make 5 the new root, and merge the old tree under it.

So now:

 5
 \
 10
 \
 20

But this violates the leftist property (we prefer left-heavy trees).
So we swap left and right subtrees at each node if needed to maintain: npl(left) ≥

npl(right).

We swap 10's children (since left=null and right=20), and also at 5 we swap left &
right.

Final after swapping:

 5
 /
 10
 /
20

 Heap property: 5 < 10 < 20

 Leftist property: each node’s left subtree is at least as heavy as its right.

95

Step 4: Insert 15

Now we merge 15 into the tree.

We merge 15 with root 5.
Compare 5 and 15: since 5 < 15, keep 5 as root.

Then merge 15 into 5’s right child (which is null).
So 15 becomes the right child of 5.

Intermediate:

 5
 / \
 10 15
 /
20

Now we must maintain leftist property.
At 5, the npl of left (10) is 1, and right (15) is 0.

 Already left-heavy → no need to swap.

Final Leftist Tree:

 5
 / \
 10 15
 /
 20

 Heap property: 5 < 10, 5 < 15, 10 < 20

 Leftist property: each node’s left subtree’s npl ≥ right’s npl.

96

 Summary of each step:

Step Action

Insert 10 Becomes root

Insert 20 Merged to right of 10

Insert 5 Becomes new root, tree restructured to keep leftist property

Insert 15 Attached as right child of 5

5.4.2 Where they are used?

 Priority Queues → CPU scheduling, Dijkstra’s algorithm

 Double-Ended PQ → Simulation, median finding

 Leftist Trees → Efficient PQ implementation

5.5 Efficient Binary Search Trees: Optimal Binary Search Trees (OBST)

Introduction

We know that a Binary Search Tree (BST) is a binary tree where:

• Left subtree contains keys < root.
• Right subtree contains keys > root.
• Searching in a balanced BST takes O(log n) time.

However:

 If the BST is not balanced, the search time can degrade to O(n).

Also:

 In some applications (like compilers, dictionaries), some keys are searched more
frequently than others.

We want to build a BST that minimizes the expected search cost, given the
probability of accessing each key.

97

Such a tree is called an:
Optimal Binary Search Tree (OBST)

i. Why OBST?

Given:

• n sorted keys K1<K2<⋯<Kn
• p_i: probability of searching for key Ki
• q_i: probability of searching for a value that is not in the tree, between keys

We want to build a BST that minimizes:

 Expected search cost

ii. Cost of a BST

If a key is found at depth d, and its probability is pi, it contributes pi×(d+1) to the
expected cost.
Similarly for unsuccessful searches.

Total expected cost EE is:

iii. Dynamic Programming Solution:

We solve it using DP in O(n³) time (or optimized to O(n²)).

We compute:

 e[i,j]: expected cost of OBST containing keys Ki,...,Kj

 w[i,j]: sum of probabilities pi,...,pj and dummy keys qi−1,...,qj

We fill a DP table and pick the root of each subtree to minimize cost.

98

 5.6 Example:

Given:

Keys: K1=10K_1=10, K2=20K_2=20, K3=30K_3=30
Probabilities:

• Successful: p1=0.3, p2=0.2, p3=0.5
• Unsuccessful: q0=0.1, q1=0.1, q2=0.1, q3=0.1

Approach:

We need to decide which key to place at root and recursively which keys to place in
left/right subtrees.

We try all possible roots for each subproblem:

• If K1 is root → left: empty, right: K2,K3
• If K2 is root → left: K1, right: K3
• If K3 is root → left: K1,K2 right: empty

For each, we compute the cost recursively and pick the minimum.

Result:

Optimal structure for this example:

 30
 /
 10
 \
 20

Here, 3030 is chosen as root because it has the highest probability (0.5).
1010 and 2020 are arranged to minimize the expected weighted path length.

99

5.7 Advantages of OBST:

 Minimum expected search cost

 Takes into account frequency of searches

 Useful for applications like:

• Symbol tables in compilers
• Dictionary lookups where some words are queried more often

Time Complexity:

 DP approach: O(n³)

 Knuth’s optimization: O(n²)

Summary Table

Feature Description

Input Sorted keys & probabilities

Output BST with minimum expected search cost

Technique Dynamic programming

Time complexity O(n2)O(n²) or O(n3)O(n³)

Use cases Dictionaries, compilers

100

MODULE 6

INTERNET OF THINGS (IOT)

6.1.Arduino

6.1.1.Introduction to Arduino

Arduino seems to an open-source microcontroller platform used for construct digital
devices and interactive systems. It consists of programmable hardware boards and a
user-friendly software IDE. Arduino can read inputs from sensors and control outputs
like LEDs, motors, or relays. It is widely used for prototyping, IoT, robotics, and
automation applications. It consists of programmable hardware boards and a user-
friendly software IDE. Arduino can read inputs from sensors and control outputs like
LEDs, motors, or relays. It is widely used for prototyping, IoT, robotics, and automation
applications.

6.1.2.Types of Arduino Boards with Pin Configurations

1. Arduino UNO

The Arduino UNO is familiarly used in board circuit , ideal for beginners. It is based on
the ATmega328P microcontroller.

Digital Input & Output Pins: 14

Analog Input Pins: 6

PWM Pins: 6

UART (Serial Communication): 1

I2C: Yes

SPI: Yes

2. Arduino Nano

The Arduino Nano is a compact and breadboard-friendly version of the UNO, using the
same microcontroller. It is preferred for space-constrained applications.

Digital I/O Pins: 14

Analog Input Pins: 8

PWM Pins: 6

UART: 1

101

I2C: Yes

SPI: Yes

3. Arduino Mega

This is designed for larger and more complex projects needs multiple actuators and
sensors . It uses the ATmega2560 microcontroller.

Digital Input and Output Pins: 54

Analog Input Pins: 16

PWM Pins: 15

UART: 4

I2C: Yes

SPI: Yes

6.1.3.Parts of Arduino UNO

Figure 6.1

6.1.4.Five Steps to program an Arduino:

• Programs written in Arduino are known as sketches. A basic sketch consists of
3 parts

1. Declaration of Variables

102

2. Initialization: - written in the void setup () function.

3. Control code: - written in the void loop () function.

• The sketch is saved with .ino extension. Any operations like verifying, opening
a sketch, saving a sketch can be done using the buttons on the toolbar or using
the tool menu.

• The sketch should be stored in the sketchbook directory.

• Choose the proper board from the tools menu and the serial port numbers.

• Click on the Upload button or choose Upload from the Tools menu. USB cable
helped to install the program code to the microcontroller through bootloader.

6.1.5.Few of basic Adruino functions are:

digitalRead(pin): Reads the digital value at the given pin.

digitalWrite(pin, value): Writes the digital value to the given pin.

pinMode(pin, mode): Sets the pin to input or output mode.

analogRead(pin): Reads and returns the value.

analogWrite(pin, value): Writes the value to that pin.

serial.begin(baud rate): Sets the beginning of serial communication by setting the
bit rate.

6.2.Some Basic Projects

6.2.1.Train Traffic Light

A train traffic light with ultrasonic sensors and two sensors can be used to detect the
presence of trains and control signals. The first sensor detects a train approaching,
turning the signal green to allow the train to pass. The second sensor detects when the
train has passed, turning the signal red to stop traffic. This setup ensures safe train
movement and prevents accidents by controlling the lights based on sensor inputs.

Components and its usage:

1. Arduino Board (e.g., Arduino Uno): The central controller that processes sensor
data and controls the LEDs.

2. 2 Ultrasonic Sensors (e.g., HC-SR04): Measure the distance to detect an
approaching or departing train.

103

3. Red LED: Represents the stop signal, turning on when the train is detected or
has passed.

4. Green LED: Represents the go signal, blinking when the train is approaching.

5. Jumper Wires: Used to make electrical connections between the Arduino,
sensors, and LEDs.

Circuit Diagram:

The circuit diagram is illustrated in figure 6.2

Figure 6.2

program:

const int trigPin = 9; // Trigger pin for Ultrasonic sensor

const int echoPin = 10; // Echo pin for Ultrasonic sensor

const int redLed = 3; // Red LED

const int greenLed = 4; // Green LED

void setup() {

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 pinMode(redLed, OUTPUT);

 pinMode(greenLed, OUTPUT);

104

 Serial.begin(9600); // Open serial monitor to see distance readings

}

void loop() {

 long duration;

 int distance;

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 duration = pulseIn(echoPin, HIGH);

 distance = duration * 0.034 / 2;

 Serial.print("Distance: ");

 Serial.print(distance);

 Serial.println(" cm");

 // Blink Green LED if a train is detected within 50 cm

 if (distance > 0 && distance <= 50) {

 digitalWrite(redLed, LOW); // Turn off red

 blinkLed(greenLed); // Blink green

 } else {

 digitalWrite(greenLed, LOW); // Turn off green

 blinkLed(redLed); // Blink red

 }

 delay(500); // Wait for 500 ms before the next reading

}

void blinkLed(int ledPin) {

105

 digitalWrite(ledPin, HIGH); // Turn LED on

 delay(300); // Wait for 300 ms

 digitalWrite(ledPin, LOW); // Turn LED off

 delay(300); // Wait for 300 ms

}

Hands on work

The Hands on work is shown in figure 6.3

Figure 6.3

6.2.2.Tunnel Light Automation

Tunnel light automation uses sensors to detect ambient light and vehicle movement,
adjusting lighting accordingly for safety and energy efficiency. It employs light sensors
and motion detectors to control LEDs, ensuring optimal illumination during low
visibility. This system conserves energy by reducing lighting when it's not needed. It
enhances road safety in tunnels by providing adequate lighting based on real-time
conditions.

Components and its usage:

1. Arduino Uno: The main microcontroller board that controls the entire system.
2. LEDs: Simulate tunnel lights, turned on or off by the relay based on light

conditions.

106

3. IR sensor: Detects the presence or movement of objects using infrared light,
triggering corresponding actions in automation systems.

Circuit Diagram:

The circuit diagram is illustrated in figure 6.4

Figure 6.4

Program:

const int ledPin = 6; // LED connected to digital pin 6

const int irPin = 7; // IR sensor connected to digital pin 7

void setup() {

 pinMode(ledPin, OUTPUT); // Set LED pin as output

 pinMode(irPin, INPUT); // Set IR sensor pin as input

}

void loop() {

 int irState = digitalRead(irPin); // Read state of the IR sensor

 if (irState == LOW) { // When the IR sensor detects an object (LOW is common for
some IR sensors)

 digitalWrite(ledPin, HIGH); // Turn on the LED

 } else {

107

 digitalWrite(ledPin, LOW); // Turn off the LED

 }

 delay(100); // Small delay for stability

}

Hands on work:

The Hands on work is shown in figure 6.5

Figure 6.5

6.2.3.Flame Detection System

 A flame detection sensor system used to detect a flame or fire by sensing infrared (IR)
radiation. When a flame is detected, the system triggers alarms or safety measures to
prevent damage. It's commonly used in fire alarms, safety systems, and industrial
environments. This system ensures early detection and response to potential fire hazards.

Components and its usage:

1. Arduino Uno: The main microcontroller that processes sensor data and controls
the output devices

2. Flame Sensor: Detects infrared radiation emitted by flames and sends a signal
to the Arduino.

108

3. Buzzer: Sounds an audible alarm when a flame is detected to alert nearby
individuals.

4. Jumper Wires: Used to connect all the components together in the circuit.

Circuit Diagram:

The circuit diagram is illustrated in figure 6.6

Figure 6.6

Program:

const int flameSensorPin = 2; // Flame sensor connected to digital pin 2

const int buzzerPin = 5; // Buzzer connected to digital pin 5

void setup() {

 pinMode(flameSensorPin, INPUT);

 pinMode(buzzerPin, OUTPUT);

 Serial.begin(9600);

}

void loop() {

 int flameState = digitalRead(flameSensorPin); // Read flame sensor state

 Serial.println(flameState); // Print the flame sensor state to the Serial Monitor

 if (flameState == LOW) { // Flame detected

 tone(buzzerPin, 1000); // Sound buzzer continuously

 Serial.println("Flame detected!");

109

 } else { // No flame detected

 noTone(buzzerPin); // Stop buzzer

 Serial.println("No flame detected.");

 }

 delay(500); // Delay for stability

}

Hands on project:

The Hands on work is shown in figure 6.7

Figure 6.7

6.2.4.Solar Tracker

A solar tracker using 2 LDRs and Arduino with a servo motor is a device designed to
maximize the energy absorbed by solar panels and randomly adjusting their
orientation/panel to follow the source like sun's movement across the sky. The system
uses Light Dependent Resistors (LDRs) to detect power centre point of sunlight and a
servo motor to reposition the solar panel.

Components and its usage:

1. Arduino Board (UNO): Acts as the brain of the system, controlling the servo
motor based on input from the LDRs.

2. Two LDRs (Light Dependent Resistors): Sensors that measure the light intensity
from two different directions.

110

3. Servo Motor: Adjusts the position of the solar panel to align it optimally with
the sunlight.

Circuit Diagram:

The circuit board diagram is illustrated in figure 6.8

Figure 6.8

Program:

#include<Servo.h>

Servo servo;

int ldr1 = A0;

int ldr2 = A1;

int servoAngle = 90;

int threshold = 90;

int stepSize = 5;

void setup() {

 servo.attach(11);

 servo.write(servoAngle);

 Serial.begin(9600);

111

}

void loop() {

 int leftLdr=analogRead(ldr1);

 int rightLdr=analogRead(ldr2);

 Serial.print("Left LDR:");

 Serial.print(leftLdr);

 Serial.print("||Right LDR");

 Serial.print(rightLdr);

 if(leftLdr > rightLdr + threshold)

 {

 servoAngle = constrain(servoAngle - stepSize ,0,180);

 Serial.println("Moving left");

 }

 else if(rightLdr > leftLdr + threshold)

 {

 servoAngle = constrain(servoAngle + stepSize ,0,180);

 Serial.println("Moving right");

 }

 else

 {

 Serial.println("Balanced light");

 }

 servo.write(servoAngle);

 Serial.println("servoAngle:");

 Serial.println(servoAngle);

 delay(200);

112

}

Hands on work:

The Hands on work is shown in figure 6.9

Figure 6.9

6.2.5. Fire Detection System

A Fire Detection System using an LCD, Fire Sensor, and Buzzer with 4-line output is
designed to monitor and alert users about potential fire hazards. This system typically
uses a Fire Sensor (such as the MQ series sensor) to detect the presence of smoke or
fire, and an LCD to display the system status. A Buzzer is used to provide an audible
alert when fire is detected

Components and its usage:

1. Arduino: Acts as the microcontroller that processes data from the fire sensor
and controls outputs like the LCD and LED.

2. Jumper Wires: Connect components (sensors, LEDs, LCD) to the Arduino
without soldering.

3. LCD (Liquid Crystal Display): Displays messages or status like "Fire
Detected" or sensor readings.

4. Fire Sensor: Detects fire or flames by sensing infrared radiation (usually a
flame sensor module).

5. Buzzer: Emits a loud sound to alert occupants of a potential fire hazard.

113

Circuit diagram:

The circuit diagram is illustrated in figure 6.10

Figure 6.10

Program :

#include <Wire.h>

#include <LiquidCrystal_I2C.h> // Set the LCD address to the one found using the I2C
scanner

LiquidCrystal_I2C lcd(0x27, 16, 2); // Replace 0x27 with your LCD's I2C address

const int flameSensorPin = 2;

const int buzzerPin = 8;

void setup() {

 lcd.init();

 lcd.backlight();

 pinMode(flameSensorPin, INPUT);

 pinMode(buzzerPin, OUTPUT);

 lcd.print("Fire Detection");

114

 delay(2000); // Display welcome message for 2 seconds

 lcd.clear();

}

void loop() {

 int flameStatus = digitalRead(flameSensorPin);

 lcd.setCursor(0, 0);

 lcd.print("Flame Status: ");

 if (flameStatus == LOW) {

 lcd.setCursor(0, 1);

 lcd.print("Fire Detected!");

 tone(buzzerPin, 1000); // Play a 1000Hz tone on the buzzer pin

 } else {

 lcd.setCursor(0, 1);

 lcd.print("No Fire ");

 noTone(buzzerPin); // Stop playing the tone

 }

 delay(500); // Update every half second

}

Hands on work :

The Hands on work is shown in figure 6.11

115

Figure 6.11

6.2.6. Temperature And Humidity Sensing System

A temperature and humidity sensing system uses sensors to monitor and record
environmental conditions. These systems employ sensors like DHT11 to measure
temperature and humidity levels. The data collected can be displayed on an LCD
screen, stored for analysis, or used to trigger other devices. It's essential for
applications such as climate control, agriculture, and environmental monitoring.

Components and its usage:

1. Arduino Uno: The main microcontroller board that processes data from the
sensors and controls the display.

2. DHT11 Sensor: Measures temperature and humidity levels in the
environment.

3. Liquid Crystal I2C LCD: Displays the temperature and humidity readings for
easy monitoring.

4. Jumper Wires: Connect all components together to form the circuit.

Circuit Diagram:

The circuit diagram is illustrated in figure 6.12

116

Figure 6.12

Program:

#include <Wire.h>

#include <LiquidCrystal_I2C.h>

#include <DHT.h>

#define DHTPIN 7 // Pin where the DHT11 is connected

#define DHTTYPE DHT11 // DHT 11

DHT dht(DHTPIN, DHTTYPE);

LiquidCrystal_I2C lcd(0x27, 20, 4); // set the LCD address to 0x27 for a 20x4 display

void setup() {

 lcd.init(); // initialize the lcd

 lcd.backlight();

 dht.begin();

}

void loop() {

 delay(2000); // Wait for 2 seconds between measurements

 float humidity = dht.readHumidity();

117

 float temp = dht.readTemperature();

 if (isnan(humidity) || isnan(temp)) {

 lcd.setCursor(0, 0);

 lcd.print("Sensor error");

 return;

 }

 lcd.setCursor(0, 0);

 lcd.print("Humidity: ");

 lcd.print(humidity);

 lcd.print(" %");

 lcd.setCursor(0, 1);

 lcd.print("Temp: ");

 lcd.print(temp);

 lcd.print(" *C");

}

Hands on work:

The Hands on work is shown in figure 6.13

118

Figure 6.13

6.2.7. Flood Monitoring System

A Flood Monitoring System using the Esp8266 is an Iot-based project that uses sensors
to detect rising water levels. The ESP8266 processes sensor data and sends alerts via
SMS or IoT platforms. Key components include the ESP8266 module, ultrasonic
sensor, GSM module, and an LED indicator. The system provides real-time monitoring
and early warnings to mitigate flood risks.

Components and its usage:

1. ESP8266 NodeMCU: The main controller.

2. HC-SR04 Ultrasonic Sensor: Measures distance.

3. LED: Indicator light.

4. Jumper wires: connect components with microcontroller without soldering.

Circuit Diagram:

The circuit diagram is illustrated in figure 6.14

119

Figure 6.14

Program:

#define TRIG_PIN 4

#define ECHO_PIN 0

#define LED_PIN 2

void setup() {

 Serial.begin(9600);

 pinMode(TRIG_PIN, OUTPUT);

 pinMode(ECHO_PIN, INPUT);

 pinMode(LED_PIN, OUTPUT);

 Serial.println("Setup complete");

}

void loop() {

 long duration, distance; // Send a pulse to trigger the sensor

 digitalWrite(TRIG_PIN, LOW);

 delayMicroseconds(2);

 digitalWrite(TRIG_PIN, HIGH);

 delayMicroseconds(10);

 digitalWrite(TRIG_PIN, LOW); // Read the echo signal

 duration = pulseIn(ECHO_PIN, HIGH);

120

 Serial.print("Duration: ");

 Serial.println(duration); // Calculate the distance

 distance = (duration / 2) / 29.1;

 Serial.print("Distance: ");

 Serial.print(distance);

 Serial.println(" cm"); // Control the LED based on the distance

 if (distance > 0 && distance < 10) {

 digitalWrite(LED_PIN, HIGH); // Turn on the LED if the water level is too high

 Serial.println("Flood Alert!");

 } else {

 digitalWrite(LED_PIN, LOW); // Turn off the LED if the water level is normal

 Serial.println("Normal Conditions");

 }

 delay(1000); // Wait for 1 second before measuring again

}

Hands on work:

The Hands on work is shown in figure 6.15

Figure 6.15

121

6.2.8. Smart Rain Shield

A rain sensor-based servo system automatically detects rainfall and activates a servo
motor. When rain is detected, the servo motor rotates to deploy a protective cover. When
no rain is detected, the servo retracts the cover back to its original position. This system
is useful for protecting electronics, clotheslines, or open windows from rain.

Components and its usage:

1. Arduino UNO – microcontroller board
2. Rain Sensor Module – to detect rain
3. Servo Motor (e.g., SG90) – to move the cover
4. Jumper Wires – for connections
5. Breadboard or base (optional) – for neat wiring
6. USB Cable – to upload code and power the Arduino

Circuit Diagram :

The circuit diagram is illustrated in figure 6.16

Figure 6.16

Program:

#include <Servo.h>

Servo myServo;

int rainSensorPin = 2; // Connected to D0 of the rain sensor

int rainStatus = 0;

int servoOpenPosition = 90; // Cover deployed

122

int servoClosePosition = 0; // Cover retracted

void setup() {

 pinMode(rainSensorPin, INPUT);

 myServo.attach(9); // Servo signal pin to D9

 myServo.write(servoClosePosition); // Start with cover retracted

 Serial.begin(9600);

}

void loop() {

 rainStatus = digitalRead(rainSensorPin);

 if (rainStatus == LOW) { // LOW means rain is detected

 Serial.println("Rain detected! Deploying cover...");

 myServo.write(servoOpenPosition);

 } else {

 Serial.println("No rain. Retracting cover...");

 myServo.write(servoClosePosition);

 }

 delay(500);

}

Hands on work:

The Hands on work is shown in figure 6.17

123

Figure 6.17

6.2.9.Edge Detector Robot

vehicle that uses IR sensors to detect edges (like the end of a table). It moves forward
until the sensor senses a drop (no surface beneath). When the IR sensor detects no
reflection (edge), the robot stops or turns. This helps prevent the robot from falling off
elevated platforms.

Components Used:

1. Arduino UNO – Main controller

2. L298N Motor Driver Module – Controls the motors

3. IR Sensor Module – Detects the edge (table end)

4. DC Geared Motors (2 pcs) – Drives the robot

5. Wheels (2 pcs) – Connected to the motors

6. Caster Wheel (1 pc) – Balances the robot front

7. Robot Chassis Board – Base to mount all parts

8. Battery Holder (4xAA) – Power supply

9. AA Batteries (4 pcs) – Power source

124

10. Jumper Wires – For connections

11. USB Cable – Uploads code to Arduino

Program:

// Motor A pins

int ENA = 9;

int IN1 = 8;

int IN2 = 7;

// Motor B pins

int ENB = 3;

int IN3 = 5;

int IN4 = 4;

int irSensor = 2; // IR sensor pin

void setup() {

 pinMode(ENA, OUTPUT);

 pinMode(IN1, OUTPUT);

 pinMode(IN2, OUTPUT);

 pinMode(ENB, OUTPUT);

 pinMode(IN3, OUTPUT);

 pinMode(IN4, OUTPUT);

 pinMode(irSensor, INPUT);

 Serial.begin(9600);

}

void loop() {

 int sensorValue = digitalRead(irSensor);

 Serial.println(sensorValue);

 if (sensorValue == HIGH) {

125

 moveForward(); // Surface detected

 } else {

 stopMotors(); // Edge detected

 delay(1000);

 turnRight(); // Turn to avoid falling

 delay(500);

 }

}

void moveForward() {

 digitalWrite(IN1, HIGH);

 digitalWrite(IN2, LOW);

 analogWrite(ENA, 150);

 digitalWrite(IN3, HIGH);

 digitalWrite(IN4, LOW);

 analogWrite(ENB, 150);

}

void stopMotors() {

 digitalWrite(ENA, LOW);

 digitalWrite(ENB, LOW);

}

void turnRight() {

 digitalWrite(IN1, LOW);

 digitalWrite(IN2, HIGH);

 digitalWrite(IN3, HIGH);

 digitalWrite(IN4, LOW);

 analogWrite(ENA, 150);

126

 analogWrite(ENB, 150);

}

Hands on work:

The Hands on work is shown in figure 6.18

Figure 6.18

6.3.Raspberry Pi

6.3.1.What is Raspberry Pi?

The Raspberry Pi is a compact single-board computer. When peripherals such
as a keyboard, mouse, and monitor are connected, it functions like a mini
personal computer. It is widely used in areas like real-time image and video
processing, IoT applications, and robotics. Although not as fast as a traditional
laptop or desktop, the Raspberry Pi still delivers the essential features of a
computer while consuming very little power.

6.3.2.OS for Raspberry Pi

The Raspberry Pi Foundation officially offers the Raspbian OS, which is
based on Debian, along with the NOOBS installer for easy setup. In addition,
several third-party operating systems such as Ubuntu, Arch Linux, RISC OS,
and Windows 10 IoT Core can also be installed. Raspbian, the official

127

operating system, is available free of cost and is specially optimized for
Raspberry Pi. It comes with a graphical user interface (GUI) that provides tools
for web browsing, Python programming, office applications, and games. The
OS is typically stored on an SD card, with at least 8 GB recommended. Beyond
functioning as a computer, Raspberry Pi allows direct access to its onboard
hardware through GPIO pins, enabling the connection and control of devices
such as LEDs, motors, and sensors for application development.

6.3.3.Raspberry Pi processor

The Raspberry Pi is powered by an ARM-based Broadcom processor (SoC)
integrated with an on-chip GPU for graphics processing. Its CPU speed ranges
between 700 MHz and 1.2 GHz. The board includes on-board SDRAM, with
capacity varying from 256 MB to 1 GB. Additionally, it supports hardware
modules such as SPI, I²C, I²S, and UART for interfacing with external devices.

6.3.4.Versions of Raspberry pi models

There are different versions of raspberry pi available as listed below:

128

Figure 6.19

6.3.5. Hardware Components shown in Figure 6.10 are:

• HDMI (High-Definition Multimedia Interface): Used to transmit
uncompressed video and digital audio signals to devices like monitors
and digital TVs. This port typically connects the Raspberry Pi to a
television or display screen.

• CSI (Camera Serial Interface): Establishes a connection between the
Broadcom processor and the Pi Camera, providing the necessary
electrical interface for image and video capture.

• DSI (Display Serial Interface): Utilized to connect an LCD screen to
the Raspberry Pi via a 15-pin ribbon cable. It offers a high-resolution
display connection that sends video data directly from the GPU to the
LCD.

• Composite Video and Audio Output: Provides combined video and
audio signals for connection to audio/video systems.

• Power LED: A red LED that indicates power status. It turns on when
the Raspberry Pi is powered and blinks if the supply voltage drops
below 4.63V, as it is connected directly to the 5V line.

• ACT PWR LED: A green LED that indicates SD card activity.

129

MODULE 7

Programming Essentials Using C

1.1 What is C Programming?

A C program is a set of instructions written in the C programming language. C
is a versatile and powerful general-purpose language developed by Dennis
Ritchie in the 1970s at Bell Labs. It’s commonly used to build system-level
software like operating systems, embedded systems, and other applications because it
is fast and efficient. As a compiled language, C translates code directly into machine
instructions, making it highly performant and suitable for low-level programming.

1.2 Main features of C:

✓ Easy to understand and write.
✓ Executes quickly.
✓ Can run on multiple platforms (portable).
✓ Supports the use of functions and structured coding.
✓ Gives access to memory using pointers.
✓ Acts as a foundation for many other languages (e.g., C++, Java,

Python).

1.3 Basic format of a C Program:

Example 1:

Program:

#include<stdio.h> // Library for input and output

int main(){ // Main function where execution starts

printf(“Hello , World!\n”); //Display message on screen

return 0; // Exit the program successfully

}

130

Explanation:

1. #include<stdio.h>

➢ It refers the standard library - input-output.

➢ It gives access to print functions like printf() which are used to show
messages on the screen.

2. int main()

➢ This is the main entry point of the program.
➢ All C program starts execution through this function.

3. printf(“Hello, World ! \n”);

➢ Helps to prints the text "Hello, World!" to the display.
➢ The \n is a special character(newline) that moves the cursor to a new line

after printing.

4. return 0;

➢ This statement terminates the program and sends the value 0 back to the
operating system.

➢ It signifies that the program has run successfully without any errors.

Example 2:

Add two numbers

Program:

#include<stdio.h>

int main(){

 int a, b, sum;

 printf(“Enter two numbers:”);

 scanf(“%d %d”, &a, &b);

 sum = a + b;

 printf(“Sum =%d\n”, sum);

 return 0;

}

131

Output:

Explanation:

1.#include<stdio.h>

➢ This line tells the compiler about standard input \output library.

➢ printf() to show messages and scanf() to get input.

2. int main()

➢ This is the entry point of the program.

➢ The program starting execution point starts from here.

3.int a, b, sum;

➢ Declares three integer variables:

➢ a and b helps to get and hold user input.

➢ sum will store the result after adding a and b.

4.printf(“Enter two numbers:”);

➢ Print a text and display it – “enter two numbers.”

5.scanf(“%d %d”, &a, &b);

➢ Takes input from the user and stores the values in a and b.
➢ %d is a placeholder for integers.
➢ &a and &b are addresses of the variables - where the input is stored.

6.sum= a + b;

➢ Adds a and b, and stores the results into sum.

7.printf(“Sum = %d \n”, sum);

➢ Shows the result(sum) on the screen.

➢ %d prints the integer value stored in sum.

132

8.return 0;

➢ Tells the computer that the program ended successfully.

Example 3:

Check Even or Odd:

Program:

#include<stdio.h>

int main(){

 int number ;

 printf(“Enter a number :”);

 scanf(“%d”, &number);

 if(number % 2 == 0)

 printf(“Even\n”);

 else

 printf(“Odd\n”);

 return 0;

}

Output:

133

Explanation:

1.#include<stdio.h>

➢ Adds the standard input-output header library.

➢ Needed to use printf() for output and scanf() for input.

2.int main()

➢ Initiate the main function where the program begins.

3.int number;

➢ Creates an integer variable named number.

➢ It will stores the value which is given by the user.

4.printf(“Enter a number:”);

➢ Displays the text.

5.scanf(“%d” , &number);

➢ Reads and save.

6.if (number % 2 == 0)

➢ Checks if the number is even.

➢ % is the modulus operator, which gives the remainder after the division.

➢ If the number divided by 2 leaves no remainder, it is even.

7.printf(“Even\n”);

➢ If the condition is true, it prints “Even”.

8.else

 printf(“Odd\n”);

➢ If the number is not even, then it prints “Odd”.

9. return 0;

➢ Ends the program and returns 0 to show success.

134

Example 4:

Find the Largest Two Numbers

Program:

 #include<stdio.h>

 int main(){

 int a, b;

 printf(“Enter two numbers:”);

 scanf(“%d %d”,&a , &b);

 if (a > b)

 printf(“%d is larger\n”, a);

 else if(b > a)

 printf(“%d is larger\n”, b);

 else

 printf(“Both numbers are equal\n”);

 return 0 ;

}

Output:

135

Explanation:

1.#include<stdio.h>

➢ Adds the standard input/output library.

➢ Lets use printf() for printing and scanf() for reading input.

2.int main(){

➢ The program's starting point.

3.int a , b ;

➢ Declares two integer variables – a and b.

➢ These will store the numbers entered by the user.

4.printf(“Enter two numbers:”);

➢ Prints a message asking the user to enter two numbers.

5.scanf(“%d %d”, &a , &b);

➢ Reads two integer values from the user.

➢ Stores them into a and b.

6.if(a > b)

 printf(“%d is larger\n”, a);

➢ If the value of a is greater than b.

➢ Then it will print that a is larger.

7.else if (b > a)

 printf(“%d is larger\n”, b);

➢ If b is greater than a, then it will print that b is larger.

8. else

 printf(“Both numbers are equal\n”);

➢ if a and b are equal, Then it will print that both numbers are equal.

9.return 0;

➢ This line ends the program.

136

Example 5:

Swap two numbers

Program:

#include<stdio.h>

int main(){

 int a, b, temp;

 printf(“Enter two numbers:”);

 scanf(“%d %d”, &a, &b);

 temp = a;

 a = b;

 b = temp;

 printf(“After swapping: a= %d, b=%d\n”, a, b);

 return 0;

}

Output:

Explanation:

1.#include<stdio.h>

➢ This line adds the standard input-output library.

➢ It allows us to use built-in functions like printf() (to show messages) and
scanf() (to get input).

137

2.int main()

➢ This is the main function –the starting point of the program where execution
begins.

3.int a, b, temp;

➢ Declares three integer variables.
➢ temp is used to help with swapping values.

4. printf(“Enter two numbers:”);

 scanf(“%d %d”, &a, &b);

➢ These lines: Ask the user to type two numbers.

➢ Store them in variables a and b using scanf().

 5.temp= a;

 a = b;

 b = temp;

➢ The value in a is stored temporarily in temp.
➢ Then, the value in b is moved into a.
➢ Finally, the original value of a (which is now in temp) is moved into b.

6.printf(“After swapping: a = %d, b = %d\n”, a, b);

➢ This line displays the swapped values.

7.return 0;

➢ Ends the program successfully.

138

ONLINE WEBSITE REFERENCES

SAMPLE PROGRAM COLLECTION

REACT, ANGULAR, NODE JS, PYTHON, C PROGRAM

https://jodaeducation.blogspot.com

