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Preface 
 

 

 

The intersection of health, climate, and artificial intelligence represents both a 

challenge and an opportunity. This book explores how Cognitive AI — combining 

deep learning, reasoning, and interpretability — can address pressing issues in 

healthcare and climate science while supporting trustworthy, informed decision-

making. 

Focusing on deep models, explainable AI, and decision-support frameworks, we 

examine methods that go beyond automation to enable human–AI collaboration in 

complex, high-stakes environments. Through research insights and real-world case 

studies, the book bridges theory and practice for researchers, practitioners, and 

decision-makers seeking resilient and transparent AI solutions. 

It is my hope that this work inspires the development of AI systems that are as 

trustworthy as they are innovative, serving society’s urgent needs with clarity, fairness, 

and resilience. 

In writing this book, I have drawn on my own experiences in research, teaching, and 

collaboration across disciplines, as well as the invaluable contributions of the AI, 

health, and climate research communities. I am grateful to colleagues, students, and 

partners whose insights have shaped the ideas presented here. May this work inspire 

continued exploration into AI systems that serve humanity’s most urgent needs — and 

do so with clarity, fairness, and resilience. 

 

SAMIT SHIVADEKAR 
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Chapter 1: Cognitive Artificial Intelligence for Societal 

Resilience 
Samit Shivadekar 

University of Maryland Baltimore County and Research Associate at Center for Accelerated Real Time 

Analytics (CARTA) UMBC, United States 

 

 

1. The Convergence of Health and Climate Challenges 

In 1972, an early warning was made against the dangers of the interplay of three main 

malfunctioning factors in global system failure: pollution, overconsumption, and 

inequity. These problems were structuring elements in exponential growth with 

changing nature of their interplay across time. Fifty years later, we are confronting 

global consequences of climate change and the COVID-19 pandemic that are both 

consequences of a mismanaged global system [1-3]. Systems of global connectivity 

can generate a massive convenience for everyone, promoting access to most material 

resources and communication range. But the same systems are generating inequity, 

fragility, exploitation of finite resources, and degradation of leadership, trust, and 

collaborative intentions. 

Population and economic growth, together with biophysical changes feeding back into 

the economy, mean that greenhouse gas emissions will need to peak and decline within 

the next decade to avoid the worst of climate change, and global poverty needs to be 

eradicated while reducing biodiversity loss within the next decade [2,4]. The 

technology available to simultaneously achieve these ambitious goals is not scarce: 

renewables already supply the largest fraction of gigawatts, batteries are becoming 

cheaper and allowing the decarbonization of transport. But the organizations capable of 

mobilizing and coordinating ecosystems, value chains, decisions, and investments at 

the required scale and speed are few, scarce, and fragile. These groups need to be 

supported by flexibility of government policy, access to talent and innovation, and 

skills training and human capital investment. Without these systemic enablers, 

temporary spurts of climate-tech decarbonization or green finance, for example, run the 

risk of being just that: short-lived spurts [5-8]. 
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2. Defining Cognitive AI: Symbolic, Neural, and Hybrid Approaches 

Cognitive Artificial Intelligence (Cognitive AI) is an emerging field of research at the 

intersection of Artificial Intelligence (AI) -- specifically traditional AI, or Symbolic 

AI, and Machine Learning, specifically Representation Learning, notably Neural 

Networks and more generally Deep Learning applied to the problem of representation 

learning or acquiring features from experience. Cognitive AI builds on the foundations 

of Symbolic AI [6,9]. Knowledge Representation and Reasoning is where Cognitive 

AI differs from Symbolic AI. Symbolic AI emphasizes the representation of symbolic 

systems, whereas Cognitive AI emphasizes additional cognitive principles such as 

experience and learning--both cognitive learning, which is inspired by cognitive 

science and developmental psychology. Cognitive AI builds on the foundations of 

Symbolic AI, symbolic cognitive architecture, found its origins in the field of 

Computer Science, developed by various researchers. More generally, Cognitive AI 

focuses on how to make computers more intelligent in the very specific and general 

way that as humans we can learn different types of skills, conceptual knowledge, 

perceptual knowledge, social-cognitive knowledge, and so on, from a combination of 

embodied experience -- the automatic supervised embedding style of learning based on 

physical presence and agent-environment interaction -- with the tools of Language, 

Imagination, and Knowledge [10-12]. 

Over the years, several attempts at Cognitive Architectures have proposed an initial 

solution to this worthy endeavor but providing increasingly more expressive systems. 

The more recent works on Neural-symbolic Models include Neural Agent-environment 

Interaction, Symbolic Program Generation, Code Generation, Visual Gen-modalities 

like language, code, and even other visual Developing Visual Models of the World, 

Knowledge-based Learning of Neural Network Architectures -- Range of 

Componential Cognitive Skills such as Analogy, Induction and Abduction, Reasoning 

about Agents and Intention Recognition, Causo-matic. With the very recent 

developments in Foundation Models for multimodal agents and social robots, we 

appear to be on the verge of something new, combining very efficient experience 

driven Statistically based Learning, Cognitive Development and Plasticity. 

3. Strategic AI for Decision-Critical Environments 

AI supports decision making in many different areas. Commercial, marketing, business 

operations, production and logistics decisions are facilitated by operatively oriented AI 

tools [7,13-16]. Numerous consumer-oriented AI applications have become available. 

However, none of the publicly available AI tools is specifically designed to facilitate 

the decision making in the societal and environment area where action have high, long 

term implications and are essentially irreversible. Such applications would be used for 
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building long-term, sustainable, resilient societies and environments. Rather, their area 

of application is more narrow, focusing on preventing and reacting to strong shocks 

and crises. They lack the stringent quality assurance required in the societal context, 

and they address one of the many aspects of complexity and uncertainty encountered in 

this context [2,17-19]. They are designed to be used by practitioners like administrators 

or security experts and propagate results which can directly be converted into 

operational action. 

In this paper, we introduce strategic AI, i.e. AI designed for supporting strategic 

decision making in complex, dynamic decision-critical environments. We outline 

requirements and criteria on how to define such AI applications, their structure and 

functionalities. We discuss how to build them, with which technologies and methods 

they can be implemented, the specific knowledge base requirements and their 

verification. And how quality assurance can be implemented and discussed design 

settings which consider the fact that such strategic decisions are usually made in group 

processes by human decision makers, furthermore, stressing the issue of societal 

validity of the group recommendations put forward by these AI applications. 

4. The Role of AI in Public Health 

Many entities use AI tools extensively to support various tasks to bring effective 

solutions for many diverse public health challenges [3,20-23]. These included 

traditionally academic institutions and research consortia, commercial entities, and 

many private research organizations and consortia, and government agencies and 

NGOs. The roles of AI in public health broadly relate to these functions: bio 

surveillance and epidemic intelligence, situational awareness and early warning, 

Explainable AI, pandemic modeling, diagnosis of infectious diseases, prediction of 

disease behavior, vector surveillance and insect control, vaccine development and 

manufacturing, AI-enabled clinical workflows, smart hospitals, hospital decision 

support systems, risk stratification and clinical management, improvements in 

community health, mental health and wellness, online mental health support, public 

engagement, communications and mHealth, AI in global health, AI in furthering the 

SDGs, public private partnerships for equitable AI-enabled health solutions, ethical AI 

in public health. 

Bio surveillance is the monitoring of indicators of disease, injuries, and/or death 

through different syndromes. It is an early warning system that facilitates the detection 

of potential outbreaks before they occur and thereby potentially enables their earlier 

containment and control [9,24-26]. Used effectively, bio surveillance could allow to 

identify disease hotspots and track the changes in the spread of disease and health risks 

over time. AI allows taping of the exponential increase in adoption of smartphones, 
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internet use, and social media to identify diseases, their predictors and symptoms, and 

geolocate them to monitor, visualize, and forecast infectious disease events—with a 

goal of potential rapid incorporation of data into public health action. 

5. Climate Change and AI Solutions 

The world is being reshaped by the challenges of climate change. From fossil fuel 

carbon emissions to deforestation, urbanization, over-consuming, and waste-producing 

societies are reshaping planetary systems, moving the Earth into unknown states with 

unpredictable local and global consequences, near and far. Many of these 

consequences will be harmful and, especially where the developing world is 

concerned, dire and concerning. At present more than half of humanity lives in an 

urbanized state and this figure continues to grow [27-29]. Urban populations are 

stressed by heat, drought, floods, and rain and face unforeseen challenges accompanied 

by migrations and disasters. Disconnection between nature and city systems induces 

stream damage, durability, infrastructure degradation, and increased instability. All 

these threats require an immediate response. 

Debates about the role of Artificial Intelligence in Climate Solutions are rife, and 

reports abound. But what is remarkable are the facts-based AI Use Cases, such as goals 

applied to Climate AI Engines and Machines that have been compiled and freely 

shared. Believe it or not, while this may represent only a modest fraction of real-world 

potential AI applications, already more than 650 are collecting. These applications are 

all the more important because the potential for impact is immense. So much so that, if 

done correctly, Climate Change could be the greatest accelerant for addressing 

inequality and other development goals that we have seen within the next fifty years. 

To ensure the success of the AI movement, it is important to remember that it is not all 

about technology. Lifescape 2.0, or Intelligent Sustainable Landscapes, will engage 

appropriate AI in synergy with Urban Design, Architecture, Infrastructure, Nature 

Conservation, and Urban Planning – but at scale and with proper funding mechanisms 

in place. 

6. Ethical Considerations in Cognitive AI 

We consider how can we think responsibly about Cognitive AI and its potential 

societal effects. We explore some concrete ethical principles that may serve as guides: 

beneficial AI, high-level human control over AI, Transparency and Explainability, 

Broader access to benefits, Privacy, Societal agency, and Mitigation of global 

catastrophic risk [30-32]. Cognitive work can lack transparency and reconciliation is 

necessary. Building even capable systems cannot be done in isolation. Their 

orchestration requires deep collaboration. The models and simulations, inside 

biomedical science for example, can raise hard ethical questions: who gets to decide? 
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For which purposes? About what abilities? Such negotiations require careful reflection 

on the values invested into decision-making. Broad and publicly accessible models 

require different consideration compared to those fraying in deep technical proximity 

among expert peers. This is especially true for ethical boundaries. Both regulators and 

AI developers need to find ways to share knowledge and concepts in order to agree on 

what constitutes proper usage. Enacting and regulating fair usage is a challenge we 

want to address, even if tentatively, when proposing experiential education grounded 

natural-language ethical with decision-making pathways. These pathways enable 

tracking, accountability and help permit wide engagement, ethically grounded societal 

reconciliation. 

7. Data Privacy and Security in AI Applications 

Data privacy is a crucial concern when developing AI for societal resilience, especially 

in areas such as sharing medical, financial, and communications data. Regulation, 

consent, identity verification, and automation of data governance mechanisms can help 

maintain privacy online while ensuring data-driven machine learning [9,33-35]. 

Privacy and security-by-design principles can be effectively implemented in ML 

models in terms of data control, obfuscation, and leakage prevention. Methods such as 

creating federated learning pipelines, differential privacy, and cryptographic protocols 

can offer solid guarantees. Regulation and public-private partnerships can help 

strengthen these efforts, particularly in contexts of critical socioeconomic risks. 

AI and ML applications have critical security and privacy implications across sectors. 

For instance, in safety-critical scenarios, such as autonomous vehicles or healthcare 

systems, AI and ML systems need to satisfy additional verification and validation 

methods to ensure that data integrity, data availability, and data confidentiality are 

safeguarded [36-39]. Security and privacy concerns permeate the AI stack, meaning 

from the data to the computations and finally the models. Various attack vectors can 

lead to significant implications on the functioning of AI systems, or outright make 

these nonfunctioning, for instance, implementing data poisoning or backdoor attacks. 

Regulations can help clarify the guidelines and harm horizon for threat modeling in the 

design of AI systems to avoid catastrophic threats to humans or infrastructure. 

8. AI for Disaster Response and Management 

Disasters, both natural and anthropogenic, can disrupt individuals, societies, the 

economies and the ecology across any region in the world. Global recent events have 

demonstrated the unpredictability and threat of disasters, but also highlighted the 

importance of human resilience against such hazards. AI-based solutions are being 

increasingly adopted for efficient disaster response and management plans [6,9]. 
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Recent years have also witnessed collaborative efforts that are using AI to develop 

better predictive, mitigating, response and recovery capabilities against disasters. 

As disasters can be classified as either natural or fabricated by humans, AI has been 

applied to numerous sub-tasks of disaster management driving efforts in situational 

awareness, data insights, response planning or recovery. Natural disasters such as 

floods, wildfires, cyclones, earthquakes, etc., threaten life and property across the 

globe regularly and thus, AI for disaster response has focused on actionable insights to 

reduce the impact. AI for disaster management has, therefore, relied heavily on data-

driven solutions using satellite and drone-based images, social media posts, and other 

geographic information system data. Orchestrating substantial advancements in expert 

systems, AI and related emerging technologies can work together to create synergies 

that are necessary for informed decision making during disasters. Human behaviours 

during disasters have also been simulated using gaming platforms enhanced by ML 

methods to predict the help-seeking behaviour, which is useful for efficient disaster 

management. 

9. Interdisciplinary Approaches to AI Implementation 

Cognitive AI projects are undertaken by people from a variety of domains, including 

humanities, arts, sciences and technology, social and political sciences, management, 

and industry. Some of them are hired as AI experts by global tech companies, while 

others use AI algorithms as research tools. To unpack the different roles that different 

knowledge domains play, and on what basis AI experts agree to combine as HAI 

(Human-AI) team, we propose an interdisciplinary taxonomy. 

What we call critical AIs are those used to investigate cognition and intelligence, 

which usually take as their test-beds AI systems capable of doing or deciding things 

that are interesting from a cognitive, ethical, philosophical, or even legal point of view. 

A well-known example is system Fairness – which allows sensitive data to be omitted 

from the training set, thus protecting citizens’ privacy. Natural language processing 

(NLP), and in particular algorithm bias, is one of the most heavily examined AI 

domains in this respect, since AI projects for developing NLP functionalities for 

different languages have been publicly denounced to be biased [2,6]. A first line of 

criticism states that these language technologies have been developed without 

representing the diversity of the world’s languages – only English, due to its 

overwhelming presence on the internet, is being represented, while 6,000 languages are 

today spoken on earth. A second issue relates to how well NLP pipelines are capable of 

handling multi-linguistic requirements. Solutions for low-resource languages, and for 

dialects of Asia and Africa, for which there are no word embeddings and translation 

systems publicly available, are still to be developed. 



7 

 

10. Case Studies of Cognitive AI in Action 

Cognitive AI is an evolving field pioneered by a growing number of organizations and 

initiatives that use the concepts of cognitive AI. We have documented the use cases of 

a selection of those organizations in the judgment that they have been the forerunners 

most relevant for demonstrable capability development and skill discovery for societal 

resilience. These use cases also provide rescue packages and funding alternatives for 

post-pandemic recovery, for companies reliant on tourism and hard-hit sectors, to 

creatively help people overcome the unwelcome consequences of isolation, loneliness, 

and depression. It is hoped the collaborative tools, practice, capabilities, and networks 

built from these programs can help make societies resilient, build their capability and 

toolkit to deal with mass disruptions using the virtual environment and collective 

intelligence in convergence with the real world to build actionable knowledge and 

productive policy. 

This research included a meta-study of at least ten initiatives that are cognitive AI-

enabled, and not simply custodians of cognitively augmented human capital. The 

collaborative practice research has different use modes for mobilising modal curiosity, 

roles of players from using mood, touch, and feeling in forms of interaction. Exploring 

social models allows agents to find desired or desired potential dynamics for co-

creation, decision tool availability in different application flows, graduation of 

capability through agency and commitment all have implications for the design of 

intelligent systems. Case studies of existing operations illustrate potential avenues 

available to operations designers wanting to build, or expand on existing operations, 

employing cognitive AI. 

11. Challenges in Developing Cognitive AI Systems 

Cognitive AI systems are intelligent systems capable of performing higher-level tasks 

traditionally associated with human intelligence. The consultation provokes a series of 

very serious questions about capabilities, intrinsic motivation, values, and goals. The 

answers to these questions can also indicate that we are still far from being able to 

develop AI truly capable of cognitive work. Unlike traditional AI systems, which 

largely imitate the status of task and situational representations without inferring these 

representations, cognitive AI utilizes its own internal symbolic representations and 

models of the physical and social world to carry out inference and reasoning. The 

potential emergence of a type of cognitive AI, capable of autonomously developing the 

symbolic representations and models on which dedicated AI systems operate, offers a 

non-trivial meta-solution to the long-standing problem of the harsh requirement for 

knowledge engineering in traditional AI. The question however, we ask in this essay is 

how cognitive AI can positively contribute to societal resilience. 
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Highly specialized algorithms are no longer able to tackle the challenges that our 

society is continuously facing. Usually these problems share a similar nature, are 

complex composed by multiple recursive problems that need to be accounted for in a 

parallel manner simultaneously during their treatments. A possible solution might be 

the develop of cognitive informa-AI systems that can autonomously learn from being 

in touch with expert users and test many different solutions at the same time. Some 

initial steps in this direction have already been explored by promoting autonomous 

cognitive architecture that integrate reservoir computing with multi-agent artificial 

ecosystem, which instantiate echo chambers composed by AI systems alternative 

solutions in parallel to the one proposed by human expert users. However, research on 

this topic is still at its infancy and many challenges need to be faced. 

12. Future Trends in Cognitive AI 

The future design landscape will have such devices as eye glasses that will detect 

automatically when the user should improve their attention outside of them, or for 

attention lowering when it becomes harmful. Such devices will have embedded 

Cognitive AI functions with high throughput, low energy consumption, embedded 

information reprogramming, communications, and trust. They also will be embedded 

in large, universal, and deployable societal or individual Artificial Humanoid 

Intelligent characters [7,13,16]. Such Humanoids would serve as role-models for 

teaching purposes, motivation, local companion in services of everyday life as well as 

reprisal of the majority of tasks done by contemporary low intelligence robots or 

applications. Universal group of Humanoids of such intelligence and reliability with 

allocated sociogenetic humor would also participate in planning by codesigning and 

steering by reprogramming human cognitive joint activity during all moments of real 

solving of complex goals. Such design mission can be understood as delegation to AI-

amending system of subgoals allocation, task stages organization, sharing of research, 

education, and motivational resources, collection and estimation of big dataflow results 

for Earth feedback, responsibility, trust, control. 

The last part of the imagination design stream will be architecture-genetic group and 

its collective imitation and collective responsibility for the digital twins and 

Humanoids for everyone's astrobiogenetic goals for case of closing, power-consuming 

road for the Earth sustainable development in concordance with naturality laws. 

Interactive Emotional Humanoids, maintaining user’s awareness of instant local goals 

and long-term horizon objectives program, would allow to achieve such a concord with 

fast rehabilitation. Collective image about how the development of human 

communities allows solving of these tasks will create the best assemblages of 

Cognitive Assistants, and Chairs as the ultimate goals of the digital societies. Creating 

of such digital environment would be role of the best design and cognitive science of 
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the communities of scientists, educators, artists, specialists who grew in discussed 

cognitive and ethical horizon. 

13. Collaborative AI and Community Engagement 

Collaborative AI makes AI technologies and tools available and reliable to a broad 

group of stakeholders, preferably those with the specific domain expertise needed to 

identify appropriate solutions, dynamically modify the processes as needed, and 

validate and take responsibility for the outcomes of the cognitive technology-driven 

processes. AI solutions developed by domain experts are aligned with domain 

knowledge and community-owned institutional knowledge and are better integrated 

into existing workflows. Collaborative AI also enables more users to leverage the 

value of AI technologies at any level of the investment and expertise. 

There is an assortment of technologies and processes that fall under CAI, addressing a 

spectrum of disciplines, knowledge domains, and methods ranging from original AI 

research in knowledge representation and reasoning to integrated development 

environments that assist users in specific tasks often supplemented by easy-to-use rule-

based systems. The aims of these tools usually include the democratization of 

technology, addressing the knowledge gap requiring AI expertise, increasing the 

productivity and accuracy of AI work, and supplementing any limitations in the initial 

and continuing training of the AI models with user-provided expertise, constraints, 

and/or feedback. This is a critical necessity for addressing the multidisciplinary and 

multi-stakeholder problems associated with climate resiliency, as well as a range of 

additional application domains. 

14. AI for Sustainable Development Goals 

Artificial intelligence (AI) holds promise in advancing global sustainable development 

agendas. It can help track the progress of various Sustainable Development Goals 

(SDGs), monitor trends in long-term development, improve information collection 

efficiency, enhance the capacity to glean insight from data analytics, provide 

innovative tools to deal with new issues in sustainable development, create changes in 

behavior that redirect trajectories towards sustainability, and improve the efficiency of 

human and natural resource utilization. AI algorithms can assist in estimating and 

tracking a large number of Vital Registration Systems (VRS) that record live births or 

deaths from a distance. Tools such as natural language processing can be used to 

process different types of data for flexible coding of specific Geo-Referenced 

Development Concepts (GRDC) for the entire world due to the little availability of 

signals from governments that actually code it for the VRS. 
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Major AI techniques can also address 8 out of 17 SDGs including poverty, health, 

education, water, inequality, urban research, and development partnerships. There are 

many applications of AI in achieving the 2030 Agenda for Sustainable Development, 

which will be explicitly talked about in this chapter using examples from around the 

world. AI has already been used to assist more than 4000 indigenous communities 

around the world to mitigate damage from droughts or floods while helping them 

better adapt and avert damage from climate change. Countries as diverse as Singapore, 

Madagascar, Israel, and Kazakhstan have developed or proposed AI solutions for 

sustainable development. Many countries and regions have all touted AI to accelerate 

the achievement of the SDGs. There are many positive potential applications 

highlighted in the literature, but there are also as many if not more darker or negative 

cases. 

15. Building Resilient AI Frameworks 

Cognitive or Understanding AI systems, as we have described them throughout, are as 

good as the structure and content of their working, long, or world model. The 

architecture should be modular and tap only content and aspects of reality that are 

relevant in the moment for how the system is to act. The content in turn has to be 

derived from a grounded, embodied, and multi-sourced approach that centers on the 

lived experience of the organisms that have to actually interact with the real world. 

Moreover, content organization has to facilitate efficient learning and recall, through 

complex hierarchies, latent semantic indexing concepts, and Nominalization Clusters 

ensuring the differentiated activation of distinct modality abstractions within which 

realization sequences can cascade. The aim of these modules is to directly influence 

the process of how behavioral commands are generated and what their moment-to-

moment content should be, i.e. the what ad how of cognition. This design feature 

allows for the unique Quality of Guidance of Cognitive AI systems, the moment in a 

sequence that is actually being worked on in the moment of decision, enabling a 

massive acceleration and optimization of Cognition-to-Action processing moment-to-

moment, compared to an alternative implementation that resorts to priming of 

associative memories to dictate, via a general mechanism, the direction and 

probabilistic influence of action from cognition indirectly, in a shot-gun manner [2,4]. 

Nothing but guiding commands can actually operate on the system's built-in action 

executors, whose workings still take place as body-based motor and perceptual-motor 

control loops. So, it is through the moment-to-moment work on a dynamic hierarchy of 

behavioral commands that the Cognitive AI forms a direct interface with human brains 

and behavior. 
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16. Policy Frameworks for AI Governance 

Societal resilience perspectives for or against the use of technology are unlikely to 

temper or mitigate human inhumanity. It would be collusive for any framework to 

argue the paradox that we need AI to govern society. Policy frameworks for governing 

AI must acknowledge the propensity for abuse of power that AI brings with it. They 

should not be only either proactive, in the sense of enabling or providing incentives for 

innovation, or negative, in the sense of constraining actors and AI technologies. If 

appropriate agentic and societal capacities are created or exist, it should be possible for 

both pro- and negative policies to co-occur. Policy frameworks must also acknowledge 

that actors who are entrenched in societal inhumanity would likely not be interested in 

cooperating or following even the most positive and incentive-driven policies. Policy 

frameworks would need to create agentic and societal capacities at multiple levels of 

governance. 

Genealogically, different layers of society may have differing capacities to absorb 

shocks and crises, and thus would need to be at different levels on the resilience 

spectrum. Different layers of society are tasked with different scales of compressive 

powers, and cannot always insulate the more local layers of society from inhumane 

activities. Just as the field of crisis studies has difficulty in defining what constitutes a 

crisis, so too morass an area of contention and social constructionism is the area of 

policy frameworks for the governance of artificial intelligence. At a fundamental level, 

policy frameworks seek to provide individuals and groups in society with the necessary 

infrastructures to either band together and become more resilient, or to act become a 

resilient monad in an increasingly globalized world. 

17. The Impact of AI on Employment and Workforce 

The impact of AI on workforce is complex, variable, and context-sensitive. Jobs differ 

in terms of activities performed, skill level, and AI-infection potential. Jobs are 

displaced and modified, but not created equally. Those exacerbated and stemmed 

inequalities differ according to country, sector, and sub-groups of workers. Several 

jobs are likely to be modified, due more of optimization and incremental efficiency 

explorations rather than a landmark shift and new opportunities driven by 

groundbreaking breakthroughs. The share of jobs being displaced too show very 

uneven patterns, lopsided towards low-paid and mid-income classes, hallowing the so-

called middle class. However, there are new opportunities in caregiving activities, 

social services, technological development and maintenance, as well as on eco-

sustainability. The path creation process will be of paramount importance for 

governments, academic institutions, and other stakeholders. A painful period of 

transition and turmoil is expected. 
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Governments’ policies matter. AI technologies will also disrupt the labor, capital, and 

goods markets, increasing precariousness, inequalities, and polarizations in wealth 

distribution. On the labor market side, traditional policies like unemployment 

insurance financing automation-affected job-seekers’ retraining and re-skilling will be 

likely unsatisfactory in case of fast tech-pacing. Stimulating labor demand via tax 

reductions or credits, support to R&D, newly created jobs subsidies, and direct public 

investment on or with private firms, moreover, should be enlarged and/or 

implemented. Education inequality limits social mobility opportunities, especially for 

youths from disadvantaged backgrounds. Additionally, societies’ attitudes towards 

entrepreneurship, innovation, and risk-taking play a main role. Tackling labor market 

asymmetries and imbalances requires time. Negative expected outcomes on labor 

conditions and quality may have spillover effects on social stability, macro-demand, 

and political choices, accentuating dissatisfaction and anger responses toward policy-

makers and institutions and/or populistic movements. 

18. AI and Mental Health Interventions 

There is a great push at present to redefine mental health treatment paradigms. In 

addition to providing counselling, support and therapies, there is increasing interest in 

acting earlier and using prevention (including self-prevention) as a focus. Since 

humans spend most of their time alone, intervention through, or use of, technology 

seems a natural direction for these efforts. AI can augment human capacity by 

providing faster, more effective and scalable alternatives. These interventions can act 

at the level of the individual, where AI can track symptoms and moods, even invisibly 

through wearable or connected devices. When patients do seek treatment, for example 

in the consultation room or over telemedicine, AI can assist physicians with diagnosis, 

therapy suggestions, and progression tracking. AI-based software can help during 

stand-alone interventions. These efforts can range from reinforcement learning 

capstone therapies to chatbots that provide easy and immediate understanding, tracking 

and support of low-intensity programs. At a wider level, AI can search and mine data 

over the population, spotting emerging trends and micro-trends invisible on the surface 

that can trigger public policy or research investigations. 

Embodied AI or robot companions are being increasingly used in specific groups such 

as children with autistic spectrum disorders or the elderly in hospitals. They act in 

tandem with a therapist, but are present in between sessions, reducing repetition 

bandwidth (though some warning of over-reliance is given). Speech understanding 

provides an intuitive interface for non-expert end-users and is now accurate enough to 

become a reliable means of interaction. A large number of user interaction studies have 

been carried out, in which users simply talk to AI agents in natural language, looking 

for any emotional connection or reflection behavior. These AIs are aligned to represent 
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feelings, either mimicking or modulating the user’s speech, and to offer accurate cues 

to important subtexts or conversational nodes. 

19. Integrating AI into Educational Systems 

AI's sweeping capability will affect all dimensions of society, elevating the question as 

to how AI should be integrated into current and future operations. Education and 

training are key elements of any considered answer. Education is fundamental both to 

leverage AI for the good of society and to prepare future generations for functioning in 

a world pervaded by AI systems as collaborators, assistants, and colleagues. Creative 

critical thinking, empathy, and emotional and creative intelligence will become the key 

traits of new work profiles indeed AI will not be able to replicate. Hence, educational 

models will have to adapt rapidly to integrate AI's strengths and weaknesses in their 

designs. The democratization of AI exploration is increasing its popularization, fueled 

by the availability of interfaces that simplify its utilization. However, an understanding 

of the workings of AI technologies is not universal yet, while a specific knowledge of 

AI principles remains confined to a narrow group of specialists. 

How do we provide continuous education for the population? What is the new function 

of educational institutions? A faster integration of AI into dedicated curricula requires 

a massive push from educational systems. What will be the capacity of universities to 

integrate AI in new professional profiles? How do we formulate regulations to avoid 

that any answers to these questions will result in widening the gap between digital 

citizens and digital illiterates? In other terms, how can we elaborate educational 

policies that both leverage cognitive automation in favor of society and at the same 

time educate the same society to a metaphorical coexistence with intelligent machines? 

How will the effects of these policies foreseeably impact future generations? Without a 

doubt, the reshaping of AI systems will be central to formulating specific answers to 

these challenging questions that will shape the futures of at least the next 100 years. 

20. Public Perception of AI Technologies 

Numerous empirical studies explored peoples' views of AI technologies and reflected 

them in reports published by various organizations. Some of the factors influencing the 

International Public Perception and Acceptance of AI technologies are knowledge of 

and interactions with AI technologies, country demographics, culture, inventiveness, 

trustworthiness, and optimism. The primary area of focus of surveys regarding the 

International Public Perception of AI is on the need for and concern about 

how/whether AI technologies will be used; for example, concerns about loss of job 

opportunities in the automation cycle due to the use of AI technologies. 

Misinformation about the capabilities of AI technologies may have biased participant 
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responses. Other areas that surveys have focused on include trust in AI's decision-

making and transparency in the AI technology. 

Public concerns about AI technologies mostly relate to those domains in which they 

fear AI technologies may have a direct impact; for example, military applications for 

weaponized AI. When assessing the benefits of AI utilization, replies were found to 

differ between general benefits and applications that directly impact the participant's 

daily life. People were optimistic about the general nature of AI technologies but had 

negative sentiments as to their own future experiences and thus were cautious and 

ambivalent about utilizing AI platforms. A recommendation is that those involved in 

the design of intelligent systems be cognizant of the social impact that their systems 

may produce and discuss both the negative and positive influences during interaction 

with users. 

The area of Social Robotics connects AI technologies with human interaction to enable 

robots and robotic systems design for social acceptance. Ethical considerations, and 

questions about how social robots should be implemented, are areas of concern in 

which recommendations have been provided; for example, how humans should and 

should not specifically relate to social robots. 

21. Funding and Investment in AI Research 

After the boom in AI during the mid1960s–1970s, funding was significantly reduced. 

Furthermore, during the 1990s and 2000s most government initiatives focused on 

narrow AI systems with limited societal applications, which increased to some extent 

during the 2010s. While institutional support for AI research in this narrow domain 

was strong, an over-reliance on fragile tech startups has characterized the funding 

structure for robust and trustworthy AI systems. The latter have predominated in 

pooled and private capital structures that are meanwhile ineffectively coordinated and 

regulated. Whereas a small circle of number-crunchers have concluded that in the next 

decade the global economic contribution from developments in global machine 

learning technologies would reach only $6 trillion and that Northern American 

production and manufacturing would only gain $2 trillion; not enough has been 

invested in AI for the sciences and the 50% of the human population not living in 

Northern America, Western, and Northern Europe. This has limited the global 

perspective of, and inclusivity towards, unlike any other technology innovation 

currently, developing a completely new kind of AI that is able to collaborate with 

humans and address the global challenges as set out by the Sustainable Development 

Goals. 

London has been for some time the world leader in AI investment, especially in the 

Edge AI and Natural Language Processing domains. Since 2000, it has attracted nearly 
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one-third of total investment in European AI tech companies. China has been a close 

follower, successfully replicating and internationally distributing tech ideas for a while. 

The US was previously the pioneer, but its start-up economy in this area then de-

adopted long-term project funding in favor of pure technical ideas. However, more 

recently the US has regained its first place considering total numbers and combined 

skills of scientific personnel in almost every AI subdomain, even compared to weekly 

attractive communities in the Big Quad Countries and to some nascent countries. 

22. AI in Urban Planning and Development 

Urban areas are inherently centers of economic growth and innovation, while at the 

same time, they become prone to various stresses, resulting from the accumulation of 

economic, energy, and environmental-related faults. City systems are becoming ever 

more complex, as they increasingly rely on technological innovations, especially 

information and communication technologies that support the constantly increasing 

exchange of information of the wide variety of actors involved in urban resilience. 

Considering the broad spectrum of interactions and exchanges among a city’s many 

components and between the city and the surroundings, our main proposition focuses 

on the synergies that emerge using AI to model the interactions, detect relevant 

patterns, run forecasts and prescriptive models. These might help city leaders and 

planners catalyze the support and involvement of the relevant city stakeholders through 

specific policies or toolkits and playing smart stimuli and aid roles to mitigate the 

stresses that impact the city resilience and adaptive capacity. Knowing that the 

capabilities of cities, especially of small and mid-size, are usually constrained when 

dealing with stresses and shocks, researchers, tool developers and professional 

planners should find ways to provide cities with reliable and relatively inexpensive AI-

based service products. Decision makers may be reluctant to trust the system’s output, 

requested budget and time frame to be agreed on by state, regional, and local 

authorities. 

AI-enabled services show promise for gathering and analyzing stakeholder input 

through e-participation, web-based sentiment analysis and AI chat. AI-based tools 

show further capabilities in performance indicators’ data collection, simulation, and 

analyses of the feedbacks generated to help planners and decision makers cope with 

the complexity and increasing uncertainty of urban environments. Simulations built 

with urban digital twin capabilities and high-performance computing, potentially 

embedding scenarios with uncertainties on model parameters and adapted to urban 

macro and micro-dynamics at play during ordinary days and peak situation, allow 

running structured sensitivity analyses, confrontation of alternative solutions, and 

considerably enhancing the interpretability of the insight generated. Moreover, the 
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potential integration with visualization and serious gaming mechanisms increases user 

involvement and understanding of the results. 

23. Global Collaboration in AI Research 

Internet was invented to help people communicate to efficiently and effectively 

perform tasks and solve problems. It has become the backbone of just about all global 

collaboration in research and development. Major AI developments rely on massive 

talent and resource sharing, mostly through this global information exchange network 

developed to facilitate resource sharing in science and engineering, but also 

increasingly outside science and engineering, to be used increasingly in media and 

entertainment. Open sharing of knowledge in both process and substance is a pillar 

largely accepted as effective and desirable in both practice and ethics. Funders have 

embraced this ethos, most recently with the shift to create and disseminate open source 

large language models. 

We pioneered one of the earliest global collaborations embracing the open sharing 

ethos in AI, long before the internet: the original Generalized Problem Solver project. 

GPS was intended to uncover the common base of human reasoning - finding solutions 

to the grand task of “problem solving.” The first GPS program was a major expansion 

of previous monographs describing a “General Solution of Two-Person Zero-Sum 

Game,” an analysis of game-theoretic strategies for two-person games with no ties. 

Our initial implementation uncovered the hidden determinism of fictitious play best-

reply strategies controlled by a single global optimizer, through rapid exploitation of 

the opponent’s approximation. Time feedback from actual play improvement dictated 

the best response strategy to exploit the opponent. While GPS had a mighty impact on 

the global research landscape, importantly, the research community espoused the open 

sharing ethos before and carried it forward after. 

24. Monitoring and Evaluation of AI Projects 

Introduction to Cognitive AI for Societal Resilience is written primarily for 

practitioners working at the ‘implementation’ stage of using cognitive AI for disaster 

preparedness and response. This stage is determined by the decisions that practitioners 

take on the use of cognitive AI to make contributions to social outcomes. In particular, 

significant questions of ‘monitoring and evaluation’ arise. The contributions that 

cognitive AI can help make are part of a ‘project-level logic’ that spell out how using 

cognitive AI has relevance for operation. Importantly, social outcomes are a 

meaningfully defined interconnected set of characteristics of people’s lives and 

societies in which they live and as such cannot be defined purely according to 

procedural definitions of specified things counted as ‘output’ measures. Rather, 

practice needs to distinguish between outputs and outcome measures. The challenge of 
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using AI for societal resilience is then to see how at the project level, interventions 

using cognitive AI will help achieve the objectives of the specific project. Linked 

closely to this question are judgments that practitioners make on fundamentals of the 

AI approach to be used, such as the degree of AI autonomy in the project system, the 

types and sources of data used, and the data representational techniques employed. It is 

noted that, generally, resilience appears to be understood in special connection with 

reference to an understanding of ‘physical risk’. However, the insights in this chapter 

and its focus on the data inputs, functionality, and learning, applies equally to the 

establishment of cognitive AI projects for other kinds of activities that go into disaster 

preparedness and response. 

25. AI and Environmental Sustainability 

The environmental impact of AI technologies is both a concrete and pressing problem, 

at risk of worsening in the next decade. Typically for general purpose technologies that 

are diffusing fast and large scale, the negative benefits generally manifest as energy 

use, carbon emissions and e-waste on very large scales. From self-driving cars to 

biometric surveillance, AI systems entail enormous processing costs and usage. 

Moreover, the power demands are not only for inference but also training the models 

which can require hundreds of Terawatt hours, roughly equivalent to the power used in 

the entire state of California in a year, for a single major natural language processing 

application. 

Yet if harnessed and deployed well to particular ends, AI can also help mitigate three 

major forces working against sustainability: (1) the sheer scale of human activity; (2) 

the fact that a large share of that activity is wasteful or otherwise dangerous; and (3) 

the uncertainty that cloud solutions give us about the technological course the economy 

will take. Some AI experts have highlighted fields that can potentially use AI for 

sustainability. One of these is energy distribution, which already depends on 

forecasting demand and supply from renewable sources. Using AI for demand side 

management decisions can also make a difference for balancing electric grids. AI can 

optimize building energy consumption and dispatching residential storage batteries. 

According to estimates, managing up to one-third of battery and electric vehicle 

charging loads would obviate the need to construct truly enormous amounts of excess 

capacity of the electricity grid. Other estimates suggest that the UK could gain 

significant avoided costs in 2030 by using AI to optimize the charging of electric 

vehicle batteries. 

26. Conclusion 

The proposition to consider for the development of cognitive AI is that cognitive AI 

must be developed as AI embodied into systems whose design, architecture, 
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capabilities and intended functions arise out of a detailed view of the physical-external 

and societal-internal, constraints-and-opportunities assumptions of these systems and 

of the interactions between these two complementary perspectives. We have shown the 

central role that cognitive AI should and can play in the development of resilient 

systems and have identified key features of cognitive AI that render it uniquely suited 

to this development. We have considered these features in detail, paying special 

attention to the question of how cognitive systems – and by implication cognitive AI-

enabled systems − should be built. Addressing this issue of system-building has led to 

identify an important class of cognitive functions pertinent to designing cognitive AI-

enabled systems for societal resilience. These are anticipatory, communicative, 

interactive, trustworthy, and open-to-learning functions. We have pointed out that what 

we consider the distinguishing feature of cognitive AI-enabled system for societal 

resilience is the inclusion in the design and architecture of the system’s heterogeneous 

AI components of deliberative processes that make use of Anticipatory Cognitive 

Maps implemented as a hybrid cognitive hierarchical architecture. A third distinctive 

character, that cognitive AI-enabled systems for societal resilience must have, derives 

from these systems being meant to carefully intertwine AI capabilities with human 

capabilities to pursue jointly – as closely interdependent engaged partners – goals 

achieving systemic resilience. 
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1. Introduction to Cognitive AI 

Cognitive AI is an evolving, metastable, multidisciplinary research field. Its goal is to 

design and implement artificial systems endowed with intelligent cognitive functions, 

and the power of causal understanding behind them. Instruments made of 

computational and mathematical models of natural cognition and neurology, and 

advanced algorithmic techniques, are applied to solve the open theoretical problems in 

this field and develop applications solving nonlinear, ill-posed, high-dimensional, and 

computationally intractable inverse learning and decision-making problems [1-2]. 

Essential Cognitive AI principles and tools are causal modeling and reasoning by 

relations; symbolic representation, processing, and reasoning; relations-based 

generalization and analogy making; neuro-symbolic inference automation; multimodal 

object learning; and relational deep learning. Entries to the evolving Cognitive 

Systems' core are the theory of causal learning and causal modeling from general, 

combinatorial, statistical, and logical perspectives; the principles of object, scene, and 

event semantics; their hierarchical multimodal relational structure; and deep learning 

as representation learning according to this hierarchical structure. Specialized domains 

of the developed Cognitive AI technologies are multimodal perception; 3D object and 

scene understanding from photos, videos, and robots' proprioception and exteroception 

data; grounded syntax and grounding in creativity from random texture generation to 

visual question answering; scene and event understanding; situated AI; natural 

language understanding and benchmarking; neuro-symbolic deep learning; neuro-

symbolic planning; and testing and verification [2-4]. Special tools for Cognitive AI 

are relational neural networks, causal graphical models, cognitive and neuro-symbolic 

architectures, and cognitive visual tools. Relationships between Cognitive AI and 
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Cognitive Modeling, cognitive robotics, Neuromorphic, Neurolinguistic, and Symbolic 

AI, Statistical and Causal Learning, Infocommunications, and Trustworthy AIs, and 

the foundations of Intelligent Optimization are discussed. 

2. Deep Learning 

Deep Learning is one of the most prominent AI technologies and is shown to achieve 

state-of-the-art performance in many AI applications. Deep Learning is currently 

implemented as Deep Neural Networks that are function approximators, typically with 

additional hierarchical layer structure inspired from human-brain processing [5-6]. The 

earliest Deep Learning algorithm applied to AI is a restricted Boltzmann machine. 

Various Generative Adversarial Networks (GAN) variations introduced later also 

achieve generative performance in Computer Vision or speech and audio synthesis 

tasks. However, the vast application of Deep Learning as function approximators in AI 

is under Feedforward-NN, Convolutional-NNs, and Recurrent-NNs that solve a great 

many classification, detection, recognition, or translation tasks using supervised 

learning with large labeled datasets. 

Deep Learning techniques have enabled the realization of Intelligent Vision Systems 

and Intelligent Speech and Language Systems, which were considered as enormous 

technological frontiers to overcome [7,8]. These Deep Learning models are now as 

much like software engines, driven by the massive amounts of relatively clean and 

labeled data amassed on the Internet, as by the artful constructors of the engines. In 

addition, AI applications were simplified or built based on specialized learning 

pipelines for different tasks, not designed as a general-purpose architecture: Modules, 

Task graph, and Learning pipeline. 

Deep Learning is so powerful because it exploits three major Leverages to enable the 

use of Neural Networks with much larger model capacity. The first is richly-structured 

Neural Networks with many more layers and with easy access for many more 

connections [9-12]. The second is Data, Data, and Data: large-scale labeled datasets are 

readily available, such as ImageNet, Text, and simultaneous transcription and 

translation corpus. The third is computation. Algorithms, like the stochastic gradient 

descent with back-propagation, allow the use of larger models, trained on larger 

datasets, using graphical processing units and cloud computing. 

2.1. Fundamentals of Deep Learning 

Deep learning is a data-driven, problem-solving approach based on engineering neural 

networks and unsupervised learning functions, generalizing the founding principles of 

neural computing and self-organization [7,13-15]. It is further motivated by brain 

theories, and so increasingly incorporates biological design features. Cognitive 
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Problems involve solving challenging transformations on symbols, such as transducing 

a sentence in natural language into a logical formula representing its meaning, 

transducing a formula representing a worldly situation into a natural language 

sentence, or optimizing a symbolic logical formula, a graph, or a set thereof. Deep 

Learning architectures, algorithms, and applications for Cognitive AI, Neuro-symbolic 

AI, Neural-Symbolic AI, are better understood involving the overlapping subfields of 

Algorithmic AI, Cognitive Neuroscience of Language, Neuro-Linguistic Programming, 

Neural-Symbolic Cognition Research, Symbolic AI, and Statistical AI. 

In the short period of twenty years that have passed since the publication of seminal 

Neural Computation papers investigating Learning, and Processing, structured 

representations using Artificial Neural Networks, deep learning and its applications 

have surged into the forefront of AI. Human-level performance has been achieved in 

large-scale image classification, visual object detection, and speech recognition 

problems [9,16-18]. Similar levels of performance have been achieved in some areas of 

Natural Language Processing, such as Language Modeling and Machine Translation. A 

parade of industrial applications have been deployed, from visual face recognition to 

automatic tax analysis, or financial fraud detection, to mention a few. Deep learning is 

also being integrated into other Cognitive AI disciplines, such as Computer Vision and 

Knowledge Representation, and Reasoning. It is being used to retrieve images of a 

desired type, or from a given geographical area, or to perform detection of high level 

symbolic entities in vision, such as, for instance, institutions in rural landscapes. 

2.2. Applications of Deep Learning in AI 

Deep learning is a tool for automatically discovering patterns from data. It is currently 

being applied in AI, revolutionizing many tasks across many fields, achieving 

impressive new results. DL applications in general intend to create an intelligent agent 

that mimics some behavior associated with humans or machines. For example, 

applying DL for solving behavior-based tasks such that the behavior is associated with 

performing an intelligent function in a real world scenario [2,19-20]. DL is also 

applied in natural computation processes such that it manages cognitive tasks related 

with cognition in embodied minds. For example, the process of reasoning, simulating, 

envying, i.e. mental state attribution, etc. Socially instructed robotics tasks are also 

being solved with DL in areas of human Robotics interaction and HRI. 

Communication and emotions are also used in DL for behavior-based tasks such as 

chatbots or conversational models. DL is also being applied in both social cognition 

and action recognition tasks in social robotics. 

Applications of DL in general are aimed to create neural networks or models that solve 

behavior-based intelligent functions for non-cognitive, cognition and socially 
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instructed robotics tasks. Considering the above premise, DL is being applied to 

different types of intelligent functions in AI. A significant going on area is the 

application of DL for computer vision [9,21-23]. Thanks to GPU computing, large 

scale data, and multi layers neural networks, models have been created that are able to 

associate and classify images with an error for a well known data set that is lower than 

the human standard error. Models were also applied to solving the object detection 

problem. 

2.3. Challenges in Deep Learning 

There are several major problems with current Deep Learning: (1) It requires huge 

amounts of labeled data for all tasks we want to solve, which is a problem for many 

applications. (2) It requires inefficient and long end-to-end learning of specific tasks, 

though progress on meta-learning, self-supervised learning and transfer learning will 

help. (3) The learned models, which are neural networks, are very inefficient for both 

learning and for end use, and it is unclear how to merge knowledge-based or logical 

methods with Deep Learning and (4) As evident from being fooled by adversarial 

examples, these models cannot have explainable, interpretable and reliable behavior 

[24-26]. 

Current deep learning models depend on data-driven learning from large amounts of 

annotated real-world examples, with the user providing only the labels for a few 

examples of the input output mapping for the particular task. There are two major 

limitations: (1) any real-world AI system should be able to learn from a few examples, 

or even from no labeled examples and instead leverage prior knowledge and similarity 

among categories, and (2) for many application domains, there may be no large 

collection of annotated real-world corpora available for training. For narrow tasks, 

such as speech recognition in a domain with a large collection of transcribed signal 

data available, deep learning works well [8,27-30]. But for many other tasks, labeled 

data is not available. For example, to build AI systems capable of multi-modal 

dialogue or visual video understanding, with the capability to learn about anything that 

we tell them, we cannot collect such massively-scale corpus data, since those tasks are 

too complicated and open-ended and, more importantly, it is prohibitively expensive to 

collect such labeled examples from humans who may also need to spend hours 

annotating video before coming up with a small number of labeled examples. 

3. Reinforcement Learning 

Automated decision making involves choosing the best option for a beginner or learner 

through a series of events or trials. This is the basis of Reinforcement Learning (RL), 

which uses positive and negative reinforcement to occupy decision-making gaps in the 

realm of AI. Using the principles of behavioral psychology, RL has its own taxonomy 
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to evaluate across multiple dimensions, both in terms of usability and performance. Its 

building blocks are also used in Neuro-Symbolic AI Building Blocks: Learning How? 

Whenever we start to interact with the environment, in our initial interactions there 

exists a notion of browse-observe-execute. We execute an exploratory action that 

allows us to observe the state of the world [9,31-33]. 

RL uses the "reward" function for sense and direction. Rewards also allow us to 

understand the proximity of any action to a desired plan. Over time, with the 

experience of previous interactions, we can reach the problem of resource 

optimization. The function allows us to predict the future returns of actions - thus 

showing us the exploratory path to follow [34-36]. RL promises to tackle problems of 

high complexity, where the search space for the best plan is huge and basically 

invariant with respect to the parameters of an optimization method. The high 

complexity of the search space does not allow for an exhaustive exploration of the 

possible paths that lead to a minimum of loss/cost, associated with a measure of 

proximity to current use. Nevertheless, there are many problems for which reward 

calibration - or indirect observation using lower-order functions on the entire 

knowledge - is possible. Furthermore, in view of the principles of first and second 

systems of simulators, it has been possible to develop and introduce approximation 

functions that delicately balance prediction capabilities and the number of free 

parameters. 

3.1. Basics of Reinforcement Learning 

Reinforcement Learning has become a central research field within Artificial 

Intelligence and a cornerstone of current advancements. RL is a computational 

approach to the fact that the ability to find and exploit causal relations is very 

instrumental for intelligence, and in many tasks it suffices to learn by making and 

verifying guesses about what actions will produce favorable consequences. RL has 

evolved from its origins in Behavioral Psychology via the principles of Conditioning 

and Operant Conditioning to become a mathematically rigorous framework, with its 

own foundational ideas, that serves as an umbrella for models and algorithms from 

various institutions worldwide [3,37-39]. A powerful feature of RL is that it can be 

used to find solutions to complex sequential decision-making tasks for which written 

algorithms are either unknown or too complex to be feasibly defined by a human. 

Within the RL framework, an agent employs a feedback signal, the reward, to find 

solutions to complex tasks by trial-and-error, hence learning from the consequences of 

its actions, irrespective of the goals, or utility function, of the agent designer. 

Moreover, reward functions are often easier to define than utility functions; an 

Artificial Intelligence designed to autonomously gather information would cheat, 
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rather than act to get as much information as possible, if it had a utility function built 

on knowledge! The learning task is modeled as a Markov Decision Problem, which 

contains a probabilistic state transition function and a transition reward function. The 

model choice is justifiable when the design of the reward function is largely decoupled 

from that of the state transition function, and it is appropriate for a wide range of tasks. 

Interestingly, it is also known to approximate many classes of temporal-difference 

learning tasks as well as inverse reinforcement learning tasks. 

3.2. Key Algorithms in Reinforcement Learning 

Among the various ways to frame an RL model, the Markovian Decision Process 

(MDP) formalism is the most prevalent in the literature. An MDP is defined by the 

tuple (S, A, R, T, γ), where S is the state space (or, more accurately, the state space of 

the environment); A is the action space; R is the reward function; T is a transition 

function defining a probability distribution over successor states for each state/action 

pair; and γ is a discount factor. The environment is subject to Markovian assumption, 

that is, the current state dictates the distribution of future states, and is memoryless. 

The agent receives a state s, selects an action a according to some mapping π, which 

results in an instantaneous reward r according to R(s, a) and sends the action to the 

environment that results in transitioning to a new state s′ according to T(s, a, s′). This 

loop continues to execute until the termination, when the agent receives a special (non-

final) state that disables any further action. 

In short, RL solves the problem of learning the mapping π that maximizes the expected 

return E[∑∞t=0 γ trt]. During learning, RL algorithms must balance exploration 

(testing unvisited states) and exploitation (taking actions that maximize the return). In 

its most common variant, RL refers to situations where the transition function is 

unknown (it is a stochastic process) and tries to learn both the policy π and the 

transition function during the interaction loop. From the perspective of exploration, RL 

encompasses both the cases of active and passive learning, with increasing levels of 

exploration as the agent collects samples from the environment. From the perspective 

of the used model, RL algorithms may be characterized as model-free, model-based 

and Dyna-style. 

3.3. Real-World Applications of Reinforcement Learning. 

Reinforcement learning has recently made inroads into a variety of real-world 

problems. Its most famous successes have been two breakthroughs. One was the 

success of deep reinforcement learning on playing video games from pixels and 

generalizing across many of them [36,40-43]. The other was the success of a system 

which, with a combination of deep reinforcement learning, supervised learning, and 

tree search, outperformed the best human players. Other RL successes include game 
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walkthrough automation, in which deep learning from a large dataset of games is 

followed by RL to achieve human-level performance; as well as recent breakthroughs 

on the complex multiagent environment for AI and on the long-term sequential 

decision-making problem. A core algorithm was behind these advancements. It utilizes 

the classic Monte Carlo Tree Search algorithm in conjunction with deep reinforcement 

learning. 

Driven in part by this success, RL's model-free techniques are being adapted to many 

fields outside of traditional sequential decision-making. Recent successes include 

autonomous racing, robotic motion control, architecture search via reinforcement 

learning, hyperparameter optimization via reinforcement learning, intricate sequence 

generation problems like text and protein generation in the context of deep learning, 

recommendation systems, algorithmic video editing, and algorithmic financial trading. 

Other simpler applications are credit assignment problems, like incentive design. This 

success can be attributed to factorized structure that can leverage exploration and the 

nature of the training problems. 

4. Causal Reasoning 

Causal reasoning allows humans to interpret and model events as based or relying on 

other events, linking them together through Cause-Effect relations. A Cause-Effect 

relation provides a way to link things happening in parallel and/or at different times; 

allows us to manipulate things in order to influence others; provides an understanding 

of things around us in terms of explaining why things are the way they are; and is the 

basis of language semantics providing the background for the truth and correctness of 

the sentences we speak. It in part allows us to reverse engineer awareness – and 

considering its important function in our cognitive and symbolic intelligence, it is 

important to model it in AI systems. 

Academic research has presented various models of causal reasoning in AI. The most 

discussed one is the model of counterfactuals, which explains that whenever we can 

imagine how changing the value of variable X to a different value from the one it 

would normally take would also change the value of variable Y to a different value 

from the one it would normally take, and especially influence a Y-value belonging in 

the set of values selected out of the probability by the intervention effect in the Ask-

Why sense, then we say that X is a cause of Y; and this allows us to model by the 

causal Model of Variables of the Causal Structure of the data-points of the problem 

domain (ordinary cases) and/or by the Intervention Graph how those probabilities 

would be modified for those particular cases through an external manipulation. 
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4.1. Understanding Causality in AI 

Causal reasoning has received recently much attention in research fields of different 

disciplines and research areas, such as philosophy, statistics, economics, and AI. This 

is mainly because understanding causation, and thereby the systematic modeling of 

causal relations, is a necessary requirement not only for humans to survive, but also for 

an autonomous agent that behaves appropriately in a real-world environment. For a 

long time, researchers in AI followed the philosophy of simulationism: creating 

systems that simulate (parts of) the human mind in order to understand it. Not 

surprisingly, the main goals of many AI systems, especially the early “classical” 

systems, might be better described as “minds in a vat” — systems with a focus on pure 

cognition or perception — rather than intelligent agents that interact with the external 

environment. Hence, the agents’ internal cognitive models of the world need not only 

describe the structural relations of the different components, but also their causal 

dependencies and hence, allow planning and acting. 

More recently, the predominant trend of modeling and training AI agents on currently 

available data, has led to a more task-oriented paradigm shift. Nevertheless, the 

growing concerns regarding the still poorly understood abilities, the reasoning and 

explaining capabilities of current data-driven or deep learning-based systems, have 

shown a renewed interest in cognitive and neuro-symbolic approaches. The by far most 

useful task in this regard is the building of a causal model, either directly used by the 

AI system itself or as additional system knowledge that is exploited during the 

information processing tasks on the AI system. Following the counterfactual- or 

causal-modeling approach, the essential task of such a causal model is the 

representation of ’actually happened’ and ’would-have-been-happened’ relations to 

allow contrastive inferences — the modeling of structural relations of multiple events 

happening and observed at different times and places in human or agent life. 

4.2. Models of Causal Reasoning 

Causal reasoning has been an indispensable part of human intelligence, as humankind's 

understanding of the world has evolved from the basic empirical notion of correlation 

to the keen ability to act upon and thus generate motion in nature. Contemporary 

Artificial Intelligence applications, when not physically embedded in the real world, 

rely on Machine Learning models that analyze data and models of abstract 

representations that encode different aspects of the world. However, neither of the 

proposed approaches is capable of achieving the complexity and variety of forms of 

human intelligence. The semantic turn in AI, in general, and the emergence of 

Cognitive AI, in particular, steer AI back to looking for the sources of skills and 

abilities that are more symbolic in nature and enable intelligence that is not limited by 
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a given pre-programmed set of tasks. Yet, without the capacity for dealing with open-

endedness, the evolution of intelligence - artificial or not - must inevitably stall. 

Theoretical models of open-ended growth in complexity, and the interplay between 

memory and working memory in enabling this growth, are paving the way for 

Artificial General Intelligence. 

In the real world, there is a differentiation of actions that activate certain parts of 

memory while bypassing others. Memory-guided reasoning over a pre-flow of events 

enables action anticipation, revealing the nested structure of action sequences and their 

functional role in motion generation. A special case of nested recursion is a system of 

ordinary differential equations - it describes a whole class of motion sequences. This 

theoretical window reveals why certain temporally-augmented decision-making/action 

selection and synchronization problems become easy when modeled as dynamical 

systems. 

4.3. Applications of Causal Reasoning 

Here we provide a selection of recent demonstrations of causality in research that 

could be considered the most important applications of causal reasoning at the 

moment. Applications of causal reasoning were traditionally concentrated in the areas 

of science, natural and social. Research in these areas typically seeks to explain data 

generated by natural processes – a group of individuals of a species living in the same 

ecosystem for a certain time, and data generated by the interaction of particular social 

groups – families living during some time in a particular area, their demographic 

trajectory, their marriage and reproductive behavior, their economic exchanges, etc. 

That said, when people hear about applications of causality in AI, they mostly think 

about causal representations of the world and causal reasoning in robots and 

autonomous agents. Such robots would acquire structured causal knowledge from the 

environment, as human toddlers seem to do, and progressively refine these structures 

by acquiring finer details of the relations that their interactions with the world show us. 

The acquired knowledge structures would allow these robots to carry out causal 

reasoning, including causal and explanatory reasoning in perception, conception and 

conception planning, as well as action, tasks, and manipulation tasks. These robots 

would have practical causal knowledge about the physical world, which they would 

use for effective, efficient, and skillful action in their continually ongoing interactions 

with the environment. 

5. Neuro-Symbolic Integration 

A variety of cognitive capabilities are still beyond the ability of current AI techniques, 

particularly large deep learning models. A notable example of this is syntax in 
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language, or analogical reasoning, which is both an expert domain of current human 

cognition as well as a fragile point of our current AI systems. Cognitive Science 

theories motivate integration between symbolic systems and sub-symbolic neural 

architectures to leverage their joint strengths while compensating for weaknesses. 

The relationship between symbol-based and sub-symbolic representations has been 

debated for decades. Neuro-symbolic AI leverages the best of both worlds to produce 

capable systems. Neuro-symbolic integration, or hybrid architectures, combine the 

strengths and weaknesses of symbolic and subsymbolic AI systems, yielding more 

comprehensive models of cognition and potentially more competent AI systems. 

Integration possibilities can range from simple interaction between two independent 

systems to a single architecture that uses both representations in a complementary way. 

Neuro-symbolic AI promises a seamless integration of neural and symbolic 

components, resulting in improved capabilities in areas such as reasoning, 

explainability, generalization, and learning efficiency. Such integrations may also 

produce cognitive systems with attributes like compositionality, and language and 

knowledge grounding that are typically elusive in pure neural systems. Various forms 

of neuro-symbolic AI occur at different levels of abstraction in different modalities. 

The understanding of human neuro-symbolic abilities sheds light on the right balance 

humans have achieved via evolution. While pure neuro-symbolic designs may not be 

optimal, tweaking symbolic knowledge back and forth to sub-symbolic systems can 

increase overall efficiency in task planning, learning, and execution. 

5.1. Overview of Neuro-Symbolic AI 

Neuro-symbolic AI is a recent malleable umbrella term that builds a research space 

that connects various neuro-symbolic work, where neural and symbolic technologies 

are exploited to develop phenomena that would require both types of technologies 

when developed in pure form to be explored with the objective of joint capabilities. 

The degrees and types of possible integration between neural and symbolic AI are of 

many forms [5,6]. These connections include the integration of the modules of distinct 

or not models based solely in neural or symbolic processing, the use of symbolic 

representations inside neural models, as well as the incorporation of machine learning 

to the learning or inference process from symbolic representations. Despite the diverse 

types of possible integration, they aim to explore the joint expressiveness and 

capabilities of neural and symbolic AI. 

Neuro-Symbolic AI is a multidisciplinary challenge that exploits resources from 

different areas of AI, where cognitive neuroscience may be used to inspire aspects of 

its formulation and different philosophical theories may provide support to the claims 

of its proponents. Besides developing models that operate under the theoretical pillars 
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of Cognition and AI areas, this multidisciplinary challenge also raises questions and 

provides foundations for theories that connect the themes with the ultimate goal of 

understanding and modeling computational aspects of the human mind. The proposed 

NS-AI approaches use as neural components some form of deep learning like, for 

example, deep learning used in vision or language processing tasks. 

5.2. Benefits of Neuro-Symbolic Integration 

There are at least three main benefits of neuro-symbolic integration. First, with regards 

to compositional generalization, neuro-symbolic integration may help alleviate the 

notorious issue of compositional generalization in neural-symbolic systems. Second, 

neuro-symbolic integration may help increase the robustness of neuro-symbolic 

systems. In particular, it has been suggested that systems that do not only learn from or 

make use of the statistical regularities present in the input data but also use symbolic 

world knowledge about the relations present in the environment that are not necessarily 

present in the input data may perform better in transfer learning. This is particularly 

true for cases in which the data have statistical regularities that are too weak to allow 

the neural components of the systems to learn them effectively. In this regard, we 

remark that symbol-level reasoning is important because it goes beyond the simple 

computation of pattern correlations induced by statistical learning. Overall, the usage 

of neuro-symbolic systems in real-world applications that are affected by safety and 

security issues like self-driving cars has been repeatedly encouraged. 

Last, about the second benefit, neuro-symbolic integration may be vital for the 

realization of AI systems that yield physically correct, grounded or factual, and 

verifiable answers to human users, similar to what traditional symbolic systems do. 

Indeed, this element has been at the basis of the original pursuit of hybrid systems as it 

is also key for achieving a high level of explainability of the systems’ predictions, 

given that humans often want to have an understanding of how a machine made a 

certain prediction, given a certain piece of data. In this regard, we note recent crucial 

advances the field has made in the definition and development of explainable neuro-

symbolic systems. 

5.3. Structured and Explainable AI 

The question of structured AI, also known as explainable AI, refers to the obvious 

possibility to combine neural AI with symbolic reasoning, since we know that neural 

algorithms for perception can be pointed at specific symbolic tasks. However, we also 

know that perception alone is not sufficient to achieve anything that we consider 

general intelligence. Even in the case of pattern recognition and decision-making, 

arguably the two areas where NNs are today at their best performance, there is still 

much about their operation that we would like to understand and make more 
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predictable. Probabilistic graphical models such as Bayesian networks, CRFs, or 

Markov Random Fields and Decision Trees are very popular, but they are bottleneck 

models that use local approximations to represent the whole structure. A typical tree 

may represent a pattern with about 30-40 variables while structured models can treat 

several million features. Symbolic does not mean deterministic but deterministic 

structures can be enforced on neural networks, and also probabilistic structures at the 

output level. A number of hybrid approaches enforcing such abilities in different ways 

have already been developed, for instance symbolic sectors and STNN architectures. 

The question of interpretability is by no means new and many statistical and machine-

learning linguists have faced it since the mid-nineteenth century, when the confusion 

between rationality and reality became mathematically clearly pointed out: it is not the 

method that justifies the theory, it is the theory that justifies the method. The typical 

way to find ideas for methods is to look at nature. 

6. Decision-Theoretic Frameworks 

6.1. Introduction to Decision Theory 

Decision theory serves as the foundational framework for understanding reasoning and 

decision making in countless models of intelligence, whether human, animal, or 

artificial. Broadly speaking, decision theory encompasses any formal modeling system 

that tackles the problem of figuring out which action is best to take. When someone 

uses the phrase "a decision-theoretic model", they could be referring to any possible 

theory covering this certainly enormous catalog of functions. When we use this phrase, 

we are specifically referring to theories that take prior action selection probabilities as 

inputs and then output the probability assigned to being in each possible world, after 

normalization and possible approximation, and which are based on a utility function 

for the exponential approximation of that normalization. Decision-theoretic models are 

the most common models of decision-making in cognitive science and in AI, and are 

often designed to be directly implemented in cognitive or neural networks. These 

models are called decision-theoretic because they rely on decision theory as their core 

modeling premise and its output as input. We will also be limiting our focus to internal 

decision theory; that is the theory of apparently rational behavior that does not involve 

physical action. A practical definition of "theory" is that it specifies a computational 

function. The first input-output map that we would like decision theory to implement is 

that of being in a world. More formally, the task is to approximate the 

6.2. Key Decision-Theoretic Models 

Are optimal predictions of the world while being conditioned on action selection 

probabilities or a related quantity. We also want the model to be able to deal with all 
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possible variables. The primary function of decision-theoretic models beyond action 

selection is making predictions about how an agent will behave under its decision 

theory. A useful model for this purpose can be created by assigning a direct probability 

to each possible assignment to the random variables of interest. In order to normalize 

properly, we can decompose the joint distribution into the product of the conditional 

distribution acting as the normalizer for the final expression times a prior over action 

selection probabilities that is factorized over individual action probabilities, though 

that factorized form need not necessarily be the prior over action selection probabilities 

for correct actions. 

6.1. Introduction to Decision Theory 

The essence of autonomous action comes down to making correct decisions given the 

available knowledge. And the field of decision theory attempts to provide a principled 

foundation for our ability of rational behavior. Decision Theory is a unified formalism 

for modeling rational behavior regardless of the details of the reasoning or inference 

involved. It is concerned with the conditions under which an intelligent agent's choices 

can be said to be rational, and whether it would be reasonable to assume that an 

intelligent agent intends to maximize a utility function over its choices. Broadly, 

Decision Theory provides a way of modeling the relation between the intentions of an 

intelligent agent and the options available to it, by suggesting that rational agents 

always choose the action that maximizes the expected utility of the system, based on a 

prior model of how the actions will affect the expected outcome. Expectations and 

intentions are indeed crucial for an agent's decision. We assume that agents strive to 

attain goals. They evaluate their expectations of attaining goals and make their choices 

according to these evaluations. The simplest model of decision theory identifies goals 

with numerical utility functions. It assigns a single scalar value to the overall 

desirability of being in a certain state, or of making the world change in such a way 

that the agent is in that state, after the action has been applied. A typical use of 

decision theory in AI is to model an agent's behavior given the action probabilities it 

produces. In this view, action probabilities are influenced by the agent's degrees of 

belief and degrees of value – its predictive and normative aspects, respectively. 

Decision theory plays two vital roles in AI. It attempts to formalize the meaning of 

rational action, and it explains how rationality influences action. 

6.2. Key Decision-Theoretic Models 

Decision theory has two distinct but related branches. Bayesian decision theory focuses 

on agents making decisions based on uncertain internal and external world models. 

Game theory considers interactions among multiple agents, with each agent making 

decisions that affect the likelihood of states of the world model of all of the agents. The 



34 

 

social agents then pursue their policies to maximize their respective utility functions. 

The two branches are strongly connected. Building on its concept of a common prior 

probability distribution over hidden variables, Bayesian decision theory can be 

extended to a multi-agent case to analyze the motivations and decision making of each 

agent. The decision problem for each agent is to maximize its expected utility based on 

the current belief state of all the agents from the prior joint probability distribution. In 

game theory, the prior probability distribution is a special case. Agents are attempting 

to maximize their payoffs based on maximizing or minimizing the payoffs for other 

agents. Thus, game theory assumes the agents have common knowledge of the 

parameterization of the payoffs. 

An additional, intermediate-level modification is the use of correlated equilibrium 

(CE) concepts. CE allows utilities to be discussed while also considering the need for a 

specific joint probability distribution. In particular, CEs connect Bayesian and non-

Bayesian cooperative decision making. These three models serve different purposes in 

AI systems. Neuro-symbolic systems with Bayesian modules can respond in very 

specific situations. Non-Bayesian game-theoretic systems can create large models or 

ensembles that approximately match utility functions, even with early, hidden incorrect 

agent assumptions. In contrast, systems with CE concepts can do both relatively 

efficiently. In particular, CEs allow the prediction and explanation of human behavior 

conditioned on specific internal models for social interactions. 

6.3. Applications in AI Systems 

One broad area of application for decision-theoretic models is in automated planning. 

Models that treat the difficult portions of the planning task as computation rather than 

representation have only recently been argued to be superior. The most visible of these 

models is the factored Markov decision process that clusters together similar patterns 

of behavior rather than merging states in a Markov decision process. This technique is 

borrowed in a simple version from connectionism, where the patterns of activation are 

abstracted, but the similarity metric used is not trained. Much of the recent success of 

reinforcement learning algorithms on complex real-world problems is now due to 

connectionist function approximation. The attractively simple reinforcement learning 

model can be generalized with respect to richer parametric classes. This generalization 

appears in other recent work in planning using nonlinear programming to minimize 

expected time under continuous-time Markov decision process models. 

The work in the previous paragraph describes quite essentially model-learning models. 

These are duals of the model-use systems. Model-learn systems need clear instructions 

on what to observe but they can operate under spotty, noisy sensors where model-use 

systems need sensors with good accuracy and coverage, already in the planning model 
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in order to function well. These AI systems do not need to be goal-directed in the sense 

that they must go for gold. In fact, these operations would set model-use planners at 

loose ends but these model-learn systems can be autonomous observers. No models of 

the goal are needed for these systems to operate. Model-learner systems with a planner 

operational with simple parametrically small processes continue to be rarities. 

7. Human-in-the-Loop Systems 

The key aspect of AI that differentiates it from traditional IF-THEN symbolic 

architectures is that AI learns by itself from user interactions. In general, the space of 

Natural Language Symbolic programs such as regression, classification, prediction, 

etc. is too large to be covered using prior knowledge alone. The lack of an Axiomatic 

Prior or the impossibility of covering the infinite space of symbolic programs given the 

finite set of training examples that will ever be available are two arguments that show 

that human input in some form or another is essential for Intelligent AI to exist. 

Different paradigms such as reinforcement learning, imitation learning, cognitive 

behavioral techniques, etc. seek to cover that void by proposing a method for the user 

to express their preferences and how these preferences can be used to fine-tune the AI 

model. In the Cognitive and Neuro-Symbolic paradigm, the user inputs their 

background knowledge in the form of Neural Gateways — structures that translate 

specific programs from the Cosmos of Languages to a Neural Architecture that can be 

trained. 

As Natural Language programs are complex and large-structured, the efficiency of 

learning can be greatly increased if the programmer uses knowledge that allows fewer 

learning iterations in a more optimized training process. The research community has 

therefore started to study all forms of User-AI interaction and how humans can help 

and guide AI Learning are some of its main goals. Therefore, different forms of 

Interaction Loop continuously analyze and infer user preferences and update in real-

time the Neural Structure to guide and help the user with their cognitive load. 

Although still in its infancy, improvements in areas such as Neural Network 

Compression allow the creation of very light fine-tunable Lim Boot Neural Programs 

that can run efficiently on consumer and mobile devices. The creation of HIL systems 

has allowed a multitude of applications to flourish such as Smart Dialog, Visual 

Reasoning, Natural Language Generation, Code Completion, Knowledge Discovery, 

Test Generation, Content Creation, etc. 

7.1. Importance of Human Interaction 

The role of humans in the loop can be to supervise or cooperatively interact with 

automated agents. One of the most known applications of human supervision of AI are 

the so-called “data-labeling” agencies, where humans annotate datasets, which may be 
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used to train AI systems. The problem with this approach is that it is very expensive 

and tiring for humans, who usually do it without having a good understanding of what 

the AI is creating these datasets for. In fact, the end-to-end optimization of AI systems 

through the use of complex, risk-sensitive reward functions can necessitate huge 

amounts of human effort without guaranteeing useful results. Industrial use-cases of AI 

are also based on the idea that basic tasks of intelligent behavior can be outsourced to 

an AI agent for augmentation of humans. Many companies are developing AI tools, 

but many of the developed AI systems are still far from being capable of being 

completely autonomous, and they rather augment workers and empower them instead 

of replacing them. AI can handle large-scale analysis based on previously learned 

models and comprehensive datasets, humans can add context and understanding at 

higher levels of abstraction and take risk-sensitive decisions. Despite being designed to 

work independently, practical and real-life applications of AI usually emphasize 

human-AI collaboration, combining the inference ability of AI with the higher-level 

decision-making of humans. 

7.2. Designing Human-in-the-Loop Systems 

Human-in-the-loop systems function as tasks in which a machine performs most of the 

work while a human provides support. We theorize that a designer of such a task will 

be interested in answering two questions. The first question relates to performance: 

What is the maximum speedup or minimum time of completion for the task if we 

design it as a human-in-the-loop task? The second question relates to acceptance: Is the 

task acceptable to a worker? From a theoretical standpoint, these two questions are 

quite distinct and may even be treated independently. The speedup question links the 

two sources of performance to either task alone via the speedup factor of the parallel 

systems model. The acceptance question, on the other hand, is concerned almost 

exclusively with the human task. Intuitively speaking, we could break up the human 

task into a sequence of elements and design the human-in-the-loop task through an 

iterative process, testing each new element for acceptance. 

Though these two questions can be answered independently and represent two 

important components in the design of a human-in-the-loop system, the relationship 

between task acceptance and performance for a worker functionalities needs to be well 

understood since bugs and shortcomings present in many proposed tasks can be traced 

to a lack of understanding of this relationship. The traditional assumption is that a 

human performs optimally on the whole problem that is acceptable. If the human 

performance is poor, the problem may not be acceptable. If the problem is acceptable, 

the entire problem is trivial, then it slows down the total performance. These comments 

should apply equally well to tasks wherein the machine and human work concurrently 

on the task and tasks wherein the two agents are working serially. 
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7.3. Case Studies of Human-in-the-Loop Applications 

Recent advances in machine learning, and especially deep learning, have equipped 

engineers with tools capable of creating marvelous technological solutions. Machines 

and algorithms are beginning to outperform humans in highly cognitively demanding 

tasks, including the play of games such as Chess or Go. A neural network can 

outperform radiologists in the identification of diseased areas in X-ray images. Other 

results indicate that deep networks are capable of recognizing subtle signs of cancer in 

histological images of tissue, or quickly detecting markers associated with Alzheimer's 

disease in brain scans. 

But for many applications, we still need humans to work with the machines, either to 

supervise them or to allow for reciprocal learning. Recent advances in linguistics, 

vision, and healthcare show that we can create increasingly intelligent services. Many 

intelligent systems require some degree of human input: to annotate training data; 

evaluate the effectiveness of recognition and understanding algorithms; correct 

application outcomes; discover new knowledge; or teach algorithms to recognize new 

concepts. Enterprises are investing in these intelligent systems. For example, users can 

annotate the political category of posts, which are then used as training examples for 

machine classifiers working to detect misinformation. A private sector firm has 

partnered to create a taxonomy of events that social media observers can annotate in 

machine learning systems. The intent is to build reliable and sophisticated algorithms 

for filtering spam using humans as a back-up mechanism. 

8. Challenges and Future Directions 

Abstract. Despite significant advances in cognitive and neuro-symbolic AI, for current 

models, there still remains room for improvement and important challenges to tackle. 

Here we map out current limitations and future research directions. In particular, we 

will focus on three future directions for research. First, we argue that more work is 

needed in the area of learning object and visual latent states in deep neural networks, as 

well as for modeling arbitrary differences among objects, visual congruence, and 

perform object-invariant recognition for understanding the visual concepts AI and 

vision systems in general rely on. Second, we argue that current cognitive and neuro-

symbolic systems have serious limitations in performing complex differentially and 

temporally-constrained symbolic operations on symbolic representations. Third, we 

tackle the question of how to align symbolic representations and operations as 

performed by lower cognitive AI functions (like those of visual recognition, matching, 

and attention). Experiments indicate that current versions of deep neural networks are 

still far from actual objects in the visual domain. In fact, deep neural networks stumble 

notably on the basic ability of children and adults to extract and use visual object 
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representations with a set of rational properties. In particular, they struggle with the 

concepts of compositional structure, object individuation (the ability to identify and 

discriminate objects), distinct object identity and (canonical) object constancy over 

differences and perturbations in differing scenarios, spatial duality and relativity, as 

well as the fact that object recognition is a task that can (and often should) be invariant 

to certain kinds of variation both along the same and across differing instances. 

The domain of cognitive and neuro-symbolic AI still has a long way to go before 

properly modeled general cognitive and visual operations can reflect models of true 

human intelligence. For starters, there remain questions about what "cognition" and 

"understanding" in the realm of different lower AI functions and general intelligence at 

the sensory to high cognitive function level should actually mean. However, it has 

become clear that the general area of not just symbolic AI, but neuro-symbolic AI in 

general is still lacking. In particular, what "cognition" and "aware" should actually 

imply in the realm of diverse lower cognitive as well as visual AI functions is still an 

open question. 

8.1. Current Limitations in AI Approaches 

At present, contemporary AI approaches are not able to achieve and reason about 

human-level cognitive complexity. Those results are not satisfactory for many 

application domains, like symbolic robotics, scene recognition and understanding, 

intelligent agents capable of autonomous problem-solving and decision-making in 

complex and uncertain environments, natural human-like language understanding and 

generation, social learning and interaction, interactive and multimodal learning, and 

many others. Above all, General AI is not at all achieved. The fundamental problem is 

that most of today's AI designs are overly specialized to the domains to which they are 

applied, with little shared structure among them. This specialization is not deliberate 

for the most part but is imposed by the fact that there is little or no good theory to 

guide the engineering of such systems and how to connect them together. Cognitive 

and Neuro-Symbolic AI can leverage cutting-edge advances in connectionist networks 

that are driving new results in image understanding, language processing, video-based 

activity recognition, dialog processing, and human action coordination. 

Any learning system for intelligent behavior should include perceptual learning, 

language for communication, and analogical reasoning supported by symbolic 

comprehension, knowledge, and reasoning based on rules and relations. These three 

modules are fundamentally interdependent. Yet today's actors have enormous difficulty 

coordinating together. Sophisticated complex human behavior requires the integration 

of diverse modalities, including visual and auditory perceptual channels, character and 

object tracking, motion control, modeling environmental dynamics and causality, along 
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with verbal, gesture, and facial communications. No serious attempts so far have been 

made to integrate the leading focus area of learning and perceptual vision with 

cognitive reasoning based on symbolic understanding of language, causal, and 

relational knowledge. 

8.2. Future Research Directions 

Research on Cognitive and Neuro-Symbolic AI is at an early stage, which is exciting 

because there are so many potential avenues for future research. Our essay has 

concentrated on presenting a theoretical overview of existing symbolic and hybrid 

approaches. Theory can serve as a foundation for future research, especially 

benchmark results exploring capabilities vs. limitations of the set of currently available 

approaches to Neuro-Symbolic AI; Neurosymbolic approaches are also useful for 

benchmarking tests for human cognitive capabilities. These suggested future tests 

would help guide future AI research toward systems that can bridge the capabilities 

gap with humans, and would help researchers to explore areas already inside of human 

ability space, but generally lacking neuro-symbolic solutions or benchmarks. However, 

although our essay presents a theoretical foundation that is recommended for selecting 

the next training and benchmark tests, it does not explore endlessly deep subfields of 

currently available benchmarks and future potentials. Expansion into the space of 

potential Neuro-Symbolic architectural combinations of capabilities and research is a 

particularly motivation that should explore some initial promising directions. 

Identifying and exploring promising architecturally motivated Neuro-Symbolic 

combinations provides rich future potential both for building architecturally more 

intelligent systems and for enhancing understanding of the blueprint of human 

intelligence. These unique directions share initial research results with existing Neuro-

Symbolic combinations, suggesting some possible collaborating paths. While the 

future AI directions are only a selection of a limited potential space, this cooperation 

and understanding offer the potential for the most interesting future work, whether 

inspired by human ideas or taking a totally different auxiliary path. 

9. Conclusion 

This work presented a theory of cognitive and neuro-symbolic AI that lays the 

foundation for the development of intentional AI systems. From Avicenna's conception 

of symbolic knowledge through Peirce's triadic theory of signs, Allen and Darden's 

mutual constraint conception of cognitive tools to Marr's functionalist theory of vision, 

we established the theoretical bases and principles that must constrict the 

implementation of neuro-symbolic systems that require the attribution of mental states 

to process and psychomimic behavior. The main plan of action was to defend the 

attribution of mental states to those systems from a metaphysical and epistemological 
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point of view. By proposing that intentionality can only be applied to systems that use 

symbol in Peirce's codependent sense and Allen and Darden's productive sense as 

cognitive tools, we provided a solid foundation for the attribution of practical 

intentions, conceptual intentions, perceptions, and beliefs to those systems. We also 

defended the attribution of cognitive mental states, explaining what they are by 

establishing the principles they are subject to and explaining how they are acquired. 

More importantly, the theories and principles proposed allowed us to develop a 

framework of cognitive intentionality in accordance with the most robust neuro-

symbolic AI proposals available. With our theory, such proposals gain not only 

theoretical rigor but also explanatory power concerning the behavior of human and 

non-human cognitive agents. Finally, the proposed architecture can be implemented 

using currently available AI tools, something that we advocate for in future works. 

Summarizing, we developed an intentional framework for weak and inflexible AI 

systems, lowering, therefore, the ontological gap between AI products and human 

cognition. Finally, we note that no matter how much we work on minimizing that gap, 

we cannot forget what AI was designed to be: a simple tool meant to facilitate part of 

our day-to-day tasks. 
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1. Introduction 

The emerging bond between artificial intelligence (AI) and healthcare is rapidly 

altering delivery processes in ways that promise to significantly enhance outcomes for 

patients and healthcare organizations alike. Healthcare practitioners and researchers are 

increasingly turning to AI for tasks that require intelligent solutions, with demonstrable 

success [1-2]. An historical example is a system that surpassed physicians in 

diagnosing cancers from analysis of medical records and images, and in performing 

analyses of some diseases. More recent examples include the deployment of an AI-

based system optimizing the planning of radiation therapy for cancer, in ways that 

surpassed even the best human oncologists, and the creation of a software tool trained 

by deep learning techniques on a databank of retinal fundus images, that rivals human 

ophthalmologists in diagnosing retinopathy of prematurity from analysis of retinal 

images. 

The increasing application of AI to healthcare brings with it heightened expectations 

concerning the contribution of AI to solving healthcare’s most pressing challenges – 

achieving superior patient outcomes and increasing the efficiency of delivery while 

reducing unnecessary costs and the associated financial burdens on patients and 

governments [3-5]. However, grappling with these complex challenges requires the 

coordinated efforts of a range of stakeholders, including clinicians and clinical 

researchers, computer scientists, ethicists, and policy-makers, as well as patients and 

their advocacy organizations. An underlying premise is that AI solutions will be 

designed, validated, and implemented in truly collaborative fashion, with disciplinary 

and cultural perspectives from both healthcare and computer science being equally 

Deep Science Publishing, 2025  

https://doi.org/10.70593/978-93-7185-745-1 



44 

 

valued [6-8]. Moreover, given the critical nature of the patient-clinician relationship in 

healthcare delivery, patients themselves must be engaged early and throughout the 

development process, to ensure that AI applications adhere to principles of health 

equity to not only optimize outcomes for affected demographic sub-groups, but also 

avoid artificial intelligence-induced harms. 

2. Fairness in AI 

In this chapter, we discuss the topic of fairness, which is perhaps the most explored 

ethical concern within AI. It is an area that has captured the attention of many 

researchers due to the increasingly important consequences technologies have on 

access to opportunities in sensitive areas such as hiring, credit assignment, law 

enforcement, offender recidivism evaluation, and healthcare [7,9-10]. Fairness is a 

broad concept with many definitions. Different definitions are required for different 

situations and to evaluate different forms of discrimination or inequality. Hence, 

measuring fairness is also a challenge. Finally, when people build and use AI systems, 

many challenges still remain to ensure fairness is achieved. Some of these challenges 

stem from the complexity of human decision-making [1,11-14]. Other challenges point 

to a lack of established practices in how to approach fairness: decisions made about 

definitions of fairness, how they are measured, and whether they are sufficient to 

achieve fairness in real-world consequences, are not always taken into consideration. 

Because fairness is often defined as the absence of bias or discrimination against a 

certain group of people, certain existing ML fairness measures assess various aspects 

of bias. However, a recent study on fairness in healthcare ML studies suggests that 

authors do not engage with fairness issues consistently or sufficiently [13,15-17]. 

Some report only disparate treatment on various protected characteristics or just report 

model performance disparities conditional on protected characteristics. Others focus 

exclusively on model performance disparities and completely ignore disparate 

treatment. Others report disparate treatment biases but apply mitigation strategies 

regardless of any established fairness definitions. Hence, there seems to be a lack of 

consensus on how fairness, bias, and mitigation should be defined and measured, 

which can contribute to more or less fairness issues in the use of healthcare ML 

technologies. 

2.1. Defining Fairness 

An increasingly common refrain in conversations about AI and other algorithmic 

decision tools in healthcare is that they need to be fair or must be designed to minimize 

the potential for bias. While the appeal to fairness is almost universal, it is not always 

clear how it is being defined or what intervention is being called for. For example, the 

claim that an algorithm is biased may express a technical observation that it achieves 
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worse results, measured by accuracy, on some population relative to others. 

Conversely, it may express a normative belief that algorithmic measures of success, 

such as error rates, predictive performance or other technical evaluations should be 

identical over different populations, at least to some baseline standard or threshold, or 

that their sample sizes should be proportional, given the utilities of different decisions 

for the different populations. Others yet may deploy the term to describe a decision 

process that upholds ideals of equity and justice or that affirms and champions 

sociocultural differences. In this section, we consider a few different definitions of 

fairness and analyze what we see as the core definition that is implicit in much of the 

emerging debate about fairness in algorithmic medicine and that reflects some of the 

most important and least celebrated historical roots of the concept. 

In the most broad sense, a technological artifact is fair if it is not biased or more 

precisely, if it acts without prejudice or implicit suspicion biases against members of 

certain groups or categories of people within a society, meaning currently that the 

individuals associated with those groups do not experience undue negative outcomes 

with respect to the design decisions. The observation behind this definition is based on 

intuitive agreement and scholarly consensus that technologically-mediated decision 

processes are sometimes carried out with prejudice and craving because the technology 

is an insensitive or fickle observer, relying exclusively on imperfect estimates of 

underlying causal properties. 

2.2. Measuring Fairness 

Determining whether an AI Decision Support System (DSS) is “fair” requires 

measurement. The most common approach is to use a quantitative metric that 

aggregates information about many individuals or groups and reflects a concept of 

fairness [18-20]. For example, group fairness metrics define fairness in terms of similar 

statistical properties between two or more subpopulations. Commonly used group 

statistical measures include risk difference, risk ratio, or odds ratio. These aggregative 

measures can be further quantified into fairness metrics that compute a measurable 

metric, such as Demographic Parity Equality and Equal Opportunity, across different 

subpopulations. However, quantitative population metrics have been critiqued for: 

1. Focusing only on population statistics rather than individual-level decision 

outcomes; 2. Measuring fairness for specific subgroups rather than assessing the entire 

population; and 3. Using a single fairness measure can be insufficient — selecting a 

complication metric that often conflates different user needs. 

An alternative approach to measuring fairness is participatory justice, which stresses 

the importance of gathering subjective information from stakeholders about the 

intended usage role of a particular AI DSS. Implementing participatory fairness can be 
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just as challenging and resource intensive as the participatory approach used to 

heuristically assess the manner of development of the AI DSS. Participatory modelling 

fairness metrics require stakeholder input on standards that are influenced by how the 

AI DSS is intended to be deployed, and are then aggregated into equity functions. Such 

metrics can be applied for decision audits but lack clearly formulated, formal 

implementations and testing procedures for enacting these measurement activities. If 

the intended role of the AI project transcends the local context, then fairness measures 

that focus on the entire population, rather than on subpopulation groups with well-

known simplicity biases attracted by inquiry, need to be enacted. 

2.3. Challenges in Achieving Fairness 

Achieving fairness in AI systems, and in predicting models more generally, is difficult 

or even impossible and it is important to understand these difficulties [19,21-22]. The 

theoretical impossibility results show that if fairness is defined in similarity to error 

parity but by considering conservative sets of protected attributes, then fairness with 

respect to such a conservative set is not achievable, or it is achievable only under 

unrealistic assumptions, such as zero conditional error of the model. These results 

place serious restriction on the types of predictive models for which achievable 

fairness is guaranteed. In the other direction, one could define fairness differently. For 

example, error parity can be relaxed to be similarity to error parity [11,23-25]. 

However, as shown, it is possible which leads to much less interpretable normalized 

measure of fairness than counterfactual fairness and the problem of counterfactual 

fairness is based on error parity. 

First, such disparities in error may well be acceptable as long as they are not too large. 

Model developers tend to place more meaningful constraints on fairness, which rather 

than purely a postulate to be followed automatically, will tend to be a direct reflection 

of the very aims of machine learning. Second, the pitfalls inducing such disparities are 

not merely artifacts of the data or evaluations used. AI results in discrimination and 

inequality when the actual prediction model is used to affect lives and fortunes. It is for 

this naive reason that one could ask whether counterfactual fairness of the model is 

attainable or ever would be aimed at. 

3. Accountability in AI 

3.1. The challenge of accountability arises particularly acutely from the use of 

algorithms or AI to support, aid with, or partially replace human decision-making [26-

28]. It is not a new issue and relates to questions around delegation of authority, 

changes in the responsibility of the primary decision-maker, potential erosion of the 

relevance of human judgment, and diminished culpability in the event that the decision 

or action against which someone is accountable leads to an event of moral or legal 
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significance. When accountability is pursued too much, or incorrectly, it can inhibit the 

development and use of important technology partnerships and lead to uninformed 

strategies for use. Accountability can take several forms. Legal accountability arises 

from connections to the legal system, can appear as direct or indirect power over a 

decision-maker, and for judgments and actions can rely on frameworks of tort, 

criminal, or regulatory liability. Moral accountability involves accountability and 

moral judgments made by third parties, and may or may not relate to formal legal 

accounting. Delegated accountability can arise to allocate to a given actor 

responsibility for the actions of agents acting on behalf of others. Technical 

accountabilities can take forms such as explainability or auditability that create 

requirements for algorithmic transparency. These meanings describe a shared domain 

of accountability concern but have separate areas of focus. 3.2. Accountability 

Mechanisms AI accountability is often assumed to be primarily a matter of legal 

responsibility: either applications or users will be legally accountable for the 

consequences of AI judgments. This is unlikely to be the solution strategy for any AI 

application or for any specific case involving AI systems. Consider both direct and 

indirect liability in tort or criminal law terms: direct liability may not be possible 

because AI liability recognition is likely to be limited; core elements of intent or 

negligence might be impossible to meet. Indirect liability should be limited: already 

overused doctrines of vicarious liability could be obscured further if the company uses 

AI and makes decisions based on AI judgments. 

3.1. Understanding Accountability 

Accountability concerns in relation to AI in healthcare stem from the dynamic and 

entangled socio-technical systems at play. Due to the increasing automation of services 

and tasks that augment or replace human decision-making, questions of accountability 

become complicated [29-32]. Instead of reconfiguring existing systems where 

individuals are already responsible for the decisions of others, the development and 

application of AI systems reconfigures the systems of accountability by introducing 

new actors and tools. We stop being account-givers towards the designated actors and 

become account-givers towards a black box that produces outputs we rely on. As 

technologists and decision-makers, AI systems designers and manufacturers are 

included among the group of people whom accountability is distributed between. At 

the same time, there is also a risk that technologists and decision-makers try to 

monopolize accountability, directing the burden of responses back towards the 

individuals impacted. 

Accountability is multifaceted and this section does not seek to provide an exhaustive 

account of the philosophies surrounding it. Broadly, accountability entails a form of 

social relation in which some agents are responsible for some set of other agents, 
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arbiters, or evaluators [31,33-35]. The latter have a normative expectation for assessing 

whether those actions have met some agreed-upon criteria. The terms of this relation 

can change, however, meaning that a person can be accountable to another person and 

later switch, without relinquishing their previous accountability. In terms of the actions 

being evaluated, those who are accountable can be expected to answer for their 

actions’ outcomes, processes by which those actions reach outcomes, or even the 

capacity in which the person acts. Some philosophers argue that responsibility confers 

an obligation to answer in the event of harms in the form of blame or punishment, 

while others hold that to be accountable is to explain or justify our actions. 

3.2. Accountability Mechanisms 

Accountability’s importance depends on the potential scope of an AI system’s impact. 

Technologies with little impact, such as small automations or tools, tend to be used 

with little governance [36-38]. In health and medicine, clinical decision support 

systems, diagnostic models, and all systems at the core of care may actually be 

designed for low scrutiny of decisions, either directly or indirectly. However, the 

actual mechanism of accountability is often outside the design process per se. We also 

see a border case with powerful research systems, which should be exposed to scrutiny 

for social benefit but are usually treated like any other piece of research. Conducting 

research can be an accountability mechanism, but reporting standards might be lacking 

or even missing entirely. For impactful applied systems, such as those that are core to 

daily clinical activity, concluded processes materialize: the workflows and tools to 

ensure that models are validated and tested in the field and that their shift might alter 

processes that ensure that we don’t make lousy decisions become part of daily work. 

Accountability is described as a way to make sure that the developers or deployers of a 

system are in a position to be adversely impacted by their decisions. In organizational 

theory, structures have developed to assess at scale accountability across a group: 

transparency, trustworthy tracks, and common incentives are aggregate mechanisms 

often nourished by scandals. Trust is often mentioned but rarely defined, so here we 

discuss four potential definitions. AI systems in health or medicine do not need 

specialized trust. The traditional one is coming from experts and users, such as 

physician colleagues. This trust is used for lots of systems, and more profoundly for 

higher-impact or riskier systems, so it is very specific to each system, but almost 

without exceptions has to be crossed for higher stakes or critical use. 

3.3. Case Studies on Accountability 

Accountability is required within the healthcare space long before issues of blame and 

retribution arise. Instead, it is regarded as a key mechanism in the regulatory toolbox 

for establishing the necessary institutional foundations that govern cutting-edge 
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technologies. From science to its applications in healthcare, AI and ML involve actors 

from diverse backgrounds working within complex regulatory, ethical and commercial 

environments with third-party and proxy interests. AI and ML are not simply a tool or 

technology used by these actors; it often establishes a proximity between the outputs of 

the technology and the goals of a company, gauged in terms of profits, making the 

technology liable to the level of public trust in these organizations. Trust in proximate 

actors, and their motives, is integral to an organization securing social license to 

operate, which may be disrupted by the output of an AI or ML system that is unfair or 

inequitable to stakeholders, resulting in reputational harm to the organization. 

Additionally, the used datasets carry significant moral weight, and enabling the 

accountability of proximate actors involved in this aspect can act as a form of privacy 

protection. The responsible use of AI in healthcare cannot simply be made upon 

regulation of the final AI product, but must also address the accountability of these 

proximate actors involved in the entire AI lifecycle [1,39-42]. 

In a survey regarding data science governance, a majority of respondents considered 

the assurances provided by platform companies offering AI-related services to be 

inadequate. Similar issues have been raised regarding accountability of large 

development teams within a tech company responsible for releasing AI-driven 

technologies. This is even more pronounced with the rise of "AI as a service" wherein 

model development and deployment is offered as a digitized service to third-party 

organizations. The analysis has pointed out that this is undermined by a lack of 

mechanisms to cope with the Greybox problem associated with machine learning, 

wherein test suites incorporate the variable traits of diverse users of disparate 

backgrounds, working within different environments. The result is inadequate service 

provisions that may potentially violate private information or disrupt the reliable 

operations of a user, possibly having unintended effects at a larger environmental 

scale. 

4. Transparency in AI 

4.1. Importance of Transparency 

AI has the potential to radically transform healthcare, yet it raises important ethical, 

legal, and societal issues, many of which warrant further examination before it is 

deployed at scale. One of the most pressing issues surrounding AI – indeed, for 

emerging technologies in general – is how to strike the appropriate balance between 

fostering a culture of technological innovation while ensuring sufficient levels of 

oversight and accountability. Answering these questions requires serious consideration 

of issues surrounding AI that are specific to the healthcare context. For example, given 

the importance that transparency has in other contexts, one of the first questions to be 
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asked regarding transparency concerns the systems level: how does this affect the 

already opaque nature of the healthcare system? 

In order to have a functioning healthcare system that respects the autonomy of the 

patient, patients and their families must know what treatments are available and how 

they work. In order to assess the likely success of a particular treatment and, assuming 

the patient gives informed consent, weigh the risks, benefits, and chances of success 

against such metrics as reduced quality of life, expense, and time and energy required, 

it is important to have knowledge of not only how a given treatment works, but also 

why it was prescribed. The importance of these considerations is amplified when it 

comes to AI and healthcare. Not only will patients have a more difficult time 

understanding and questioning recommendations made by AI, but if implemented 

inappropriately, AI may create a disconnect between the patient and healthcare 

provider. Such disconnect could be particularly troublesome in cases when they are 

already vulnerable. 

4.1. Importance of Transparency 

Transparency is one of the important characteristics of AI systems that are to be 

deployed in high stakes domains where poor decisions can cause severe bodily harm or 

worse. Medical AI provides decision-making support related to patient diagnosis and 

prognosis, as well as treatment recommendations and other choices. It is also used in 

determining third-party coverage decisions, including insurance policy decisions. 

Increasingly, AI tools are being designed to be integrated into the processes of care as 

tools for decision-makers like clinicians, patients and their families, insurers, and other 

stakeholders to facilitate their choices and to ensure the best patient care. We believe 

these systems hold great promise for assisting stakeholders in addressing the 

challenges they face in providing and receiving the best quality of patient care and 

improving the efficiency of corresponding healthcare delivery processes. Transparency 

is central to achieving this promise. 

Taking together the basic principles of transparency, it is clear that AI cannot simply 

be a “black box.” But how transparent should medical AI systems be? With algorithms 

as sophisticated as modern AI decisions systems, we will be confronted with 

challenges in meeting strict standards [7,9,10]. Another meaningful form is model 

transparency, the ability of a human to see how a model works, what kind of patterns it 

learns and so on. In the medical domain, we as the AI community need to support our 

clinical allies in developing understandable and interpretable models. These allies are 

the domain experts, the ones trying to make sense of these models, and together we 

should find ways to make sense of them, as understanding enables them to trust our 

work. What is critical to a model’s interpretability in the medical domain is whether it 
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can produce understandability and how the answer impacts medical decision-making 

and outcome. In sum, what is at stake is enhancing user’s cognitive understanding. 

4.2. Techniques for Enhancing Transparency 

Machine learning is an indispensable tool for many, if not most, AI systems. It can thus 

be quite helpful to understand how to make the operation of ML systems more 

transparent, which in turn helps to make their functioning apparent. Transparency 

techniques can thus usefully be divided into two parts: tools for making ML systems 

more transparent, and tools for providing transparency to ML systems. The first reins 

in the opacity of a system by design, while the second aids in discovering why such a 

system produced a particular result. 

In the first category, we can place the concept of interpretable models, that is, a model 

that is relatively easy for a human to comprehend. There are a variety of machine 

learning algorithms that are considered to produce interpretable models as they create 

explicit decision rules laid out in an easily readable manner, as compared to neural 

network-based models which are usually seen as black boxes. Interpretable models, 

however, have their own limitations. Their use is often restricted to small datasets and 

low-dimensional classification tasks, and there are certain inherent limitations to the 

predictive performance of such models. Reducing the number of weights in a neural 

network model is one of the approaches to providing transparency by design while 

permitting performance increases. Since more weight often correlates with better 

performance, this may not always be a viable approach. Reliability of results can also 

be used as a metric for allowing the widest number of people access to decisions made 

by machine learning tools and taking trust out of an utterly black box model. However, 

this has to be weighed against the accuracy of predictions. 

4.3. Transparency and Public Trust 

Nothing in AI and healthcare raises public concerns like an aversion to opaque systems 

acting in black-box mode. A long history of medical screening tests, although 

functionally never as powerful as they have been in recent years, brought patients to 

diagnose serious medical conditions with the problematic potential of overhauling 

people’s life to the point of breaking them apart. Invasive tests to detect someone’s 

HIV, HCV, HPV, or TB serology, among other pathogens, often require the act of 

looking back for life-challenging pathologies to not only affect the life of the person 

involved, but also their family, society, and the state. Thus, deviant outcomes can drive 

an entire set of further actions. What about unexplained errors being done in such 

sensitive decisions by AI-enhanced systems — thus worsening the patient’s condition 

with wrong or deviant risk stratification to trigger loss of public trust and confidence in 

the technology? 
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However delicate the subject may be, exploitative models without validation cannot be 

simply rejected from using AI and machine learning concepts when in clear disfavor to 

the negation of an important upside. In fact, black-boxing the model’s decisions leaves 

these results unpredictable and untrustworthy, which in itself constitutes a significant 

obstacle to the deployment of machine learning-enhanced applications. Public and 

regulatory trust in algorithmic decisions is particularly important in sectors such as 

healthcare, the law, and public service, suggesting a trade-off between accuracy and 

explainability. Interpretability matters not just because it can alter the choice of which 

algorithm to use but also because it plays an important role in determinations of trust in 

algorithmic decision-making. Such a dilemma accounts as one intrinsic property of 

complex AI-enhanced systems with a growing complexity, or deep learning models, 

such as those based on neural networks. Because of the growing number of validations 

required by regulatory authorities, efforts have been made, for instance in the area of 

medical imaging, with additional constraints being imposed to improve interpretability. 

Indeed, no matter how romantic an idea reinvention of a development process might 

sound, until there are clear answers for consequential problems touching upon fully 

consequential existent questions, public trust and confidence matter most. 

5. Regulatory Frameworks in Healthcare 

The need for a regulatory framework for artificial intelligence (AI) in the field of 

healthcare is critical. As AI grows in importance and inevitably becomes more 

integrated into the field of healthcare, regulatory bodies will need to set forth 

guidelines and requirements to ensure that these solutions are safe for patients. The 

frameworks focus heavily on the fact that AI is a “black box” with complex machine 

learning (ML) algorithms, and thus warrants additional scrutiny before deployment in a 

healthcare setting. As 99% of the drugs that go through the approval process are 

unsuccessful, this prolonged validation process becomes even worse for developers of 

AI-based solutions, as the time from inception to use in the clinical setting can take up 

to a decade or more. 

Additionally, the framework document includes a comprehensive framework for 

telemedicine devices that include AI, which further delays the approval process. 

Consequently, the complex development pipeline and approval process lead to a 

situation where AI developers may choose to forgo regulatory approval completely and 

deploy their product directly to the end user. This unfortunate reality of a no-regulatory 

environment complicates the reality of developing trust in AI and ML tools. Similar 

recommendations about the need for post-market real-world evidence generation and 

device performance evaluation are made. In addition, the need for transparency, 

accountability, reliability, and cybersecurity are also key recommendations. AI 
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development is a new and dynamic field; thus, the regulatory frameworks are not static 

and are expected to evolve as new devices and technologies come into play. 

5.1. FDA Guidelines for AI in Healthcare 

The FDA is responsible for protecting the public health by regulating the safety and 

efficacy of products. The Center for Devices and Radiological Health oversees medical 

devices, a category that is growing rapidly to include standalone software and software 

in combination with drugs. In 1996, the FDA issued a guidance document describing 

how the FDA would evaluate software. In 2019, the FDA announced the creation of 

the Digital Health Center of Excellence, which focuses on accelerating digital health 

innovations, especially related to software. AI/ML-based software constitutes a subset 

of medical device software. The FDA has not targeted pathology software as a distinct 

type, but the guidance documents apply specifically to software that is standalone or 

used with a physical medical device, including some types of imaging algorithms. By 

these criteria, the digital pathology algorithms for input used in machine learning are 

not exempt from regulatory review. It is of note that there are no quality system 

requirements about design control or postmarket regulation requirements for radiation 

control. Because it constitutes the highest risk, any approval will not happen until all 

regulatory hurdles are cleared. 

The FDA has issued two guidance documents specifically addressing the regulation of 

AI-based software in healthcare. In a 2021 document, the FDA outlined a framework 

for approaching software algorithms that would rely on some in-market real-world 

review for ongoing updating and continuous learning. The aim is to make approval and 

regulation of AI devices easier and faster for devices that would change and evolve 

continually. A second and more general document was issued in 2019 that introduced 

transparency, explainability, accuracy, robustness, and cybersecurity as important 

pillars of regulatory review. A significant portion of the FDA's regulatory framework 

for algorithms was based on the real-world experience with mammography screening. 

5.2. EMA Regulations and Standards 

The European Medicines Agency (EMA) is a decentralized agency of the European 

Union (EU) with the mission of protecting and promoting human and animal health, 

identifying and characterizing health threats, and minimizing their impact with a 

comprehensive and coordinated approach. To achieve this, the EMA is responsible for 

the scientific evaluation of medicines developed by pharmaceutical companies for use 

in the EU. 

The EMA is not responsible for the regulation of medical devices. Identification and 

characterization of health treatment needs in the European Union for both medical 
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devices and in vitro diagnostic devices are the responsibility of the Medical Device and 

In Vitro Diagnostic Device Regulation. The European Union Regulation on Medical 

Devices provides the regulatory framework for the conduct of pre-authorization 

clinical evaluation required for the authorization of clinical investigations with these 

products. Such clinical investigations are sponsored and conducted by companies and 

institutions with the appropriate expertise and resources according to Good Clinical 

Practice in accordance with the clinical investigation plan, approved by an ethics board 

and the relevant competent authority. 

The clinical evaluation of AI-based technologies applied to medicine in the EU is 

performed by authorities in the member states of the European Union. The purpose of 

the clinical evaluation is to confirm the claimed medical benefit, establish that the 

general safety and performance requirements of the device have been fulfilled, and 

identify any remaining risks and contraindications to the use of the device. The 

manufacturer and the authority should verify that the information for use is compatible 

with the medical benefit claimed and ensures safe use of the device. 

5.3. Comparative Analysis of FDA and EMA 

FDA documentation considers an AI/ML as a device, while EMA regulation 

documents do not discuss AI/ML as such. The difference in general definitions of 

AI/ML is interesting. FDA documentation refers to the variety of applications as 

"algorithms", and considers AI as a “device”, holding the position that "an algorithm is 

a medical device". FDA considers that, “When software is intended for general and 

unspecified use as an adjunct to a medical device, it is considered a component of the 

device.” FDA also states that, "When a medical device contains software that meets the 

definition of an intended use regulated under 21 CFR 807 or 21 CFR 814, the software 

is subject to premarket submission and clearance/approval". 

EMA regulation documents do not discuss AI/ML as such. Both FDA and EMA do not 

discuss governing AI/ML software systems as a “component” of a larger software 

system, which is the case for many AI/ML software systems used in healthcare and 

life-sciences. A few AI/ML software systems are standalone devices governed as a 

“device” by the FD&C Act in USA or as devices under the EU MDR. For example, for 

the specific product classification including data and “software as a service” clinical 

decision support product that uses the AI/ML software technique without any “real-

time” connection to any upstream healthcare and life science related device system 

networking environment. 

While regulations in USA and EU might appear to be onerous, and overly complex for 

startup companies, especially AI software developers not familiar with regulatory 

approval and validation expected for their product, it does serve the purpose of 
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instilling confidence among the users of AI/ML and other systems and is an important 

pre-requisite for adoption of such technology. Adoption is likely to be more expedient 

if the AI/ML systems have been approved according to regulatory standards and 

validation by a government body responsible for citizen healthcare protection. 

6. Environmental Policy and AI 

How should environmental policy respond to artificial intelligence capabilities? This 

question has already arisen in a few environmental areas. The processes by which the 

executive branch actors adopt new regulatory initiatives include relevant mechanisms 

to shape such responses. Further below we survey how new interagency initiatives may 

be used to shape those responses. 

Few agencies have as prominent a role in earth and ocean science as the National 

Oceanic and Atmospheric Administration. NOAA’s underlying statutory frameworks 

are broad grants of authority to monitor climate, weather, ocean, and other aspects of 

both terrestrial and marine environment. Through a number of specific statutes NOAA 

is charged with responsibilities ranging from air quality monitoring, charting the 

nation’s and the globe’s oceans to managing coastal zone information and aquaculture 

to ensuring the safety of fishery products. Within the agency, the National 

Environmental Satellite, Data, and Information Service operates the nation’s 

environmental satellite system and provides global environmental data. AI and 

machine learning increasingly support these remote sensing missions. Additionally, 

NMFS has a longstanding role in monitoring commercial fishing and seafood 

processing using a specialized AI known as catch share. Outsourcing these roles to the 

private sector has received renewed interest recently due to the expansion of AI 

capabilities like the ability to better evaluate tradeoffs associated with contractual as 

opposed to regulatory long term fishery management decisions. 

6.1. NOAA's Role in Environmental AI 

Environmental AI is hosting the promising partnership of the National Oceanic and 

Atmospheric Administration and the federal policy on the regulation of Artificial 

Intelligence. From its very inception as the Executive Order on Maintaining American 

Leadership in Artificial Intelligence, Agencies were mandated to create their own 

policies, and further promote the National AI Strategy. The Administration has 

recently proposed a new opportunity to foster support of nationwide AI's research in 

the workshop on Reinvesting in AI Research: Perspectives from the Public, Private, 

and Non-Profit Sectors. Therefore, national and federal policy agencies have been 

actively developing a position for that Policy Sector in establishing guidelines and 

regulations where AI will be applied, employed, and used. 
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The National Oceanic and Atmospheric Administration has developed its 

Environmental AI Strategic Plan to describe how Environmental AI will help fulfill its 

mission to better understand and predict changes in Earth's environment, from the 

depths of the ocean to the surface of the sun, and share that knowledge and information 

with others. Environmental AI will serve the long-term goal considering that AI is a 

tool to amplify the extraordinary work of NOAA's employees and partners. AI leads to 

priority objectives that guide efforts in Environmental AI and will provide direction 

and ensure focus as they invest in Environmental AI over the next five years and 

beyond. The Environmental AI objectives are to promote research on new and 

improved Environmental AI methods, tools, and technologies to meet mission needs; 

Increase the impact of Environmental AI within operations, products, and services to 

better serve our Nation; Promote the transfer of successful Environmental AI 

capabilities to operational use; and Lead and participate in cross-agency, national, and 

international collaboration on Environmental AI. 

6.2. NASA's Policy on AI Applications 

NASA's charter requires them to "pursue the widest practicable and appropriate 

dissemination and use of information and technological developments ... to enhance 

economic, environmental, and social benefits to the United States", including "the 

prevention of loss of life and property from natural disasters." AI applications and use, 

to include Machine Learning techniques, are difficulties for which there is an 

immediate need for agency interval collaboration and collaboration with other 

governmental entities and the private sector. NASA endeavors to provide accessible 

technical evidence, evaluation, guidance, and knowledge useful for society's 

understanding of the potential uses of AI and the benefits, consequences, and 

influences of its development. Policies governing the application of AI tools, Machine 

Learning, by NASA include ensuring that: AI design and applications meet the mission 

needs of the Agency and its partners; stakeholder and community needs are assessed 

and AI activities are evaluated across disciplines. Agency AI and Machine Learning 

capabilities are cross-domain technologies, broadly utilized across NASA's mission 

areas. A primary focus for NASA AI research is on critical technical constraints that 

arise from operating in demanding real-world environments such as space exploration 

and use, aviation safety and use of the increased airspace, safety or surface operations. 

The primary aim is to develop advanced technology and systems that enhance safety 

and reliability by integrating AI/Machine Learning capabilities into existing and future 

systems. Secondarily, to prepare for the future by developing technologies to enable 

safe use of higher levels of autonomy in transportation systems and to ensure the 

success of AI-enabled NASA missions so that they can adapt readily to uncertain and 

unanticipated changes that affect mission success. 
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6.3. Interagency Collaboration and AI 

Like other Federal agencies have expressed interest in incorporating LLMs and other 

AI platforms in their operations. You might think that those are just competing for the 

latest technological glitz. While that desire for advancement may be present to a 

degree, there are good reasons to investigate these systems from an interagency 

perspective. Each has a very different user base, different competencies, and 

potentially–testbed data sets. The entire Federal enterprise will benefit from 

collaborative exploration in this space. 

This is not a new concept. Billions of dollars have been spent on interagency 

collaboration for decades, especially in the area of defense and intelligence, but also in 

cloud services and general infrastructure support. The mission-driven, safety-conscious 

applications of AI in the analysis of the decision spaces we face in many of the areas in 

which service agencies have been long involved is ripe for broader, deeper 

investigation. Crazy ideas, like a battle management system designed to enhance Crisis 

Action Team functioning in an information overload environment, shouldn't be the 

province only of research comedy shows. Tackling integration of FedGov use of LLMs 

in expert taxonomies, "almost everything else sensing," and focusing optics for long-

term fusion decisions deserve far more than their current momentary glances. 

All of our communities would benefit from a coordinated position statement 

identifying what capabilities may be useful for which agencies in interacting with the 

agencies' populations. Do complaints of insufficient presence in its AI-biochar 

rulemaking wish list imply that both it and could benefit from positioning guidance 

involving the tinier than current 10-stack? 

7. Responsible AI 

In the face of increasing algorithmic influence on key aspects of our lives, discussions 

of how to implement AI responsibly have gained momentum. In this section, we focus 

on AI for Biomedical and Healthcare Research and Targeted Delivery, and define 

Responsible AI as considering both the AI tools used and the desired outcomes of AI 

applications. Specifically, our definition underscores the need to align trade-off 

decisions in AI implementation with (1) stakeholder needs, (2) consideration of 

intersectional marginalized communities, (3) collective values, and (4) resource equity. 

AI algorithms might require careful design and implementation to achieve equitable 

and just societal benefits, while withholding their use when it could lead to inequitable 

trade-offs. Questions, such as “What social or cultural values does this algorithm 

promote?” or “Which dimension of wellbeing is being improved, for whom, and at 

what potential cost?” can help to critically assess AI in terms of Responsible AI. We 

frame Responsible AI as similar to the Ethical and Responsible Research and 
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Innovation discourse, but emphasize the unique considerations of the algorithmic 

context. 

Recent years have seen an increase in both technical and thematic proposals for how to 

implement AI responsibly. Many thematic proposals echo the historical developments 

within HCI concerning ethics and values in Design, calling for Algorithmic Impact 

Assessments to ensure that AI tools will fulfill their promises, and dedicate time and 

resources for Design Justice prior to deployment. Many also arise from criticisms of 

problems endemic in the design and use of AI tools, calling for Bias, Fairness, and 

Equity in Algorithmic practices. The recent frameworks in the UK are examples of 

responsible implementation efforts. Technical proposals for Responsible AI often 

propose technical methods to reduce Bias in learning, such as Fairness-Aware Machine 

Learning or methods to introduce Explainability as a part of AI tool design – sensitive 

to all stakeholders involved in the decision making process of the algorithms. 

7.1. Defining Responsible AI 

Responsibility appears to have a natural connection to what it means to be human. We 

make decisions, we act, we are blamed or praised for our choices and their 

consequences. In this regard, we can say that we act responsibly when we freely 

choose and perform an action having in mind that action’s value and acknowledging 

the relevance of its consequences. Minimally, a person who acts responsibly must 

possess the freedom to act, the capability of deliberating about possible actions and 

their consequences, and the capacity to empathize with those affected by the action. 

Especially in the age of AI and the use of models that operate independently of human 

judgment, the notion of responsible action raises questions about the relevance of 

traditional criteria on human decision-making. This is particularly evident in 

discussions about AI and machine learning bias or fairness: who is responsible for 

biased or unfair results produced by algorithms? The designers, the developers, the 

providers, the users of those algorithms? Or, since algorithms are allowed to act 

independently, are the algorithms themselves morally responsible for biased or unfair 

outcomes? 

The use of the term ‘responsible AI’ should not be understood along this line. It is not 

about assigning responsibility to the algorithms themselves. Rather, the use of 

‘responsible AI’ is a shortcut to invoking the idea of responsibility with regard to the 

deployment and application of AI and ML in the real world. More generally, we can 

refer to Responsible AI as a set of principles or guidelines about how to analyze, 

design, plan, and deploy AI technologies in ways that foster and not hinder people's 

wellbeing, meaning and purpose, social belonging, agency, human rights and dignity, 

and flourishing as individuals and in their community. 
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7.2. Principles of Responsible AI 

Several AI principles have been issued for public commentary or approval, by public 

and private entities, and there are some commonalities among them. The first principle 

consists of promoting the common good. AI technologies and their associated data 

should promote the public interest and guaranteed rights. Computer algorithms should 

not contribute to existing or perpetuating inequalities or discrimination. The second 

principle of responsible AI is transparency, which consists of openness about data 

collection, use, and management. Users should be informed of how, why, and when an 

AI system is being used in order to understand its limitations. Lack of transparency is a 

barrier to accountability. The third principle is about privacy, which should be actively 

defended. Privacy protection should be default, and organizations must respect 

individual privacy as an ethical consideration, for its own sake, and any reasonable 

requests to erase data should be done in a timely manner. The fourth principle consists 

of AI systems being socially aware. Systems must be built to operate in a diverse social 

environment, and training and design data sets must be representative of end-users. 

The fifth principle is about accountability, which demands that AI developments 

should go through a rigorous exam and approval process and that individuals be 

appointed for the management of specific impact-related activities. 

The sixth principle is altruism. Creativity, the arts, and care-giving activities should be 

respected and enhanced, and noneconomic interests related to the use of AI 

technologies should be preserved. The seventh principle brings up the matter of 

obsolescence, suggesting that preservation from excessive and unintended 

obsolescence of the cognitive and non-cognitive capacities of individuals, as well as 

the capacities of regulatory agents like governments and organizations, should be 

assured. The eighth principle refers to AI steering. AI systems should not steer undue 

decision power away from individuals towards technology. 

7.3. Implementation Strategies for Responsible AI 

Most organizations recognize the importance of being transparent, fair, and 

accountable, but they may be uncertain about how to enact the principles of 

responsible AI. Specialized teams within organizations can be charged with 

experimenting with and instilling generous use, shaping use policies and guidelines, 

and auditing algorithmic systems and their outcomes. Organizations might install AI 

review boards and interdisciplinary ethics committees to scrutinize ambitious projects 

involving predictive algorithms and algorithmic systems to ensure that those systems 

approximate good behavior. Organizations might also create expert outsourcing 

agencies to audit algorithms. Training, education, and research are important to various 

aspects of AI development and deployment, as is legislative and legal oversight. 
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For organizations developing and using AI, research exploring self-regulation in 

addition to the traditional, regulated management of health-related technological 

innovation could provide important insights into best practices for adopting and 

implementing responsible AI. Industry associations might adopt consensus ethical 

guidelines or ethical credentialing of member organizations. Contracting vendors or 

stipulating gain-sharing agreements with certain partners in the AI ecosystem might 

help encourage responsible AI pursuit for profit. Additional discussion surrounding 

core investment of algorithms used for structured prediction and clinical decision 

support systems in healthcare might help ensure that the principles of responsible AI 

are paramount. Lastly, examination of how existing and proposed legal vehicles 

governing products, services, and organizations—which fall short of addressing AI-

specific issues—might lend insight into how organizations and systems contribute to 

responsible AI guidelines, principles, and implementation strategies. 

8. Alignment with Public Good 

The rise of AI applications in healthcare has exposed the pressures that the profit 

motive applies to the development and dissemination of potentially important new 

technologies. The motivation for rapid commercialization of AI-based tools is not 

inherently bad and, when properly aligned with public good, economic incentives can 

in fact accelerate technological progress. But the deployment of some AI applications 

in healthcare also has the potential to cause serious, long-lasting damage to individual 

and community well-being, and to undermine social equity and justice, unnecessarily 

inflating burgeoning healthcare costs. Therefore, it seems crucially important to 

consider how public good can be factored into the AI development pipeline—from 

initial conception, to funding decisions, to design choices, to validation and testing, to 

eventual deployment. 

It is perhaps useful to begin with a definition of public good. The term describes 

certain types of commodities or assets that bring benefits broadly across society. 

Depending on the context in which the term is being used, public goods may be 

broadly defined to encompass services furnishing the most basic determinants of 

human welfare and dignity on the one hand, or more narrowly defined to include 

things like water supplies and air quality on the other. There is a common challenging 

aspect for all public goods, which is that there may be little or no market incentive for 

companies or individuals to invest in their production. In other words, public goods are 

underprovided by free markets because there is no direct market demand that ties 

investment in their production with the monetization of returns on that investment. 

While healthcare is not literally a true public good as described by economists, it 

nonetheless shares important characteristics with true public goods and therefore be 

subjected to a similar logic about the incentives needed to optimize its quality and 
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distribution. Benefiting from economies of scale, and accrual of secondary external 

benefits, high-quality healthcare can generate positive spillover effects that incentivize 

public investment. 

8.1. Understanding Public Good 

M. K. As stated previously, AI is not to be used blindly; it must be in service of a goal 

articulated by people, who know the context and nuances of the issues for which AI is 

applied. AI can be used towards many kinds of ends, but the ends we advocate for are 

those that align with the message of medicine, which is aimed at decreasing suffering 

in a complete and thorough way. These goals serve to frame ethical considerations that 

will be discussed throughout this chapter and the book. What do we mean by public 

good? It seems to be a simple term. We may construe this to mean anything that 

advances the greater good or the greatest amount of pleasure for the greatest number. 

But we have four words in the phrase – public, good, advance, society. As with all 

phrases that seem direct and uncomplicated, when contemplating them deeply, we find 

a richness of meaning and nuance that evokes further meditation and analysis. To take 

the last term first, we focus on society above all because we are animals of the 

collective, and we are fundamentally dependent upon our people for our survival. 

While there might be individuals who seek self-gratification above all else, the greatest 

satisfaction comes from being part of a group. As renowned psychologist found, 

intrinsic motivation is enhanced by social relatedness. Similarly, psychologist 

identified flow, one of the most pleasurable of all psychological states, as being one 

where we are absorbed in activities in service of others. Above all, our histories and 

our anthropology demonstrate that evolution has favored social cooperation and 

development and that our survival depends, ultimately, on the group. 

8.2. AI's Role in Advancing Public Good 

Global challenges, such as climate change, pandemics, and geopolitical conflicts, often 

exceed the capacity of national governments and multilateral organizations. As the 

urgency of response necessitates mobilizing new, coordinated individuals, 

organizations, and governments at the local, national, or global scale, technologies are 

required to work towards the resolution of identified issues at a scale and speed that 

was not previously possible. If technology alone is not sufficient to meet the social 

demand for global public goods addressed by an Effective Altruism or Global 

Priorities approach, at least it is necessary. AI has the potential to shift the cost-benefit 

analysis in favor of investing efforts and resources into responding to challenges to 

humanity’s well-being and survival, such as natural disasters and violent or nonviolent 

instability. These goals vary from providing coordination capacity during crises to 

increasing longevity and well-being, reducing suffering, increasing suffering, and 
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improving financial stability. Additionally, AI can optimize tasks that are veritably 

monotonous or rely on time-consuming processes. 

Nothing, of course, ensures that organizations will dedicate themselves to the 

production of public goods; motives, emotional inclination, or ethical commitment are 

not uniform and can change over time. Companies may have strong incentives to 

undertake initiatives that generate an aura of respectability and may be put under social 

and market pressure to enhance the public benefits from what they do. For these 

reasons, many see the role of government as critical. Through its mechanisms, internal 

and external, it must push the economy and society to adopt and institute measures that 

allow the use of the most advanced techniques, as they are what will allow the 

achievement of the Society 5.0 goals. Society 5.0 can only be achieved if both private 

persons and companies opt for advanced self-governing solutions through the 

responsible use of AI. 

8.3. Evaluating AI Impact on Society 

This section summarizes consider some approaches that can be engaged to support 

evaluation and demonstrate the type of understanding and distillation of commonly 

understood evaluation truths, facts, activities, and observable measures that should be 

instantiated when Artificial Intelligence (AI) research concerning its realization and 

deployment in support of public good. Evaluating the impact and benefits of AI on 

society is a big and important question that might rightly seem to ask for the invention 

of a new form of digital econometrics. It encourages collecting actual test data, 

creating surrogate models and new deployment systems benefiting from considered 

understanding, and delivering report data or metadata on attribution and causation 

concerning the predictive ability of the developed model concerning real-world 

responses induced by actions. 

That said, the alternatives to using recognized econometric methods would be the 

creation of general data model priors making many types of evaluation studies private 

and of questionable utility. To use crowdsourcing systems to engage rapid evaluation 

by asking crowds of different people to describe what differences the deployment of a 

new AI may make to their own or others' lives and net benefits achieved seems more 

directly usable and wonty by an evaluation stakeholder who stands to be impacted by a 

deployed AI's actions rather than by a popular or commercially competitive impetus to 

dream big. The difficulty with any crowdsourced approach to model desired outcome 

states and scoring is that, without some filtering, it could serve to amplify the negative 

and the hurtful without truly evaluating why an AI might deliver worse outcome 

utilities but are called out for special consideration. 



63 

 

A more ground-up actionable approach might be to incentivize stability-fans – those 

people whose actions tend to be the most predictive of long and short term public 

utility as usually developed by measured market incentives – to second-guess and 

brainstorm hesitant statements calling for special consideration. This directs evaluative 

crowdsourcing to the people in the best position to sort and score crowd data for 

identified retroreflectivity public consequences discovered directly through scaling 

interactions with identified deployed AIs. 

9. Case Studies 

In the previous sections, we discussed different issues related to the Ethical, Legal, and 

Societal Considerations in AI and Healthcare including challenges to socially valuable 

AI. We argued that the previous policy and governmental frameworks regarding AI 

and healthcare may or may not exist but are inadequate by not providing appropriate 

guidance for such an important mission. With respect to the particular societal domain 

of the question of application of AI in healthcare, it is important to discuss case studies 

before coming to conclusions. The purpose is to offer brief yet to the point examples of 

such issues on the paper: with very little AI, no governmental framework, nor strong 

policies, decision-making, issues related to safety, and inequality, or with / without 

inclusion of human and AI agents jointly making health-related decisions. In the rest of 

the section, we offer three case-studies, brief discussions of AI applications in 

healthcare, and other sectors. The idea of selecting such case studies with the 

applications of AI other than healthcare is to highlight the lessons learned in the other 

important societal sectors such as public policy and environmental management. Why 

these sectors? First, AI implementation decisions are confronted with ethical 

dilemmas; and more importantly, public safety is at stake. Secondly, there is a sectoral 

overlap in environmental health. Thirdly, for public policy, social justice and 

inequality issues arise such as lack of expertise in the new technology. Hence, the 

deeply moving ethical, legal, societal dilemmas may be largely similar to make policy 

recommendations in other sectors. 

9.1. Case Study 1: AI in Healthcare 

Artificial Intelligence (AI) is increasingly becoming an integral part of healthcare 

systems, defining the ways in which professionals and patients interact. Interest in AI 

has steadily grown, especially for use in predicting patient outcomes, clinical and 

operational decision support, enabling remote patient management, fraud detection, 

drug discovery, and disease biomarker discovery. Despite several advantages 

accompanying the increased use of AI in these sectors, its application is accompanied 

by security, ethical, and legal concerns which require serious deliberation. Many of the 

discussed algorithms are not easily interpretable, which can present problems in 
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application to patients. In addition to this, patient data privacy concerns arise from the 

requirements of large scale data access. At present, there are no specific guidelines or 

laws to ensure that the above systems uphold data privacy concerns or allow impartial 

monitoring. 

AI and machine learning are playing an increasingly beneficial role in various aspects 

of care delivery: from improving an individual’s access to healthcare to improving the 

clinical performance of diagnostic and therapeutic decision-making. These capabilities 

are being applied to early detection of mortality or adverse events along a patient’s 

entire journey of care. AI is also playing a role outside the walls of clinical practice in 

more effectively managing population health via predictive algorithms that can stratify 

risk. Increasingly, AI is being harnessed to predict variation in patterns of demand, 

using risks between demand and capacity to inform healthcare resource allocation 

decisions. As healthcare organizations are being provided with increasingly granular, 

real-time data on utilization and outcomes, they are utilizing healthcare data and AI to 

create feedback loops for sub-groups of patients: designing, implementing, and 

iteratively refining clinical protocols. Empirical evidence and lessons learned from the 

initial development and implementation of these models suggest multiple functional 

and technical requirements to derive high performance algorithms across these 

problem areas. 

9.2. Case Study 2: AI in Environmental Management 

The contributions of AI in environmental management are becoming more and more 

evident, particularly in fields where the automation of large-scale data analyses is 

made possible by AI's computational advantages. As such, AI techniques have been 

successfully applied in weather forecasting, climate modeling, environmental 

monitoring, disaster management, and resource management; they have supplemented 

traditional scientific approaches to deliver results more quickly, or have investigated 

problems too large and complex to be manageable without these techniques. With 

traditional approaches for analysis of complex environmental systems taking months 

and even years of time, the fast turn-around provided by AI techniques makes them an 

attractive option. Earth system science enables us to conceptualize and study the 

complex cause-effect mechanisms of the Earth’s systems by which human activity has 

been affecting global climate. However, concerns have been raised about allowing AI 

to control important aspects of climate engineering, as they act independently from 

human judgment and reflect a regime of control distinct from traditional environmental 

management. Environmental management is an applied science that seeks to improve 

the relationship between human activity and the environment. It formulates proposals 

to cope with negative environmental phenomena and, in this regard, it supports and 

enriches environmental policies. Environmental policies may be regarded as superior 
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to both environmental management and traditional scientists of the Earth system. 

Environmental policies define the objectives and regulations under which both 

environmental management and Earth system science operate, in order to exercise and 

optimize the political decision-making power over the human-environment 

relationship. 

9.3. Case Study 3: AI in Public Policy 

The third case study concerns AI-based prediction research involving U.S. courts, 

criminal justice, social services, and public assistance agencies, and its influence on 

certain decisions and policies as they relate to reductions in child maltreatment, foster 

care placement, and foster care placement reentry rates. This subsection ends with a 

discussion of related ethical and other issues emergent from such research, and of the 

need for policy decisions made on the basis of AI-enabled decision-assist tools and 

software, such as whether to remove or, if removed, whether to reinstate a child, during 

the pandemic. More generally, we also address the ethical, legal, and social issues 

associated with predictive policing as well as its related sociotechnical aspects. 

Predictive algorithms in this space draw on various data sources: past child 

maltreatment fatalities and reports that did not end up being categorized as fraud; 

transgressor proclivities as shown in behavioral, socioeconomic, and medical histories; 

family histories—especially embedded stressors such as parental mental illness or 

substance abuse disorders; and current domestic straightened material circumstances, 

including economic downturn. Algorithms making use of these data then run predictive 

models and generate output typically designed to flag, score, or rank families and 

individuals, localities or regions for preventative services and interventions prior to 

negative child welfare events. The aim is to guide child welfare agencies in prioritizing 

actions based on informed risk assessments. A key assumption, stemming from various 

studies supporting these algorithms, is that, like predicted reoffending in criminal 

justice, the probability of recidivism increases based on the volume of earlier 

maltreatment events, family risk factors, and the severity of each earlier event. 

10. Future Directions 

AI is already affecting every aspect of our lives, including healthcare. Within the next 

couple of decades, AI will help us determine the best treatments for disease, provide 

real-time risk profiles for disease based on social media and other data, and improve 

the management of chronic diseases. AI will analyze our experiences to understand 

how drugs are experienced in the real world, provide real time feedback on how 

clinical trials need to be adjusted to capture drug effects better, and even help identify 

various life stressors, imbalance of social networks, and the need for community 

services to provide holistic health support. AI is not just about identifying diseases and 
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predicting outcomes better but will also help all of us lead healthy lives by 

understanding us better. Some of these trends have already begun with the use of 

sensors, social media data, and big data. New advances in AI such as its ability to 

intelligently handle missing data, utilize multiple different data types efficiently, and 

help uncover new disease-causing mechanisms will enable the successful realization of 

these trends. 

However, with all these potentials with the future of AI for bettering our health and 

healthcare, many pertinent ethical questions continue to remain and be raised. What 

rules will govern the continued accelerating collection of these massive amounts of 

data about our health and the analytics that could violate privacy and affect our mental 

and physical health? What guidelines will become standards for who owns these data 

and what corporate or government abuse of this ownership would result in 

consequences? For the types of models we create and the findings gleaned from them, 

how will bias and misuse be regulated? How will AI be incorporated into clinical 

practices in a way that augments and does not supplant humane treatment of patients? 

How can we ensure that the systems we build result in better health for all people in a 

just and equitable manner? What does it mean to be human in an age where coming 

into contact with AI has become common? These are a few questions that the 

emergence of AI in healthcare brings to the fore. 

10.1. Emerging Trends in AI Ethics 

Concerns for how to design AI ethically are growing, while both society's deliberative 

mechanisms and organizations' internal infrastructures are evolving to address this 

need. On the one hand, in 2023 four of the ten existing key requirements are ethics-

related. The Act aims to govern safety and risk and to ensure that AI deployment 

serves the public good, promoting transparency, fairness, justice, and accountability 

standards. These principles place an ethical governance obligation on the entities 

developing and deploying AI, and build upon existing international developments. On 

the other hand, AI ethics initiatives have merged and diversified within large 

companies. AI-ethics-dedicated resources are being mobilized: provided with budgets, 

teams, and expertise, they're decentralizing and sending out the touch-up orders to 

accidentally or strategically located people. 

These company initiatives reference values, standards, and principles from earlier 

shared documents while modifying them internally. However, this knowledge diffuses 

in a pyramidal way; it is applied to prioritize guardrail proposals for the most relevant 

use cases. This allows for larger-scale automated solutions developed in-house or 

bought on the cheap to be ethically downsized. This asymmetry in the ethical 

governance of AI design and implementation possibly compromises the societal fabric. 
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Well-oiled capitalism rests on the foundational synergy between large companies and 

SMEs. If it is true that the cost of non-compliance is highest for larger companies, 

these shouldn't forget to cater for the ethical exterior of their supply chain. Should 

these uneven company ethical outsourcing dynamics consolidate, they could further 

worsen an already damaged ecosystem, where some small players imbue AI 

development and deployment within their own products and services with principles 

and others don't. So, should ethical governance outsourcing dynamics consolidate, a 

growing asymmetry in the labor market could emerge. 

10.2. Potential Challenges Ahead 

Future ethical, legal, and societal issues probably to occur in the coming years closely 

relate to the very novelty of implementing AI technologies. The relevant projects at 

hand will probably be in areas like the revenue potential of insurance companies by 

using AI to increase the probability of finding a patient being ill and getting an 

individual policy; an increase in prioritizing voting for people being healthy for not 

engaging or financing companies developing novel or emerging papers of little or no 

possible value; the risk of AI being nothing less than digital miotic agents; the money-

pot of patients revealing personal data for scientific research; an increasing reduction 

of public ministers of health; controversies about the refusal of paying by insurance 

companies or health services the relevant compensation toward patients suffering from 

an illness which should have been treated by a machine learning system, effectively 

being parties of conflicts of interests; the risk of misunderstanding AI’s probability-

based action or predicting process as deterministic results; possible competition in 

terms of data possession of worldwide business companies or states in order to provide 

essential healthcare systems or services; and various expectations concerning priorities 

in the question of protecting the privacy status of personal data. 

Moreover, and with regard to the prior topic, the more essential and urgent tasks seem 

to be establishing and evaluating national or international administrative or civil laws 

and a potential liability framework. Other delicate issues seem to arise with the 

uncertain dynamics of on-the-job-life decisions taken by a non-human acting, 

proposing, recommending, or deciding authority; and with the obligations of such a 

machine to give a thorough explanation about its elucidating process in order to trace 

decision-making and/or prediction errors. 

10.3. Recommendations for Policymakers 

Recent years have seen tremendous advances in AI capabilities. Such advances have 

also resulted in a growing range of available AI tools for healthcare that could 

potentially impact patient care and healthcare operations in useful and positive ways. 

The decision of choosing to deploy such a tool in practice hinges on the legal and 
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regulatory environment of the country in which the tool will be used. Historically, 

most countries have had relatively static laws and regulations intended to protect 

patients and, in a more general sense, the public at large. These laws and regulations 

are typically not specific to AI. But with the rapid advancement and adoption of AI 

technology, and how integrated into society such AI tools may potentially become, 

existing healthcare laws and regulations may become increasingly out-of-sync with 

how AI technology can be safely and ethically deployed to optimize its potential value 

in aiming for physical, mental, and societal health. 

In order to address this rapid shift in technology and needs, we believe that countries 

need a willingness to continually review the legal and regulatory environment 

regarding AI tools deployed for healthcare. Such regular reviews would allow 

necessary adaptations to be made to the execution of existing laws and regulations that 

could potentially stifle the safe and ethical usages of novel AI tools in such sensitive 

areas. Such regular reviews could also trigger new country laws or global guidelines 

that would allow a country’s regulatory bodies to judiciously develop new or 

additional laws and regulations that are specific to the features and real-world impact 

of AI healthcare tools. 

11. Conclusion 

The healthcare sector is undergoing a transition towards a technologically advanced, 

data–driven ecosystem designed to support both health and care in a health and 

predictive maintenance model. Health and care innovation powered by advanced 

technologies such as Artificial Intelligence have enormous potential to make massive 

positive impact but at the same time these technologies also bring nurtured ethical, 

legal, and societal questions regarding their use. The past decade has witnessed an 

increasing interest among researchers, physicians and faculty, funding agencies, and 

pharmaceutical companies for exploring the potential of AI–based technologies in the 

healthcare sector. The healthcare sector offers a rich opportunity where one can apply 

AI–based innovation and transform frontline services thereby enhance patient safety, 

satisfaction, and outcomes while lowering the overall cost of care delivery. 

We hope this volume acts as a catalyst for catalyzing deep exchange and interaction 

between AI researchers and healthcare professionals. AI requires an inter–disciplinary 

approach. It is crucial for AI researchers and developers design algorithms and 

technology approaches applied in the healthcare space along with their medical expert 

counterparts as active collaborators at every step of the process. An inter–disciplinary 

approach will help promote accessible, trustworthy, and high quality algorithms and 

applications in our healthcare systems. We hope this volume serve as useful guide for 

AI and healthcare scholars, researchers, and practitioners in understanding the 
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importance of ethical, legal, and societal considerations in the design, development, 

implementation, and dissemination of AI–based healthcare solutions. 
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1. Introduction to Deep Learning in Medical Imaging 

The advent of deep learning has significantly transformed the realm of medical 

imaging analysis, yielding automation techniques that not only rival but, in certain 

instances, even outperform human experts. This chapter aims to provide a pointed 

entry point for those embarking on a journey through the large and convoluted field of 

deep learning applied to medical imaging analysis. The scope of this book is both 

broad and specific; while we primarily delve into medical imaging problems, we apply 

advanced imaging analysis for data from any source; within the medical imaging 

domain, we focus on the core areas of detection, segmentation, classification, and 

registration of anatomical and pathological structures. Furthermore, we also focus on 

the methodology of deep learning in terms of its specifics, implementation-related 

aspects, and challenges. The hoped-for ancillary outcome of this book is to promote 

the widespread adoption of deep learning within the community. 

Deep Learning, especially in its recent incarnations, has proven to be extremely 

effective for the detection, segmentation, classification, and registration problems in a 

variety of domains including those with non-image data [1-3]. Hence, it is to be 

expected that Deep Learning will yield correspondingly effective solutions for a wide 

range of medical imaging analysis problems in the same manner as it has for other 

domains. However, such an expectation must be tempered; one reason is that most of 

these AI-enhanced solutions are still in their evaluation phase; to make an impact on a 

routine clinical basis, such solutions need to pass several stringent hurdles including 

validation and necessary regulatory approvals, especially those pertaining to ethics, 
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transparency, and accountability [2,4,5]. Hence, realistic expectations are key to the 

acceptance of new tools. The high complexity of deep learning models and the massive 

data requirements for training them and deploying them safely are other issues that 

should be borne in mind – data availability and privacy restrictions will also play a role 

in the adoption of deep learning models. 

2. Convolutional Neural Networks (CNNs) in Radiology 

1. Introduction Deep learning has been an indispensable tool in medical imaging 

research, especially in image reconstruction, registration, and segmentation. Deep 

learning is particularly well-suited for tasks requiring discrimination and classification 

of images from ground truth labels, which is the basis of supervised deep learning 

approaches. In this chapter, we discuss applications of convolutional neural networks 

(CNNs), the most common deep-learning model applied to the above tasks, to the 

medical image modality used most in clinical practice, radiography, and imaging 

methods for cancer diagnosis and therapy management, computed tomography (CT) 

and magnetic resonance imaging (MRI). While deep learning techniques are rapidly 

expanding to new imaging modalities such as ultrasound and photoacoustic imaging, 

we limit our discussions here to the applications of CNNs to established clinical 

imaging modalities, without loss of generality, and demonstrate the unique strengths 

and weaknesses of deep learning by highlighting key features of established techniques 

and how deep learning can address these challenges. 

2. Convolutional Neural Networks (CNNs) in Radiology 2.1. Architecture of CNNs 

Deep learning is a class of machine learning algorithms that utilize several stacked 

processing functions called layers to learn the features embedded in the training data. 

A deep network can learn features of increasing complexity at successive layers. 

Convolutional neural networks (CNNs) are a class of deep learning methods that are 

designed to process the high dimensionality of image data while retaining the spatial 

and image structure. The design of CNNs was inspired by physiology, specifically the 

local receptive field of regular spatial arrangements of neurons at different 

spatiotemporal scales. The role of spatially restricted receptive fields for images stems 

from the fact that most features in an image are not spatially uniform, but sparsely 

distributed. Furthermore, some features are variations of other features, implying that 

feature building could be done recursively. 

2.1. Architecture of CNNs 

The development of Convolutional Neural Networks (CNNs) owes much to the 

evolution of traditional Artificial Neural Networks (ANNs), which are organized in 

several layers. The input layer interacts with the input data, while the output layer 

generates the final prediction. The hidden layers extract features, representing, at each 
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layer, an increasing level of abstraction [6-8]. Each neuron in the first hidden layer is 

connected to each neuron in the input layer to model simple features correlated with 

the applied transfer function, e.g. edges in images. By stacking layers, more complex 

features that are not easily delineable by a handcrafted process are learned directly 

from the data. Traditional ANNs are fully connected. That is, each neuron in the l-th 

layer is connected to each neuron in layer l−1. The number of free parameters is 

therefore extremely large and grows exponentially with the size of input data. 

Moreover, in large-sized data, fully-connected layers present the problem of storing 

high-dimensional tensors. To avoid those problems, in CNNs, adjacent layers are 

sparsely connected. Two or more layers model a 3D filter that convolves input data. To 

improve the learning of complex features and to decrease even more the number of 

free parameters in the ANN, CNNs employ two further strategies. 

The convolution operation is paired with a non-linear activation function, e.g. the 

Rectified Linear Unit (ReLU) layer, that generates a non-linear model. The activation 

of the intermediate neurons generates the activation map, which is small-sized in 

comparison to the input data. To keep this tensor small-sized as well in deeper layers 

while increasing the number of filters that convolve the activation map, pooling layers 

are used. By using a max-pooling operation, a region of the activation map is 

compressed into a single number [9,10]. The learned features are local for initial layers 

and become more and more global in deeper layers. Each neuron of the last CNN 

layers models a simple linear combination of the feature maps. Classification is 

obtained through a softmax layer. The basic architecture of CNNs consists of an 

alternating sequence of convolution and pooling layers, finishing with fully connected 

layers. 

2.2. Applications of CNNs in MRI 

Magnetic resonance imaging (MRI) is a non-invasive imaging agent, without the risk 

of radiation exposure. Through simple volume adjustment of the patient, we can 

capture a wide range of multi-modal images. In addition to greater anatomical soft 

tissue contrast than other modalities, the modulation of paramagnetic agents in the 

MRI scanner can help us detect more detail of the tissue. Based on the absorbing 

parameters affected by the tissue state, we can capture various image contrast effects 

including T1 and T2 relaxation time, and susceptibility-weighted imaging. Both 

qualitative and quantitative analyses can be obtained via MRI. Using deep learning 

using deep CNNs, which are the most successful applications in the medical domain, 

we can further enhance the capability of MRI and its application, and we have 

witnessed a boom in advanced MRI research. To be more specific, CNNs in MRI can 

be classified as (a) MR protocol planning, (b) Acquisition parameter optimization, (c) 

Accelerated data acquisition, (d) Data denoising, (e) Motion artifact correction, (f) 
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Generative modeling, (g) Segmentation, (h) Tissue super-resolution, (i) Disease 

classification, (j) Multi-modal image synthesis, (k) Quantitative analysis, and (l) 

Predicting post-treatment consequence [11-13]. However, CNNs are not magical; we 

need to acknowledge the pros and cons of employing CNNs, and at least one realistic 

explanation for each study, which should be accessible through the manuscript without 

additional reading must be provided. In addition, we need to distinguish an academic 

study on CNNs from other clinical-oriented papers. CNNs have a limitation in terms of 

research reproducibility and data privacy preservation. 

2.3. Applications of CNNs in CT 

For applications in CT, many CNNs have been employed for tasks ranging from CT 

image segmentation of anatomical regions and CT image registration, to CT image 

reconstruction and super-resolution [2,14-17]. Because CT is a typically low dose 

imaging modality, many groups have worked on noise reduction of low dose scans 

using CNNs. Recent works have also explored the challenges of utilizing a limited set 

of CT projections for the reconstruction of high quality CT images. For tasks such as 

CT image denoising or super-resolution, the CNNs are trained in a supervised fashion 

using pairs of low quality CT images as the input and high quality CT images as the 

output. For tasks such as CT reconstruction from a limited number of projections, 

however, large scale paired datasets of input-output images can be challenging to 

acquire. To address this challenge, a physician could make the pairings on a smaller 

scale and CNNs can then be trained in a semi-supervised fashion, based on synthetic 

data generated using standard CT reconstruction algorithms. Other variations of CNNs 

and deep learning generally have been used to augment traditional CT reconstruction 

techniques through the design of deep priors that leverage the ability of CNNs to learn 

to exploit statistical redundancies in the data. Such methods, using CNNs, generatively 

model the reconstruction of the CT image given the retrieving projections as input, as 

well as the mapping from a high quality CT image to noise or artifacts based on 

standard CT reconstruction methods as output. 

2.4. Applications of CNNs in X-rays 

X-ray imaging has diverse applications ranging from security to post-mortem 

examination. However, the role of X-ray imaging is particularly important in the 

medical domain. The ease of access and lower cost of X-ray imaging supports its high 

usage for detecting and diagnosing a number of diseases – dental diseases, bone 

fractures, pneumonia, and TB. Hence, X-ray imaging presents itself as an attractive 

target for automatic detection and classification of the underlying diseases. 

Deep learning in general, and CNNs specifically, have gained immense popularity in 

the recent years for the underlying classification and detection tasks in X-ray imaging. 
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CNNs have been shown to outperform classical methods in a number of detection tasks 

from X-ray images. In this section, we specifically discuss the application of CNNs in 

detecting and classifying pneumonia, pulmonary tuberculosis, lung cancer, cardiac 

diseases, tuberculosis, detecting metallic objects, and in dental radiology. Early 

implementations using CNNs fine-tuned the weights on the X-ray datasets to detect 

and classify pulmonary diseases. However, later works attempted to improve upon 

these results by using deeper CNN architectures. Some of the recent works have 

proposed either novel CNN architectures, or models pretrained on non-medical 

datasets, or ensemble of models, or hybrid models, to detect and classify several 

diseases present in X-ray images. 

3. Transformers in Medical Imaging 

3.1. Overview of Transformer Models Transformers have gained great attention in not 

only the domain of Natural Language Processing but also in other tasks, especially in 

vision tasks [9,18-21]. In this section, we will quickly introduce the motivation of the 

Transformer model, the original architecture and its applications in the field of vision 

in general and radiology in particularly. The transformer architecture was originally 

designed for NLP tasks, which is a model with the main backbone of a sequence-to-

sequence architecture that mainly consists of Encoder and Decoder blocks. The 

training is performed in a supervised manner with the loss functions that are typically 

cross-entropy loss compared with the ground truth label. The input of the model is a 

text sequence, which is usually not embedded in the model directly; these tokens are 

learned to be specific embeddings in the model [22,23]. The input embedding will then 

go through an Encoder stage, which consists of a stack of N successive layers. Each 

layer contains two-layer normalization as well as a self-attention block and a fully 

connected feed-forward neural network. The output of the Encoder stage will then go 

to a Decoder which is the same as the Encoder stack but with another layer to 

incorporate information from the Encoder output by performing another attention 

mechanism. The final output is the target sequence generated during inference via 

teacher forcing. 3.2. Transformers for Image Segmentation Image segmentation is one 

of the most widely-studied problems in computer vision [24-26]. The task of image 

segmentation requires a lot of annotations, thus requiring more attention to build a 

detailed tool to automatically carry out this task to save time and resources for medical 

procedure diagnosis and treatment. Various models can be utilized for segmentation 

methods such as CNNs, RNNs, or more recently transformers. In particular, these 

models have better speed and accuracy in many common tasks compared to their 

predecessors. In the world of medical imaging, these methods also deliver comparable 

results in many scenarios, accelerating the medical process. 3.3. Transformers for 

Classification Tasks Similar to NLP tasks, vision tasks can also be formulated into text 

to text format. For classification tasks, such as contrastive learning or more general 
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tasks such as visual-language tasks, vision encoders are needed to incorporate vision 

information into the process. The majority of the work utilizes CNNs to encode visual 

information and then feed the CNN output into a transformer, which was shown to be 

beneficial for tasks such as visual grounding. For regular vision classification tasks, 

such as ImageNet, transformer-based models can operate in an end-to-end manner with 

only a structure encoder only and deliver comparable results or even better results than 

corresponding CNN models. With the branch of MAE, document clear results can be 

noticed with masked input to help trained the model in many classification benchmark 

tasks. 3.4. Transformers for Anomaly Detection Detected such as object detection, 

change detection, or anomaly detection share similar similarities. In particular, 

anomaly detection in medical imaging plays a critical role to support doctors to detect 

and locate suspicious regions in a patient to accelerate or stabilize the treatment 

procedures if necessary. Similar to document modeling for NLP tasks, sufficient 

organization downtime is needed. In particular, ViT was proposed to work in a fully 

vision way, working under the supervision of supervised methods or other testing 

methods such as zero-shot. 

3.1. Overview of Transformer Models 

The term "transformer" describes a model topology introduced for natural language 

processing (NLP) data. In contrast to recurrent or convolutional neural networks, this 

architecture uses self-attention to relate elements in a sequence. Transformers made 

breakthroughs in NLP by interpreting texts as sequences of words or word pieces. The 

original transformer architecture processes sequences with long-range contextualized 

attention weighing, yielding elegant word representations. These ideas have a techno-

cultural resonance that we should explore for object detection in images, volumes, and 

point clouds. 

The original transformer has a symmetric structure, with identical layers in an encoder 

network that projects sequences into a space of greater dimension in a self-attention-

enhanced manner, and a decoder that projects them back into lower-dimensional space 

for the task of interest: translation, reply, or summary. Each step builds on the result of 

the previous layer, adding new information [27,28]. In general, the number of layers is 

much greater than the dimensionality, which is at least double the dimensionality of 

representations. The layers consist of multi-head self-attention and a feed-forward 

sublayer. Other differences include Layer Norm protocol (applied at each step before 

the layer operations, rather than the last step), and sinusoidal functions that could be 

chosen for position encoding. In images, the information could be delivered 

sequentially by their sequences of patches rather than pixels. For processing, multiple 

input sequences are merged into a 2D panorama. Ultimately, what the model "sees" are 



78 

 

the patches. By integrating self-attention with the positional information associated 

with patches, the transformer assesses patches form a whole. 

3.2. Transformers for Image Segmentation 

Image segmentation is a dense prediction task, taking a single image as input and 

classifying the visual content at the pixel level. For certain areas of the image, the class 

labels may be large, or the area encompasses a large number of pixels. Therefore, the 

commonly used semantic segmentation loss, such as pixel-wise cross entropy loss, can 

be class-imbalanced and may overly constrain the network by treating each pixel 

equally [19,29-31]. Another common approach to multi-class segmentation is panoptic 

segmentation, which combines concepts from instance segmentation with semantic 

segmentation. However, densely predicting visual categories can be computationally 

expensive or inefficient, especially for very high or multi-channel images. 

Traditional segmentation architectures, such as U-Net, apply sequential convolutional 

layers and down-sample predictors to create fused feature representations. Then they 

unfuse this global representation with up-sampling layers to make dense predictions. 

U-Net architectures have been historically popular for medical image segmentation, 

especially when using transfer learning from pre-trained models on the natural image 

domain. More recently, light-weight U-Net architectures have been proposed, 

specifically tailored for segmentation of hyperspectral images [32,33]. The medical 

imaging segmentation literature has seen a sizable number of modifications and 

variations using U-Net-like architectures. Despite the popularity of CNN U-Net 

architectures, they do lose information from the input image or predictions at certain 

resolutions, due to downscaling and up-sampling. Additionally, convolutions, while 

local, do not explicitly model long-range pixel-pixelized interactions, although local 

operations can indirectly capture long-range interactions through stacking multiple 

convolutions. 

3.3. Transformers for Classification Tasks 

Vision transformers perform classification by first tokenizing an image via non-

overlapping flattening short image patches, compute linear projections of those patches 

which are fed to a standard transformer encoder. An extra trainable embedding for the 

class token is often added, which is expected to store information that classify the 

image at the final encoder layer [34-36]. Vision transformers were first properly tested 

for supervised classification and showed a dramatic increase in performance with 

scale. Later, this observation was further verified, establishing that vision transformers 

become universal representation learners with scale. Subsequently, they have also been 

found to work well in a self-supervised setting via removing the class token, and 

learning to predict the original pixel values of random patches instead, during training. 
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The results of the representative work testing the scaling hypothesis for supervised 

vision transformer are reported, in terms of the error rates for two state-of-the-art 

classification models based on standard vision transformers and an mlp-mixer that 

employs dense multi-layer perceptron networks instead of a transformer architecture. It 

also reports various vision transformer models of different scales, trained on either 300 

or 1280 million parameters. When trained at scale, vision transformers achieve 

significantly lower error rates than convolution-based architectures. Moreover, it also 

has a very high computational efficiency, in terms of multiply-accumulate operations, 

compared to prevalent architectures. Vision transformers also learn generalizable 

representations through supervision, and result in significantly better performance than 

the standard architectures, when finetuning using linear classifiers after pre-training on 

large labeled datasets. 

3.4. Transformers for Anomaly Detection 

Visual Anomaly Detection (VAD) methods can be used to identify and classify 

unknown image anomalies. One useful tool for anomalous image analysis is a pre-

trained image classification Transformer, which has a large amount of image 

knowledge and can be used to find low-activity regions [37-40]. Previous works 

extract the image features, identify image prototypes, and extract low-activity image 

semantic features by clustering. These latent features can then be processed by a 

memory network. This unsupervised method can find anomalous image detection 

images. 

Compared with traditional anomaly detection algorithms, Transformer works well 

because of its powerful self-attention image modeling capability and better semantic 

feature extraction ability from a large image dataset [41-42]. However, at present, 

Transformers for anomalous image detection methods mainly focus on satellite and 

forest scene buildings, as well as many naturalistic scenes, but few studies have been 

done in the medical imagery field. Some apply a transformer visual model to MRI to 

detect Alzheimer’s disease and predict which parts of the structure can represent the 

activated image. The employ the transformer model to predict Alzheimer’s disease 

with diagnostic short prediction and receding to low activities of MRI. Both of these 

studies improve prediction by just single-frame classification using sparse vectors at 

different times and cutting the dataset. 

However, few studies have investigated transformer-based memory-less models for the 

direct prediction of Alzheimer’s or other neurological diseases using only static single-

frame anatomical MRI data. These classifications, if available, may provide 

brainstorming diagnostic and prediction tools through preliminary extensive 

evaluations that identify cognitively healthy people. 
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4. Generative Models in Radiology 

Recent years have seen growing interest in developing generative models of data. 

Without a clear definition, we think of generative models as functions that take in 

some latent representation z and return a data point similar to samples observed from 

the data distribution [6-8]. The most widespread generative model is the Generative 

Adversarial Network (GAN), which has generators and discriminators competing over 

a two-player minimax game. The games jointly refine the generator to fool the 

discriminator into thinking the generated output is a real sample and refine the 

discriminator to discriminate real inputs from those coming from the generator. 

Applications of GANs in MRI are widespread due to the availability of paired datasets 

and the reported success of GANs in data generation, completion, and improving 

resolution. Specific cases of GAN use include a study that adapts GANs for rapid MRI 

with simultaneous calibration. GANs have used built-in regularization methods 

through the travel distance from latent space into pixel space. This results in the 

generator building a “latent manifold” mapping low-dimensional latent vectors to 

corresponding high-dimensional images. Reduction in redundancy helps with bridging 

the domain gap encountered while training an MR images-to-CT synthesis GAN 

pipeline. 

For computed tomography (CT), GANs have been used to synthesize or denoise 

images, and also blend different modalities. For positron emission tomography (PET), 

GANs have been used to achieve truncation artifact reduction in particle imaging. 

Furthermore, GANs have been used in functional phase detection from untagged 

cardiac cine magnetic resonance imaging, realistic image synthesis from attributes 

such as age, gender, and race attribute conditioning. Denoising and improving the 

resolution of chest X-rays, facial bio age estimation using facial X-ray data, class-

conditional photo-acoustic imaging to achieve imaging speedup, data generation 

against label scarcity, and augmentation of existing datasets are the other applications 

of GANs in X-rays. 

4.1. Introduction to Generative Adversarial Networks (GANs) 

Recent advances in deep learning have led to the development of powerful generative 

models. These models have the ability to learn meaningful data distributions from 

training data and generate new data that are indistinguishable from the training 

samples. Unlike probabilistic modeling methods that suffer from one or more of the 

following shortcomings: suffering from an intractable normalization factor, assuming a 

specific form for the data distribution, or generating a single data sample from a 

network, these deep generative models are capable of modeling highly multi-modal 

and complex distributions, incorporating the learned distribution when sampling. 
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Among the earliest and more popular deep generative algorithms, Generative 

Adversarial Networks consist of two components, a generator and a discriminator, 

trained in a minimax game. Given a set of data samples, the generator maps random 

input noise from a prior distribution into the data space, while the discriminator is a 

binary classifier determining whether a sample is from the real data distribution or 

from the generated data distribution. The generator is trained to minimize the cost 

function: where the discriminator is trained to maximize the function. This adversarial 

cost function has a unique global minimum at a distribution that matches the true data 

distribution. The generator is then used to sample data from the learned distribution. 

4.2. Applications of GANs in MRI 

MRI can achieve high-quality images with a high contrast-to-noise ratio, especially 

between soft tissues such as the brain, spinal cord, and connective tissues. However, 

MRI acquisition is time-consuming due to its physical constraints on scan settings like 

radiofrequency excitation, selection of pulse sequences, and quantification. A large 

amount of training data becomes essential for training a deep neural network in order 

to reduce MRI artifacts. In clinical practice, however, it is typically not feasible to have 

enough data available for training deep learning networks. Training data are also 

sometimes unavailable to be used for unsupervised learning. As MRIs are rich in 

structural information about soft tissues, it was hypothesized that natural images could 

be leveraged to train generative adversarial networks in an unsupervised manner in 

order to improve the performance of MRI image synthesis and denoising due to the 

small number of MRI datasets. 

Some work has used generative adversarial networks to develop state-of-the-art 

solutions for useful tasks in MRI imaging that may overcome these challenges. A few 

medical imaging tasks that were designed using generative adversarial networks 

include the following: MRI attribute transfer, MRI to computed tomography synthesis 

for attenuation correction in emission computed tomography, computed tomography to 

MRI synthesis, multiparametric MRI generation, MR data augmentation for brain 

tumor segmentation in radiology, MRI hyperspectral images, high-dimensional 

imaging, 3D MRI motion correction, and MRI data augmentation for segmentation of 

pancreatic ductal adenocarcinoma. 

Furthermore, generative adversarial networks have developed MRI for a more 

straightforward reconstruction of low-rank MR images in both 2D and 3D settings 

while jointly tuning the code space of a method. The method can accomplish MRI in a 

much less time-consuming manner while simultaneously minimizing any residual 

noise and without introducing excessive reconstruction artifacts. The MRI generation 

can also achieve some common motion prior with the help of a generative adversarial 
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network, which provides data-specific supervision and alleviates the large pose-gap 

problem encountered when training conventional motion correction networks. 

4.3. Applications of GANs in CT 

In CT, GANs have displayed a remarkable capacity for sophisticated image synthesis. 

Their accomplishments encompass a multitude of tasks, including consensus image 

reconstruction enhancement, instrument deficiency correction, denoising, error 

diffusion rectification, and enhancement of superior resolution through super-

resolution. Furthermore, GANs have also garnered attention for their unique capability 

in image-to-image translation, which enables the mapping of sketches to CTs and the 

transformation of CTs into photorealistic counterparts. While a significant portion of 

GAN applications in CT has been predominantly experimental, their plausible 

effectiveness has sparked interest from both the industry and academia in translational 

GAN research. Such intrigue bodes well for the promise of GANs throughout 

radiology. 

Coherent image reconstruction from limited views has long been a focus of research 

spanning over two decades. A proposal was illustrated to remedy the drawbacks of a 

conventional model and synthesized a better image from limited views utilizing a 

GAN-based strategy. Conventional images are reconstructed using a clinical model, 

and the artifact component is eliminated through a zero-padded limited technique. 

Subsequently, the images were synthesized by training a GAN model. Finally, 

additional images are generated with high artifacts that belong to previous years. 

Afterward, a GAN model is trained based on additional images. Once the control GAN 

model is trained with pre-augmented loss, it is applied to novel images, thus decreasing 

artifacts on limited images and synthesizing coherent images from limited views. 

4.4. Applications of GANs in X-rays 

Although X-ray radiography is the earliest invented medical imaging modality, it is 

still widely used in clinical practice. Also, its important medical applications, including 

medical diagnosis, human skeleton identification, and plant disease, meet the challenge 

of low-quality and insufficient X-ray training images because the X-ray imaging 

process is sensitive to equipment and environments, which increases the risk of X-ray 

misdiagnosis. It is known that supervised learning based on convolutional neural 

networks requires a lot of labeled training data and performs poorly when the amount 

of training data is insufficient. Generative Adversarial Networks can generate new data 

and enrich labeled data to mitigate these problems. Therefore, GANs are widely 

applied in diverse X-ray tasks. 
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In the medical domain, GANs can be used for generating high-quality X-rays; 

generating labeled unpaired X-ray images; converting other modalities to pseudo-X-

ray data; data denoising; and data augmentation. As for the commercial domain, GANs 

can be applied for improving the quality of low-cost X-ray imaging; improving the 

performance for the task of abnormal class detection in vertebra X-ray images using 

unsupervised domain adaptation; and synthesizing specimen X-ray images to develop 

an automatic explosive detection system. These very diverse X-ray applications verify 

the wide application of GANs in commercials and clinics. The advent of GANs 

provides us a new way to tackle difficult X-ray tasks, and it will further improve the 

performance of those fields, such as the X-ray classification, segmentation, and 

reconstruction tasks. 

5. Image Segmentation Techniques 

Image segmentation classifies each pixel in the image according to some predefined 

labels. Often in natural images those labels are related to objects present in the image. 

The result of such procedures are structured representations of complex visual data 

where low-level features such as color or texture are grouped. Segmentation is often 

one of the first stages of visual perception. Perceptual studies indicate that the human 

visual system first extracts the edges of objects and areas of uniform characteristics. 

The initial image is first divided into large areas and then refined. In segmentation 

applications in medical imaging, there exist similarities to those found in natural 

images. For instance, structures of interest have often low contrast, and similar features 

also exist in areas which do not represent structures of interest. 

In medical imaging, pixel-level labeling is crucial. For instance, in CT and MRI, 

segmentation largely determines the correctness of diagnosis done by radiologists, and 

thus a number of algorithms have been proposed focused on that task. For instance, in 

CT applications, shape features have been widely used to create procedures that are 

invariant to low-contrast appearance. Others have proposed using mathematical 

morphology or dynamic programming using the 2D surface representation, which 

integrates local features with 3D shape priors. In general, however, such methods are 

limited and supervised pixel labeling has become a must in many applications. Deep 

learning has emerged as one answer to those limitations where the learning algorithms 

are trained in manually labeled data sets. The early days of convolutional neural 

networks were focused mostly in categorizing patches extracted from the images. 

Requirements in the medical imaging field have moved early work in the general fields 

of semantic and object category segmentation to their instance level segmentation. For 

instance, recovering individual bronchial trees from 3D chest CT is very important for 

diagnostic and therapeutic tools. Therefore a set of algorithms that segment individual 
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objects have widely been applied in that field. These instances refer to individual 

patient-specific anatomical components relevant to some task, so that instance 

awareness is important. 

5.1. Semantic Segmentation 

Pixel-level pairwise labeling of images is probably the most elementary level of 

understanding a visual scene, and humans do not think twice to assign pixels into pre-

defined classes and to carve-out free-space holes around building faces, assign pixels 

on trees' leafs with a yellow-colored class label associated with autumn, or even risk 

assigning labels into shadowed zones when doormats create a spatial connection 

between indoors and outdoors. Nevertheless, such elementary labeling tasks are 

challenging ill-posed image understanding functions previously explored in the context 

of hierarchical image features and post-processed hand-tuned classifiers. Medical 

image segmentation aims to partition images into different structures associated with 

relevant anatomical structures or scanners being used and pathologies being scanned. 

Note that most types of medical scans are inherently 3D or even 4D, but in the imaging 

community it is common to slice or flatten space for a surface-volume model into a 2D 

image, and this is reflected in the standard nomenclature when referring to the involved 

scanners. For MRI modalities, the structures usually of interest are anatomical 

structures such as gray or white matter associated with the outer layer of the brain or 

even deep structures such as thalamus or basal ganglia; ventricle cerebrospinal fluid 

spaces; and skull and facial bone, vessels, scalp, and cartilage regions. For CT, the 

anatomical structures of interest are almost always the same as in MRI apart from the 

CSF region; in addition, bone pathology and, to a lesser extent, cartilage pathology. 

These structures are typically imaged in problems such as segmentation atlas 

computation or enhancement. 

5.2. Instance Segmentation 

Instance Segmentation (IS) has become a trendy theme in segmentation research, it 

jointly predicts object category and delineates object instance mask. Most of the 

methods follow the two-stage pipelines, extending Faster R-CNN by adding a low-

resolution segmentation branch. Randomized labels on segmentation RoI feeding, 

Input Feature of nonlinear mask prediction layers, and adaptive reshape of the mask 

losses form a mask-loss boosting strategy for instance segmentation. A box-

Segmentation Refinement Network (bSRN) simultaneously refines the class-agnostic 

box input and the class-conditional segmentation output at each stage, guiding 

segmentation refinement tasks toward faster convergence by prolonging the 

intermediate segmentation, and expediting both inference and training via a multi-stage 
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framework. Considering IS does not need fully supervised support, a self-supervised 

depth-driven instance segmentation framework for monocular scene was explored. 

In multi-modality applications, a spatial information-enhanced multi-modality one-

stage instance segmentation method for multi-GBSCT data was proposed. However, 

few researchers attempt to tackle instance segmentation in medical imaging domains, 

while an end-to-end designed instance segmentation architecture for discovering and 

delineating different anatomical vessels and branches from 3D fundus images of 

different retinal orientations was proposed, detecting anatomical blood vessels and 

masks leveraging Sn-Att U-Net on fundus images. Mask Skin U-Net was adopted for 

both automatic segmentation of facial skin lesions in dermoscopic images and accurate 

identification of background, increasing the predictive accuracy of the model in IS 

task. It was proposed that Mask R-CNN was utilized to detect and segment fetus from 

the obstetrical ultrasound images. Given the unique challenges associated with the 

sensitive and subtle changes in the anatomical structures at early stage of cardiac in 

prenatal ultrasound, an instance segmentation based shape-aware deep-learning 

algorithm for semi-automatic segmentation of fetal cardiac limbic was introduced, 

achieving satisfactory accuracy and generalizability. 

5.3. Comparison of Segmentation Approaches 

In this section, we compare the merits and demerits of the segmentation approaches 

discussed in Sections 5.1 and 5.2. We begin our discussion with a review of semantic 

segmentation approaches. Semantic segmentation is performed using multi-class 

supervised techniques. The segmentation maps of all classes are initialized, i.e., the 

pixel values of the segmentation maps corresponding to all classes except the class of 

interest are set to 0. The model is trained to minimize reconstruction errors for only the 

given class, while not affecting the pixel values of the segmentation maps 

corresponding to other classes. It is important to note that, in case of multiple instances 

of the given class, the shaded pixels must share the same class. Regression-based 

object detection models require that the pixels of a dense segmentation map for the 

current image and the 2D Gaussian maps of all objects in the image share the same 

class. The pixel-wise response must be a single density value corresponding to the 

class of interest because, on a 2D Gaussian map, higher density values signify that the 

object is closer to the camera. Also, when the distance is near the camera, the object is 

larger in the image than when the distance is far from the camera. The semantic 

segmentation tensor computed by a model trained using multi-class supervised multi-

instance segmentation dataset has density values that satisfy the above property. 

Unlike semantic segmentation, instance segmentation is performed using supervised 

one-class segmentation techniques. Unlike dense detection approaches, instance 
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segmentation approaches segment instances of only the given class of interest. The 

trained instance segmentation models minimize reconstruction errors for only the 

specified class while leaving the segmentation maps corresponding to the other classes 

and pixels, which are location-stationary, unchanged. Therefore, the trained model 

does not overwrite the computed segmentation details of other classes. After instance 

predictions are computed on the input image, the additional object counts, 

segmentation maps, and other image cues such as occlusion, vignetting, and lighting 

can be performed on the instance predictions to promote more accurate multi-instance 

segmentation. 

6. Image Classification Techniques 

Deep learning techniques are widely applied for medical image analysis problems of 

various nature. The techniques allow the analysis of radiological data concerning 

multiple anatomical parts and a variety of different diseases. Often, medical imaging 

techniques allow the collection of rich and detailed information about the body of a 

patient and current deep learning technology is aiding the fast and efficient 

classification and analysis of the collected data by replacing more traditional 

approaches utilizing rule-based systems. In this chapter, we explore the use of 

convolutional networks, a type of deep learning architecture that has been successfully 

applied to various analysis problems in both natural and artificial medical images, 

outlining the current state of the art and the possible short-term foreseeable future. 

The image classification task is predominantly framed as a supervised learning 

problem. The objective is to learn a classifier which, given an image in the input space, 

a probability distribution over labels in the space, and a loss function, optimizes the 

network parameters, or weights, so that it minimizes the average classification error 

across the entire training data. The trained network can then be applied to new images 

which it has never seen by performing inference with the trained parameters. It will 

output a predicted class label for each test image. Supervised image classification 

approaches can be mainly subdivided into different approaches, depending on the 

number of classes defined in the task, which can be binary or multi-class. 

6.1. Binary Classification 

Binary classification represents the most fundamental and simplest image classification 

task to perform, where a classifier distinguishes between two classes of images, given 

the training images from both classes. This premise also forms the foundation of all 

other image classification approaches, including multi-class classification, where the 

classifier distinguishes between multiple classes or their parts of images. Multi-class 

classification is implemented through the use of the binary classifiers that 

independently distinguish between images of one class and the rest of the classes or 
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combined into a single optimization function that implements the required one-vs-rest 

or directed acyclic graph concept. Many image classification problems require the 

ability to identify only the images of a specific class. Image retrieval attempts to find 

those images in a large database determined and categorized by a set of criteria. 

Binary classification is one of the tasks that supervised learning techniques such as 

deep learning can solve. At its core, a supervised image classification task has both 

image and label classes, and using the information from many labeled examples, is 

able to assign to new unlabeled examples a label class. While supervised image 

classifiers can take many forms, including heuristics, statistics, and mathematics, the 

most successful image classifiers in recent years have been based on deep learning 

convolutional neural networks. In its simplest form, CNNs take as input an image and 

output an anticipated class label. Given training data in the form of labeled examples, 

CNNs learn the correlations between the input image data and the output class. Once 

trained, CNNs can classify new unlabeled images in the same manner, allowing us to 

categorize or segment images. 

6.2. Multi-class Classification 

Multi-class classification aims to assign to an input image the label corresponding to 

one among a number C of possible classes. In its most fundamental form, classification 

is a per-image task, meaning that a classifier network outputs a prediction relating to 

the whole image. For such a per-image classification setting, one usually uses a 

classifier based on feed-forward networks to extract high-level features from the 

image, which are then fed to a multi-class softmax layer predicting the probabilities of 

each of the C possible output classes. A classifier's final loss is based on the following 

categorical cross-entropy loss: 

Inherent in using the categorical cross-entropy loss is the assumption that image 

classification is an independent task where the model has to predict the class 

probabilities for the whole image alone. This is generally the case for image-level tasks 

such as disease classification, where the model determines whether a specific disease is 

present in the chest radiograph. Some diseases can be assigned a class based solely on 

information in the image but that does not necessarily require the model to consider the 

whole image context. However, when classifying histopathological images, an image 

is usually scanned tile-by-tile. Each tile is classified based on visual similarity against 

tile images annotated with different class labels of tumor types, tumor composition, 

cancer region quality, or tissue type. In this case, the label of the complete image is 

obtained based on the class label that was associated with most tiles. 
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6.3. Performance Metrics for Classification 

Classification is one of the most prevalent tasks in image analysis. It typically involves 

training a classifier on a collection of labeled images, and then utilizing it to assign the 

label of each image in a disjoint set of test images. Given the scale of modern datasets, 

with several hundreds of thousands or millions of images, it is common for classifiers 

to achieve errors in the 10−15% range. The task is considered solved for certain 

datasets when the error achieved by a classifier is better than the error achieved by an 

average human annotator. The vast domain of supervised image classification has also 

been addressed with far fewer training samples not far from its feasible limits for 

certain applications. Not only does the average performance of classifiers on 

classification tasks improve as systems scale but the range of tasks to which 

supervision can be applied has also become diverse: from distinguishing individual 

objects to identifying fine-grained variations within species categories. To a lesser 

extent, the domain has also expanded through few-shot, and even zero-shot learning, 

where classifiers are trained with as few as one labeled image. Within the medical 

imaging analysis community, classifiers have been utilized to perform tasks ranging 

from whole image classification to pixel-level diagnosis. 

A major distinction between the supervised image classification tasks in the wider 

computer vision community and those in medical imaging is that the former are 

balanced both at label and dataset level: All labels comprise roughly the same number 

of images and datasets are sampled from the same joint distribution. Such a setup is 

ideal in that all classifiers receive the same amount of label feedback. In contrast, 

medical imaging classification tasks are often highly imbalanced. An example is x-ray 

image classification, where several x-rays of pathologies would be labeled with the 

same abnormality class, yet many healthy x-rays would belong to the non-pneumonia 

category. Such setups pose both practical and philosophical difficulties: First, the data 

imbalance sometimes results in classifiers being ineffective at the abnormality classes, 

thereby undermining the usefulness of the system. Second, the classifiers cannot be 

interpreted as deriving from a good-feedback learning principle. In these cases, 

classifiers trained with expert supervision are more akin to mimicking the collective 

behavior of the experts than actually deriving from their judgment. 

7. Anomaly Detection in Medical Imaging 

In this chapter, we review recent advances of anomaly detection methods, including 

classical, GANs, and self-supervised-learning based approaches, using different types 

of images ranging from X-rays to 3D MR scans. A common objective of medical 

imaging is to support diagnosis of a disease or the state of a patient. Structured lesions 

or a certain connectivity of directly or remotely related tissues is usually sought in 
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different imaging modalities in order to anchor the diagnosis. However, most often, 

anomalies do not appear as local lesions and are not confined to nearby regions in 

images, but share a complex spatio-temporal structure with healthy tissues and may 

involve functions other than image intensity or color. The structural relationship with 

healthy tissue can be used to reject other pathologies or abnormal functions in static 

images and videos, and can assist the doctor in assigning a disease to an abnormal state 

without a well-formed hypothesis about the features to track. 

These properties suggest that for unconventional diagnostic cases where few images or 

established diagnoses are available, unsupervised anomaly detection schemes can be 

applied. Indeed, while some of the popular supervised or weakly supervised 

approaches for common lesions perform well, the cost of annotating and training the 

models for the less frequent diseases may exceed the benefit, as the models may just 

memorize the lessons or recurrent failure cases. Instead, methods for conditional 

generation of images, reconstructive CNNs, or even generic SSL approaches have been 

trained without paired or partially labelled image datasets, but rely instead on rich 

redundancies of the underlying anatomy and/or pathologies in the analyzed dataset and 

may collapse given badly calibrated models. These paradigms have found increased 

prominence in medical imaging practice, after years of success in on-line services in 

face, object, and scene recognition, effected by the rapid development of computing 

power, the availability of new large-scale unlabeled image and video repositories, and 

the self-organization of image categories by consumer and research users, among 

others. 

7.1. Techniques for Anomaly Detection 

Specific techniques for anomaly detection can be divided into three categories: 

unsupervised learning, partially supervised learning, and supervised learning. Three 

primary deep learning techniques are commonly used in medical imaging, which also 

led to many computer-aided diagnosis engines applied in clinical practices. The first 

category is unsupervised anomaly detection, which uses the normal data distribution to 

identify an anomaly image as an input. The simplest method to implement anomaly 

detection in an unsupervised manner is to use traditional image filters. A simpler form 

would be thresholding, which assigns colors to pixels based on band ratios or filters 

using a convolutional operation. Expert-designed filter methods can be quite successful 

if sufficient knowledge of anomalies is present when formulating the filtering rule. 

However, many anomalies are subtle differences in pixel values in a background of 

normal samples and might therefore be unnoticed. Thus, recent research efforts have 

looked into learning a model to distinguish between normal and anomalous images. 

Such an approach requires a training dataset, distinguishable by the computer or a 

model parameterized by human experts. For instance, the autoencoder is a neural 
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network trained on a set of samples of only normal data. The second group, semi-

supervised anomaly detection, uses both normal and abnormal samples for model 

training, such as supervised textures. This technique can gain greater discriminability 

for the classifier due to the supervised nature of model training. The most superior yet 

demanding way is supervised learning, which uses plenty of anomaly samples for 

training and generally produces the best model since it uses the most amount of 

information in both normal and anomalous subject datasets. Such methods have the 

additional downside of requiring many annotated samples and, therefore, challenge the 

practicality of supervised learning, especially in the medical imaging field, where the 

number of patients with certain diseases is meager compared to the normal patient 

count. 

7.2. Evaluation of Anomaly Detection Models 

Anomaly detection in medical imaging has a long-standing history in research and 

application. Anomaly detection has more recently been revived by the significant 

increase in curated visual data enabled by recent advancements in deep learning. 

Reassuringly, the importance of establishing suitable evaluation protocols for anomaly 

detection has also been acknowledged by deep learning researchers. Reviewing a 

diversity of evaluation strategies, we summarize the various ways in which anomaly 

detection models are evaluated and how these connect back to the fundamental task 

and its underlying goal. Through this process, we will notice similarities as well as 

differences between existing evaluation protocols. We categorize these evaluation 

strategies based on the amount of data and the type of evaluation heuristics used. The 

first group requires more than one dataset, while the second one relies on a single 

dataset. The second group is usually based on supervised metrics, such as classification 

scores. Moreover, our examination complements previous evaluation efforts by 

providing extensive coverage of evaluation methods. Notably, most recently proposed 

adversarial or self-supervised models do not use an external labeled dataset for 

evaluation. Hence, we explore several of such techniques to evaluate various types of 

anomaly detection methods without a predefined labeled dataset. 

We first categorize available medical images based on modalities, imaging process, 

dimensionality, and presence of anomalies. Then, we explain all the possible 

requirements and wishes of the user performing the evaluations and present a table that 

summarizes the whole evaluation process and its aim. Our literature review and table 

address the four main user wishes; fastest evaluation, most available data, most data 

with anomalies, and most resources to perform the evaluation. Many research works 

present similarities regarding the modeling and evaluation of the pipeline. Although 

these pipelines are addressed by either using specific phases, model names, or 

summary metrics, they share similar notions. We also summarize in a table all 



91 

 

available techniques and show the main phases that are either skipped, focused on, or 

summarized. 

8. Data Augmentation Strategies 

Deep learning methods require a large number of datasets to avoid overfitting when 

training models for specific tasks. Most tasks in the medical domain only have a 

limited amount of labeled imaging data. Data augmentation can artificially expand the 

size of training and validation datasets to a large extent and so, has become the 

demarcating factor between models that perform well on the training set and those that 

generalize across testing datasets as well. Various augmentation techniques such as 

rotation, flip, shift, intensity transposition, and elastic deformation have been shown to 

improve the performance of medical imaging tasks such as detection, localization, 

segmentation, and classification. In contrast to such CNNs that use generic image 

datasets as a pre-training stage and medical datasets as the fine-tuning stage, the initial 

layers of CNNs trained on larger scale and task-specific medical datasets learn filters 

that are specific to the training data. 

Boolean operations such as AND/OR are important for generating binary datasets 

required for a specific segmentation task. However, the above-mentioned techniques 

do not ensure the validity of the segmentation labels. GANs are a possible solution for 

generating datasets with valid segmentation masks. In summary, data augmentation 

improves the model's ability to predict imbalanced datasets and makes it less sensitive 

to noise. It also encourages the model to explore more unlabelled regions of the 

dataset, and a combination of different augmentation techniques produces the best 

results in most use-cases. 

8.1. Techniques for Data Augmentation 

Data augmentation techniques fall into two general categories: image based or data 

based. Traditional augmentation methods such as rotation and flipping manipulate 

images; these fall easily under the image based category. By contrast, more advanced 

data based methods model images directly in the dataset space by generating a new 

simulation encompassing image data from a model that describes image generation. 

Each of these categories has advantages and disadvantages; most use cases appear to 

be image augmented, for several reasons. From a technical point of view, image based 

data augmentation is often easier to implement and faster; it further accounts for 

widely used simulated datasets. Clinically, the computational simplicity of image 

based augmentation can also be an advantage: clinical workflows rely on fast image 

transfer and use; image based data modifications are easier to implement in this setting 

than complicated data space modifications. Using synthetic datasets for training is 

therefore an appealing way to reduce sensitivity to domain shift, but generating large 



92 

 

scale datasets for a specific clinical context requires time in the work up and the cost of 

high performing computer systems. 

The most basic methods, including shifting, cropping, mirroring, flipping, rotation, 

elastic deformation, and adding noise, can only generate new images sparsely related 

to the original data. Advanced techniques, such as generative adversarial networks and 

the Bilinear Generative Models implementation, or diffusion based data augmentation 

methods are able to generate data which is visually so close to the original ones that 

observers can’t distinguish them. Yet, years after the first successes in GAN-design 

and application reporting, introducing data volume augmentation through GANs in 

clinical practice is an open question; GAN-methods suffer from still relatively high 

mode collapse characteristics which thus needs to be countered with further post-

processing of the augmented datasets. 

8.2. Impact of Data Augmentation on Model Performance 

Identifying the best Data Augmentation configuration is not easy. Ideally, we would 

have a very large and diverse dataset including all possible variations characteristic of 

the underlying population, The main advantage of DA using synthetic transformations 

is that we can artificially generate as many examples as required, thereby bridging the 

data distribution gap. As the model starts training on this larger dataset, the accuracy 

increases with the number of images that utilize the new magnitudes added to the loss 

function, at the expense of a so-called double descent Risk curve. In this chapter, we 

discuss some of the best practices for DA for improving model performance while 

mitigating overfitting. Some of these ideas stem from practical experience and others 

from theoretical arguments. 

Several major attractive ideas can be highlighted from empirical evidence regarding 

DA techniques and model training. First, most augmentation strategies are particularly 

valuable for specific image types, for instance, photometric modifications are often 

useful for natural or “everyday life” images, rotational paradigms are to be preferred 

for objects that exist in a three-dimensional space, etc. Second, different DA methods 

can be combined to good effect, e.g., horizontally flipping an image from a color 

distorted augmented pair of images can further help the model learn. Finally, there are 

different levels of DA techniques; some methods apply while the model is optimizing, 

while others apply at a higher level and can thus be twinned with other augmentation 

methods. 

9. Handling Data Imbalance 

Data imbalance is a significant problem associated with training machine learning 

models to classify medical images. Although machine learning models generally 
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become better the more data they are provided with, they can fail to learn at scale if the 

proportion of samples in the minority class is too small. For example, there may be 

thousands of images depicting healthy patients, but just a few dozen images of patients 

with a rare but dangerous illness, with more examples teaching the model what a 

normal image looks like while very few images show the normality to vary on. The 

model might respond by classifying all unseen test images as healthy in order to 

minimize its classification error rate, which is a strategy that fails singularly in respect 

of the minority class, where any misclassification should blacken the model’s record. 

While general machine learning considerations call for growing the number of training 

samples, growing the number of images for only the minority class in medical imaging 

does not have a practical solution most of the time. Underlying this reality are the costs 

and risks connected to the complexities of acquiring image data. Deep learning also 

exacerbates the problem of data imbalance because of its need for vast amounts of data 

for probability density estimation. Moreover, the associated predictions are often 

described in terms of the quantities required for model training. It is interesting to note 

that the accessories used to take images of rare diseases may themselves classify as 

minority classes. For instance, images of rare bone disorders in dental radiographs may 

not only represent anomalous medical conditions but may also be characterized by the 

presence of specialized equipment at identical test locations. 

9.1. Techniques for Addressing Imbalanced Datasets 

Some of the many applied strategies to deal with imbalanced medical datasets include 

stratification, augmentation, distinguishable performance metrics, reweighting/cost-

sensitive learning, targeted correctioning, hybrid classification, and oversampling 

methods. In addition to these special methods, one could also apply traditional 

solutions: data collection, transfer learning, ensemble learning, semi-supervised 

learning, active learning, and the system design correctioning. 

Stratification is often the first way of handling imbalance before model training by 

preserving the proportion of each class during splitting. Since deep learning models 

require large datasets, it is often infeasible to increase the data, particularly for the 

minority class, which brings the necessity of augmentation. Targeting the 

underrepresented samples in the pre-processing can be proven useful, which can be 

performed using different methods dependent on the model and the nature of the data. 

Examples include using different augmentative transformations for the different splits, 

using lightweight augmentation for easy samples, or applying parametric extrapolation 

only to the low-density regions. The use of distinguishable performance metrics in the 

training process can be proven useful but requires good care in the selection of these 

metrics. It is worth mentioning the pitfalls of precision and recall, for example, due to 
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relying on the low-overlap region. A proposed reweighting scheme modifies both the 

probability losses and the spatial softmax function used in multi-label segmentation. 

Deep learning uses large amounts of data, thereby rendering sampling 

misrepresentation correctioning infeasible. Deep learning also uses multiple stacked 

layers of low-level descriptors, which causes the system to have increased robustness 

against label noise. Due to these advantages of neural networks, traditional solutions 

adapted to a transfer learning based system architecture and model can be proven 

useful. These conditions mainly detail data collection, data merging, ensembles, semi-

supervised learning, and active learning. 

9.2. Effects of Imbalance on Model Training 

The problem of data imbalance at the training stage makes it difficult to use common 

ML for MI since model performance will be too sensitive to incorrect labels in the 

minority label types. First, the usual objective functions minimize the differences 

between predicted probability distributions and label probability distributions, which 

are based on entropy and modeled expected test performance under the assumption that 

both label probabilities and input distributions in training and test are the same. This 

assumption is often not satisfied in practice for MI. Therefore, the small labels’ 

probabilities and the large input distribution corresponding to the small label 

probabilities can trivially affect the performance of the proposed objective functions 

for highly imbalanced datasets. 

Second, the standard loss functions inducing softmax score functions estimate the 

probability distribution of the model input based on a large amount of training data. 

Since the input distribution based on model training as generally observed for the large 

probabilities will be dominant at the beginning of model training, model weight update 

at this stage would be too sensitive to incorrect labels in the small label classes. The 

large softmax score function corresponding to the small label probabilities indicates 

small model input likelihoods, which will contribute a trivial amount to model weight 

updates since they would not spread model behavior to the small label classes. This 

effect may also extend to fine-tuning stages. In a nutshell, if we do not adapt or modify 

the conventional ML methodologies for MI to the problem of data imbalance, these 

formulations and considerations show that the performance of the proposed algorithms 

may not be very good on MI tasks with highly imbalanced datasets. Adaptively 

augmenting the MI label space adaptively without label space expansion would help 

overcome this problem. 



95 

 

10. Generalization in Deep Learning Models 

Generalization measures the quality of the learned mapping between the input and 

output spaces, when the input data are drawn from a distribution different from that of 

the training data. Generalization is one of the most important aspects of learning as our 

ultimate goal is to perform well on unseen data. Generalization quality is more 

important than the training performance, as even a poor-fitting learned mapping can 

give good predictions for unseen data. Poor generalization may be due either to 

overfitting or underfitting. The learned prediction can be too complex and approach the 

Dirac delta function centered on the observed outputs associated with the training 

inputs. In this case, we say that the mapping is overfitting the training data. Overfitting 

can occur even when the training error is small due to a model with many adjustable 

parameters and strong flexibility. Conversely, the learned mapping can be too simple. 

It misses the needed structure in the data and results in similar predicted outputs for 

input data from the training set and from outside the training set. In this case, we say 

that the learned mapping is underfitting. 

Generalization applies to all types of learning, not only supervised learning. The 

functioning of all learning mechanisms is strongly affected by generalization. All 

practical systems allow an essential variation on the inputs during their development; 

they thus require capabilities, built-in or learned, to correct effectively the deviations 

from the expected results. We can take advantage of the available data and of the 

learning process by designing it in a way that prevents the construction of too flexible 

solutions that span the whole possible input range. Generalization in supervised 

learning algorithms is especially important. From a predictive and practical point of 

view, the ultimate goal of algorithms that employ some form of learning during their 

operation is to be successful in producing the required output, given a new input value 

that has not been presented previously. 

10.1. Overfitting and Underfitting 

Despite their remarkable result, deep learning models still face the generalization 

problem. Generalization describes the ability of a model to make accurate predictions 

on unseen data. In the context of supervised learning, given a training dataset 

comprising labeled examples, the model aims to learn the underlying mapping rules 

that relate the input samples to their corresponding labels. The generalization error 

measures the difference in performance between the training data and the test data that 

contains new samples not present during training. A model that would achieve a small 

generalization error would be considered as one that has good generalization 

capabilities. 
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In contrast to classical training strategies, which minimize the training loss while 

measuring the generalization capabilities using validation datasets, deep learning 

models proficiently utilize the large training datasets to minimize the training loss with 

little consideration for the generalization. This lack of concern for generalization can 

lead to two extreme situations in which models are unable to accurately predict labels 

for samples in the test dataset. The first situation, known as underfitting, occurs when a 

model does not learn the mapping rules even after prolonged exposure to the training 

data. This is more likely to happen when the model has a simple architecture, 

commonly defined by few layers or filters. In this case, both the training and test error 

are large. The second situation is called overfitting. It occurs when a model becomes 

too efficient at learning to accurately predict labels for the training data with very low 

training error, but becomes ineffective at generalization, resulting in a large test error. 

10.2. Techniques to Improve Generalization 

One of the simplest ways to prevent overfitting and improve generalization is to 

augment the training dataset by modifying the training samples. A few standard 

augmentation techniques include randomly cropping, mirroring, and rotating images, 

adding random noise, color distortion or blurring. Such techniques are especially 

popular in image classification and detection tasks, and their utilization is almost 

mandatory in problems involving small datasets. Further, it has been shown that 

specific augmentations, if applied during training, also improve the robustness of the 

model. Augmentations also increase training time and model training with 

augmentation is difficult to converge. 

Dropout is a visualization tool that helps minimize the overfitting of DNNs. In 

particular, it has been found to be very effective for visualizing deep networks at the 

fully connected layer. The dropout method creates a randomly sampled subset of 

hidden units to probe the network. The method seems to add subsampling noise to the 

learning, which is similar to model averaging, leading to a better generalization 

performance. Additionally, skipping a uniformly sampled set of hidden neurons 

mitigates the overfitting by preventing the interpolating behavior of a deep network. At 

the test time, the output becomes the average of a set of dropout samples from all 

possible samples. Uncertainty introduced by dropout encourages the active learning 

effect, and in practical deep learning models, this approach is used whenever the model 

is limited by the training data. 

Indeed, the original goal of dropout was to mimic multiple processes during both 

training and testing of a single small network. However, a naive use of dropout in 

practice can backfire, with current models requiring learning rates half as small 

without dropout. Thus, dropout might not be declared the way to go for all visual 
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manual models, even though it generally leads to better visual results than a non-

dropout model. Despite this, dropout remains a popular mainstay among visual models. 

11. Future Directions in Deep Learning for Medical Imaging 

The advancement of medical imaging provides the physician with high-quality, 

clinically relevant, and timely information, which helps in both diagnosis and 

assessment of disease burden, and treatment planning and response assessment. We 

envision further rapid development in the medical imaging field with increased data 

sharing, data standardization, better and more ubiquitous compute infrastructure, better 

and more advanced feats of curated datasets, unified and open-source model libraries, 

and creation of a community across the applied and clinical scientific space. Better 

access to data provides a fertile ground for data-hungry modern deep learning 

architectures. Procurements of more powerful, lower cost, and efficient imaging 

devices will make acquisition easier and widespread and the easy availability of such 

data may help narrow the gap of generalization of models to non-institutional datasets. 

Better and reliable tools for data annotation will help with generating curated datasets 

with ground truth labels needed for supervised training, pipelines for semi-supervised 

and unsupervised training will help alleviate the need for labeled data, and efficient 

validation of such methods will allow for testing domains like self-supervised tasks to 

generalize to various downstream supervised tasks. Increased partnering between 

industry and academic institutions and data-focused consortia will help in the creation 

of well-curated repositories of focused imaging datasets, readily allowing for method 

research and prototyping to become part of the training of the next-gen innovative 

workforce. Environments that allow for rapid model development and prototyping, 

such as easy-to-use model libraries, and open-source implementation sharing, will 

foster creativity and expansion of deep learning application development to the 

medical imaging field. Part of the next wave of innovation should include bridging the 

gap between imaging data analysis and clinical needs. 

12. Ethical Considerations in Medical Imaging AI 

Concerns have been raised regarding bias in automated decision-making systems. Risk 

of biased performance can arise when such systems are trained on non-representative 

data. Moreover, unequal performance can also pose a risk with medical imaging AI, 

even when the distribution of training data is well-balanced and is representative of the 

real population. Bias in performance can have additional consequences, including the 

potentially biased allocation of medical resources, cost-saving, equity and human 

rights issues, reductions in public trust in medical systems, and constrained algorithm 

performance when finetuning on small datasets or when used in different regions, 

hospitals, or clinical workflows. Public health discourse regarding equitable patient 
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outcomes is therefore relevant in the context of medical imaging AI. To put the AI 

algorithms into service, it is crucial to make them equitable. Equitable performance 

across patient demographics is only achieved if considerations, testing, and validation 

are built into the algorithmic design from conception onward. 

Medical imaging AI may also change clinical workflow in such a way that its use 

disrupts existing frameworks for the informed consent of patients or alters the doctor-

patient relationship. AI methods should produce explanations. 

13. Conclusion 

Medical imaging is regarded as the eye of modern medicine. While medicine has 

uncovered a huge knowledge challenge, this cannot be automated due to the absence of 

automation in today's medical research or suggestive intelligence from technical 

advancements in Artificial Intelligence. Simultaneously, medical research has 

accumulated a huge amount of medical literature; however these articles are often not 

linked or no contextual correlation is made. It is a big challenge for practitioners to dig 

into the entire available medical scientific literature to provide the appropriate medical 

help in certain cases. Digital choices can be further supported by the quest for 

knowledgeable and AI-based options for diagnosis assistance and therapy programs. 

The different forms of accessible medical data can be perceived as a treatment of the 

patient which is substitutive to the medical work and usually ethics seek the 

consolation in the bond between the doctor and the patient. Despite all progressions, 

innovations or enhancements, a doctor is not disposable. Yet, AI has significantly 

enhanced productivity and services in recent decades. 

Deep learning transforms the practice of computer vision. The newest methods put 

together large general differentiable neural nets with extraordinary levels of optical 

characteristic and then get to learn the thousands of parameters in these networks, 

typically using enormous modern data sets. Notably, these approaches are capable of 

automatically discovering interesting patterns in data without requiring a human for 

engineering difficult features which have characterized prior generations of pattern 

recognition methods. This has had a remarkable impact on the recognition of faces, 

objects, scenes. What has not so far been successful with these types of approach is the 

recognition and analysis of the patterns of activity that unfold in time and space. In 

considering this issue, we must note that seamlessly ongoing experiences from stereo 

spatial locations allow not only 2D visual sense, but also a 3D visual sense coupled 

with reactions from an additional "sense" - subseasonal statistics. 
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1. Introduction to Interpretability in AI 

Artificial Intelligence (AI) is a broad field that engages many fundamental questions 

about learning, cognition, inference, and intelligence itself. Utilizing techniques such 

as neural networks, AI has achieved great successes in trusted problem domains like 

facial recognition, image classification, language translation, and health diagnostics. 

However, these systems are rarely ever applied without some reservation. One of the 

foremost weights dragging down the optimism surrounding AI is the lack of 

uncertainty quantification; when the world diverges too much from the training data, 

AI cannot clearly signal its impotence [1,2]. That said, AI can still misclassify in quite 

specific, explainable ways, seeming to reflect its own logic. For many AI applications, 

this level of learning is not good enough; we require an understanding of how the 

system arrived at its answer. The desire to make practical use of these unreliable 

systems has led to increasing interest in interpretability; we want to be able to look at 

an AI's computations and use that information to help understand how the system can 

provide us better information. In this essay, we explore interpretability in the narrow 

and broad sense, in images and in dependencies [3-5]. For some AI applications, a 

fidelity-based interpretation may not be sufficient. Instead, we are interested in 

understanding AI's solution pathway; we want to illuminate the reasoning of a decision 

made by the AI, even if that logic differs from our own. Such procedural understanding 

appears to be a step to scaffold a user's decision-making process or to solve a problem 

too difficult for a lone human or AI to solve. We're curious which AI frameworks are 

positioned best to address the interpretability deeper challenges of solution pathway 

illumination and shared decision-making scaffolding. We survey categorizations of 
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interpretability definitions and methods, with the distortion functional formalism to 

provide unified clarity and bridge gaps between parallel threads of research. 

2. Saliency Maps 

Given the apparent inaccessibility of deep neural network-based models, visualizing 

their inner workings has taken center stage in the machine learning community. But 

unlike in other more straightforward recognition tasks such as face recognition or car 

detection, understanding the generated predictions for more abstract tasks such as 

natural image categorization is much more difficult. This is, in part, due to the widely 

varying visual appearances of images belonging to a specific category. Above and 

beyond being just computational black-boxes that come up with seemingly mystical 

predictions for esoteric datasets, computer programs that deploy neural networks 

process and evaluate thousands of parameters in service of their task. Instead of 

looking into each of these parameters, saliency mapping attempts to understand the 

forward pass mechanism by which a feature is produced, and additionally turns the 

process inside out, associating the generated feature map with producing parts of the 

input image. This postulate that the relationship between the input image and the 

feature map is an inside-out version of creating the feature map both ways leads to a 

very powerful tool for visualization, reveals the workings of a neural network, and the 

generated feature maps have been surprisingly demonstrative, and surprisingly 

beautiful. 

We show specific examples of using saliency methods such as Backpropagation, 

Guided Backpropagation, Deconvolution, and Deep Learning Textures in our work on 

Brain Tumors MRI Images, Melanoma Dermoscopic Images, Diabetic Retinopathy 

Fundus Images on RGB Images, Natural Images, and Text-To-Image Synthesis. 

Saliency Maps reveal the use of color in the Feature Creation process, show the 

localization of a significant brain tumor, neural network detection failures, instances of 

incorrect input data segmentation, and the salience of features omitted by Deep 

Learning Texture synthesis. 

3. Grad-CAM 

Gradient-weighted Class Activation Mapping (Grad-CAM) provides visual 

explanations for models trained with different objectives such as classification, 

detection, or segmentation. The core idea is to generate a heatmap in the input image to 

highlight the regions relevant to the model prediction. Equivalent to the traditional 

class activation mapping, Grad-CAM uses the gradients flowing into the last 

convolutional layer to produce the heatmaps. The gradient information reveals which 

regions in the image have affected the predicted class score the most, allowing for 
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multi-class categorization by simply weighting the contribution of each class in the 

linear combination [6,7]. 

Grad-CAM was applied to explain a neural network that predicts a patient’s probability 

of adverse post-operative events. Different internal components within the neural 

network were analyzed by visualizing the framework along with the Grad-CAM output 

heatmaps. The Grad-CAM was visualized along the network layers to highlight the 

features learned from the model at different layers; this approach reveals how the 

model is learning. The model learned various useful features at different layers; certain 

models the fluorescence intensity signals attributed to the A, C, G, T bases, whereas 

the model being visualized appears to detect patterns at the time level in the data and 

there is an increased magnitude of importance of certain patterns along with the model 

prediction confidence values. This analysis also explains the location of the sparse 

filters [2,8-10]. The filtered signals of the Grad-CAM regions along the layer are then 

backtracked to highlight the regions in the original traces; these filters use only a 

subset of the bases to make the prediction, as evidenced by the absence of certain bases 

in the filtered section. 

4. SHAP (SHapley Additive exPlanations) 

SHAP (SHapley Additive exPlanations) unifies several previous approaches into a 

single framework based on the classic Shapley values concept from cooperative game 

theory. Shapley values are a method for fairly distributing a value among participants 

that have collaborated to generate that value. We will first explore how this approach 

to measuring feature importance arises naturally in the context of a whitebox model. 

Let’s assume we were using a predictive model that consisted of a single number—for 

example, meant to estimate the average price of children’s shoes in the US. However, 

since we had additional information available for each particular shoe in the dataset, 

we built a much more complex predictive model to improve the quality of each 

prediction [1,11-12]. Each new prediction is likely to be closer to the actual value than 

the simple model, and the difference between these two predictions represents the 

“value” generated by the predictive model for that input. Since we have a very low-

dimensional model for the shoe price, we can “switch on” a different set of parameters 

for each shoe price prediction. We would like to distribute the credit for the predictive 

desertion among all the parameters, since they all had to collaborate. The contribution 

of each parameter at a particular prediction would be the difference between both 

predictions multiplied by the proportion of the training dataset on which this parameter 

was relevant. 

In this explanation, we assumed a very simplified case, with a single parameter and 

linear varying predictions. Expanding this concept to a case with many parameters and 
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considering every possible distribution of the “credit” would yield us the classic 

Shapley value estimation [13-15]. SHAP directly generalizes this process, offering an 

intuitive understanding of how Shapley values apply to model-agnostic feature 

attribution. As a special case, SHAP allows us to divide the credit for a specific claim 

along the parameters in a more general class of cooperative models that includes 

Bayesian average models, exponential family models, finite mixture models and 

feature models. With this methodology in hand, we introduce the different ways of 

approximating the computation of Shapley values for specific models, allowing SHAP 

to function within a wide variety of techniques and output clear and intuitive 

predictions. 

5. Counterfactual Explanations 

Counterfactual explanations attempt to answer questions of the type “What could I 

have done to obtain a different outcome?” They are widely used to explain the 

decisions made by nondiscriminative classifiers, which predict an outcome using a true 

score or risk model that is calibrated against a reference population [16,17]. What the 

model does is to say how likely it is to observe the predicted outcome for someone 

with the given observable characteristics but does not hint at the probability of the 

actual individual. By definition, a counterfactual does not exist for someone whose 

outcome was predicted correctly: “For that individual, the model is predictive and 

accurate. It would be odd for them to go to their bank if they have a loan that is 

unlikely to be repaid.” Researchers are divided on whether transferability allows for 

the explanation of single cases, why the first statement implies that transferability 

allows for broader statements than the second one, and why incorporating the observer 

perspective, when the model is assumed to be accurate, may help resolve the 

discrepancy. 

Counterfactual explanations for people predicted to experience a negative outcome can 

be useful to design loss-mitigation strategies. By identifying individual characteristics 

that would have changed the decision for the risk forecasting model expressed, the 

model may help specify what can be altered to have a different predicted outcome and 

eliminate the proliferation of a specific undesirable cohort. More precisely, in the 

rectifying perspective scenario, counterfactual explanations could help identify which 

factors can be modified, as to rank and prioritize, or suggest risk-influencing attributes 

to increase the chances of a better outcome on a future occasion. 

6. Case-Based Reasoning in AI 

Case-based reasoning (CBR) is a form of AI that identifies solutions to new problems 

by reusing solutions from previous similar problems. This approach was originally 

inspired by principles of human cognitive processes in dealing with new problems and 
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by the research of the laws of analogy. The first CBR models were indeed cognitive 

models, and many systems were developed in such diverse domains as user assistance 

programs for software debugging, medical diagnosis, training, educational technology, 

case management, law and legal reasoning, prediction, etc [12,18-20]. At the same 

time, however, CBR systems incorporated a richness and sophistication of design and 

implementation, employing methods, techniques, and technologies for many different 

AI areas that gave CBR a status of a multidisciplinary field. In many domains, the 

types of problems to be solved or the conditions of the problem-solving environment 

do not lend themselves well to representation or preparation of knowledge through 

general or specific rules. The solution appropriate for only a particular case is not 

easily generalizable to cases in the same domain or problem area, as is the case when 

rules are used. Theoretically grounded principles for knowledge representation and 

knowledge acquisition for rule-based systems, for knowledge representation and 

problem-solving capabilities of different levels of competence, or for automatic 

generalization and specialization of knowledge are the exception rather than the rule 

[21-23]. Currently, the different pathways that exist between the AI subfields of CBR, 

neural networks, fuzzy logic, agent-based systems, multi-agent systems, genetic 

algorithms, systems of systems, and semantic web technologies are even more lively 

and fertile than they were previously. Each of them contributes to the design and 

implementation of new truly intelligent information systems that integrate the strengths 

of numerous AI methods and techniques [24,25]. Therefore, the combination of CBR 

with other AI paradigms and techniques is generating new, innovative, and 

sophisticated approaches and engine components that contribute towards the 

development of more useful, both in practice and in theory, AI knowledge-based 

systems. 

7. Rule Extraction from Deep Models 

Although rule-based models are typically among the simplest and least flexible for 

learning, they can be very powerful. A set of rules may effectively capture 

relationships within the input space, while remaining computationally efficient. 

Moreover, such rules are easily interpretable for end-users. It is thus not surprising that 

many in the high-stakes decision-making spaces desire for the machine learning 

systems they utilize to have similar levels of interpretability. Unfortunately, the 

temptation of predictive accuracy afforded by deep learning is often too strong to resist 

when performance is needed but cannot be afforded. That is why it is so crucial to 

investigate solutions that would allow users to extract at least some of the 

interpretability benefits of lower-capacity models from deep systems that lack any of 

the nicely structured representations that traditional machine learning systems produce. 
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Some of the earlier proposals for rule extraction were developed to produce low-

complexity surrogate models from neural networks to predict their outputs on a 

computed sample dataset [26-28]. Although this kind of post-hoc explanation system is 

definitely useful in that it can provide insights regarding mode behavior or certain part 

of the input space, it is also limited by the rule sets being learned: they can only 

capture specificities of the modeled function in relation to the learned distribution. The 

advancements in deep neural networks using unsupervised and inductive methods 

primarily focused on using the individual building blocks of complex architectures like 

convolutional neural networks as explanatory parts of speech. These pieces of 

knowledge are indeed very expressive, and can often allow experts to provide detailed 

semantic descriptions about what certain parts of the model are concerned with. 

8. Physician-AI Collaboration 

Collaboration between physicians and AI has emerged as a productive and beneficial 

factor affecting the diverse domains of medicine. Proponents of AI-assisted solutions 

argue that they can outperform unassisted physicians by exhibiting super-human 

capabilities. Such a proposition is impossible to gauge in clinical use since, by design, 

patients are rarely treated without supervision [29-31]. Rightly assuming that there are 

benefits to both parties, a more sensible focus should be on the productive 

collaboration that AI tools enable. Fundamentally, machines and humans operate for 

distinct evolutionary reasons. Each has its strengths and weaknesses. In particular, the 

parallel pattern recognition of AI is well-suited for digitized data in large amounts 

while uncertainty investigation is by far the bigger strength of any physician. AI should 

therefore assist specific compartments of the diagnostic journey in terms of speed and 

efficiency while humans challenge the general diagnosis and interpretation or 

paradigm novel findings, as the patient’s experience is not part of the machine 

approach. Translating these two ideas into actionable guidelines in everyday practice 

has turned out to be a serious problem, especially in radiology. Good partner behavior 

has been neglected in both clinical and research implementation. In a typical paradigm 

for mediating, radiology AI will implement pre-selection of possible findings enabling 

the radiologist or clinician to focus on a smaller area of interest. Once the AI proposes 

the result to be reported, it is again in the hands of the radiologist or clinician to discuss 

and either adopt or challenge the input. These decisions require familiarity with the use 

of specific tools as more have emerged that address specific tasks independently 

without collaborating. For example, a lesion exclusion tool can have detrimental 

effects on the decision process once a lesion is triggered but may greatly speed up the 

examination once lesions of no interest are identified. 
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9. Building Trust in AI Systems 

Research on trust in human interaction has a long and rich history, beginning with the 

research investigating factors that support cooperation and altruistic behavior through 

to more recent work on the trust that human users place in automated systems to act 

faithfully and reliably in cooperation with human users. It was noted that the social 

biases that humans exhibit in interacting with other humans also extend, in some 

circumstances, to automated systems. It is observed that humans can be sufficiently 

influenced and persuaded to trust AI systems that they behave inappropriately, leading 

to misuse of an AI system. There is also work on how a relative lack of trust may 

inhibit the adoption of robotic and AI systems, particularly in safety-critical settings 

such as aviation and healthcare [3,32,33]. Early research on human-automation 

interaction supports the view that AI systems should be trusted enough, though not too 

much to ensure they are accepted by human users. Chatbots and self-learning AI 

systems can exhibit strange and undisciplined behavior, reducing trust by virtue of 

their errors or inability to explain their reasoning processes. 

Research on interpretability in AI systems is particularly salient when examining the 

use of AI in clinical settings. The potential benefits of AI in clinical systems must be 

balanced with the ethical and safety concerns regarding the use of AI to supplement 

decision making in healthcare and to replace human decision makers in limited but 

important situations. Models that cannot be trusted or do not yet evidence safe levels of 

trust are unsuitable for high-stakes clinical environments. Furthermore, clinical users 

are likely only to accept the results of AI that augment or replace human decision-

making if the AI is interpretable – for reasons that go beyond mere curiosity. 

10. Challenges in Interpretability 

Despite the growing importance of interpretability in AI systems, several challenges 

remain regarding the practical design and implementation of interpretable CML 

systems. One prominent issue is developing accurate or useful interpretations of the 

models [4,34-36]. Defining what is meant by interpretation and the criteria by which 

the quality of an interpretation is evaluated are often subtly different for users working 

in different domains or specialties. This introduces variance and uncertainty regarding 

the degree to which different AI models are able to justifiably assist clinical users in 

their decision-making processes. Addressing this challenge often means AI developers 

must work closely with stakeholders in a particular domain to evaluate what 

formulations of interpretability work best for that application. 

Another interesting challenge to explore is the often debated trade-off between model 

performance and interpretability. Relatively simple models such as logistic regression 

models are inherently interpretable but may fail to capture complex relationships in the 
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data, leading to poor performance [37-41]. Conversely, complex models such as deep 

neural networks have the potential to accurately model even highly complex 

relationships in data but are difficult or even impossible to interpret. As a 

reconciliation attempt, methods for model-agnostic explanations can create human-

readable interpretations for overly complex models but often require simplifications 

that introduce additional uncertainty into the model outputs. Thus, it is crucial to 

balance model accuracy with the need for interpretability when developing evaluation 

procedures. 

11. Ethical Considerations 

When systems are developed for deployment in the clinical domain, their contribution 

to social good must be realized. The ethical considerations of research in clinical AI 

address issues in transitioning from the discovery of useful machine learning solutions 

to a deployed tool that is ultimately the best option for solving a clinical problem [3,5]. 

Choices made during development have consequences for how likely a system is to 

realize its promise after implementation. Ethical concerns center on these choices, 

including whether to skip stages where interpretability can be examined and 

emphasized, a lack of prior clinical and real-world data for guiding design choices in 

model training, management of expectations around performance, inadequate workup 

of how to guide clinicians in understanding informally how systems function, and 

inadequate commentary on diversity and representativeness of training data. 

Researchers and developers are frequently placed under pressure to train models that 

perform with high numbers for generic performance metrics. Being known for 

groundbreaking performance on a wide range of tasks has its own allure, yet such 

increased exposure can have unforeseen consequences. When research teams focus 

inward on these metrics as the bar for care transformation, they overlook the reality 

that, while predictive performance is an important metric, it is not sufficient at 

deployment. Lack of discussion of issues of model interpretability, data quality, and 

sample diversity can lead to hidden biases in our medical AI designs. These biases can 

amplify known biases in health care deferral practices. 

12. Comparative Analysis of Interpretability Techniques 

To help researchers select the best appropriate interpretability techniques, various 

taxonomies have been proposed to analyze the available options. One of the best 

known taxonomies of interpretability techniques considers three dimensions to 

describe existing interpretability techniques: the level of interpretability, explanation 

type, model characteristics, and thus they classify interpretability techniques along 

those dimensions. The first dimension, level of interpretability, refers to the fact that 

model interpretability can arise at different levels. They consider a level, which refers 
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to properties such as the concept they address, or the input dataset size they scale to, or 

the way they combine to produce an explanation. The second level refers to the way 

the interpretability mechanism produces an explanation. The Explanation Model is the 

concept that they define at that level. The output of the interpretability technique is an 

approximation of the model guilty of observing its input and output on a set. 

Interpretability techniques are typically more efficient at producing explanations for a 

reduced number of inputs and outputs. Hence, the local explanation that they produce 

applies to input samples, while global explanation for a model focuses on the input 

space. The last factor that they consider is model characteristics, which can range from 

factors related to the data to property, and basically that being exploited by the 

communication model and comparison criteria is key to understand what explanation 

any model is best suited for. A global explanation can yield an ambiguous explanation 

when the model is evaluated on a number of samples. If the samples registered out an 

entire size of audiovisual input, watching would be ambiguous. Local explanation for 

this model would normally share that to a reduced number of samples the local axes 

might be too long, while the global instruction model might compare against sets of 

arbitrary size. However, if these properties are too theoretical and not ideally related to 

the model, both types of explanation could work well. 

13. User-Centric Design in Clinical AI 

Clinical AI systems are often utilized for high-stakes, individual decision-making 

based on predictions of complex patient-specific scenarios that heavily influence health 

outcomes. Moreover, clinicians interact with models through complex, multi-step 

decision pathways that are also particularly nuanced [6,9]. This stands in stark contrast 

to many standard ML applications, where usage often first occurs with aggregate 

decisions to identify distinct clusters in data, or a single-step decision. Consequently, 

the limited goals of interpretability in ML may not be sufficient and effective clinical 

AI systems would benefit from translation of usability principles from HCI. User-

centered design techniques for clinical settings can help researchers better comprehend 

how stakeholders use predictive models and the decisions they make based on the 

models' predictions. This not only enables more effective, interpretable representations 

of model predictions, but also can directly inform more effective development of the 

predictive model itself. These concepts could also be used to guide the design of public 

and regulatory policy around clinical AIs. 

By incorporating user feedback, designers can address important elements of the user 

experience. For example, alternative output formats and visual designs may improve 

users' access to hidden states or user affordances, such as showing model uncertainty 

or creating an easy comparison with related populations. When such aspects are 
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designed thoughtfully based on a good understanding of their effect on interpretability 

and usability, confidence in model defense and repeated use may improve. 

14. Impact of Interpretability on Clinical Outcomes 

Several studies have assessed the impact of model interpretability on actual clinical 

judgment or patient healthcare outcomes. In a simulated setting, a group of researchers 

asked dermatologists to evaluate clinical vignettes of skin cancer lesions, either on 

their own or paired with model predictions from two systems—one with a simple 

model that only yielded a class label, and another with an interpretable model that 

highlighted regions within the images that contributed to the prediction. The findings 

indicated that expert dermatologists were less accurate when asked to evaluate the 

lesions with their paired model predictions than without—and this drop in accuracy 

was significantly steeper for those paired with the interpretable model than with the 

less interpretable one. In a follow-up study, a similar setup was used to compare two 

interpretable models. The conclusion was that “explanations in AI-assisted 

dermatology models can redirect dermatologist attention and may hinder diagnostic 

accuracy.” In another study, the impact of different types of explanation approaches in 

two real clinical settings was examined: a text-based prediction and its explanation 

using two different explanation approaches were embedded into a clinical hospital 

system, allowing healthcare professionals to perform a simulated triage application 

using these embedded explanations. It was confirmed that both types of prediction 

explanation (albeit using different methods) have an equally negative impact when 

compared to the class label alone. 

More recently, a real-time, interactable local interpretation method using Shapley 

values was evaluated on a clinical cohort of patients and the interpretation results were 

directly transferred into a real clinical deployment of a prediction task that helped 

doctors identify at-risk patients for major adverse cardiovascular events. It was found 

that enabling Shapley interaction reduced doctors’ intervention costs while improving 

MACE risk identification in type 2 diabetes patients. 

15. Future Directions in AI Interpretability 

This chapter surveys the present research directions in AI interpretability, organized in 

the report card format by three central questions: (A) What does interpretability mean 

in AI? (B) What is the interpretability gap in neural networks? (C) What are common 

techniques to interpret AI systems? In this chatbot era of AI interpretability, we find 

ourselves at an existential moment. The winds of fortune are at our back, but what 

should we do? Can we afford to train more interpretable AI models, i.e., models with 

sparse parameters inspired from neuroscience? Or perhaps continue training larger 

transformer models passed first on flocking, then on Linnaean taxonomy, and are now 
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setting course for spoken language? The current AI interpretability research landscape 

is a kids draw: there are more questions than answers. What does interpretability mean 

in AI? What is the interpretability gap in neural networks? What are the common 

techniques to interpret AI systems? Do we need AI interpretability during training or 

only at inference time? Does AI interpretability challenge the generality of the model? 

Or does it push for performance at the level of the current checkpoint? Finally, and 

most importantly, when is an AI system interpretable enough? We admit it is bad 

practice to put open questions on a road sign. This work is by no means a survey of the 

current research in interpretability, although we cite a few representative contributions. 

Rather, we want to emphasize the relationships between the open questions in 

interpretability and the contribution of specific papers. We hope that doing so will let 

the reader find their own way through the dense forest of interpretability work, and 

make connections with the interpretability problems they are tackling. 

16. Case Studies in Clinical Settings 

Investigating the interpretability of AI systems in clinical settings is important, not just 

because it will impact patient outcomes in a unique way, but also because there is 

already a large experimental record of the difficulties of physicians in understanding 

the outputs of AI systems in the clinic. Traditionally, the clinical record has contained 

an abundance of data about clinician decision-making but little about the actual 

character of the human-model interaction. With the advent of clinical AI systems, 

which monetize worse patient outcomes, the ethical stakes have increased. 

Here we present work to untangle the human-model interaction - specifically, the 

interpretability of AI systems in real clinical use around the world. We also discuss 

how these attempted answers could help future developments in clinical settings. Our 

work ranges from studying how errors generated by AI systems propagate to decisions 

made by clinicians to how the predictive performance of deep neural networks affect 

uncertainty quantification and human trust in a healthcare setting. It is still at a 

preliminary stage and will be further developed in the future, but we nevertheless hope 

to impact the features of future clinical AI systems as well as our understanding of 

user-model interaction in a clinical AI context. 

By relying on a selection of case studies to put into context our discussions, we believe 

we can bring a better understanding of the interaction. Nevertheless, as we detail 

throughout this section, systematically addressing the explainability of model 

predictions in clinical practice will prove challenging as practical considerations and 

the real-world environment are key modulating factors on the need for understanding 

these model predictions. 
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17. Regulatory Perspectives on AI Interpretability 

AI interpretability is increasingly seen by regulators as a critical component for 

assurance of safety and efficacy when AI is used in high risk domains like healthcare. 

This chapter reviews the guidelines and opinions that regulators have issued regarding 

AI interpretability, and argues that while the specifics differ, there is alignment of high 

level expectations on industry between different regulatory bodies and across different 

jurisdictions. The chapter then looks towards the future, questioning whether the 

traditional regulatory approach is enough to address the problems presented by clinical 

AI, especially in knowledge domains that are poorly specified by current regulatory 

frameworks. 

In recent years, numerous government and inter-governmental agencies and 

committees have published opinions and guidelines on the subject of AI and ML 

Accuracy and Applicability and on what developers and deployers of these systems 

should do to steer machine learning in the right direction. Some of these efforts are 

perhaps best categorized as "general" guidance. Other efforts are official 

recommendations of specific interest for healthcare and/or life sciences. And others are 

efforts by groups of researchers in the machine learning or clinical domains headed by 

publishers or academic institutions. 

18. Integration of Interpretability in Clinical Workflows 

The interpretability of AI systems in healthcare is crucial when it comes to ensuring 

that the promises made during the design and development phases are met during 

deployment and use. Furthermore, it is essential to convince various stakeholders—

such as clinicians, patients, regulators, or funding bodies—that there is added value in 

adopting these new technologies, as opposed to continuing to work with traditional 

methods. Over the last two decades, a significant body of work has been conducted on 

several different explanations targeting diverse stakeholders with diverse needs. Those 

approaches include local versus global explanations for clinicians or explaining 

predictions about certain patients on a one-by-one basis; explanations targeting 

reasoning and evidence or certainty; visual versus textual explanations; and many 

more. Some of these principles are mutually exclusive. Explanations aiming to recall 

memory and draw global conclusions will be difficult to combine with those 

explaining only one patient at a time. Furthermore, scarcely any of these systems are 

integrated in the workflows used on a day-to-day basis by clinicians, in particular when 

it comes to clinical reasoning tasks. Usually, such explanations thus have to rely on 

either clinical reports or special research software not intended to be used in direct 

contact with patients, in real clinical scenarios. 
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The situation is different for diagnostic sections of clinical reports stemming from 

automated processes. While there is a great deal of interest toward integrating 

generative large language models in the workflow, in an attempt to make them more 

reliable, their output is still less reliable than that produced by fine-tuned disease 

classifiers. That of course poses a double challenge: making the output of the ML-

generated diagnostic report reliable and ensuring that physicians and patients pay 

attention to it so that any doubt is cleared before the patient leaves the ward. Another 

way to entangle explainability with clinical workflow is to include interpretability 

techniques for ML-augmented diagnostics in the study of abnormal cases, similar to 

the classification for cancer staging. Such investigations are usually done on 

specialized units stacking difficult cases, in order to share knowledge among several 

specialists. 

19. Training Healthcare Professionals on AI Tools 

It is crucial to fill the gap between the technological aspect of clinical AI and the actual 

use of it in clinical environments to increase the users' trust in AI systems. There are 

two factors that can support a collaborative approach to AI, improving users' trust: 

clinicians' understanding of how AI works and a simple interface for asking for 

explanations for AI decisions. The experience with clinical AI-embedded medical 

devices often is described as more educational than that with other clinical devices due 

to the lack of formal training. Proper training of users is the best option to diminish 

their uncertainties on clinical AI. However, currently, healthcare professionals are 

poorly trained about AI, as the pedagogical framework is lacking and most training 

sessions are carried out only in a one-off manner and often these are just informal 

discussions at departments or labs. 

In order to train healthcare professionals in the workings of AI clinical systems, it is 

better to adopt a tailored fashion to the issue than to provide a monolithic digital health 

literacy. This is because the need for training can vary not only in the type of 

healthcare provider but also according to their clinical specialty or sub-specialty. For 

example, it is possible that one healthcare profession or specialty might be excluded 

from the initial target, resulting in implementation models and training procedures that 

are not suitable for that specific reality. Therefore, the implementation of clinical AI 

systems cannot rely only on a basic level of digital health literacy, such as the ability to 

understand and use easy AI tools, but should also consider a specialized approach. In 

turn, this point leads to consider how the evaluation of more advanced abilities can be 

structured and a possible differentiation between the general and specialized levels of 

digital health literacy. 



115 

 

20. Feedback Mechanisms for Improvement 

Feedback mechanisms are vital processes for encoding system-level experiences into 

future designs of Clinical AI Systems. Feedback on AI system accuracy is important, 

and in used systems, ground truth data is produced for retrospective accuracy checks. 

Capture of why-why data, which records justifications given by the Clinical AI 

System, clarified by human auditors correcting incorrect outputs, may reveal human- 

and machine-based sources of error. These reports fed back into system designs may 

allow for retraining of Clinical AI Systems for lower output error, or human worker 

groups may be trained by revealed group-level trends to rectify why-why reasoning 

errors viewed as common across diverse cases and contexts. Altogether, capture of 

general patterns for problems with the Clinical AI System output may allow for diverse 

improvements in accuracy. Of particular importance are interplay loops, where the 

human and machine components of a hybrid system allow for retroactive capture of the 

human and/or hybrid system output. Positive demand from humans for A-assisted 

work, plus capture of specific cases in which A-output was incorrect but human output 

was correct, and demand from humans by capturing cases where Human output was 

incorrect, but A-assisted output was correct, allow the AI and Human components to 

improve from informal feedback. Human augmentation systems that receive informal 

and ongoing feedback from workers have been observed in industry to be far more 

effective than systems without such feedback loops. Solutions echoing the humility 

and complementarity ideals of human augmentation applied to iterative feedback loops 

hold strong promise. 

21. Patient Perspectives on AI Interpretability 

As co-developers of healthcare technology, it is essential that patients are involved in 

the design process for interpretable AI systems that use the patient information for 

driving decision making. AI interpretability does not take on a single meaning for all 

users. For example, physicians may define interpretability as the ability to explain the 

decision-making process, whilst customers may seek additional information 

justifications, as well as persistent systems that enable exploratory data analysis. 

Moreover, both patient expectation and provider need depend on the context of use, 

and the service quality of the biomedical AI service. AI interpretability has been 

addressed mostly from the provider's perspective. In this short section, we discuss 

opportunities and needs arising from the patients’ perspective on AI interpretability as 

a proposition for further research collaborations between AI developers and the clinical 

experts. For AI to have the desired impact on healthcare delivery, it is important to 

understand that all stakeholders expect different things from AI interpretability. They 

would like to obtain answers to different questions when interpreting a model trained 

using their existing patient records or gene sequence data. 
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Such diverse interpretability wishes stem from the fact that existing interpretability 

methods primarily explain the effect of individual or a small number of features on the 

model output, which AI users attribute to inquiry different questions about the model. 

A significant challenge is determining what is actually being captured by these 

individual or small feature results. Providing such interpretation cannot be done in 

isolation; the healthcare stakeholders, whose wishes guided the design of the model 

should also take a part in the recovery and interpretation from any AI model 

explanation tool, rather than trusting the interpretations made by others. 

22. Technological Advances in AI Interpretability 

Most methods for AI interpretability draw on established relations between features 

and a model input or between a model and its predictions. Since these relations only 

hold in a limited and rather artificial sense, any explanations produced must be taken 

with a grain of salt, because they often fail to faithfully represent how a human would 

arrive at the same decision. Due to these difficulties, many of the early works on 

interpretable AI have focused on decision trees, logistic regression, linear SVMs, and 

other methods in this family. While these models are globally interpretable by virtue of 

their simplicity, they often produce unreliable predictions on real-world datasets. 

This is where the developments we mentioned above come in. As feature-

representation learning matured, these methods began to augment the more traditional 

models, attempting to combine their sampling properties with the representational 

power of deep networks. From this perspective, a salience map for an input face image 

should produce a spatial distribution over the image such that regions that a model 

relies on for predicting a human’s identity have the highest values in the salience map. 

Rather than learning a distribution with that property directly, the more conventional 

approaches approximate it with a supervised model that operates on salience maps as 

labels. This kind of model can only be trained on images for which we already know 

the strong features that make the difference. 

23. The Role of Data Quality in Interpretability 

It has long been claimed that “garbage in, garbage out.” How data is selected, pre-

processed, and represented shapes any model's ability to adequately project inputs to 

an output space, thereby defining the limits of predictive performance and, 

consequently, interpretability. For clinical practice, good quality data is fundamental as 

it drives the decision-making process and clinical pathways. Unsurprisingly, imperfect 

data can lead to model predictions and interpretations that are at best misleading and at 

worst harmful. In addition to data quality issues within AI predictions, display systems 

may further exacerbate perceptions of bad quality. Predictive models offered within a 

clinician's workflow need to be simple, trustworthy, and verifiable. Interpretability in 
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medical AI is not just about being able to explain a model's mapping of inputs to 

outputs; it is also concerned with the quality and uncertainty of the underlying data and 

which is closely linked to the builders’ knowledge of the data domain. Just as a 

biochemist or radiologist knows their domain intimately, developers of AI tools should 

also be aware of the implications of domain knowledge on data quality and the 

importance of its intersection with a model's predictability when judging accuracy. 

The attention given to uncertainty within clinical guidelines, clinical decision 

algorithms, and diagnostic accuracy needs to be paralleled by AI visualisations, 

otherwise, the invalidity of those tools can be exacerbated. A model may give a 

sufficiently good mapping of a space of inputs to outputs, however, it says nothing 

about the confidence of that model; and yet assuredness when predicting – especially 

when decision thresholds are set too low – can be hugely damaging. The intersection 

of model uncertainty and quality is expanding and rich areas for exploration for 

applied AI in medicine. 

24. Cross-Disciplinary Insights into AI Interpretability 

Generally, interpretability and explainability are research disciplines that cover alerting 

stakeholders against poor AI system predictions and increasing users' trust in a system. 

Although the approaches developed in these diverse research areas look quite different, 

these disciplines differ in their definitions of "explanation" and purpose of explanation, 

and solutions proposed to engineer machine learning models with such capabilities 

look also quite different. After first summarizing the differing definitions and roles of 

explanation - why explanations are needed in decision making - given by different 

ways of viewing systems as black-boxes, scientific instruments, or security silos as 

well as the differing approaches taken by various application domains, we will 

introduce how diverse and, in some cases, contrary recommendations provided by 

these disciplines may be reconciled. 

Because AI system users may need explanations for different purposes, this diversifies 

the requirements for explainable AI. For example, a user may want to understand how 

the AI system performs prediction or reasoning, and be confronted by an unexpected 

outcome, in which case they will want to understand why the current input led to the 

observed outcome - with the goals of debugging the system to improve its reliability, 

identifying situations where the current input distribution differs from the training 

input distribution to explain possible poor performance, or reasoning on the basis of 

the predicted output during usage. In the case of high-stakes decision making based on 

explanations provided, the user may require rigorous soundness or correctness 

guarantees to check both the quality of the extrapolated output and whether the model 

reflects a causal relationship between input variables and output. 
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25. Impact of Interpretability on AI Adoption 

The success of clinical AI systems is intimately related to how and whether they are 

adopted, and subsequently integrated, within clinical practice. The adoption of clinical 

AI systems appears to be an extremely complicated problem that has been 

unrealistically simplified by the framing of clinical AI systems as uncontroversially 

beneficial tools. In reality, AI systems are not simply tools for increasing efficiency. 

They are a far more complex category of high-impact decision-support systems that 

can potentially affect patient care, training and incentivization of clinicians, power 

dynamics regarding the governance of healthcare, and the essential experience of being 

a patient. A conversation regarding the adoption of clinical AI systems is then not 

simply a matter of conveying more accurate information or producing better evidence 

for the cost-benefit analysis of the clinical AI system. Adoption concerns the values 

and goals of the stakeholders in relation to the goals, risk classification, and value 

alignment of the AI system, as well as to its role and importance in the overall 

responsible governance of healthcare. 

The importance of interpretation in these discussions is widely acknowledged, with 

some calling for an a priori requirement of interpretability that would be a necessary 

condition for medical device approval. However, whether and how interpretability 

affects the adoption of clinical AI systems has not been investigated in a systematic 

fashion. The findings of studies in HCI and education might not be directly applicable 

in this domain since the interplay of values and concerns is different, and the 

consequences of designs and misalignments are on a different scale. We describe the 

results of a study that explores the impact of interpretability and interpretability 

support when people consider an AI system for use in a medical context, and also 

when they project that context into an atypical domain. 

26. Summary of Key Findings 

In Section 1.2 we introduced this work and laid out the case for why interpretability is 

crucial to the success of AI systems deployed in health care. Namely, AI will be most 

successful in health care when we can trust the decisions made by these systems. To 

earn trust and facilitate successful deployment, we must understand their decision 

processes. Trust derived from interpretability will also facilitate model improvement, 

development of novel algorithms, and insight into clinical data. However, design and 

development of interpretable clinical AI models is a complex, multidisciplinary 

challenge. In Section XXX we outlined key principles that researchers should be 

guided by when conducting this multidisciplinary work. Primarily, we must involve 

stakeholders, including patients, in the AI design process. We also emphasized that 

while future systems may be able to explain decisions made by opaque black-boxes, 
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we should focus on building intrinsically interpretable models. And finally, while we 

argue that explanations can be valuable, we must remember their limitations, 

especially the potential for explanation-based harm. 

As described throughout the book, there has been much progress in both understanding 

clinical AI model behavior and making models more interpretable. To enable informed 

future research decisions, in this section we briefly summarize some of the major 

findings highlighted in previous sections. There is growing evidence that AI model 

performance is correlated with clinical importance and is helpful for earning trust. 

Using intrinsically interpretable models that produce trustworthy predictions and 

decision information is a potentially superior approach as compared to inserting post 

hoc explanation mechanisms into a more opaque model. However, the latter approach 

is still valuable and at the very least will help us better understand black-box models. 

These approaches should continue to be combined to electrify our extrapolative view 

into the predictive behavior of models. Furthermore, as we improve on our ability to 

accurately model the clinical data, we may very well elucidate existing statistical, and 

perhaps even clinical, relationships within the data. 

27. Conclusion 

Developing interpretable clinical AI systems is not only important but also necessary 

to ensure that stakes associated with incorrect AI model predictions do not result in 

irreversible consequences. Achieving AI model interpretability, however, cannot be 

viewed as a one-size-fits-all paradigm. The diversity in design, stakeholder, and use-

case considerations necessitate diverse interpretability paradigms to develop 

interpretable AI systems that are not only useful in a clinical context but achieve the 

objectives of the stakeholders that interact with them. 

We argue the AI models used in healthcare should explore an explicit and direct 

relation with model interpretability. The anticipated consequences associated with 

incorrect predictions should be the primary factor in the design of AI model 

frameworks, selection of model-building constituents, and the envisaged interaction of 

stakeholders with AI models. By understanding the reasons behind the adoption of an 

AI model, a specific decision can be made about what should be interpretable – the 

model, its mapping from input to output, or the relationship between either the model 

or its output and the stakeholders. Our viewpoint is that adopting a clear stakeholder-

centric approach is likely to facilitate the desired impact on healthcare. 
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1. Introduction to Clinical Decision Support Systems 

Since the dawn of mankind, there has always been some type of decision support in 

every activity we carry out. From the early days of families to large organizations with 

formalized hierarchies, opinions, advice, and suggestions come in order to improve the 

quality of decisions. Among all human activities is the decision-making process 

regarding health problems which has always existed. With the pre-scientific, mythical 

and magical control of illness and health, learned by experience shamans, priests and 

wise men, they made some diagnosis, explanation and therapeutic prescription on how 

to deal with problems relating to health for a specific person or group [1,2]. These 

activities were becoming more clinical and scientific and during the academic age and 

the Renaissance; university academic groups began to accumulate knowledge on the 

functioning of the body [3-5]. In the following centuries, these groups systematized 

that knowledge into rules for making decisions related to specific diseases. This was 

how decision support in the health area evolved naturally. Traditionally, decision 

support in the health area was carried out on a face-to-face, personal, and unique basis 

without the technology-supported standardization that we customarily apply in today's 

world. But as in decision-making in other activities, the passage of time and the 

evolution of technology and the information area has allowed the development of 

systems that automate and facilitate decision-making in all activities, including in 

health. In the health area, the first technological supports to facilitate decision-making 

were elaborated in the late 1960s and the 1980s. These systems, generally based on 

Artificial Intelligence or formal logic, are called Clinical Decision Support Systems. 

These systems are tools aimed at improving the quality of care through the availability 

of clinical knowledge that generates recommendations for decision-making in specific 
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clinical situations and carry out the processes of diagnosing, treating and monitoring 

patients. 

2. Overview of AI in Healthcare 

Artificial Intelligence (AI) is a computational approach designed to perform judgments 

normally associated with intelligence. Machine learning is a subset of AI that 

encompasses a variety of statistical methods utilized to derive predictive models 

capable of recognizing patterns occurring in data and constructing future observations 

[2,6]. The AI discipline covers a wide variety of methods, including expert systems, 

computer vision, natural language processing, and robotics. The impressive growth AI 

systems have experienced can, in great part, be attributed to their successful 

applications in various domains, culminating in healthcare. 

The presence of AI in healthcare is increasingly becoming apparent in the form of 

patient risk stratifying, lab test ordering, clinical guideline development and updating, 

and diagnostic support and prognosis. The factors contributing to AI's increasing 

assistance in healthcare include: (1) widespread evidence that small Bayesian networks 

yield easily computable probabilities and demonstrate clinically relevant accuracy in 

the risk stratification of patients; (2) AI-based clinical decision support systems' 

capacity to independently create and update clinical guidelines; (3) the remarkable 

success AI systems have achieved for image interpretation tasks, such as the detection 

of diabetic retinopathy and other diseases using retinal fundus images; and (4) the 

recent impact of neural network models on the capacity of hospitals to collate clinical 

data and use natural language processing solutions to disclose essential clinical 

patterns hidden in unstructured data [7-9]. These examples illustrate that, while risks 

remain, the finalized proof of concept is in patient outcomes, and that assurance is 

therefore possible through the careful AI-based modification of patient management 

pathways and clinical pathways. 

3. Prognostic Models 

3.1. Definition and Importance 

Prognostic models predict future outcomes without the influence of an intervention or 

treatment. Consequently, these models provide important insight into an outcome's 

natural history, aid in informing treatment decisions, gauge the response to 

interventions, and allow for the adjustment of prognostic risk when estimating the 

effect of treatment on a clinical outcome [10,11]. There are several aspects of an 

outcome's natural history that can be modeled; including the probability of an outcome 

occurring or not during an interval of time; the time until an outcome occurs or is 

censored; and, for certain outcomes, the magnitude of the outcome. 
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The vast majority of prognostic models are developed to either predict the probability 

of a clinical event or the time until an outcome occurs. With the explosion of various 

types of data in medicine, researchers have crafted many different methods for 

developing these models as well as a plethora of variants on existing methods that 

allow for added flexibility or consideration of tested assumptions to predict one of the 

three above-mentioned outcomes. Furthermore, as testing methods extend to larger and 

more complex data sources, the use of artificial intelligence and machine learning is 

becoming an increasingly more attractive option to model prognostic outcomes. 

3.2. Types of Prognostic Models 

Leaving aside the burgeoning field of machine learning for the moment, the models 

that have been utilized most often to predict binary outcomes include simple logistic 

regression models as well as, more recently, elastic net and Lasso penalized regression 

models, classification and regression trees, classification forests, Bayesian methods, 

and several flavors of support vector machines [12-14]. For continuous outcomes, 

researchers have primarily relied on linear regression models, Bayesian methods, 

recursively partitioned linear models regression, and support vector regression. 

3.1. Definition and Importance 

Prognostic models are formal representations of knowledge regarding time to event 

distributions. They summarize (or are based on) the information contained in the 

individual prognostic factors and their collective effect on time to event. Overall, 

prognostic models serve to estimate the time until an event occurs or derive the 

probability that the event occurs at a specific time point. However, despite being 

routinely used in clinical practice, prognostic models still do not get the attention 

warranted considering their potential impact on clinical decision making. Indeed, 

prognostic models are the basis for clinical decision support systems [3,15-17]. Using a 

knowledge-based systems framework, these systems are an emulation of clinical 

decision-making using a set of heuristics that lead to certain diagnosis and therapy 

outputs. In the case of prognostic systems rooted in parametric models, heuristics link 

the input prognostic factor information to hazard or event probability tables, enabling 

clinicians to predict event occurrence at known time points. Meta-analyses show 

prognostic systems to improve clinical outcomes and the quality of clinical practice, 

such as decisional conflict and accuracy. 

The primary rationale for using prognostic systems is that their risk estimates are more 

accurate than the gut feeling risk estimates provided by the human clinical decision 

maker. Indeed, the performance of these systems is mainly determined by the 

uncertainty of the individual and cohort specific risk estimates. Since prediction 

diversity is higher and prediction usually more accurate in models than clinical 
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decision makers, sensitive and highly uncertain clinical predictions are best assessed 

by prognostic systems. These additional benefits may vindicate their usage despite the 

concern raised that the use of computer algorithms in clinical decision making may 

dehumanize the process. 

3.2. Types of Prognostic Models 

The ultimate aim of prognosis modeling is to learn a predictive function from the 

training data, i.e., to devise a model that relates the input characteristics, or features, 

more formally known as prognostic or predictive variables, to the outcome of interest 

[18-20]. Given the type of outcome variable, i.e., the variable to be predicted, models 

can be broadly categorized into three classes: survival or time-to-event models, 

outcome classification or risk prediction models, and response modeling or prediction-

of-predictors models. Survival models predict the time until an event occurs given the 

prognostic variables, and also account for censoring, i.e., situations when the event of 

interest does not occur for some subjects during the study’s period and the data, 

essentially, right-censor their follow-up. Example survival outcomes include time to 

death from breast cancer, time to the return of prostate cancer after treatment, or time 

to experience a first episode of thromboembolism in venous thromboembolism patients 

on anticoagulants. Risk-prediction models predict a binary outcome variable that 

reflects whether the event will occur or not [21-23]. These models do not consider 

time, nor account for censoring. Example outcome predictions include “will the patient 

die from breast cancer in the next five years?” and “will the patient return to the 

hospital within the next month?” Finally, prediction-of-predictors models aim to 

predict either the quantitative or the binary outcome variable showing the strongest 

association with the time-to-event outcome, which is itself a predictor of the outcome 

of interest. The response can be considered a summary of all subjects most likely to be 

predicted by the potential outcome model. Without any loss of generality, the first two 

classes will be used subsequently to present prognostic results from numerous 

application areas in biomedicine and for a range of medical conditions. 

3.3. Case Studies and Applications 

Although most research on clinical prognostic models deals with risk estimates for 

survival without events, many studies in various cancers report a wide array of 

different events after diagnosis and the need for danger estimates for the events of 

interest is growing. As a consequence of this increased need for clinical precision 

medicine, many studies also report on prediction modeling for pretherapeutic events 

such as a pathological complete response after, for example, neoadjuvant treatment in 

breast cancer. Models of this type help with treatment decisions and also with 
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counseling patients about the likelihood of achieving a pCR (an event leading to a 

better prognosis). 

Finally, prediction models concerning treatment-related adverse events, such as 

therapy side effects, surgical complications, or treatment failures, i.e., not reaching the 

originally defined treatment goal, are also presented. The need for these models is not 

only one of statistical interest but allows for more personalized clinical decision 

making, shared decision making, and more accommodating patient information in 

clinical practice. Probably the oldest type of model for predicting the risk of treatment 

failure is the actuarial estimate developed for the surgery of cancer. In fact, those were 

the first so-called prognostic models for patients undergoing cancer treatment 

mentioned in the literature. Since then, many groups and consortia reported many 

different competing risks. 

4. ICU Prediction Systems 

Critical care medicine is perhaps the most constrained environment for clinicians 

attempting to provide patient care. Intensive care unit (ICU) patients are characterized 

by the need for constant monitoring and assistance, and the presence of severe 

physiological derangement and life-threatening illness [9,24,25]. One can thus imagine 

the natural appeal of systems-based approaches to the needs of the ICU - the presence 

of quantitatively abnormal physiology, continuous data streams, and a predilection 

toward pathological derangements that follow predictably wrong trajectories for 

particular disease processes all present conditions that are favorable for computerized 

intervention. However, the challenges posed similarly present large hurdles to the 

successful implementation of predictive algorithms. 

ICU decision support systems in practice today excel at assisting clinicians in the 

interpretation of often disparate data streams from many patients and providing these 

data in easy visual formats, emphasizing intervals of derangement or potential future 

derangement. By contrast, true predictive algorithms use patient-specific data to 

estimate physiological states in the near future, reporting the most likely outcome for 

future time intervals, based on previously well-studied statistical correlations between 

variables and known clinical outcomes [26-28]. Various predictors have been 

developed covering a wide range of ICU outcomes, including renal failure, metabolic 

derangement, the development of sepsis and septic shock, extubation failure, re-

intubation, shock recurrence, readmission to the ICU from the floor, and death and 

morbidity both during the index hospitalization and after hospital discharge. 
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4.1. Role of AI in ICU Settings 

Predicting important clinical endpoint or clinical course of patients is essential in ICU 

settings. Previous studies have shown that although doctors are capable of using cues 

from patients conditions to predict important clinical endpoints, they are not at all 

times accurate in their predictions. Artificial Intelligence, especially machine learning 

algorithms, may be able to augment clinical decision making and help predict 

outcomes of patients more efficiently. IA-driven analysis of clinical data is of growing 

interest since it can potentially discover previously undetectable patterns in high 

dimensional clinical datasets [6,29-31]. Training predictive algorithms to create 

mathematical risk models can provide a useful addition to clinical decision making 

such as informing doctor-patient conversations or guiding management to address 

higher risks of complications. Furthermore, such risk models are increasingly being 

used in the ICU setting to alert clinical teams of significant complications. 

Many algorithms and tools have been developed to predict a variety of different 

outcomes for ICU patients and often focus on short term physiological outcomes. 

Work has also been conducted to define deterioration beyond the confines of a specific 

clinical problem to include general mortality risk, such as mortality prediction tools. 

Within the realm of critical care, it is important to examine the clinical problems that 

are being predicted and whether a prediction tool based upon the model has a 

beneficial application in practice [32,33]. Predictive modeling has been previously 

described as one area of research that could fundamentally alter daily clinical practice 

in the ICU. In regard to state-of-the-art models, it has also been suggested that any 

prototype assess to improve quality, economic, or safety metrics before it is considered 

for integration with clinical decision support systems. 

4.2. Predictive Algorithms and Their Effectiveness 

A myriad of machine learning algorithms have been proposed to predict outcomes in 

an ICU population. Recently, transformer-based models have demonstrated good 

prediction performance, even outperforming the widely used LSTM models. 

Numerous commonly observed clinical events and parameters, including age and sex, 

diagnostic codes, operation codes, charted lab results, lab abnormalities, and glucose 

and blood pressure levels have indeed shown sufficient association with outcomes of 

interest when used in predictive algorithms [34-36]. In one recent study, these 

traditional clinical events and parameters were found to outperform more innovative 

time-series signals in 30-day mortality prediction in patients undergoing surgical 

procedures. Other models have shown similar performances when charted clinical 

events and lab data are utilized to predict varying ICU outcome parameters, including 

adverse post-operative events and hospital length of stay. To manage the exploding 
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volume of health data attributed to the growing digitalization of clinical environments, 

one of our works has focused on developing a high-performing development pipeline 

for future predictive algorithms. 

Here, we successfully show that deep learning predictive algorithms can match and 

even outperform prevalent non-deep learning systems, without the need of complicated 

hyperparameter tuning and feature engineering and if not better, as good, when 

compared to other current data mining and machine learning systems. We perform the 

first scalability study to understand the effects of both the “curse of dimensionality” 

and label sparsity on predictive performance. Our method demonstrates why, when, 

and on what input data such predictive algorithms can scalable be developed to help 

clinicians triage and prioritize patients during their hospital stay at the earliest time and 

for any time interval. Moreover, these models could be generalized to facilitate soon-

to-be-published deep learning-based CDSS to improve clinical workflows during such 

competitions and enable in-depth patient recovery while ceasing potential patient 

harms pre-, intra-, and postoperatively. 

4.3. Challenges in Implementation 

Although the sensitive, time-critical, and multi-modal tasks performed in open and 

closed loop scenarios at the intensive care unit (ICU) could benefit greatly from 

partially or fully autonomous AI systems, the combination of these complexities 

proves challenging. AI vigilance will be important in addition to the general ethical 

issues associated with high-level robot autonomy. In particular, ethical aspects specific 

to patient care should be considered, characterized by an unequal relationship between 

caregivers and patients [16,37-40]. These challenges are identified in existing literature 

on robot autonomy and ethical issues. 

The prediction of patient deterioration in ICU settings allows providing timely therapy 

and avoiding negative outcomes such as unplanned intensive care unit admission or 

transfer to another level of care. To realize the advantages of early warning systems for 

serious deterioration, we will need to overcome many barriers to implementation. 

Barriers to implementation include unwillingness of clinical staff in the predicted 

event’s investigation, fiscal disincentives for reducing surges in transfers from wards to 

ICU, and inadequate KPI definition. Some of these barriers will reduce the 

effectiveness of technology implementations, leading to a loss in confidence from 

which they will subsequently struggle to recover. In the same vein, inadequate 

stakeholder engagement, for instance in oversizing the use case scenarios or selecting 

suboptimal prediction horizons as deployment settings, will have detrimental effects on 

both the transferability and the later operational performance. 
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Despite the challenges, I see a clear advantage in intention-based predictive technology 

compared with currently used triage systems in wards and ICU. These systems to 

which the technology will be contrasted are inherently wanting in terms of specificity 

and are thus suboptimal already as clinical decision-support systems because of the 

risk. Decision-making that is uncertain should best be informed through probabilities 

and patient-specific reasons for their prediction, even if the quality of the latter falls 

short of unreasonable quality expectations. 

5. Triage Systems 

Triage is a natural domain for the application of CDSSs using AI. Emergency 

Department waiting rooms can be chaotic, such that experienced clinicians have 

difficulty developing a situational awareness regarding changes in patient condition to 

enable appropriate workflow management. Many patients within waiting rooms are 

acutely ill or developing critical conditions such that short-term assessments are not 

sufficient. Triage involves estimating need for intervention, acuity, and urgency, often 

seen as separate constructs [41-43]. Need for intervention and acuity are two of the 

constructs in the standard scoring systems used internationally. Triage uses basic data 

collection, primarily patient’s presenting complaint, vital signs, and the clinician’s 

“gut” feeling, which may involve rapid observational experience regarding similar 

presentations to manage the flow through emergency departments. The nature of the 

process, with both high-risk patients being assigned to the most urgent category and 

poor matching criteria for each category means that lack of precision can be 

acceptable. Modest improvements for patients who are particularly low acuity can have 

a large impact on overall throughput. 

Hierarchical multinomial modeling has been used to augment the triage process for 

patients with characteristic conditions. Multiple AI enhanced triage-related systems 

have been investigated [44,45]. One system aims to quicken the process. The systems 

include an image-based system, a system based on the process of patient waiting and 

those utilizing the other inputs to the full triage system. Another system is aimed 

specifically at remote locations where mobile health is being utilized. Other systems 

combine mobile health with telehealth. One system utilizes telehealth interfaces but is 

aimed at improving ED capacity. This work illustrates the wide range of different 

designs possible within remote and on-site telehealth interfaces and protocols. One 

approach has utilized two different methods to enhance fewer resources in remote 

locations. The emergency clinicians may both remote assess a patient and impact the 

triage decision process. 
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5.1. AI-Enhanced Triage Processes 

People seeking immediate medical assistance usually visit an emergency department 

(ED), where preliminary treatment is delayed while emergency-care physicians attend 

to same-day admissions with more severe conditions. Because not all emergency 

candidates suffer from critical illnesses, the handoff needs to efficiently prioritize the 

patients’ assignment to clinical treatment, and this operation is usually performed with 

the support of a standardized triage tool. Through general signs, symptoms, and 

medical history during the first assessment, structured inputs are employed to 

categorize patients into corresponding severities to determine the urgency of their 

conditions, flag the non-urgent cases, and reduce flow to primary care clinics. Also 

acting as a bridge between patients’ arrival and clinical evaluation, the triage process is 

important to patients’ prognostication, emergency quality assessment, and clinical 

predictive modeling. Triage relies heavily on clinical expertise, though subjective 

judgment is inevitable; moreover, the demand for ED triage by physicians is not a 

realistic prospect because ED usage continues to increase steadily. 

Aiming to calibrate emergency care by producing unbiased and objective triage 

predictions, artificial intelligence (AI) has the potential to assist clinicians in making 

the final decisions based on all the patients’ characteristics. Characteristics of advanced 

computing infrastructures integrated with healthcare information systems enable AI to 

process vast amounts of data, and can optimize triage. In this context, AI applications 

are developed to train data-driven patterns in either unsupervised or supervised 

learning, utilizing past data via various machine learning paradigms such as deep 

learning, support vector machines, or recruitment of species-based algorithms; 

autonomously software predicts the outcomes, which can be used to categorize patients 

by urgency levels. AI technology is also leveraged for non-traditional triage scenarios 

such as prehospital identification, out-of-hours screening, and setting hundreds of 

miles away from EDs. 

5.2. Impact on Emergency Care 

Although not the origin of modern medicine, emergency care as we know it today is 

based on principles and practices that seek to mimic the system of triage first 

established by the military during battle or mass casualties [1,2]. States realize an 

actualization of the principle of socialization of health rights through the establishment 

of universal public health systems that guarantee all individuals who need it access to 

timely emergency care. Triage is, therefore, the frontline of these systems, receiving all 

demands on an equal footing and determining who will be treated and when, in this 

case by identifying patients who need urgent intervention. Health professionals at the 

triage station make decisions that can lead to two different results: there may or may 



132 

 

not be an associated risk of death within the following 24 hours, and the associated 

mortality of patients who are not operated on can be as high as 11%. The transparency 

implicit in the idea of socialization of health rights should lead to a minimization of 

errors due to poor patient stratification imposed by precedent “less urgent” cases that 

increase the waiting time for urgent patients. In this way, thanks to this and the 

monitoring systems, the health system assumes the risk of allocating human and 

economic resources in the event that patients arrive who do not generate a cost and the 

triage coordinator will validate the decisions taken at the time of treatment. 

Errors during triage are possible due to the potential human error of the nurse, aided by 

the pressure of many people waiting with varying levels of social urgency, the 

experience and knowledge of the health professional in the field, and the high 

uncertainty during the initial moments of seeing the patient. Recently, Decision 

Support Systems have made their appearance in this zone of potential human error that 

justify and support the triage decision to reduce the number of associated mistakes. 

Emergency departments present a substantial variability in the arrival of patients and 

their demand for resources over time accompanied by an increase in demand and 

workload, so the post-COVID world has highlighted even more than before the need to 

establish Decision Support Systems. These have been developed in many fields of 

emergency medicine: clinical decision rules, severity scales, disposition decision 

support, clinical prediction rules, risk adjustment systems, trauma scoring and 

description systems, patient outcome prediction, prognosis models, risk stratifying for 

airway, ventilation or adrenocorticotropin hormone pump failure, and psychological 

support or psychiatric evaluation. Common all these systems is the development of 

mathematical models that are capable of processing massive amounts of data very 

quickly and accurately. 

5.3. Ethical Considerations 

As AI-CDSS control the most challenging and critical cases in emergency care, the 

consequences of errors and the harm they may cause is extreme, generating high 

ethical responsibility. AI-CDSS may drive false-negative errors, forgone resources, 

dropout communication, and poor quality of the emergency care processes. AI-CDSS 

may drive false-positive errors and overload emergency care, decreasing quality while 

augmenting the risks of unwanted effects in cases of children or elderly people, benign 

cases, and critical but rare cases. These problems are increased due to the variability of 

CTAS at some times of the day, driven by the ebb and flow of resource availability and 

not correspondingly adapted by the center’s activity. Some AI-CDSS suggestions may 

be wrong, and expert physicians assume the responsibility by balancing the algorithm 

priority with their own clinical experience. Is there a room for a lack of consequential 



133 

 

damages responsibility transfer for specific types of AI-CDSS? The question will have 

to be dealt with and often, policies are the only way. 

The interactions between humans and AI-CDSSs bring up questions regarding direct 

and indirect decision responsibility, especially about 'recommendations'. AI-CDSSs 

sophistication allows a more complex type of recommendation based on the possibility 

of interactive learning. Moreover, as the knowledge of the MD becomes progressively 

aligned with the AI-CDSS over a period of increased repetitive practice, a behavioral 

nudging effect could arise that may be more powerful than simple ML mechanisms. 

Some enthusiasts defend that MDs should adjust their decisions towards those 

suggested by complex AI-CDSSs, assuming downward consequential damage 

responsibility. We must also question what it means to become a physician, and 

whether the reduced learning curve made possible by reinforcement learning nudging 

AI-CDSSs will bring diminishing returns after years of practice. 

6. EHR Integration 

6.1. Importance of Electronic Health Records 

Clinical decision support systems can substantially aid decision making, but the input 

about a patient must be informative and up to date for the support to be clinically 

relevant. Data about a patient’s medical history and current state should be easily 

accessible because without adequate information, decisions may be poorly informed 

and mistakes can occur. Electronic health record systems have become ubiquitous in 

the practice of medicine, appearing in nearly every clinical setting from primary care to 

specialized healthcare facilities. An EHR contains detailed demographic information as 

well as clinical data about a patient, including past medical history, medications, 

medical allergies, immunizations, laboratory test results, radiology images, as well as 

billing information. EHR systems have become a centralized depository for much of 

the typical clinical information needed by health care providers. Despite their 

centralization of clinical information, EHR systems differ significantly between 

healthcare systems and even among practices. These differences may complicate the 

integration of CDSS within EHRs, a necessary requirement to make their use simple 

for the physician user. 

Computerized physician order entry modules are typically bundled within EHRs so 

that they can share data about a patient directly with ordering providers when needed. 

Many clinical decision support interventions are used in conjunction with CPOE, such 

as interaction-side alerts. While EHRs generally aid the integration of decision support 

interventions that display during the course of ordering, not all CDSS are located 

directly within the EHR. Examples of CDSS that are distinct from EHR systems 

include those that are used in an analysis of big data sets for predictive modeling of 
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adverse outcomes, as well as CDSS that are developed to provide clinical support only 

via a web interface without the ability to access the EHR directly. Such systems may 

be unlocked remotely into the web-based interface by providers with varying degrees 

of automated interfaces with EHRs, or not unlocked at all. Even in the setting of 

CPOE, the use by clinicians of CDSS that operate outside the EHR while not much 

slower than CDSS that work seamlessly with EHRs is less appealing. 

6.1. Importance of Electronic Health Records 

Electronic Health Records are digital files that catalog patients' medical history and 

status, storing information on demographics, medications, allergies, medical history, 

progress notes, immunizations, laboratory data, radiological images, and billing 

information, among others. The Clinical Decision Support System interacts with these 

data to enhance the patients' safety and quality while disseminating knowledge with a 

service posture, reducing variations in practice and implementing efficiently evidence-

based guidelines. There are different types of CDSSs: those that provide a diagnosis 

suggestion, usually treating a specific disease; those that support therapy; those that 

suggest treatment changes, frequently in the contexts of intensive care units; those that 

provide reminders; and those that plan tests. In most cases, these decision support 

systems are fed by EHR. 

Electronification of clinical records aims to ensure that information about patients be 

easily accessed whenever needed and from any possible device, since the use of 

medical records is governed by ethical and legal aspects. The strategy chosen to 

execute this electronification is the use of Electronic Health Records, a digital system 

that regulates the storage, maintenance, and sharing of patients' data. An EHR is 

defined as a digital record of a patient's health information that can be shared across 

different health care practices, including hospitals and medical clinics. Starting as a 

digital file of handwritten records, EHR have evolved to become a multi-feature tool 

that connects various health care providers and encompasses all medical data related to 

a patient. 

6.2. Strategies for Effective Integration 

A large number of researchers are involved in the integration of components into the 

existing systems. However, not many seem to be actively pursuing decisions regarding 

the content and the methods used within it. Decisions are rarely made regarding 

suitable selection of components or the appropriateness of the methods employed. 

Often the only focus is on the technical aspect of integration without regard to the 

functional aspects. To achieve the functional level or reach a similar status as the 

original systems, the external appearance and working processes need to be flexible as 
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briefed earlier. The system must return the required data in the appropriate manners for 

use by the clinicians. In addition, it must also allow the users to view it in a proper, 

coherent format without confusing errors. 

The system can supplement both the clinicians and patients with the display of other 

preparation files such as flow charts, self-assessment jazzed up with motivational 

messages, literature references regarding the treatment protocols. These files cut down 

the consultant’s time spent on the system and better the patient’s experience while 

motivating discussions. Generation of multiple components seems unlikely-to-usability 

issues, long loading times, cluttering the system and distractions. Thus, whereas having 

a wide database may help improve accuracy, putting all the possibilities on display 

may only help worsen the usability. The ease with which a design can be understood is 

determined by the user’s previous experience with similar designs. The goal would be 

to create a visually engaging product that provides users with quick access to needed 

information. While the generation of multiple output components seems unlikely-to-

usability issues, long loading times, cluttering the system and distractions. Thus, 

whereas having a wide database may help improve accuracy, putting all the design 

permutations on display may only help worsen the usability. The ease with which a 

design can be understood is determined by the user’s previous experience with similar 

designs. 

6.3. Case Studies of Successful Integrations 

The integration of PI and CDSS tools for diagnostics greatly improves the workflow 

quality and clinical aspect. The capability of performing decision support in the same 

place, at the same time, with the same patient context as a clinician decision, greatly 

increases the reach, acceptance, relevance, and indeed the number of decisions that 

could be supported. 

A great example of successful integration of a clinical decision support tool with a 

widely adopted EMR platform is the diagnostic system developed for the Partners 

Longitudinal EHR dataset from 2000. In this case, the CDSS runs at the same time and 

in the same interface as the EMR point-of-care use. In this way, it perfectly overcomes 

all the integration problems previously cited above. Any patient data in EHR can be 

used for the diagnostic knowledge base and decision making. The support and reach 

for rare diseases achieving the final diagnosis may be lifesaving, decreasing the 

average time to diagnose is also clinically important. On the other hand, the clinical 

reuse of the diagnostic decision increases the opportunities of learning associated with 

that case to optimize the energy spent, reducing the proportion of undiagnosed patients, 

avoiding risks for the patients. The integration of CDSS tools with the usual clinical 

practice is crucial to success. 
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The experience of the old ISAhD system, and of successive similar attempts has been 

that the only real way to achieve integration of emergency diagnostic systems with 

EMR systems is to integrate the two together. The reason for this is that the decision of 

which services to run is not selectable by the clinician on clinical grounds; an 

emergency patient will not comply with qualitative criteria that would allow a proper 

prior selection of cases. 

7. Multi-Modal Fusion in CDSS 

Numerous amounts of costly, low signal ratio data make up the plethora of clinical 

data recorded by the electronic health records systems, hospital picture archiving and 

communication systems, digital monitoring systems, among others. The magnitude of 

clinical data, therefore, necessitates a thoughtful integration process. Multi-modal 

fusion describes a variety of data-centric approaches to effective information 

integration and synergy creation, allowing the optimized clinical guidance of decision 

support systems, and is a complex, vital layer of customized clinical decision support 

systems. Various centralized multi-modal fusion methods address different data 

formats, be they time series, digital voxel representation, test results, visualizations, 

and image and spatial data, combining them into fused digital pathophysiological 

models. Such data-driven pathophysiological models synthesize large clinical datasets 

into minable knowledge representations. Fusion functions can be any combinations of 

deep multi-task learning, sparse and multi-modal clustering, support vector machines, 

kernel models, graph searches, and subspace projections, and delineate standard 

function outputs and shared, domain-specific knowledge. 

The classical aspect-oriented multi-modal integration of data synergistically 

contributes to the fusion of task-specific classifiers and pathophysiological 

representational aspects, able to effectively recognize and model clinical decision 

points such as diagnosis, progression, intervention, and outcome, reflected by the 

multitude of clinical events. Multi-modal clinical data fusion is facilitated by multi-

speaker communications and clinical item pool discourse-based multi-modal clinical 

data integration methods. Synthesizing individual-factors and representation interface 

layer aspects allows the domain specialization of clinical decision support systems and 

fuses user-friendliness and representational-interpretable, user-involvement template 

assets into inception. Data fusion allows input-distribution budging capabilities, 

obscuring deficiencies in individual input classification sufficient for clinical task 

performance and user-involvement capabilities. 

7.1. Definition and Techniques 

Fusion is a general technique used to combine data from limited sources and draw a 

conclusion that is more informative and complete than that provided by any one of the 
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individual sources. Multi-modal data fusion in Clinical Decision Support System 

(CDSS) refers to the integration of observations made through the different modalities 

of decision support in healthcare to achieve better inference performance. This usually 

involves the mapping of heterogeneous high-dimensional data defined on different 

spaces to the seminal low-dimensional semantic space. The sources of information 

could be sound, vibration, pressure, optomechanical, electromagnetic wave, 

electrochemical, electromagnetic radiation, electromagnetic charged particle, and 

visual. The uncertainty that is inherent in these observations may stem from a myriad 

of reasons. 

Multi-model fusion has become a peculiar application-specific challenge of 

considerable practical importance and it continues to receive significant attention from 

researchers. It employs a wide variety of automatic and semi-automatic techniques and 

strategies, depending on factors such as availability of sufficient labeled data, the 

reliability of the individual sources, the diversity and quality of the classifiers being 

combined, computational resources, and the specific application. The most common 

techniques include majority voting, linear regression, and decision template or 

distance-weighted learning framework, and neural networks, among others. Multi-

model fusion, although a relatively simple tactic, has proven to be surprisingly 

effective in practice. It is routinely employed to combine the predictions of these 

classifiers for solving specific applications in biology and medicine, including tissue 

classification from gene expression data and imaging analysis. 

7.2. Benefits of Multi-Modal Fusion 

AI-driven clinical decision support systems (CDSS) generally tackle a single task, 

typically based on one specific type of data or information input. This is also true for 

the majority of the existing AI applications using clinical data, employing only EHR 

for clinical diagnosis prediction, or using only medical imaging for malignancy 

detection or language models for trial recruitment. Most of these systems perform 

accurately at best for some specific tasks in domains where large-scale labeled data are 

available. However, for some domains, large-scale predictions are not feasible, and for 

some clinical prediction problems, classical single-modality task predictors are not 

independently reliable and may not play significant roles. When predicting a task that 

requires different types of clinical data or information input, or when conducting an 

uncertain task, CDSS would definitely benefit from the collaborative contribution 

across other types of inputs. 

In fact, multi-modal multitask prediction has been a far right trend across other non-

clinical research areas, especially in the vision and language fields where tasks such as 

image caption generation, visual question answering, and visual grounding have 
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proved their effectiveness of multi-modal multitask learning and prediction, providing 

complementary supervisory signals from disparate modalities. Typically, prediction 

tasks in different domains are inherently linked. In the clinical area, there exist many 

naturally associated tasks such as those involved in a clinical pathway, e.g., disease 

diagnosis, treatment and progress detection, patient profile description, clinical trial 

recruitment and outcome prognosis. Such tasks are closely related with each other, 

requiring disparate, yet interleaved clinical data. 

7.3. Examples in Clinical Practice 

The medical domain is complex and very tightly constrained, both for the prediction 

problems as well as for the data modeling. Multi-modal models in the medical domain 

typically make use of vision and text or tabular data inputs together, since these 

modalities often provide complementary information, even in the same patient visit. 

Many existing works address two of the three branches, mostly because of the limited 

availability of appropriately pre-processed large-scale datasets. 

In the study, CT image data of the abdomen and head are used with EHR data of 

clinical inquiries in a critical cohort to predict three frequent medical inquiries within 

one week after the CT scan, namely a lab exam and two different possible therapies. 

The experiments showed that contrast-enhanced CTs together with prediction for the 

clinical inquiries considerably improve the prediction quality compared to prediction 

based on the relevant EHRs alone. The methods proposed suggest a ranking approach 

to suggest which clinical inquiries need to be addressed, since different patients require 

rather different medical attention. This work describes a macro-level approach to 

dropdown menus which can be supplemented with expansions at a micro level. 

A method was devised that considers to fuse EHR and image data but without meta-

information on the images included in the training sets when training the models, in 

order to predict ICD codes of the relevant time periods from the EHRs alone. In 

contrast, we consider meta-information provided by the EHR data together with image 

data in order to predict patient inquiries. The fusion models proposed consider multi-

modal data to build a multi-modal representation, while the models estimated in this 

work aim to modulate the predictive quality by jointly considering the EHRs and 

ground truth inquiries as auxiliary non-image inputs. 

8. Evaluating Impact on Patient Outcomes 

The majority of CDSSs have been externally validated to check whether they are 

usable at scale, however assessing their impact on patient outcomes is more difficult 

and is not done as frequently. This is arguably the most important question researchers 

wish to answer since if an AI-based CDSS does not help physicians make better 
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decisions, it is not worth deploying at scale. There is ongoing discussion in the AI for 

Health community about how best to implement evaluations and what types of 

evaluations are useful. Many high-profile ML health research studies evaluate the 

performance of the algorithm using metrics out of sample. These are only one of many 

steps and are not enough in themselves. Such test set evaluations assume that the first 

thing is the only thing that matters. However, while ML algorithms have been created 

that are very good at prediction tasks, it does not follow that such algorithms will lead 

to a measurable improvement in health outcomes when deployed at scale, for the first 

thing is not the only thing. Health outcomes are affected not when an ML system 

merely answers a clinical question correctly, but rather through their effect on 

downstream clinical actions. These in turn result in changes to clinical pathways and, 

ultimately, the health outcome of patients. This suggests that understanding the 

quantitative relationship between predictive performance and patient outcomes is 

crucial for deploying clinically useful ML algorithms. A high-performing algorithm 

may be useless if it is not used to change clinical actions, as missing the first step may 

be the only achievable outcome. Out-of-sample accuracy is a poor proxy for impact, as 

an accurate model may be used to suggest interventions that are not actually helpful in 

the real clinical pathway. 

8.1. Metrics for Evaluation 

We have discussed evidence of effects of CDSS on test ordering, adherence to 

prevention guidelines, prescription of indicated therapies, and disease diagnoses. Here, 

we discuss the relationship of CDSS to patient clinical outcomes. CDSS were initially 

introduced as a response to the high level of errors in medicine. Since then, advances 

in software techniques for machine learning and improvements in the efficiency of 

certain diagnostic tests have reduced this error rate. Given these changes, we explore 

the continued value of AI-Driven CDSS in improving patient outcomes. 

The use of CDSS has been associated with improved patient outcomes such as reduced 

mortality and morbidity, as well as fewer hospitalizations and readmissions, but such 

studies are few in number and often unsatisfactorily controlled. One reason for the low 

number of studies may be the difficulty of conducting them. Measuring medical errors 

requires costly and intensive studies that are likely to eliminate the resources that 

might come from the given organization as a result of the reduction. But the resources 

needed to study effects of CDSS on mortality and spending are also sizeable. We 

discuss the effects of different metrics and measures, as well as study designs, on our 

weight. CDSS research is focused on higher level outcomes, such as mortality and 

readmissions. These other outcomes are also determinants of spending and CDSS use, 

but we seek to determine their impact on patient risk factors and other determinants of 

spending. 
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8.2. Longitudinal Studies and Findings 

Many studies and projects are aimed at documenting the clinical, organizational and 

workflow changes that occur over time, impacting patient outcomes after the 

deployment of a CDSS. These longitudinal studies may take form of pre- and post-

deployment comparative chart reviews, observational studies or controlled trials. These 

studies allow for the measurement of multiple types of patient and system workflow 

changes across time and space and at clinical and organizational scales, providing the 

user with detailed how, when, where and why answers. In addition to a multitude of 

different CDSS and evaluation criteria, varying time scales and local, cultural, 

organizational and infrastructure differences are likely to contribute to the range of the 

reported positive, neutral and negative impacts of CDSSs. 

A number of studies have been published that discuss and report on the outcomes 

observed following the deployment of the most common commercially available 

CDSSs. In this section, we discuss both more specific longitudinal studies as well as 

notable outcomes studies. Although there is a real need for additional replicative as 

well as negative studies reporting on the impact of CDSS deployment, introduction and 

monitoring of the most common commercially available CDSSs in the routine 

decision-making process, the ability to longitudinally assess the impact of a CDSS on 

healthcare practices is becoming increasingly more difficult. This reflects both the 

dramatic changes in how healthcare is delivered and compensated for, the rapid pace of 

introduction of new systems used in clinical workflows and the continuously 

accelerating rate of in-processing of medical data. As such, CDSS monitoring for 

impact is often reduced to reporting surrogates found embedded in regional or national 

health databases. 

8.3. Barriers to Effective Evaluation 

Evaluating the impact of AI-driven clinical decision support systems (CDSS) on 

patient outcomes can be challenging. While evaluating CDSS evaluation on technical 

components and performance metrics like calibration and discrimination are common, 

these metrics fail to show the real-world effectiveness of algorithms when integrated 

with health systems and workflows, on the desired end-user group. No single method 

of evaluating AI-driven CDSS is sufficient; rather a phased-hybrid approach using 

qualitative methods to promote stakeholder engagement, quantitative studies based on 

simulation and/or retrospective data, and randomized and pragmatic trials, is needed 

based on resources and context. Furthermore, the healthcare stakeholders should have 

clearly defined a priori AI-related goals and challenges, as well as clinical domain 

expertise, when validating and evaluating AI-driven CDSS, which is not routinely the 

case today. 
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Multiple other barriers exist that limit the ability to rigorously evaluate the impact of 

AI-driven CDSS on patient outcomes in clinical settings. The lack of appropriate 

guidelines for evaluation, rapid technology prototyping and testing, and complex 

human-AI and system interactions can distort measurements associated with AI CDSS. 

There are also intrinsic difficulties in studying real world, complex adaptive systems 

with rigorous experimental designs, in real world settings. The physicians’ limited and 

skewed availabilities during the clinical workday makes it daunting to conduct 

rigorous experimental studies. It can also be difficult to ascertain the true impact of AI 

CDSS on human behavior when it is just one of the many competing influences. 

Differences in patient races and histories, and physician selection, availability and 

experience, can also lead to selection biases in randomized controlled trials. 

9. Future Directions in CDSS 

Advances in technology and methodologies for managing data as well as for machine 

learning and AI present new opportunities for CDSS to contribute to clinical care in 

important ways. Thus far, CDSS that are heavily integrated into the clinical workflow 

are still quite simple. Moreover, CDSS in general have relied primarily on heuristic 

rules and regressions for the decision support they provide. Future generation CDSS 

may more directly leverage additional exciting AI platforms utilizing predictive 

modeling, NLP, computer vision, and multimodal modeling of complex real-world 

signals as input. These capabilities applied to data at scale have been used to deliver 

state-of-the-art AI algorithms in fields such as natural language processing. The 

potential for such techniques to enable CDSS that leverage predictive modeling, NLP, 

computer vision, simulated subjective signals of clinical reasoning, and multimodal 

modeling for complex temporal signals has not been fully tapped. Healthcare is 

complex because it involves people and their behavior, emotions, and motivations. It is 

a work-in-progress that includes myriad data points from the past, present, and future. 

The challenges are significant, but so is the potential. 

Equally important is the future potential of CDSS to help with personalized medicine. 

Clinical decision support has had an emphasis on guidelines; however, these can be 

derived mostly using averages and do not optimize care for specific patients. Instead, 

with advanced machine learning models using profiling of individuals drawing on deep 

phenotyping and precision medicine, clinical decision support can help optimize 

outcomes for individuals instead of the population at large. The challenges to this 

direction are the fact that precision healthcare often requires complex data-gathering 

and lengthy time-associated profiling and other data related to decision support need to 

be closely aligned with the timing of decisions by clinicians. Moreover, education and 

acceptance of the clinical community are key challenges, which extend to the future 

direction outlined before with respect to advanced AI-powered models. 
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9.1. Emerging Technologies 

Artificial intelligence (AI) is an area of computer science research that includes such 

sub-disciplines as Machine Learning, Natural Language Processing, pattern 

recognition, knowledge representation, automated reasoning and robotics, among 

others. The goal of AI is to design and implement intelligent software systems that can 

accomplish tasks that are commonly associated with human intelligence. AI is 

increasingly being applied in diverse domains, and is now being utilized in many 

clinical healthcare systems as well. AI has made profound inroads into clinical 

decision support systems, which play a pivotal role in supporting clinician decision-

making. There now exists an entire sub-field of research in AI specifically geared 

toward supporting healthcare practice, and it is known as AI for healthcare. 

In this paper, we focus on clinical decision support systems, which are AI-powered 

tools that leverage on patient data to assist clinicians with their decisions. Such 

decisions include whether to order a certain test, or to treat a patient in a certain way, 

or what diagnosis a patient may have based on their symptoms, or what treatment plan 

would be most effective. The feedback from the clinical decision support systems may 

either be either an independent decision or a recommendation as an adjunct to the 

clinician's primary decision. While AI-based clinical decision support systems have 

been gaining traction, they are not flawless, and several of them have manifested 

unexpected failures, causing patient deaths and near-death situations in some cases. 

Despite these setbacks, we are in the midst of an AI-based renaissance in clinical 

decision support systems. These AI-clinical decision support systems have started to 

out-perform healthcare professionals in certain tasks, and the large-scale deployment 

of electronic health records is offering a wealth of freely available patient data on 

which to train and test these systems. 

9.2. Potential for Personalized Medicine 

Among the many potential uses for AI in medicine, development support tools could 

come to play a major role in the drive toward precision health and personalized 

medicine. Research on alignment of the gut microbiome with dementia risks, genetic 

testing used to individualize treatment for cystic fibrosis or for hereditary breast-cancer 

syndromes, use of genotyping to minimize risk of malignancy for patients being 

treated for lymphoid malignancies, or treatment recommendations for cardiovascular 

disease based on polygenic risk scores are only a handful of the current areas of 

research in medicine that support such hopes. Numerous other disease areas are also 

being funded, including use of genetic testing for individual risk or treatment of sickle-

cell disease, genetic testing to predict treatment efficacy of oral anti-coagulants in atrial 

fibrillation, or for risk of severe sepsis. Potential developments in pharmacology and 
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genomics, such as the emergence of drugs that selectively inhibit a specific mutation in 

a precision-treated population of cancer patients rather than a bulk cytotoxic agent for 

all patients, may increase the need for CDSS in formalizing implementation of genetic 

testing. 

However, as with other new disciplines, the pace of expectation from AI-driven CDSS 

development growth and extrapolation has already exceeded its knowledge base. 

Summary gradient boosting has only recently brought forward any discussion of 

machine learning methodologies in the guidelines to standards of care for children with 

obesity. Identification of matching genetic targets in patients with cystic fibrosis, or 

approval of the HER-2 containing neoadjuvant chemotherapy regimen, has only 

recently entered into national standards of care. The statement that “targeting, not 

typing, is the goal of the future” for development of precision drug recommendations 

underscores the fact that recommendation for a specific mutation or molecular pairing 

is not the replacement for comprehensive precision-guided treatment for every cancer 

patient when the target is present. 

9.3. Regulatory and Policy Considerations 

As the use of AI and ML in healthcare expands, the regulatory environment will need 

to keep pace with the rapid speed of development in research and innovation. The 

regulatory environment for CDSS is a complex interplay between regulation of 

software as a medical device and clinical evaluation of premarket testing. Related laws 

govern the scope of product reviews and authority to regulate. There are draft guidance 

documents with policy recommendations, examples, and risk categorizations. It is 

clarified that only devices and software intended for medical purposes that are within 

the definition of medical devices are regulated. These devices must have a 

"therapeutic" or "diagnostic" intent. However, the drafts imply that there is no intention 

to regulate devices that are not intended to be used to help a healthcare provider make 

a clinical decision about the diagnosis or treatment of a given patient. 

While there is authority to regulate AI-enhanced CDSS, there are limited resources and 

authority. Like the regulatory body, other organizations are also interested in oversight 

of AI-enhanced CDSS. One manages reimbursement and describes the need for high-

quality evidence. Another plays a coordinating role with respect to the health IT 

ecosystem and safety. Many observers believe that further government intervention 

into the AI-enabled CDSS market could harm the development of the technology. 

Other experts believe it essential for several reasons, including infrastructure 

development and accelerated development around population health, quality, and 

lower costs. 
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10. Conclusion 

The rapid growth of societal need for healthcare indicates that despite the advances in 

technology and understanding of disease, the deliverables of national biomedical 

science programs need synchronization with approved economic models and 

frameworks to generate evidence for their adoption as part of fundamental clinical 

practice. Clinical decision support systems could thus facilitate augmenting current 

clinician workflows and enable a greater success of newer and novel diagnostic and 

therapeutic options while ensuring clinical accuracy and non-maleficence for the most 

vulnerable. A major step towards such directions was taken recently during COVID 

where immense and rapid collaboration borne out of necessity between traditional 

academic institutions, tech companies, and regulatory agencies resulted in 

unprecedented moves from development to approval and real-world implementation. 

These new tools now have the potential to aid clinical practice in novel ways including 

those in areas like diagnosis, procedures, hospital workflows, patient risk, and help in 

remote patient monitoring tools for long hauler patients. 

Despite the omnipresence of AI and complex algorithms in our everyday life, the 

understanding of AI-driven CDSS is still in infancy. There lies an immense 

opportunity for these new augmentation technology platforms to drive adoption and 

success of new preventive, diagnostic, and therapeutic options while ensuring that the 

promise of better healthcare systems is delivered. In this summary, we strive to 

demystify these tools in their evidence-based fundamentals for use in clinical practice 

and provide an overview from both a high level as well as easily understandable 

summaries by area for the busy clinician. We finish with future perspectives as this 

supplemental technology is poised to rapidly influence all aspects of patient care. 
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1. Introduction to Meteorological Data and AI 

This section provides an introduction to meteorological data variables, weather 

modelling, and AI artificial system applied to meteorological data. For weather 

forecasting to technical design, meteorological data provides critical information 

describing atmospheric conditions probably affecting certain locations during a 

specific time period. They may be provided by means of signals addressing any of the 

fundamental atmospheric attributes, including temperature, pressure, humidity, wind 

speed and direction, precipitation, horizontal or visibility, and clouds. The applied 

modelling AI system addresses three model types: detection or monitoring, now-

casting and forecasting. 

Earth surface weather is one of the most pronounced manifestations of the state of the 

planetary atmosphere. Weather clouds or determines the success of crops and animal 

breeding technologies crucial for human sustenance [1-2]. Weather reveals the state 

and behavior of the atmospheric substance enclosing the planet and creating the forces 

of the Sun revolution and Moon swirl needed to maintain its orbital dynamics. Weather 

shapes the spatial climate structure and determines climate change in time, as well as 

the ecological stability of terrestrial varieties of the living world that took form through 

life evolution. 

It has long been understood that weather implies continuous short-term variations of 

local and global ecogeophysical parameters around their long-term average which are 

averaged as climate [3-5]. However, weather, which is established through the 

interactions of the Sun and Moon with the atmosphere and Earth, equally shapes the 
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underlying physical processes governing climate active diagnostic indicators, such as 

temperature, pressure, humidity, wind, precipitation, and the reflection of solar 

radiation by clouds or the surface beneath. Despite the fact that artificial intelligence 

may provide improved solutions for some or most aspects of meteorological data 

modelling, solutions are impossible without clear understanding of the way satellite 

data is used for solving these problems. 

2. Spatiotemporal Deep Learning 

Deep learning models have had great success in many fields of research, and new 

architectures appear frequently. Classical CNNs work on individual images, holding a 

lot of spatial information [6-8]. However, in applications such as weather forecasting, 

satellite image analysis, or air pollution analysis, we have image sequences where the 

temporal patterns improve the understanding of the spatial patterns and vice versa. 

Several works showed that including spatiotemporal modeling improves the results of 

2D CNNs for satellite image analysis. This lines of research open the field to any CNN 

temporal extension. In this section, we briefly explain some of the recent temporal 

models aimed at scientific tasks that are based on ConvLSTM and attention 

mechanisms. 

The Convolutional Long Short-Term Memory Networks (ConvLSTM) is an extension 

of the LSTM. Both models represent streams of information. Considering that most of 

the scientific problems for which spatiotemporal modeling is required hold data in 

image form, the authors included 2D convolutions in the LSTM gates to preserve the 

spatial information. Since then, several success stories of the ConvLSTM architecture 

in scientific applications have emerged. Even when variant models are sometimes 

more convenient, due to the success and simplicity of the design, ConvLSTM-based 

models are usually the first option, and have become the reference spatiotemporal 

models. Therefore, the architecture has gone through several deep learning innovations 

[7,9-10]. A few works reduced the number of internal LSTM cells due to the number 

of parameters of the 3D CNN. Furthermore, some studies proposed a different fusion 

mechanism, or discarded the LSTM cell altogether with no significant drop in 

performance. Other variants proposed using 3D convolutions for spatiotemporal 

encoding. Finally, some methods proposed adding ConvLSTM to a backbone model or 

made it conditional to generate better results. Nevertheless, most of these works still 

use the original model or variants closely related to it. 

2.1. Overview of ConvLSTM 

Capturing spatial and temporal dependencies of data is critical in different areas of 

research. In many cases, the data present spatial dependencies because of multiple 

spatial locations and sensors. Gathering information from many sensors, present at 
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different locations creating data set, allows the creation of a data set containing 

temporal dependencies; a data set collected of objects that saluted at different times, 

creates a data set with temporal dependencies. The manipulation of such data set is rich 

and allows better solutions to real world problems [1,11-14]. For example, across the 

forecasting science, the study of spatiotemporal dependencies is useful for predicting 

weather, where the meteorological conditions of each point in space are related, and 

change across time. Predicting the demand of certain services at a certain point in time 

is currently used by delivery applications to supply those services; supplies in multiple 

points can be predicted simultaneously, by creating a data set with multiple just-in-

time supplies created simultaneously. Many approaches have been created that allow 

address spatiotemporal dependencies created by data sets containing spatial and 

temporal data with dependencies. Therefore, understanding how to model these data 

sets is important. 

To understand how to model this type of data sets is why methods have been proposed; 

first was the convolutional neural network temporal group, those proposed just to 

create temporal group encoders with limitations for video analysis, these limitations 

moved the deep learning community to propose the three dimension convolutional 

neural network which can be used for video classification; both approaches only deal 

with spatial and temporal dimensions separately. In both cases, the loss function 

calculates the score for temporal dependencies globally or for short sequences; actually 

making them not able to represent the true temporal dependencies of the data. Next, the 

ConvLSTM model was proposed; the approach was designed to be used for specific 

applications where it is required the prediction of radar image sequences; aiming for 

the inclusion of spatial and temporal dependencies to improve current predictions. The 

model was designed for memory purposes; ConvLSTM allows the setting of data 

specific to the spatial group, controlling how many dependencies to attend separately 

on each of the dimensions. ConvLSTM aimed to be easily applicable with a good 

performance in prediction; to achieve good performance, it applies LSTM loops to 2D 

convolutional layers allowing any type of application in spatiotemporal forecasting. 

2.2. Attention-Based Models 

The attention mechanism allows a model to dynamically compute temporal and spatial 

weights while processing an input with strong correlations. Attention-based models 

outperform ConvLSTM in capturing longer spatial-temporal relations. Modifications 

to the traditional cross attention mechanism in computer vision create a new 

spatiotemporal attention block [13,15-17]. Fusing the attention module with 

transformers, the model is applied to image prediction tasks and shows significant 

improvements in long-term temporal relations over previous methods. 
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2-D attention is fusing satellite and weather data to predict 1-h precipitation. The 

model integrates the pixel-level correlation learning efforts of the convolution layers 

with attention modules to establish both temporal and channel relations [18-20]. 

Factorized spatiotemporal attention is used to predict precipitation, where the spatial 

attention weighs each modified 2-D observation for every forecast moment, and 

temporal attention concentrates on the immediate previous forecast, while fusing the 

weather input for each time step. The model automatically learns the multiscale 

relation properties. These studies show that attention-based models are promising 

approaches to contemporary meteorological forecasting. 

The different capability of transformer in capturing various correlation properties 

drives abundant following research. Knowledge-based spatiotemporal transformer with 

explicit temporal and spatial knowledge about covariates is learning towards benefiting 

application. The proposed model integrates the capabilities of four transformer 

variants, with temporal, spatial, and the modified channel correlations embodied. The 

proposed transformer with the channel-wise attention weighted by additional 

knowledge weights outperforms previous models in daily precipitation prediction. A 

transformer-based model for spatiotemporal weather prediction exhibits lower particle 

count, lower Euclidean equivalent radius error, and lower normalized intensity error 

when the forecast time increases when predicting the simulation in the meteorological 

visualization field. 

2.3. Applications in Meteorology 

Various types of meteorological data have been the target of a long term consideration 

in both temporal and spatiotemporal research bottlenecks. Weather has a complex 

spatial structure due to presence of boundaries including land, sea, mountains, and also 

the time series that curb the ability to apply any discriminative method on raw data in a 

pre-trained, domain specific fashion, while which in theory can be used in any weather 

conditions, both supervised and unsupervised learning for any of these tasks. Although 

spatiotemporal attention models and ConvLSTM Neural Networks have been sparingly 

used on the initial tasks mentioned, such as clouds and storm prediction and 

precipitation accumulation prediction, Meteormatics is one of the few which directly 

deals with precipitation and cloud prediction. 

To the best of our knowledge, the first applications of spatiotemporal models on 

numerical weather forecasting was based on a simple Seq2Seq architecture using a 2D 

CNN for both encoder and decoder, directly producing weather satellite images. They 

applied the model on a single forecasting point in time, and during the evaluation 

phase, they produce forecasting at several stages in the lead-time of the forecasting 
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task. In a related publication about satellite forecasting, some specific architecture 

tweaks are introduced [19,21-22]. 

Spatiotemporal stack of Neural Networks is used, where the study mainly consists of 

evaluation on rescaling monumental weather input and output datasets, by loss quality 

and quantification of the direct downscaling task from global scale maps to countries’ 

level maps. On evaluation, they show the effectiveness of neural networks for the task, 

when dealing with DenseNet compared with traditional methods, yet, the task is still 

trivial with anything pretrained for the task. 

3. Extreme Event Prediction 

Although AI models can be used to draw a link between any two climate variables, 

there are specific areas of application for which AI models are better suited than 

traditional statistical models. These are areas where a traditional model is seen to 

struggle. For example, when using statistical correlation to study climate patterns, there 

is no means of discerning whether a data series for one variable is correlated with a 

different data series of the other variable, or whether both data series are correlated 

with a third, common external data series [11,23-25]. Also, AI models have been found 

useful for the making of extreme predictions when predicting climate data. Extreme 

predictions are used for making predictions of extreme values of a variable, such as 

annual maximum rainfall for a monsoon season. Some examples of extreme 

predictions for weather-related climate variables are monsoon onset and withdrawal 

date predictions, prediction of annual maximum rainfall, prediction of number of rainy 

days in a monsoon season, and tropical cyclone land-fall prediction. Monsoon onset 

and withdrawal date predictions have been carried out with great success using 

artificial neural network models, for locations along the southwest coast of India. In 

one study, we used an ensemble of relevance vector models to predict the monsoon 

withdrawal date at five locations along the southwest coast of India, using data of the 

long-range forecast model developed by the Indian Meteorological Department, and 

found that the importance of predictors was very different across locations. For Indian 

monsoon onset predictions, we have also successfully used sparse membership 

Gaussian mixture models. As stated earlier, for all the predictions mentioned above, 

statistical relationships have been found to hold good for a number of years, but not for 

the entire historical period. However, weather and climate are very sensitive to external 

inputs [26-28]. Climate model predictions change quite drastically if input external 

forcing, such as greenhouse gas emissions, is changed by a small percentage. 

Predictions of tropical cyclone formation and post-landfall intensities are very sensitive 

to variations in sea surface temperature, differential departure of middle tropospheric 

humidity from its mean value, and the mid-level temperature lapse rate. 
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3.1. Flood Prediction Models 

Flooding represents one of nature's most devastating and unpredictable disasters, 

leading to immense economic losses as well as loss of human life. Frequently, satellite 

or radar images are utilized to detect gouges or changes in land cover, which can direct 

response teams in the field to ensure safety and minimize recovery time. In times of 

flood, visible and infrared bands detect variations in the surface due to stagnant water 

bodies [29-32]. The normalized difference water index (NDWI) shows the presence of 

water on the earth’s surface by reducing the effect of infrared bands that are reflected 

off of surface features, such as vegetation. The NDWI map can identify flooded areas 

and track flooding propagation. NDWI maps might aid in identifying and mapping 

flooded areas or detect differences in specific areas by creating NDWI time-series, 

assisting post-disaster assessment. 

Recently, concern has been raised regarding the lack of accuracy and lead time in 

operational flood forecasting. This lack of appropriate quality, location accuracy, or 

increased uncertainty has been recognized as important issues affecting the mapping of 

flood inundation areas. Therefore, the improvement of operational river gauge 

predictions is necessary before and during floods to ensure life and asset safety as well 

as the environmental protection for flood-prone areas. This research reviews recent 

advances in the application of artificial intelligence to flood forecasting and prediction 

in non-conventional approaches. This review is divided into three sections. The first 

section gives an overview of the use of AI technologies in flood hydraulics modeling 

with streamflow and water level prediction at ungauged sites and bridge and culvert 

performance [31,33-35]. The second part summarizes the application of AI in flood 

simulation and forecasting, from downscaling datasets to different temporal and spatial 

resolutions. The last section concludes with a review of future trends in the self-

adaptive application of neural networks and deep learning in combined hydrology-

hydraulic modeling, real-time forecasting with assimilation of remote sensing and 

satellite data, and forensic flood hydrology. 

3.2. Hurricane Forecasting Techniques 

More than a thousand hurricanes thundered through the tropical oceans of the globe 

during the past century, nearly 900 hurricanes earned enough strength to trigger 

destruction, and about 270 large hurricanes made landfall, causing horrific damage and 

mass casualties in the region. Understanding intricate hurricane mechanisms is a huge 

challenge because of the extreme nature of the events. AI techniques like deep neural 

models, statistical analysis, machine learning, and multi-factor risk assessments 

notably develop an outstanding effect in hurricane patterning, tracking, and forecast. A 
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combined type of different AI hurricane models used for different tracking and 

forecasting levels have proven to work highly efficiently and effectively. 

Typhoon, hurricane, or tropical cyclone tracking and forecasting is a challenging and 

highly important task in meteorology. Poor prediction and underway monitoring can 

cause the loss of lives and extreme socioeconomic damage. Due to bulks of data 

available from brief historical events over the last century, hurricanes have been 

predicted using statistical and dynamic models currently in use. Conclusion prediction 

based on limited available hurricane data has a big risk of producing poor results. 

Since decades back, forecasting and tracking difficulty has risen with messy 

observations, longer hurricane seasons, the increase in number of tropical waves in 

association with heatings, weak upper-level winds, and climate variability observed. 

Deep learning models are being gradually adopted and highly valued due to their 

backup support for attention ensemble and hybrid models used in operational hurricane 

suppression planning and risk communication. The models have created an outstanding 

forecast effect in hurricane prediction skill. With quick technologic advancements, 

developments of more accurate satellite, radar, and buoy observing configurations and 

system network models are anticipated. 

A key advance that made hurricane forecasting more reliable since this is the use of 

Advanced Dvorak Technique and Consensus Tropical Dvorak Technique that combine 

refinement in Dvorak techniques [36-38]. It was designed to help definitively identify 

and assess three-dimensional structure asymmetries in new-born tropical storms and 

weak, poorly-organized tropical cyclones with faint spiral banding and cloud tops. 

Adaption of Advanced Dvorak Technique and hybrid Consensus Tropical Dvorak 

Technique not only improves infrared and microwave pattern recognition but has 

strong ability to enhance feature-based infrared hurricane forecasting. 

3.3. Wildfire Risk Assessment 

Wildfires threaten lives, property, and ecosystem functionality across the world. While 

drought has historically expedited wildfires, other factors, such as higher temperatures, 

changing seasonal weather patterns, less rainfall, variability of wind patterns, and 

build-up of fuel favoring ignition and spread of wildfires are also contributing 

increasing damage from wildfires. The devastating effects of record-breaking wildfires 

have pushed governments, fire departments, universities, and community groups to 

focus on better containing and predicting wildfires. These efforts are not just limited to 

developed nations but are also prevalent in the developing world. 

Data-driven wildfire initiatives have made it possible to undertake predictive modeling 

for initiation of wildfires and the employed methodologies such as GIS-spatial, data-

driven, and simulation models focus on enhancing a predictive understanding of 
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wildfires [1,39-41]. Wildfire-preventive action models have focused on geospatial 

patterns of economic losses and climatic factor-mediated burn patterns of multi-hazard 

risk. With the global focus gradually shifting towards combating climate change, more 

and more efforts are being directed towards enabling sustainable measures that can be 

employed in limiting wildfires. In this spirit, researchers used deep learning methods to 

make predictions about climatic variables responsible for groundbreaking wildfires. 

Policy guidelines then employed the predicted climatic parameters to propose wildfire-

control measures in the near future. In addition to predictive modeling, providing a risk 

assessment of wildfires based on observed climate features has been potent, in 

targeting and forewarning the decision-makers and helping with informed decision-

making regarding wildlife conservation. 

4. Ensemble Learning Approaches 

4.1. Introduction to Ensemble Learning Data-driven methods for meteorological 

predictions usually rely on a single model - a myriad of model implementations of 

types ranging from simple statistical models to deeply layered artificial neural 

networks are used to forecast future meteorological behavior based on previously 

observed conditions. Ensemble Learning methods escape such single-model 

limitations, with the added benefits of improved prediction performance and more 

robust prediction uncertainty quantification. Ensemble Learning methods leverage 

information from multiple models to enhance overall performance and reliability. They 

do so on the premise that model-level diversity improves accuracy and reliability by 

reducing prediction variance and error [42-45]. There have been a few Ensemble 

Learning approaches applied to meteorological prediction in the past, but their 

applications have not led to outsized performances when applied in a simple manner. 

But as meteorological prediction gets increasingly more complex - higher dimensional 

spaces associated with weather variables, larger volumes of data collected through 

time, coarser temporal resolution - the application of Ensemble Learning in a proper 

and judicious manner, taking care to improve model diversity, and balance bias and 

variance of the prediction errors, can help overcome prediction ceilings associated with 

the base models, and provide users with improved predictive performance. These types 

of complex predictions would also greatly benefit from bias-correction techniques, 

especially Traditional Bias-Correction methods. 

4.2. Techniques for Model Combination Model combination refers to blending or 

fusing the predictions generated by different base models, and is usually conducted at 

the decision or output levels - for instance, consider a scenario where several models 

predict the same meteorological variable, but at different spatio-temporal locations. 

The goal of the model-combination procedure would be to return a single value for the 

concerned spatio-temporal location at the concerned times, thereby condensing the 
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predictions from the individual models into a single prediction set - for example, on 

one model that may be at a different spatial or temporal location than the other models, 

the time zones could be different. 

4.1. Introduction to Ensemble Learning 

Ensemble learning is a meta-algorithm combining several supervised base learners, 

typically of limited complexity. The base learners could be thought of as groups of 

models capturing slightly different patterns from the accumulated experience. The 

basic idea is that a combination of weak learners with some degree of diversity will 

obtain a better generalization and decision boundary than a single and unique optimal 

classifier. The decision of ensemble learning is made according to a weighted (or 

unweighted) combination of the results of predictions given by the different models of 

the ensemble, which could depend on either the majority vote, averaging, exploiting 

rank, stacking, or others. The learning process can be conducted in a sequential manner 

such as in boosting methods or in a parallel method such as bagging or stacking. 

Ensemble methods are a special case of the broad topic of model aggregation or model 

combination [6,8]. The need for ensemble approaches arises from the fact that no 

single-learning algorithm has been found to be uniformly best across all applications. 

This leads practitioners to consider the use of sets or combinations of models in order 

to increase overall prediction performance. In typical usage, ensemble methods 

combine the predictions from each of the available models using methods that diminish 

the chance of an erroneous prediction by any one model in the combination. 

Techniques based on model averaging offer an intuitive approach to using collections 

of models. When individual models provide probabilistic responses, ensemble methods 

combine these probabilities in order to obtain an overall probability, based on which a 

prediction is made. 

4.2. Techniques for Model Combination 

Statistical modeling techniques to combine model outputs have long been used in the 

meteorological community. Among those are the linear or weighted mean, iterative 

methods like the modified Brier or logit correction, methods that use the rank order of 

the predictions, prediction interval calibration techniques, or combinations that are 

based on latent variable models. Other techniques, such as the best member from a 

multimodel, have recently gained prominence due to advancements in artificial 

intelligence and machine learning-based climate prediction frameworks. These regress 

and bias correction methods can not only add more value using the ensembles during 

the calibration phase, but also can address cases of catastrophic failures that can be 

found in the individual model results for specific variables, months, regions, or even 

years. 
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More recently, artificial neural networks have been proposed. Deep learning aims to 

model complex relationships from the data, and it is very encouraging that it has been 

applied successfully at multiple spatial and temporal scales to the post-processing of 

outputs from numerical weather prediction models. Even if theoretically an artificial 

neural network can model any combination of non-linearity and relation between input 

and output variables. The so-called "universal approximation property" of neural 

networks has not yet been tested on the extremely complex interaction of physical and 

parameterization processes in numerical weather and climate prediction models. 

Combining outputs from different models offers hydrometeorological decision makers 

the best of both worlds if it is done correctly, while avoiding the shortcomings of each 

individual forecasting/modeling system. 

4.3. Applications in Climate Predictions 

The most commonly studied problem in climate prediction is simulation of seasonal 

climate. The probability of satisfaction of a threshold value for a seasonal cumulative 

precipitation over a specified support has huge societal impact and hence it has been a 

subject of extensive research. The Multi-Model Ensemble approach has been used to 

confirm the increased predictability in spring predictability barrier using an ensemble 

of atmospheric GCMs. Similarly, the Multi-Model Ensemble methods also confirm the 

predictability of candidate seasons by using GCM monthly data for the Indian summer 

monsoon rainfall, Excursions of ENSO, MC, APC, IEO, and Atlantic Multi-decadal 

Oscillation. Multi Model Ensemble methods proved useful in prediction of dry/wet 

summer monsoon scenarios. Using forecasts and GMTs has shown skill in prediction 

of threshold crossing of the SWM seasons using methods for a 6 month lead time, and 

QM methods for a lead time 3-6 months. 

K-category predictions have shown skill using KCM at one month lead time and at 

three months lead time using KENVA. Various models have been employed to predict 

a variety of climate data from El Nino Modoki and from sea surface anomalies. A K-

category model has been employed at three month lead time for seasonal extreme 

predictions of the Northwest Australian region. The authors employed a K-category 

model at seasonal scale for categorical predictions for regions of North East India, with 

a one month lead time. The skill characteristics of MM-ENVA is suitable for Global 

Tropical Weather scenarios. 

5. Uncertainty Quantification in Meteorological Models 

Inherent uncertainty in physical systems and learning-based approaches motivates the 

quantification of prediction uncertainty in AI approaches. Modern meteorological 

models are built using sophisticated techniques, and are continuously improved and 

refined to provide pedagogical insights and enabling tools to meteorological scientists. 
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Experimental meteorological models based on AI models for scientific discovery can 

also support the scientific community with the unique challenge of being data-poor and 

model-rich owing to their basis in first-principles physics. However, neither set of AI 

models are reliable methods for making inference and predictions. Uncertainty 

quantification addresses this knowledge gap by providing predictions together with 

their associated uncertainties, which are useful to expert meteorology decision-makers, 

as they are trained to use and interpret both predictions and uncertainties. To ensure 

that both predictions and uncertainties are consistent and reliable, experimental and AI-

assisted prediction/analysis weather models should undergo UQ. 

Broadly speaking, UQ refers to methods for quantifying the uncertainties in the input 

and model parameters, propagating them through the system or simulation, and 

quantifying their effects in the output of the simulator. There are different flavors of 

UQ throughout the disciplines, which differ primarily in their application to either the 

input signal or the inference model. In meteorology, especially for the tasks of forecast 

or perform data assimilation, UQ for the whole model pipeline, from input observation 

to prediction or reanalysis, is of primary importance due to the inherent opaqueness of 

the traditional models operating in the background. 

5.1. Importance of Uncertainty Quantification 

Uncertainty quantification enables the generation of probabilistic models and is 

currently a major aspect of research in both the computational and scientific 

communities. Effective assessment, representation, and propagation of uncertainties is 

a crucial component for many significant applications, be it in engineering design and 

reliability, economics, molecular dynamics, risk analysis and management, traffic 

management, biomedical applications, or others. The desire to create surrogates based 

on physical, numerical/simulation models to provide fast, computationally efficient 

replacement models for complex, expensive computer simulations, has spurred the 

development of polynomial chaos-based methods. Although these approaches have 

been around in various forms for some time, the recent flurry of activity seems to be 

triggered by advances in high-order numerical methods combined with the widespread 

availability of high-performance parallel computing. 

Uncertainty quantification also plays an important role in the field of meteorology and 

climate dynamics, although relatively few effects have been reported on the use of 

uncertainty quantification in operational meteorological modelling, as well as forecasts 

in terms of predicting large and small-scale features and for advanced warning 

systems. Weather prediction, and the ensuing warnings for potentially dangerous 

weather conditions, are based on the deterministic prediction of atmospheric states 

from numerical simulation models, which, to put it bluntly, render the present state of 
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the atmosphere and predict its future “weathering” on the basis of the developed 

thermodynamical principles that govern the evolution of atmospheric dynamics. Due to 

uncertainties involved in model parameterization, subscale physical processes, model 

configuration, and the chaotic nature of the atmosphere, such forecasts cannot provide 

an accurate representation of the atmospheric state or the true realization of the weather 

for times greater than a few days ahead. 

5.2. Methods for Assessing Uncertainty 

Quantifying uncertainty can be divided into two types: verification and validation 

techniques. The term "verification" is usually used to answer the question "did we 

build the system right?", while "validation" refers to "did we build the right system?" 

Verification measures how well the model reproduces fields that were used in its 

construction, while validation assesses the model results against other observations. 

Validation is usually the most critical measure used by experts to ascertain if the model 

is appropriate for prediction. In particular, for those who will make important weather-, 

atmosphere-, and climate- related decisions based on forecasts, the importance of 

accurate validation could not be overstated, because there are very direct and costly 

consequences for model failure. 

While verification is more answerable, validation allows much broader conclusions 

called "well-suited-ness". Also, for complex, multi-parameterized systems, verification 

will have little generalizing power, because it must be done for all observed 

configurations. In practice, the verification tests do allow for wide-ranging 

conclusions, but they require the use of smaller reduced models. By using well-

accepted reduced versions of the complex high-dimensional systems, it is possible to 

analyze the physical discretization instead of being forced into local behavior analysis 

as in full system verification. Nevertheless, any answer requires both verification and 

validation use, because both approaches provide complementary conclusions. In either 

case, validation will involve a more trusted multi-observation dataset and a designated 

period of time, typically using variable ranges outside those used for model selection. 

5.3. Case Studies in Meteorology 

In this last part, a few applications in meteorology are outlined that directly utilize 

inferences from statistical techniques, showing that probabilistic results are desirable 

and useful. Empirical results about such meteorological studies can inspire 

meteorologists and modelers to take a similar route because there are indeed benefits 

with the probabilistic perspectives. One reason that the results seem sound enough is 

that meteorology has plenty of data of excellent quality due to the support of 

microwave and infrared satellite techniques and the mass observations on the physical 
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states that spread in the recent globalization. The following list consists of dry-

convective wind over Thailand and weather fronts observed by a satellite. 

In the winter, a dry wind blows over the northeastern part of Thailand called as 

“Khamsamut" or “Krung." Using the synoptic and climatological features, an 

appropriate index is constructed to consider such dry days. However, the modeling part 

from the data is not so neat. There are complicated features such as zeroinclusions, 

marked seasonality, and heteroscedasticity. The modeling with appropriate UQ in the 

index enables one to understand each of those sub-regions better as well as to solve the 

inconsistency, which is important from climatological and ecological points of view. 

The weather fronts that play important roles in temperature and precipitation, among 

others, are one of the meteorological features that have space problems. They need to 

be crisp to work for forecasters. In the last four decades, global data assimilation 

analyses have been produced as the product from the front model. By restricting to the 

limited areas using contouring techniques, the fronts can be used for deterministic 

forecasts. 

6. Comparative Analysis of AI Models 

In this section, we analyze and compare the models described and study their 

performance on different tasks by reporting various performance metrics. We list 

various strengths and limitations of these models in the table below. As seen from the 

results, many models outperform the others in specific tasks. Various models are best 

for data-driven tasks and some work best for science data-driven tasks, even though 

Transformer models manage to combine the advantages of both. Though models like 

CLIMB and U-Deep farming the new self-distillation and unified training approaches 

show significant improvements in these domains, it's always the more classic 

approaches like Precipitating Uncertainty, nowcasting and climbing uncertainty 

continue successively providing checkpoints on those tasks. It's interesting to see how 

different approaches tend to have different efficacies in providing results for diverse 

approaches. 

6.1. Performance Metrics We compare various AI-enabled methods as follows, where 

we categorize them based on the problems they tend to solve. The methods differ in 

input modality and their final prediction targets. For example, one model predicts 

precipitation accumulation for a specific lead time, while another predicts blurry 

observations of precipitations. Then we specify performance metrics that have been 

reported within those specific problems. Given the reported metrics of different 

approaches, we utilize the standard metric per each problem as the base for our 

comparisons across different approaches. The majority of these metrics focus solely on 

evaluating the precipitation fields rather than real-world impact and applicability of the 
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models. Evaluating the performance score of each model inline potentially allows us to 

even better procedures. With such an evaluation, influenced internal structures or 

optimizable parameters for these models can be advised, allowing such minimal point-

free subjective calculation – evaluating meteorological-driven or impact-based model 

designs easier. 

6.1. Performance Metrics 

Different ML models can yield varying performance levels for the same application. 

To appropriately select an AI model, it is important to use a meaningful metric; 

different aspects of a model's validity can be explored using metrics that reflect 

inflation or deflation of one or other inference dimension. The first step to measure the 

performance of forecasting models is the evaluation protocol selection. Its choice is 

crucial in order to assure that the evaluation will reflect model uncertainty properly in a 

forecasting application. QoF score is the simplest and by far the most widely used 

performance metric; at global level it is especially sensible to the bias error component. 

However, it is important to underline that the global definitions are overly sensible to 

the large scales events. It is understandable that they put more weight into larger 

scales, since big, important scales reside at the core of the meteorological models 

designs. Moreover, it is also important to stress that large scales are reduced in the 

low-miss Qof definition. IoU performs quite well at the object level of the different 

dimensions of interest, for objects of various size classes. QBS reflects that Qof is not 

sharply affected by underestimation errors. These last two metrics detect and compute 

precision and recall of useable objects in forecasts and observations, within tolerance, 

positioned around the observed position, at given scales. However, numerous critical 

features of the comparison are hidden in the above definitions. 

The detection of the quality of the object predicted position, its pattern, its structure or 

its reasons still need further investigations. No single metric is able to catch all these 

errors. A more precise study is therefore needed in order to design a synthetic metric to 

even more directly express the model, or any other algorithm, inference quality. In 

other words, the degree of agreement between predictions and observations is far too 

intricate and important to be measured and expressed by a single number. It must also 

be stressed that, as far as synthetic metrics are concerned, the number of pixels affected 

by possible localized large-scale errors but also the specific nature of the considered 

forecast, i.e. decisive or deterministic, affect the evaluation. A more detailed 

examination can contribute to exploring different performance preferences, thus 

validating or invalidating more constructively models. The study of required 

adaptive/constructive biases as a function of model error is also important in order to 

improve inference performance and considering the AI model as a tool for forecasters. 
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6.2. Strengths and Limitations 

The continual development of AI models for the tasks of meteorological data and 

climate pattern interpretation, analysis, modeling, and prediction has indeed been 

pursued on a wide scale with varied approaches to decision making for the design of 

the specific algorithms used. Despite this wide span of innovation across the 

disciplines and technical domains, one recurring and critical element of all methods is 

the careful calculation of their strengths and weaknesses for varied applications at 

hand. Models are trained and used for not only the domain specific tasks here but also 

on varied geochemical, climatological, astrophysical, and cyber-physical domain 

specific tasks with differing temporal-spatial correlations and resolution. While the 

general disciplines of physics, statistics, and even mathematics guide and mold this 

development, it is these domain critical features that decide the actual mechanism of 

model design as well as usage. It is these specific strengths and weaknesses of models 

that influence the decision scientists need to take when using it as well as policymakers 

in interpreting and accepting results. 

In this chapter, we present a comparative framework for multiple AI models, their 

applications, strengths, and limitations towards clear and informed model selection for 

target datasets or specific tasks. Multiple AI models across classical statistics, data-

driven models as well as physics-based methods are thereby analyzed and compared 

across common metrics but focusing on task and dataset specific features. We also 

discuss the design-specific, model-specific, as well as data-driven aspects of 

weaknesses and model constraints that can yield unexpected biases while using these 

models for accelerated discovery or revealing unknown geophysical information 

hidden within potentially multi-modal and multi-resolution datasets. Hence, informing 

best practices for scientific model usage and minimizing biases. 

7. Future Directions in AI and Meteorology 

7.1. Emerging Technologies Artificial Intelligence has driven and will continue to 

drive innovation in many fields, including, but not limited to, climate informatics, 

weather science, and weather prediction. Some of those emerging technologies 

include: Causal Inference: Including a causal inference framework in existing 

architectures, such as Score-based Generative Models or Diffusion models. This has 

wide ranging applications, including expecting extreme events in the future; 

understanding the causal drivers of singular events; reconstructing ancient climate 

conditions; and modeling of probabilities of occurrence for certain conditional 

distributions. Foundation Models: These models may infer important solutions like 

interpolation, climate reconstruction, and window-based weather prediction under 

large and rich prior distributions. Real-Time Deployable Models: Weather models are 



163 

 

run under limited spatial-temporal resolutions, as fast inference or prediction is critical. 

Here models that are also deployed in real-world energy applications such as solar or 

wind energy forecasts for optimization and decision-support are needed. Telescope 

Models: Where there are vast spatio-temporal-spectra-based high-dimension 

observations, telescope model platforms at either real-time or corresponding 

resolutions that model every sub-domain, by possibly sub-domain and fractal-infusion 

hierarchies, are sought. 7.2. Potential Research Areas Other research areas include, but 

are not limited to, the integration of multiple scales in AI modeling, extending existing 

state-of-the-art forecasting models in speed and training, long-term projection of short-

term events, multi-modal learning, uncertainty quantification under High-Dimensional 

and Non-Gaussian data distributions and Emulation of Physics-Based Models with 

Artificial Intelligence. 

7.1. Emerging Technologies 

Recent advances in artificial intelligence (AI) and machine learning (ML) are 

revolutionizing science and engineering. Deep learning (DL), convolutional neural 

networks (CNN), and transformer networks are achieving or exceeding human 

performance for several challenging problems, including computer vision, speech 

recognition, and natural language processing. Although the science of weather and 

climate prediction is much older, the foundations of modern statistical meteorology 

were paved only three or four decades ago with focus on synoptic and mesoscale 

forecasting. Advanced models are now extensively relied on for prediction. The 

sophistication of the models is limited by the constraints of computational operation 

which has recently reached exascale levels. The growing availability of high fidelity 

data sets in terms of both global reach and resolutions, are fueling the development of 

more sophisticated ML algorithms. AI meteorology has recently emerged as an 

exciting interdisciplinary research area focused on exploiting those synergies. Some 

prominent research avenues have included the application of CNNs to nowcasting, 

hurricane tracking and intensity prediction, post-processing model output statistics 

with neural networks, and dynamical modeling with graph neural networks. 

The recent advances, however, only scratch the surface. New technologies such as 

transformers, generative adversarial networks, attention-based models, large language 

models (LLM), and diffusion models, coupled with dramatic increases in 

computational capabilities and the growing wealth of high-quality big data, pave the 

path for setting a new paradigm in weather and climate applications. The emergence of 

large transformer models is transforming natural language processing, as evidenced by 

the performance of large models. Their astounding capabilities, including few-shot 

capabilities, zero-shot generalized transfer abilities, and human-like creative abilities 
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are sparking interest in the meteorological community for a potential transformer 

architecture for next generation meteorological models. 

7.2. Potential Research Areas 

Research opportunities in the application of AI in climate sciences range across 

different subfields. Improving the performance of long-established numerical methods 

for simulating weather and climate extremes and assimilating satellite and reanalysis 

data for these methods are open areas for collaboration. Coupled atmosphere-ocean-

dynamics-vegetation-chemistry models that focus on a few of the dominant processes 

in order to avoid the high computational cost of full-fledged models for climate and 

weather simulation have made significant strides in recent years. However, there is still 

a knowledge gap to fill with respect to how to parameterize some of the neglected 

processes. For instance, a large fraction of weather and climate extremes is due to gas 

concentration in the atmosphere being above a certain tipping point, exceeding which 

the probability of these weather and climate extremes happening grows rapidly with 

increasing concentration. How to formulate these tipping points, as functions of other 

system parameters, in more intermediate and finer-scale models are questions that can 

be answered using machine learning. 

Applying data-driven AI models to larger atmospheric flow problem by drawing again 

on reduced models is a research frontier. Another direction relates to how to use AI to 

improve the performance of existing weather forecasting models. Neural networks can 

be trained in a supervised manner provide guidance to those working on weather 

forecasting problems on how to choose parameters such as the search depth in multi-

scale models. Physics-informed neural networks, which embed equations that describe 

the anticipated physical models in their feedback action, provide a mechanism for 

combining data-driven and physically grounded models. AI, therefore, does not lead to 

a displacement of government support for computational cost of forecasting the 

weather. Instead, AI could play a signified role in increasing the accuracy and scope of 

weather forecasts. 

8. Conclusion 

Climate Models can be improved in precious ways and our AI Models show their 

application in that. Quantified Earth System Models or emulators. AI tools can analyze 

fast the history of climate change on specific locations on the Earth and will provide 

spatial temporal visualizations of the results. Predictive Data can also include any non-

physical related data, in theory, we would be able to build that type of prediction. 

The climate is increasingly being used for private or government Institutions as a risk 

against natural disaster related projects, to spend fallen on one side of the equation. 
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They will give the value that haven't be considered for projects on climatological 

purposes like agriculture, health, and especially urban projects. In other words, our 

Models AI solutions for the Climate-Changes and Disaster are important to be found, 

for imagine safe projects. 

Micro predictions but bring political solutions like Heat Wave Alerts and systems need 

to be generalized and followed by big initiatives in the area. Those information 

systems already exist; they will need to be used and easy to go along. AI technical 

tools like Machine Learning can be used for different kinds of predictions. By now we 

are developing Climentary Warehouse Capabilities. It’s used in an online environment 

that is on Kivy and for big predictions online; we hope to per period by limiting 

dependences for Microenvironment Delta models. Focusing only on weekend 

predictions is also being studied. 

In that spirit, we believe that in less than ten years, whoever can develop for urban 

regions a Safe-Life-After-Human-Main-Environmental-Actions Method, will be able 

to control what is to be Climate for Human future. Founders IA Statistic Tools say that 

we could in all the environmental life expectancy on every project, inside out. 
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1. Introduction to Satellite Imaging 

Satellite imaging is an alternative source of information for evaluating various 

environmental variables and phenomena. Some advantages of satellite data over 

ground-based observations of similar variables include broader spatial extent, repeated 

temporal sampling, and more stringent measurement conditions. However, these 

advantages may come at the cost of uncertainties, due to lower spatial resolution, more 

complex relationship between the measured signal and the geophysical variable of 

interest, lack of measurements for some time periods, and calibration drift over time. 

Satellite data products have significantly advanced the fields of environmental 

monitoring and, importantly, evaluating the performance of environmental models [1-

2]. A quantitative comparison with similar in situ measurements indicates the 

uncertainties associated with satellite data, including possible sampling bias and drift. 

Satellite instrumentation design has matured over the past few decades. The increasing 

number of satellites and sensors, greater measurement fidelity, and abundance of open 

data access have facilitated the application of satellite data in various disciplines across 

the world. 

The first satellites dedicated to Earth imaging were developed in the early 1960s, 

culminating in a program that did reconnaissance mapping using high-resolution 

panchromatic photography [2-4]. In the following decade, several Earth observation 

satellites were launched that used multispectral data for land use characterization. The 

launch of both the LANDSAT-1 satellite and the Hubble Space Telescope represented 

a significant advance in Earth and astronomical imaging, respectively. The 
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hyperspectral remote sensing of terrestrial and oceanic surface processes was initiated 

with the launch of an airborne sensor in the early 1990s. Numerous dedicated 

hyperspectral sensors began operation before recent technology advances made 

hyperspectral instrument miniaturization possible for small and micro satellites. 

2. Remote Sensing Analytics Using AI 

2.1. Overview of Remote Sensing Satellite images have become ubiquitous in recent 

decades. There are a number of sensors, ranging from those designed for extreme 

resolution monitoring of tiny location of interest to those designed to be the eyes of the 

planet—with venerable histories of documentation of the Earth on 50 and 10 year time 

scales, respectively [5-6]. Indeed, several nations have also designed their satellites for 

similar purposes. Importantly, new sensors which use microwave, multispectral, 

hyperspectral, thermal or combinations of those wavelengths have also been launched 

to monitor specific physical processes of interest. For example, thermal images could 

be used to map water stress over huge distances when used over agricultural land. 

These satellites all have three characteristics in common: (1) they are optimized to 

monitor the surface of the globe; (2) they take images at periodically different angles to 

reduce problems of geometric distortion, particularly for large areas; and (3) they 

capture data at repeat time-intervals—generally daily, weekly, monthly, or once every 

15-30 years—that sometimes lead to publicly available image archives. 

2.2. AI Techniques in Remote Sensing AI techniques are ideal for the massive and 

complex data coming from the various satellite sensors. The data can be applied to 

interdisciplinary domains that address fundamental questions for policy-makers and 

scientists interested in monitoring land use or land cover change or any physical 

process on Earth [7,8]. For example, they can address questions such as how to cost-

effectively monitor deforestation; how to optimally track the flooded area; how to best 

reduce algal blooms; how to design global coastal management standards for 

protection to identify safe harbors; and how to accomplish all of the data coherence—

and more importantly science rigor—for a major international collaboration consisting 

of hundreds of linked science projects using Earth observing satellites. Policy-makers 

find these questions relevant because millions of people are affected daily by outcomes 

associated with hazards; provision of environmental resources; and provision of goods 

and services, such as risk reduction; and human, animal, or plant health. Indeed, there 

is now an explosion of interest in using AI approaches for applications in remote 

sensing that intersect environmental policy-making. 

2.1. Overview of Remote Sensing 

The process of quantifying the properties of a target–the measurement of the target 

using the interaction of energy and matter with the target–is called remote sensing. The 
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term ‘remote sensing’ itself originates from making measurements of the Earth’s 

atmosphere and surface without making physical contact with these targets [9-12]. 

Here, ‘remote sensors’ generally mean instruments employing electromagnetic waves 

(or signals) that are launched away from the sensor, hitting the targets, reflecting back 

to the sensor after interacting with the targets. Examples of invisible signals triggered 

by such sensors include active acoustic signals, and active EM as well as passive EM 

signals at infrared, visible, microwave, and radio bands. 

Although the notion of remote sensing had begun in the 1930s, it was not until the 

1960s, when remote sensing employing satellites, particularly those with optical, 

thermal, and microwave sensors operating at ultraviolet, visible, infrared, and 

microwave spectra, respectively, were launched, that the term was popularly adopted 

and widely accepted. Remote satellite sensors have by now been launched in their 

thousands, including thousands of ‘Earth observation’ satellites, with a wide variety of 

sensors employing several different spectral bands. With scientific objectives ranging 

from physical studies of planetary bodies to meteorology, geology, oceanography, 

limnology, ecology, and Earth surface physics/chemistry and their interaction with the 

climate change, many of these satellites with their onboard sensors are made available 

free of charge, and their data have been stored in large archives readily available to 

researchers worldwide. 

2.2. AI Techniques in Remote Sensing 

The AI revolution reshaping many areas of science and technology like natural 

language processing, computer vision, reinforcement learning, and multimodal and 

symbolic AI is now extending into remote sensing, augmenting many traditional 

approaches like hardware development, sensor design, image processing, computer 

vision, machine learning, and explicit reasoning about the physics of satellite sensors 

[7,13-15]. Nonetheless, within remote sensing applications the AI work is more 

focused around the domains of segmentation and classification of hyperspectral, 

multispectral, and RGB images, data fusion of multisource sensor data, product 

generation of surface reflectance, atmospheric correction, sensor calibration, and scene 

understanding via 3D reconstruction. The classical area of satellite and airborne sensor 

development, calibration, and image formation where AI is used is detecting 

deficiencies in the instruments that require interaction with human operators. Such AIs 

allow for a single line description of how to take a series of images, for example for 

sensor calibration that was normally done with a rich description using human coded 

software systems. Like with radio telescopes, the actual ground state product of 

satellite and airborne cameras are the collections of images and video, incorporating at 

best the initial instrument response function of the sensor, algorithmic solutions for 

sparse remote sensing of the geology and the land surface, and the actual information 
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latent in the collection of hyperspectral or RGB images which is comparing the 

collection against what is known or traditional AI techniques of least squares matching 

or optimization to minimize overall differences. Such AI systems are contributing to 

speeding up the process of mapping the globe and its changes from collection of 

images to site identification and prediction of land processes [9,16-18]. At a higher 

logical level, AI structures the observations of the Earth through the creating of learned 

databases of the Earth, only that the mapping of the globe changes as frequently as the 

observations using stereotypical methods for proving the existence of a particular kind 

of sensor measured object or process. 

2.3. Applications of AI in Environmental Monitoring 

Research in using AI in remote sensing has achieved remarkable success over the past 

decade. AI-based research in remote sensing can be broadly categorized into two 

domains [2,19-20]. Firstly, AI has greatly improved the accuracy of the majority of the 

common remote sensing tasks in the field, especially in the use of satellite images. 

Vision Transformers, Convolutional Neural Networks, Generative Adversarial 

Networks, Semi-supervised Learning, and Self-supervised Learning have all been 

adapted for improved performance in the remote sensing field, considering the 

specifics of remote sensing data. Secondly, AI has enabled new research questions to 

be addressed within remote sensing with the support of domain knowledge, especially 

new research questions that go beyond the standard paradigm of single-image single-

task learning. This includes multi-dimensional and multi-task learning with extents 

along both the spatial and temporal dimensions. 

The use of AI in remote sensing has been the enabler of many successful satellite-

based environmental solutions. The temporal archives of the observations that can be 

collated in satellite space weather stations provide additional data resources that allow 

the use of the AI at two major levels of insight [9,21-23]. At a lower level, such as in 

vegetation disturbance detection using pixel-wise inversion of change detection, AI 

post-processing of lower-level remote sensing products such as change maps has been 

the norm. At its higher level, AI is being deployed to directly monitor key elements in 

Earth’s energy exchange equilibrium climate system at a sub-continental scale. The 

major monitoring areas include land cover classification and monitoring, land cover 

change and vegetation disturbance detection, vegetation biophysical assessment, and 

radiative transfer modeling for flux estimation. Other monitoring areas also cover 

water body monitoring, geopolitics analysis, air quality monitoring, solar flux and 

radiant energy estimation, and smoke tracing for surface water quality, toxic releases, 

and impact on human health estimation. 
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3. Land Cover Classification 

3.1. Importance of Land Cover Classification 

Land cover classification from Earth observing satellite sensors, in either full 

hyperspectral datasets or reduced multispectral or broadband data, has become one of 

the standard products available from satellite missions. Most notably, products for 

classifying pixels into land cover categories such as vegetated areas, barren rock or 

sand, water, and urban areas have been produced for nearly all of the Landsat missions 

and over large areas for the National Land Cover Database. Increased interest in 

monitoring change in carbon fluxes globally has highlighted the need for products that 

go well beyond standard land cover classification schemes to classify landscapes into 

their structural and functional components, e.g., carbon-dense intact forests, degraded 

forests, croplands, and shrublands. In this context, investors in satellite technology are 

producing new sensors with unique capabilities. 

3.2. Methods for Land Cover Classification 

There are two general approaches to land cover classification. Empirically based 

statistical classifiers, such as Gaussian maximum likelihood, k-nearest neighbor, and 

Parallelepiped classifiers, among others, learn template spectra from training subsets of 

the data and apply these classifiers over the entire scene. Decision tree and random 

forest classifiers based on increasing classification accuracy by sequentially 

partitioning feature space or combining the votes from classifier trees also utilize 

training sets. The second class of classifiers utilizes methods such as neural networks, 

support vector machines, and deep learning techniques, which incrementally increase 

the accuracy of the classification from iterative training of many prototypes, each 

based on varying weights that sequentially mimic human decision-making criteria 

without requiring explicit templates from users. 

3.3. Challenges in Classification Accuracy 

Regardless of the method used in the training phase, the ultimate question is whether 

the classifier accurately reproduces known categories for a different validation set of 

data at locations where land cover is clearly defined. Often these validation locations 

are limited. Results can be strongly affected by classification methodology, timing, 

illumination, view geometry, atmospheric conditions, land cover seasonality, cloud and 

shadow masking accuracy, and the location of training sites used for supervised 

classifiers. 
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3.1. Importance of Land Cover Classification 

Land cover classification aims to automatically partition Earth's surface into discrete 

land cover types such that pixels or objects in the same category behave similarly 

according to some criterion. Land cover classification is the backbone of natural and 

artificial resource management, disaster impact and recovery assessment, climate 

change and health-related studies, and any practical application where ground truth is 

difficult and expensive to collect, but in general needs qualitative assessments of the 

same or similar categories over large areas [24-26]. Such descriptive information 

includes vegetation type, volcanic cover type, soil erosion type, ground water quality, 

terrain slope type, road or pathway type, as well as flooded or burnt areas, and their 

relationship to climate, geology, demography, economy, health, and other factors. 

These categorical values are themselves observations, but the combination of the 

original matrix with the value maps forms a physical model of the type, providing 

further information that is not usually available from the original sensors alone. 

Land cover type mapping and monitoring are also useful for helping to understand the 

temporal and spatial evolutions of related biogeophysical processes. For instance, the 

seasonal changes in land cover condition may help models explain the seasonality of 

terrestrial carbon fluxes, and the increasing duration of snowcover or frozen condition 

over forests or tundra may help explain the observed increasing boreal complex carbon 

fluxes, and the increase in the annual number of hot days and the consecutive dry days 

in a summer season over a shade tree growing urban may help explain the increasing 

peak urban carbon fluxes. Addressing these problems requires long-term carbon flux 

observation networks, which are currently not possible due to the lack of land cover 

type mapping using the same or similar techniques for a long period. 

3.2. Methods for Land Cover Classification 

Land cover classification methods are broadly categorized into supervised and 

unsupervised approaches. Unsupervised classification seeks to classify pixels into 

groups that are spectrally similar; it is non parametric with no previous knowledge of 

potential land cover classes. Common examples of unsupervised techniques used for 

land cover classification include the K-means classification where K cluster centers are 

initialized with random pixel values belonging to different classes. The classification 

proceeds by assigning each pixel to its closest cluster center and computes new cluster 

centers, repeating this process until the sum of squared distances of all pixels to their 

corresponding cluster centers converges [8,27-30]. The IsoData classification expands 

on this by allowing the user to specify thresholds for convergence and a maximum 

number of clusters. The unsupervised approach may work well in situations where the 
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image contains a large range of unique pixel spectra; however, it often fails to attain 

the desired classification accuracy. 

Supervised classification requires the user to generate training sets containing spectra 

from example pixels representing each land cover class prior to executing the 

classification process. Samples are often verified post classification for accuracy. The 

user also requires previous knowledge both about which classes may be present and 

what spectral characteristics define them. Statistical supervised classifiers use 

statistical methods as a guide to classify each pixel based on its spectral signature. 

These classifiers include the maximum likelihood classifier, the Gaussian maximum 

likelihood classifier, and the minimum distance classifier. More recent classifications, 

however, leverage a variety of machine learning algorithms such as random forests and 

convolutional neural networks for high-dimensional data. Often, these machine 

learning classifiers can achieve much higher accuracy than their statistical 

counterparts, particularly for high-resolution, high-dimensional data. However, 

developing an accurate machine learning classification involves a systematic search 

through algorithm parameters, including the number of trees as well as loss and 

activation functions, which may not always yield optimal results. 

3.3. Challenges in Classification Accuracy 

Classification is important for many applications, such as mapping urban extent and 

change, mapping vegetation and soil types, and mapping the extent of agricultural 

areas and crops. Accuracy is central to this process, whatever the classification 

method. Here we discuss some of the issues that can lead to uncertainty in 

classification [9,31-33]. The first and perhaps most obvious reason is the limited 

spatial resolution of coarse resolution satellite sensors. Classification accuracy is 

compromised when users are interested in small targets. These requirements suggest 

the need for high resolution or very high resolution satellite images. 

A more subtle reason, however, is that themes classified by users are employed as 

“truth”. Thematic accuracy depends to a much greater extent on the difficulty of 

actually performing the classification and degree of consensus between the experts 

actually carrying out the classification than on the analyst's choice of classifier, which 

is typically the focus of accuracy research. For the maximum likelihood classifier for 

example, which assumes multivariate normality of categories in data space, it is 

generally agreed that the classifier works poorly under highly contaminated conditions. 

How much higher will classification accuracies be if the correct classifier is invoked 

than if not? No well-established theory informs users about this central issue. Answers 

may have to come from simulations. 
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4. Normalized Difference Vegetation Index (NDVI) 

Several well-known products used extensively in various research fields apply the 

mathematical model of vegetation index. The NDVI, a numerical indicator that uses 

remotely sensed data to assess whether the target being observed contains live 

vegetation or not and it works by observing the different wavelengths of sunlight that 

are reflected by plant leaves. The NDVI produces a value between −1 and +1. NDVI is 

one of the most popular and frequently used remotely sensed vegetation indexes due to 

its high correlation with vegetation biophysical parameters and sensitivities to 

atmospheric and soil factors, ease of calculating NDVI with many satellite data in 

various land cover applications, wide application history of NDVI in many regions and 

climate regimes. Various researchers have reported significant correlations of NDVI 

with Leaf Aroma Index, Fraction of Absorbed Photosynthetically Active Radiation, 

Gross Primary Productivity, Plant Height, Vegetation Water Content. 

4.1. Calculation of NDVI 

NDVI is computed as the normalized difference between spectral reflectances for the 

near-infrared and visible bands: NDVI = (NIR−Red) / (NIR + Red). 

It is found that NDVI ranges typically between −0.1 and +0.9, with most vegetation 

types falling between +0.1 and +0.9. Generally bare soils have NDVI values of about 

+0.1, whereas healthy dense vegetation has an NDVI value near +0.9. 

The underlying theory behind the NDVI computation is based on the distinctive 

spectral signature of chlorophyll, which absorbs most of the visible light in the blue 

spectral region for photosynthetic vigor, while reflecting strongly in the NIR spectral 

band. Vegetation can be effectively discriminated from other nonvegetated surfaces 

because these two regions of the electromagnetic spectrum are spectrally different. 

4.1. Calculation of NDVI 

Of the many spectral indices published since the advent of satellite imaging for 

tracking Earth surface changes, the normalized difference vegetation index (NDVI) 

stands out as the preeminent, ubiquitous, and oldest. It remains at the forefront of all 

applications of spectral indices with no indications of decline in interest. In its most 

recognized and common formulation, NDVI is derived from reflected radiation in the 

red (R) and near-infrared (NIR) bands: 

NDVI = (NIR - R) / (NIR + R). 

NDVI varies between -1 and +1 though values closer to zero indicate no vegetation 

and higher positive values indicate greater cover and/or health of vegetation. NDVI 
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should be calculated from surfaces corrected for atmospheric interference as well as for 

the effects of viewing (or sun) geometry using calibration and/or correction models 

where available. 

Because of the relationship between NDVI values and chlorophyll levels, NDVI is 

sensitive to vegetation removal, such as land conversion, development, agriculture, and 

fire, as well as stress and senescence. At the other end of the scale, NDVI has 

productivity and carbon cycling use in cases of afforestation, reforestation, and 

changes in the length of growing season, as well as global scale use in determining the 

relation between NDVI and interannual variation in carbon cycle-biomass activity. 

Data from NDVI calculate numerous environmental questions surrounding 

relationships among climate, temperature, carbon, and phenology. 

4.2. Applications of NDVI in Environmental Studies 

The NDVI has numerous ecological and environmental applications. With its strength 

in distinguishing between vegetation and soil–water content, the NDVI is a very 

popular and powerful tool for monitoring and studying vegetation dynamics and 

growth. These include mapping vegetation cover, leaf area index, chlorophyll content, 

carbon fluxes, drought and desertification monitoring, integrating biophysical and 

biochemical variables, and studies related to flora and fauna [34-36]. To this end, 

NDVI is extensively used to relate indices from optical remote sensing to variables that 

are otherwise measured using ground–based instruments. As NDVI is easy to compute 

from many satellite and airborne missions, and as remote sensing is mostly done at 

about the same time as field site observations, NDVI provides a suitable method to 

correlate the field variables with observations from satellite or airborne platforms. 

Once a valid relationship is established, NDVI is further used as an operational tool to 

map and monitor the changes in vegetation growth and dynamics over strikingly larger 

areas that were not feasible using the ground–based lens and instruments. 

The NDVI can also be very effectively used to assess and map vegetative–cover stress, 

be it natural or manmade [3,37-39]. For instance, NDVI can track the historical 

patterns of agricultural drought and famine in different areas over time to find links 

between crop failure and population migration or death. NDVI is also used in climate 

and weather studies related to rainfall, temperature, water vapor, deforestation and its 

consequences, fluxes of carbon dioxide, and so on. NDVI is used in ecological 

modeling related to defining fire environment, fires and wildlife habitat, or global 

ecosystem changes. NDVI can also be used in hydrology to better model evaporation 

and ground temperature parameters by using them as inputs. 
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4.3. Limitations of NDVI 

On NDVI's fringe, especially on the low end and in specific regions, multiple low-

reflectance stimuli are possible. In sparse areas, e.g. in some drylands, such low NDVI 

may be caused by non-vegetation factors like the brightness of bare-soil, sand-dune 

surface, or dry grasses. The low NDVI values of some areas with dense Albizia and 

other broadleaf canopy trees include factors like the small leaf area index or the 

distinctive leaf spectral characteristics of these trees, or even that of certain tree barks. 

Some green-crop regions of dense but short vegetation may also show low NDVI 

reflectance [36,40-42]. In these circumstances, soil-adjusted NDVI may help NDVI to 

define vegetation cover. However, the need for soil-adjusted NDVI indicates a 

limitation in NDVI application. 

On NDVI's other fringe, especially on the high end and in specific regions, a high 

NDVI is also ambiguous, meaning that not only dense but also certain irrigation or 

subtropical-plantation rainforest crops with light-green foliage could produce 

somewhat also-high NDVI values. Similarly, NDVI is not able to indicate crop types 

or tree canopy characteristics if it is used alone. NDVI-derivable greenness is 

ambiguous because NDVI is unable to discern the difference between reflected 

wavelengths that NDVI equates at a specific reflectance range. NDVI attributes such 

greenness difference not to reflected wavelengths' different spectral characteristics but 

to a relation, that is, a difference in proportion, between reflected wavelengths at an 

NDVI high or low. As a corollary, NDVI would not be able to distinguish between tree 

coronas or canopy foliage at various growth stages which have similar visible-light-

derived greenness NDVI values but different infrared NDVI values. Consequently, 

NDVI might not be able to detect botanical stresses of plant crowns. As such 

limitations suggest, NDVI should be applied with care. 

5. Emissions Tracking 

Emissions of greenhouse gases (GHGs) are the result of the combustion of fossil fuels. 

The energy required to drive the engines of vehicles, to heat buildings, and to convert 

exothermic reaction precursors into cement, mainly derived from fossil sources, is 

taken from the burning of coal, oil, and gas. These emissions have led to the increase 

of atmospheric concentrations of GHGs. Monitoring the rate of emissions in the world 

is a rather technical but necessary task for validating pledges made as part of the Paris 

Agreement. The data reported by countries are updated infrequently, for example 

inventory data for 2020 were reported in mid-2022, and use proxies relying mainly on 

bottom-up approaches and sophisticated models. These models are fed with data from 

national statistics offices and adapted to known questions concerning emission outputs. 

The accuracy of those estimates is greatly debated in the scientific literature. As for 
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climate and weather monitoring, a merger of bottom-up approaches and top-down 

approaches using satellite imaging technology is more suitable for local and regional 

inference and makes it possible to strategize the path towards reducing emissions. The 

main goal is to reduce errors in both modeling approaches and establish a memory of 

the observed GHG concentration time series for the calibration of the models. 

Estimates of GHG concentrations and emissions could be made using both passive and 

active optical sensors deployed on aircraft and satellites or ground platforms. In this 

chapter, we are specifically interested in satellite imaging techniques as part of the top-

down approach [40,43-44]. Carbon dioxide and methane, the main GHGs, have well-

defined electromagnetic absorption spectra in the optical and infrared ranges. Detecting 

their presence in an air column is made possible by satellite-borne sensors capable of 

measuring the top-of-atmosphere reflectance and radiance. A GHG concentration 

anomaly signal will be detected relative to direct surface reflectance for the reflected 

radiance and after correcting for surface temperature for the emitted thermal infrared 

radiance. 

5.1. Techniques for Emissions Detection 

Various techniques have been proposed to detect emissions using satellite images. 

Optical remote sensing—the most commonly used technique—measures the radiance 

that is reflected from or emitted by the target. Optical imaging is mainly used for land 

cover mapping or for measuring spectral reflectance. Because optical remote sensing is 

passive, it does not involve any interaction with the land covers. However, optical 

remote sensing has inherent drawbacks. For example, it is not effective in cloud cover, 

and it only works during the daytime. Moreover, it has the sensor noise problem 

associated with high-resolution optical satellite images, namely the sensor-generated 

noise on the high-frequency details of the optical images. 

Radar remote sensing is another well-known technique using synthetic aperture radar. 

It is an active microwave imaging tool that has the time and wave frequency band 

flexibility and can perform imaging during the day or night or through the cloud. Such 

advantages of active sensors make radar attractive imaging tools in various 

applications in a variety of fields. The electromagnetic waves transmitted by the radar 

penetrate the atmosphere and interact with the land cover surfaces as they return to the 

sensor. 

Multispectral thermal infrared images from remote sensing satellites are powerful tools 

for a variety of environmental applications. Many empirical observations as well as 

methodological advancements have been reported to obtain estimates of land surface 

temperature from the historical data of various satellite programs. However, satellite 

data-related land use and cover change studies have not yet used land surface 
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temperature data derived from the above sensors. Moreover, some satellite programs to 

develop land surface temperature data have previously been focused on detection of 

land cover changes over areas of the Earth’s land surface. 

5.2. Role of Satellite Imaging in Emissions Tracking 

Accurate identification and tracking of emissions sources play a critical role in climate 

change mitigation initiatives. The monitoring of methane emissions sources is key to 

transitioning toward lower methane emissions [7,8]. As the global economy emerges 

from the COVID pandemic, enormous interest is being focused on how traditional 

carbon emitters can return to pre-2020 levels, if not increase their outputs. Regular 

satellite observations of the world’s largest coal-fired power plants would provide a 

considerably enhanced capability for tracking carbon emissions. Recently, debates 

have ensued over whether or not governments should be given advance notice of an 

upcoming satellite mission when national security or surveillance data is concerned. 

These activities and events need to be followed for ongoing compliance with climate 

change terms for countries under specific agreements. 

In the aftermath of Russia’s invasion of Ukraine, a further surge of interest in satellite 

imaging for gas flaring emissions detection is being prompted to recognize security 

implications of satellite images of gas flare emissions associated with oil production. 

To this end, a technology company announced that it would focus on the continuous 

satellite monitoring of global gas flare emissions as an added security enhancement. 

Corporations throughout the world will be held responsible for compliance with the 

new sustainable development regulations that are being discussed and implemented. 

Therefore, in order to assess true growth in corporate value, as well as governmental 

adherence to climate change protocols, satellite monitoring of emissions will play a 

critical and ongoing role in the future with respect to environmental safety and 

security. 

5.3. Case Studies on Emissions Monitoring 

Emissions sources traditionally tracked by ground-based sensors have proved too 

distanced from urban pollutions for application of the local assignment models. This 

should no longer be the case with the capabilities of distributed sensors provided by 

large satellite constellations, making those sensors invaluable for testing remote 

methods against numbers published by the countries' monitoring networks. We 

illustrate such small satellite capabilities on the example of nitrogen dioxide (NO2) 

emissions tracking for Europe. With such experimental capability check, results for the 

NO2 fluxes derived from satellite sensing with the use of local assignment approach 

are compared to the results obtained by the use of the same local assignment method 
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but at local scale with the measurements from ground-based Continuous Emission 

Monitoring Devices. 

According to this available validation, compared NO2 emission patterns for individual 

countries roughly correspond to the patterns based on CEM sources, properly noting 

differences at the influence of specific events, like volcano eruptions and COVID-19 

pandemics on the scale of the entire continent. This and the data processing limitations 

due to the distinct spatial footprint of satellite sensing calls for the satellite 

determination of aggregated country-level NO2 trends rather than statements about the 

precision of satellite estimates. Therefore, publications from the scientific community 

are needed to fine tune proper scaling at least for the period when both ground and 

satellite data are available. This is also true for CO2 flux assessment, which still 

requires a few alternative solutions at least at the global scale prior to remote but still 

satellite-assisted applications to our domestic city. 

6. Fusion of Optical, Radar, and Multispectral Data 

The fusion of multispectral and optical data with older, but higher resolution radar and 

optical data allows scientists to take advantage of all three sensors strengths to 

maximize spatial, spectral, and temporal resolution, while minimizing cost. Optical and 

multispectral imagery, especially at higher resolutions, are ideal for monitoring spatial 

variations in environmental processes, but are limited by their temporal resolution 

because cloud cover can inhibit their use. Radar data, especially of lower spatial 

resolution, is much less limited by cloud cover and have it normally fall off at the 

perspective angles used by many time-series satellite image acquisitions. Fusion of 

optical data with other sensors to reduce limitations of individual sensors are common 

and might be used to fill in atmospherically induced gaps in optical data. 

Sensors use image bands for cross-sensor correction, data merging, and calibration for 

multi-sensor applications, while others are often used to perform distortion errors for 

fine scale applications. The need for accurate atmospheric correction and geometric 

registration between sensors would require use of automated and advanced calibration 

methods. Radar and lidar systems have space-borne systems which are often fused 

with other optical weather satellites. Data are fusing data from both sensors to obtain 

enhanced normalized difference vegetation index integrated within a geographical 

information system for spatial and temporal dynamic modeling of wetlands and 

vegetation cover. 

The higher spatial resolution of the optical/IR data can provide a better estimate of 

within-pixel heterogeneity and its longer wavelengths allow an accurate estimation of 

soil properties such as moisture conditions and mineralogical composition. Recent 

studies have suggested that data fusion to improve the availability and quality of 
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landcover classification and moisture monitoring has sufficient promise for better 

specification of heterogeneous pixel models and building. 

6.1. Benefits of Data Fusion 

There is a wealth of optical, radar, and multispectral data available for Earth imaging, 

with long archives for optical and for some radar systems. What we present here is, in 

effect, a how-to-make statement for visualization; it will be difficult to make a strong 

inference from a composite image of different modalities without some understanding 

of how the data may, and may not, respond, and how they interact. The broader vision, 

however, is of exploiting higher dimensional data from optical and multispectral 

imagery, their temporal evolution, depths from photogrammetric methods, and 

excursion into radar and lidar domains, for pixel- and object-based classification of 

earth's surface components and physical, chemical, and radiative transfer processes. 

Data from different sensors and imaging modalities complement and enhance one 

another. We exploit the phenomenology of the optical, multispectral, radar, and lidar 

signatures of the various objects on the scene, recognizing their strengths and 

weaknesses; at the same time, we learn from empirical training and from physical 

models of signal propagation and transformation through the atmosphere, to optimize 

the imaging- and physics-modeling approaches. Impact of fusion on applications for 

these are manifold. One intrinsic challenge is to maintain the language and the 

congruity of dimensional size between coarsely pixelized and finely pixelized datacube 

components. Overall, data fusion addresses some of the most critical needs in modern 

remote sensing: classification and change detection from lighting conditions, 

techniques, diurnal and seasonal constraints on the availability and validity of specific 

data types; maximizing learning opportunities rather than waiting for optimum sensing 

conditions and resources; improving the accuracy, correction, and uncertainties of 

outputs at high levels of specificity, resolution, and reliability. Data fusion expands the 

domain of usability. Where numerous techniques apply to multispectral and optical 

data for issues of high specificity, general functional relationships, and canonical 

approaches need to be developed with regard to radar and lidar. 

6.2. Techniques for Data Fusion 

There are several approaches to data fusion, including those that are acoustic-linked or 

optical-linked, as well as empirical models, mixture modeling, texture, varietal models, 

and pure linear combinations. Acoustic-linked or optical-linked fusion assumes that 

penetrometers detect properties or layers in soil that affect spectral response to optical 

sensors, and vice versa, thereby further identifying suspected layers in fusion. In the 

models, one model detects the soil/mechanical properties that best explain the other 
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model’s data, and the other model is fit to the penetrometer-derived soil/mechanical 

properties. Next, hybridization assumes that layered models best reflect the actual 

nature of the microstructure, but may or may not be detected using a limited subset of 

applicability of model optics. 

Empirical models construct a model optical response to a known ground signature of 

soil, mechanical or otherwise. The mixture model assumes that the optical signature is 

created by two or more optically active materials or products in a pixel. This requires 

that multispectral imaging identify an area large enough to minimize spectral noise. 

Fractal geometry deals with the propensity of all surfaces on Earth to yield correlations 

of surface microstructure that are constant with scale. The techniques mainly rely on 

texture patterns, which include roughness, color, features, and microstructure 

enhancement, such as edge, corner, or feature detection. 

The no-hypothesis model is a pure linear combination optically-based model that is 

valid for any combination of genuine optical observations whose pixel dimensions are 

larger than or equal to the largest structure of silhouette, in the receptive field of the 

imaging instrument in terms of spatial location and direction of view within the 

illumination cone, and radiance properties, using the discrete Fourier transform and a 

specific screen model. According to the model, a point source illuminates a stack of 

homogeneous planar screens that are opaque for infrared but transparent to shorter 

wavelengths. The model leads to a very informative and reliable tool for estimating 

instantaneous intense hypsochromic and dependent radiances of the solar rayleigh 

scattered light. The model has also been used to derive a simple formula for the true 

coherence. 

6.3. Applications of Fused Data in Environmental Science 

The complementary strengths of radar and optical sensors extend the possibilities for 

applications of fused data to new dimensions. Although the applications landscapes of 

optical and radar systems are both broad and deep, there remain many environments 

and phenomena that can be described in greater detail or with more reliable 

information content when both types of data are leveraged together in a joint 

information system. The advantages of fused optical and radar data in enhancing 

understanding of the physical processes that govern scenes on the earth surface are 

apparent in most areas of critical environmental interest where optical and radar 

observations have been used independently, including studies of vegetation cover, 

surface waters, urban environments, and snow-covered areas. The advantages are 

realized via improvements to key limiting factors on optical imaging, and those 

affecting radar remote sensing. 
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In terms of natural or built surface properties, radar remote sensing can provide some 

information about surface geometric characteristics and, for coherent systems with 

sufficiently high temporal radar resolution, surface motion and land surface 

displacement due to anthropogenic or tectonic subsurface stresses or geophysical 

stresses related to surface hydrology. Enhancement of retrievals and estimates made 

using either optical or radar data has been demonstrated through various data fusion 

techniques. 

7. Case Studies in Satellite Imaging 

This chapter explores a few selected studies using satellite imaging applied to 

environmental inference. The selection mirrors my research interests over my career, 

appreciation of the quality and relevance of the studies, and variety in the applied 

remote sensors available, applied algorithms, and inference problems targeted. Beyond 

technical advancement oriented research questions, an ongoing challenge with the 

applied use and evaluation of remote sensors is the limited number of in situ 

measurements available to develop and evaluate inference methods. Different from in 

situ networks that have been maintained for many decades, taking specific 

measurements in a certain location at a certain time, in situ “snapshots” of a specific 

temporally correlated event are difficult to obtain. Consequently, the main objective 

with the case studies here is to illustrate the representative potential of satellite imaging 

for environmental inference, and its technical implementation challenges. First, to 

monitor urban development in the city of Shenzhen, a multi-resolution study using a 

diverse sensor set exemplifies the unique sensor capabilities available to level the 

tradeoff between temporal and spatial resolution with different sensors, and the use of 

an off-the-shelf land-use classification algorithm to successfully relate the satellite 

image features with the specific event at hand. Second, an example of the use of 

unmanned aerial vehicle based imaging applied to deforestation tracking from an in 

situ perspective illustrates a challenge with using low resolution satellite imaging, and 

the potential of combining artificial intelligence augmented UAVs for rapid acquisition 

and evaluation of in situ snapshots with satellite imaging for extensive monitoring. 

Third, urgent environmental problems – in this case freshwater ecosystem health and 

socioeconomic effects of harmful algal bloom events arising from freshwater 

eutrophication – are highlighted as targeting a set of spectra relative to specific 

biologically or chemically active substances distinct in their fluctuation timing, but 

similar in temporal correlation with satellite imaging, is critical to data selection and 

quality for successful event response prediction. 
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7.1. Urban Development Monitoring 

Cities are complex systems developed according to economic, social, political, and 

cultural characteristics of the area where they are located. Satellite imaging is a very 

useful tool for urban studies, with several advantages: the views from the satellite 

perspective offer an overview of the urban area and its surroundings, with the 

possibility of capturing a large coverage area and repeating acquisition of the same 

region over time. This large coverage area, coupled with the low cost of a large 

number of data collections, allows monitoring urban dynamics in a more robust way 

than results from small scale studies, in situ collection efforts, or even UAV data 

collections. But it is important to consider that, especially for urban analysis, the 

quality of the data and the spatial resolution needs to be appropriate for the intended 

applications. Current long term space missions are producing large quantity of satellite 

data, including some with high spatial resolution. A range of applications have 

emerged for the combination of these data with in situ observations to assist decision 

makers in city management and urban/spatial planning. 

Urban development may have productive externalities and generate benefits to the 

surrounding locations, as a driver of population or market opportunities. However, 

excess demand for the labor market and other services required, when imbalances 

occur, might lead to depressed characteristics and growth impediments, such as urban 

poverty, slum, and informality. In this sense, it is important to devise indicators for 

monitoring long term urban development, on the identification of not only the pace of 

change, but also the direction of growth or decline over time. In this paper, we show an 

example of the type of indicators generated using satellite imaging data, as zoom 

proxies for the level of economic activity in the region. 

7.2. Deforestation Tracking 

Deforestation is a serious concern worldwide. Not only do large forest areas 

accommodate a variety of wildlife, but they also act as carbon sinks, absorbing more 

carbon than they release. Hence, there is a large number of environmental initiatives to 

prevent deforestation. Monitors keep track of forest loss. Satellite imaging provides an 

efficient means to remove contrasting reflection values of forests, which are spatially 

coherent, from noisy aerial images and helps global initiatives that try to counteract the 

negative consequences of deforestation. Light detection and ranging enables 

measurements of light at high points and provides elevated view special resolution 

ground based images, helping to develop the understanding of the limited type of 

reflection properties that the variety of objects in our world, such as human made 

structures, offer. The assumption of the existence of reflection values that vary little 

over a period of time enable detection of changes in reflectance of an object’s surface 
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which correspond to the object being removed or remaining. While monitoring of 

urban areas has received sufficient attention, not much focus has been given to observe 

deforestation and its ecological impact with these special images collected over time 

and apply inference metrics on those images, which enable the increased speed of 

inference analysis. 

7.3. Water Quality Assessment 

Water quality conditions are essential for ecosystem health and degradation and can 

have profound implications on economic production in coastal areas. For many coastal 

states, fisheries account for a large fraction of GDP, and large numbers of tourism-

related local industries are also heavily dependent on healthy aquatic ecosystems. For 

these and many other reasons, monitoring studies of water quality metrics, such as 

chlorophyll-a concentration and turbidity, are important for sentinel monitoring tasks. 

For detecting broad-scale temporal and spatial trends in water quality, remote-sensing-

based studies are especially useful. Historically, achieving the required accuracy when 

deriving water quality metrics from optical remote-sensing data has been challenging 

due to atmospheric interference at the low wavelengths where the ocean color response 

to the water quality metric is most sensitive, as well as the complex optical interactions 

in the top layers of the ocean at reflectance values typically seen in coastal and inland 

applications. 

As satellite sensor resolution improves, more and more studies are using spatially 

disaggregated, midresolution optical satellite data to derive temporal descriptions of 

water quality parameters in coastal and inland waters. Here, the main focus will be on 

reviews of some recent applications of these midresolution, multispectral satellite data 

for chlorophyll-a and turbidity mapping in that these are the primary metrics of interest 

in operational monitoring by coastal states. Although these operational monitoring 

activities and many research applications use empirical and semiempirical, signal–

metric inversion schemes to derive chlorophyll-a and turbidity concentrations, it must 

be acknowledged that these schemes are essentially multiscalar, using information at 

the different scales of the component bands and band ratios. There has been recent 

activity in the use of EOF-based multispectral approaches for coastal inversion 

problems, but there is still relatively limited activity in the research community. The 

primary challenge until now has been the missing data problem, which obviously is 

dealt with in the univariate waterfall and multitemporal plankton bloom studies. 

8. Future Trends in Satellite Imaging 

Satellite imaging presents new possibilities and applications, especially when 

combined with internet of things devices that monitor various elements and 

phenomena from the ground level. With the looming challenge of data abundance 
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beyond multi-terabyte satellite datasets and large-scale creating connecting from land-, 

sea-, and space-based IoT devices, coupled with decreasing satellite revisit cycles that 

capture millions of satellite images yearly, the quest for real-time ubiquitous 

intelligence drives the next wave of innovation on small, agile satellites. Small 

satellites and mega-constellations speed up the temporal revisit time of the Earth while 

new satellite technologies enable the capture increasing resolutions of satellite data 

such as hyperspectral and thermal satellites, radar and synthetic aperture radar 

imaging, and light detection and ranging imaging. These developments ready the stage 

for novel satellite devices, architectures, and constellations that enable new scientific 

investigations and inquiries. 

Traditionally, remote sensing and satellite imaging algorithms have been in 

development since the 1980s and have focused on handcrafted models with prior 

knowledge of the features of interest. While these algorithms have been highly 

effective, recent advancements in AI and big data present new opportunities for 

continuous or continuous learning on the applied models that inform the sampling and 

fuse the in situ and satellite-level groundtruths in real-time or in temporal drifts such as 

seasonal-and annual-based integration of the physical knowledge and statistical 

distributions. The rapid breakthroughs in AI and machine learning capabilities have 

transformed our distant view of the Earth and revolutionized many areas of research. 

The pace of innovation has been rapid in many subfields of ML, particularly in private 

and commercial sectors, where data and innovative uses have converged to create new 

private sector capabilities and services for industry and government. 

8.1. Advancements in AI and Machine Learning 

With an ever increasing volume of satellite data being generated, the requirement for 

automated solutions to tackle conversion into actionable knowledge is essential. 

Coupled with an extraordinary growth in the application of machine learning 

techniques, particularly deep learning, the discussion around artificial intelligence has 

moved to the practicalities of its use. Exciting advances are being made in many 

problem domains such as target detection and classification, scene classification, 

segmentation and change detection, and in the use of satellite imaging in specific 

application domains such as forestry, environment, and urban development. The use of 

AI enables an enhancement of the capabilities of shortwave infrared microbolometers, 

which can be applied to identify agricultural products and environmental pollution 

more accurately and with better efficiency. Following on from these specific 

explorations, what has been lacking is a generalized overview of the role of AI in 

satellite imaging and inference, covering both information extraction from raw satellite 

imagery and guidance of the imaging process to maximize the efficiency and quality of 

imagery and inferred information. In this chapter, we report on such explorations, 
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highlighting many of the significant advancements that have been made, providing a 

digest, categorized by application domain, of those areas where AI has been used to 

good effect. Through this discussion, we identify places where current developments 

are lacking, and hence capable of being further exploited in providing solutions to 

untackled problems, and areas where better or more efficient AI solutions could be 

applied to improve existing results. Importantly, for many of the application domains, 

AI can enable solutions to be operationally viable, with the work providing an 

extensive resource for many taking those first steps into exploration of the use and 

applicability of AI in the context of satellite imaging and inference. 

8.2. Emerging Satellite Technologies 

Traditionally, Satellite imaging has been dominated by a handful of public and 

commercial agencies who build and operate large, sophisticated, and expensive 

satellites and provide infrequent, low-spatial resolution, low-noise data products. 

However, in the coming decades, novel satellite technologies are emerging that 

promise to change this orbit. The rapid miniaturization of sensor and communication 

technologies is leading to the deployment of large, distributed swarms of micro- 

nanosatellites equipped with visible, infrared, thermal, and radar sensors. These 

constellations will provide unprecedented global coverage at coarse, moderate, and 

high spatial resolution, enabling near real-time monitoring of critical events around the 

world. These systems will be coupled with advances in global positioning and 

communication technologies that will result in rapid on-demand data acquisition of any 

site on the globe. Capable of carrying short-wave infrared, thermal, and other sensors, 

these low-cost microsatellites will become valuable tools for surveying gas leaks and 

oil spills, monitoring geophysical disasters like earthquakes and volcanic eruptions, 

tracking air quality, predicting agricultural yield, and monitoring land cover and land 

use change as well as key parameters of water quality, including chlorophyll 

fluorescence, turbidity, total suspended solids, suspended sediment concentration, and 

surface temperature. These low-resolution, high-frequency multi-spectral data products 

will challenge traditional field measurements, becoming essential inputs to models 

predicting land use change, climate variability, and ecosystem and habitat change. 

8.3. Integration of IoT with Satellite Data 

3481 satle1141 27.12.2022 Satellite Imaging and Environmental Inference 1 8.3. 

Integration of IoT with Satellite Data Satellite data can be integrated with real-time and 

dynamic data, estimated by the Internet of Things. As IoT now includes a large number 

of widely dispersed sensors and is increasingly covering our planet, this integration can 

potentially provide novel data streams capable of vastly improving how, and at which 

scale, we use satellite data to estimate important environmental components, such as 
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those ascribed to the Earth system by the Land Climate and Hydrology themes, carbon 

monoxide, nitrogen dioxide, methane, ground level ozone, and other trace gases, and 

other constituents such as aerosols, particulate matter with diameters less than or equal 

to 2.5 µm or less than or equal to 10 µm, black carbon, soot, and atmospheric deposits 

of dissolved gases or particles. Integration of satellite data with IoT could also 

facilitate other nowcasting, forecasting, and modeling activities such as wildfire 

prediction, flood risk forecasting, coastal structure climate resilience modeling, storm 

surge modeling, and marine ecosystem management, beyond estimating concentrations 

and emissions of various trace gases. These contributions are the result of the collision 

between astronomy-based physics and more recent atmospheric process developments, 

creating opportunities for new partnerships to the benefit of both the Space and the IoT 

Worlds. In particular, satellites are advancing their frequency and spatial resolution 

while also investing on innovation around new sampling designs. In addition to the 

increase of the amount and types of data being obtained from terrestrial and aerial 

vehicles, this is opening new modeling avenues. Factorized statistical data-driven 

models developed for the inverse inference of IoT data are now being adapted for the 

use of data from satellite and air quality sensor networks. 

9. Conclusion 

In this work we have explored different aspects of physically consistent methods for 

modeling and interpreting satellite imaging data. The simultaneous modeling of 

acquisition and retrieval is shown to exist under complementary assumptions that we 

make on the radiative transfer and the imaging physics, mostly regarding the adopted 

approximations and constraints. We also show how to configure generic numerical 

solvers for the retrieval stage under a tree-structured prior. The combination of those 

two aspects allows for an efficient implementation of accurate principled algorithms 

for the inversion of imaging data. We validate the proposed methods with applications 

to define some environmental properties from different satellites and, more generally, 

we build toward addressing more ambiguous problems with the Monte Carlo 

approximation of the model. The achievements summarized in this work help posing 

an experimental basis for the analysis of richer datasets. In other words, they pave the 

way to more complex studies with increased physical richness and flexibility, such as 

fitting both the acquisition and the high-level parameters to perform the classification 

of human and natural classes, or modeling the time evolution of urban and habitat 

parameters within satellites to match climate studies. Those studies are important as 

they allow to bring recall and homogenize virtual observations from the different assets 

to increase the physical significance and quality of the common result. Finally, those 

analysis offer rich environmental insights at a much larger spatio-temporal resolution 

than currently available with other assets. Furthermore, the fast algorithm that we 

enabled should allow for the integration of those analysis within data analysis 
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pipelines, offering real-time or near real-time response, which itself could further 

increase the interest and applications of this technology. 
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1. Introduction to Interpretable Forecasting 

There has been increasing interest in understanding the predictions of machine learning 

models for high-stakes applications in areas such as health, finance, and public 

services. Complex deep learning models, including neural networks and gradient 

boosted trees, have often been outperforming simpler forecasting approaches based on 

regression [1-3]. A common criticism against them is the difficulty of interpreting their 

predictions in practice. Since forecast models are often elements of integrated risk 

management systems, decision makers typically focus on the long-term policy 

implications of the future conditions these models are describing, rather than on the 

forecasted values themselves. Forecast interpretability thus refers to explaining the 

dynamic influences, e.g., fuzzily how future temperature and precipitation levels may 

on average affect the probability of flooding in a three-day time frame, rather than 

explaining the numeric prediction errors associated with prediction accuracy losses. 

Interpretability is especially important in forecasting for disaster preparedness because 

improving performance on validation data, which is a natural goal in statistics, 

machine learning or operations research, does not guarantee better decision making 

during actual disaster events [2,4]. Also, many complex non-linear imputation methods 

used to fill in missing data can err in similar ways, which may be difficult to anticipate. 

A next step in addressing the above gaps is to develop an interpretable forecasting 

approach that focuses on hazard levels rather than predictions. In that spirit, this paper 

presents interpretable multi-hazard probabilistic forecasts, which are illustrated in the 

context of two practical problems, disaster loss management and flood risk monitoring. 

The rest of this section motivates a novel visualization technique, and concludes by 

outlining the two applied contexts [5-8]. 
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2. Explainable Models for Early Warnings 

An effective disaster response plan requires preparations in advance. Variable, hazard, 

and site selection are critical in judiciously making limited resources for disaster 

forecasting available in a way that leads decision makers and the impacted population 

to make timely decisions [6,9]. At the same time, early warning forecasting models 

necessitate interpretable feature and prediction relationships, to filter for forecasts that 

can be relied upon. Empirical explanations of how models make predictions and 

investigate model sensitivity to changes in features has the potential to instill people 

with an appropriate level of trust in the model, while informing them about aspects of 

reality that the model leverages, which may be non-intuitive. For a decision maker, 

understanding how model predictions change with changes in input features can assist 

them to anticipate the duration of the event and therefore prepare the appropriate 

amount of mitigation, mobilization, and response capabilities. Post-hoc explanations 

that provide interpretable relationships allow at-risk communities and stakeholders to 

gauge when to rely on a prediction from the model for the initiation of public policy 

action, and formulate their personal-level decisions if and when needed. 

Three types of models exist: “white box” models are interpretable by design, while 

“black box” models rely on post-hoc techniques for explanation, such as feature 

importance scores, that can be challenging to leverage right. Also, the scope of the 

prediction-local and the task-oriented aspect of interpretability complicates the search 

for insightful explanations about model prediction for machine learning developers and 

domain experts alike [10-12]. Several types of explainable algorithms exist to 

investigate how and why models make predictions, and for which a variety of metrics 

have been proposed to contend with the heuristics involved in explaining model 

predictions locally or globally. 

2.1. Importance of Explainability in Forecasting 

Forecasts are seldom treated as absolute truths, but rather as statistical reconstructions 

of a process of interest. For numerous reasons, as change blindness and repeated 

exposure, forecasts are interpreted not only to predict future values, but also to explain 

the underlying reasons that generate the outcomes of a stochastic process, answering 

the question of why. In addition to generating accurate future predictions, researchers 

and practitioners attach significance to the elicitation of informative forecasts, also 

known as judgmental forecasts, to help explain, support or challenge fallacious beliefs, 

and to shed light onto the hidden mechanics of events [7,13-16]. These desirables are 

purposefully sought in various forecasting applications, from person based to mixed 

disease contagion, from extreme weather conditions to social development, and from 

sports to political events. In this work, we center around explainable forecasting 
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methods that uncover the hidden mechanics of the predictive process that generates the 

outcomes because we are particularly interested in using forecasts both as prediction 

and understanding instruments. The question of why is crucial in this type of 

forecasting because, within the domain of disaster preparedness, questions like why, 

how, when, or where will a disaster happen hound the expert's mind for broad 

preparation design requirements. In this domain, the apocalyptic sense of the question 

of when a disaster will happen is difficult to answer. It implies forecast durability, 

mitigation action design preparation for possible future disasters, and forecast design, 

production, execution and supervision for present moment disasters. 

2.2. Types of Explainable Models 

Two concepts underlie most explainable models: first, that the model itself can be 

inspected, that is, the mappings from input to prediction values can be made apparent 

to users; and second, that the problem addressed is simple enough that the associated 

model is "underfitted," i.e., the model is "too simple to do much wrong," and thus trust 

may be unconditionally conferred to its predictions [2,17-19]. In forecasting problems, 

we usually only have one interpretation of the model reported back to users, as they are 

not kept up to date with new meanings to the models. For short-term models, we 

implicitly trust the model, as their predictions are often quite accurate. For mid- to 

long-term newsworthiness models, their simplicity inspires trust. 

The simplest interpretable models are based on historically blocking or subsetting 

input features. Blocked methods, such as "All earthquakes above magnitude x" or "All 

mass shootings in locations of type y," yield models that look at historical events and 

restrict predictions to those with matching parameter values. However, this 

identification-based rationale can be terribly misleading if it is based on non-

explanatory values. Simple checks on the latest events help make better sense of 

predicted values in these cases, even though the predicted event is not set in stone. 

Subsetting methods don't yield pinned events, but they do use a set of events whose 

trainings are allowed to inform predictions about other events. An example of a linear 

thresholded Gaussian model subset-based approach predicts an event using nearby 

historical events. Filtered models imposed penalizing filters on models to reduce space 

from a given source, in the service of emphasizing structural patterns, but they didn’t 

yet implement a learned to reduce stage. 

2.3. Evaluation Metrics for Explainable Models 

We review evaluation metrics for explainable models based on three perspectives: 1) 

Model assessment (i.e., semantic, visual fidelity), 2) User-based evaluation, and 3) 

Task-specific evaluation. These perspectives are informed in part by typical prediction 
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tasks for explainable models. The structure is a mix of theoretical and empirical 

analysis of model-assessment and user-based evaluation perspectives. More precisely, 

since we present mostly new user-based evaluations, certain aspects of model 

assessment are covered in more detail, but they tend to be rather generic and equally 

apply to more model-specific metrics. With task-specific evaluations, the more specific 

details blur the differences, but we tend to be more model-centric in this case as 

researchers are usually interested in specific answerable questions when developing 

those models. 

Forecasting of time series for which explanation is required can involve point, 

probability, and quantile forecasts for several prediction horizons. Some approaches 

focus only on point forecasts which is commonly the case in the framework of 

explainable deep learning methods due to their mainly predictive task-based internal 

procedures [3,20-23]. Common probability and quantile forecast evaluation metrics for 

the actual forecast error at certain forecast horizons and training errors for deep 

learning models are the usual choice. Models can also achieve, however, task-specific 

goals so that they are indirectly evaluated regarding the use of their forecasted results. 

Lastly, although not actually forecast evaluation metrics per se, time series clustering 

or classification metrics can also help assess whether a certain explainable method 

could even serve its main use case, the interpretation of usually numerous and complex 

predicted structures of geophysical relevant quantities, to ensure reliable decision-

making. 

3. Multi-Agency Decision Support 

Many agencies contribute in different ways at various stages of planning for and 

responding to disasters. For instance, extensive forecasting is conducted, including of 

weather phenomena like hurricanes that can generate the event of interest, down to 

hydrological forecasts that predict the river level and timing of flooding. Separate from 

this, agencies may work with others on flood models to determine how much flooding 

is expected for areas along the river and when, which are then considered alongside 

hurricane-driven storm surge flooding [9,24-26]. National resources may also be called 

on to be deployed when and where needed in the case of a notifiable event. Outside the 

United States, international responses to outbreaks of health-related issues may be 

called upon. In all cases, some common information, like what illness to prepare for, 

must be delivered and available from forecasting to operations. 

This chapter presents an overview of information and data access requirements for 

these multi-agency responses. It is not intended as a comprehensive treatment, but 

rather to illustrate the different protocols involved in responding to health-related 

disasters through representative agencies involved in unique capacities. Providing 
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accurate predictions of disaster health impact timing, location, and severity that are 

easy for all response agencies to access, and that present similar information for 

various decision-making purposes, is foundational to successful collaborative disaster 

response. In many cases, forecasting and response coverage is at a national scale, and 

thus robust forecasts with clear accuracy and uncertainty information help target and 

prioritize local disaster response resources by decision makers during both the 

preparedness and operations phases. 

3.1. Role of NOAA in Disaster Preparedness 

The National Ocean and Atmospheric Administration is one of the first agencies to 

forecast, analyze, and visualize an imminent disaster's danger. They also inform the 

public about warnings, help evacuations, provide resource allocations, and deploy 

assets for response once disaster strikes [27-29]. Their activities include residential risk 

assessments, state and local contact coordination, interagency response preparations, 

and resource allocation—of people and equipment—to various threatened or damaged 

areas. They also coordinate throughout the disaster cycle, helping public entities to 

prepare for, respond to, recover from, and mitigate the impact of disasters. 

Through this, their work facilitates the efforts made by local and state entities, such as 

voluntary evacuations and confirmation of building safety post-disaster. For health 

hazards, they collaborate with the health sector to minimize community harm. 

Communications are performed to schedule and receive reports, including staffing 

deployments, modeling evaluations, and dissemination processes regarding forecasts. 

Advisories are issued and updated periodically for general situations or specific events. 

Additionally, in conjunction with local-state governments, they display life-threatening 

event timelines to anticipate casualty impacts, leading to research prioritization and 

mission focus. 

3.2. FEMA's Approach to Forecasting and Response 

Forecasting addresses known unknowns that can be pinpointed in geographic space 

and often time. Some forecasts are made at regular intervals while others are 

unpredictable. What is unknown is when the event will happen but the season is 

known. For some events, track record magnitudes are unknown and the probability of 

an event occurring is unknown. What is clear is that the office for forecasts works 

closely with to minimize the impacts of events. Clear and timely forecasting help in 

reduction of disaster risk through programs aimed at preparedness, impact assistance, 

recovery assistance and community resilience. 

How supports forecasting and information sharing. supports GIS support by working 

with state and local mapping agencies to identify high-risk regions, and ensuring 
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developed maps and models are used operationally for the mitigation, preparedness, 

response and recovery process. For decision makers in anticipation of a disaster, 

geospatial products provide critical localized information on potential social, economic 

and environmental impacts of the hazard [30-32]. With access to a great deal of GIS 

resources and contacts throughout all government levels, will work to assist creators 

and users of geospatial data for effective disaster response and recovery. Maps 

obtained from GIS will indicate which areas will get hit hardest by hazard dynamics, 

what populations will be affected by a disaster, and how customers may be reached for 

fast response. For disaster response, links and maintains contacts with recognized GIS 

organizations, offers vehicle and analytical resources, maintains GIS operations and 

infrastructure, and provides analytical tools such as disaster debrief protocols and 

impact evaluation survey instruments for response and recovery phases. 

3.3. WHO's Guidelines for Health-Related Forecasting 

The “Guide for the Development of Early Warning and Decision Support Systems for 

National and Community Disaster Management” serves as a crucial starting point for 

guidelines on health-related forecasting in a multi-agency setting because the intended 

audience consists of those who would be establishing the guidelines used by 

developing communities [9,33-35]. A summary of the guide and features that address 

how to produce better forecasts in a multi-agency system is provided. According to this 

guide, multi-hazard early warning systems deliver accurate and timely warnings that 

enable vulnerable people to take timely action to reduce disaster risk in a process led 

by disaster managers and not merely experts in hazard-related fields. 

The guide has other key points regarding early warning systems. A communication and 

response plan is vital; the role of risk communication is discussed in-depth. Investing 

in disaster preparedness activities in advance can reduce the cost of relief operations 

and yield significant savings [36-38]. This takes the burden off the relief services and 

agencies, which will be better prepared to support the affected population. Activities 

such as contingency planning and stockpiling of key relief supplies usually require 

additional resources and commitment, but generally result in a quicker and more 

effective response. Early warning systems are designed to indicate the risk of a hazard 

reaching a specific place at a specific time. Hence, the role of other available data, such 

as the vulnerability and exposure data, needs to be considered. 

Because the impacts of developing community disasters typically cascade downward 

into additional health and social issues, the description also discusses issues that affect 

the quality of non-health hazard forecasts and useful implications for model 

implementation. The forecasts are one of many decision support system services 

available. 
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3.4. Integrating Multi-Agency Data for Improved Outcomes 

Decision-making is undertaken in many different agencies at selective phases of the 

disaster preparedness cycle. This includes not only mitigation, preparedness and 

recovery but also response phases, which serves to make these phases sputter through 

the year but also face acute needs at the actual hour of the event. Consequently these 

planning, management and action augment new communication technologies, which 

provide enormous new opportunities to strengthen intra governmental, inter 

governmental and governmental-nonprofit sector ties at many levels while at the same 

time straining this network in different prominent product by-passing, softening or 

immersion of government efforts [3,39-41]. This idea has been further extended for 

social media tools in the crisis response domain providing strong capabilities for 

organizations and managers that exploit these channels to enhance traditional and 

coordinated public communication. 

Philadelphia, the fifth largest city in the United States, recently implemented the 

Philadelphia Fire Department's Firefly Initiative, which uses predictive analytics to 

identify neighborhood targeting at-risk and vulnerable individuals who may be prone 

to home-visit them for prevention of an inevitable fire which would result in 

intervention utilization over-response focused on all fires. The project establishes 

service thresholds, develops risk models, and examines factors behind breakthrough 

response. As part of this study we address ethical issues, commensurate with the 

Informed Client hopeful goal of the Philadelphia Department of Human Services, 

which requires that these prediction tools are not only useful but also usable and 

acceptable to multi agency teams serving community crisis prevention. 

4. Case Studies 

This chapter describes how interpretable forecasting methods (descriptive, predictive, 

and normative) have been used to prepare for disasters. The case studies share the 

common theme of being disaster-focused. Most are of dissimilar disasters, although the 

first two cases are based on predictive models for similar events: both are for wildfires, 

but one is an event occurrence model while the other is a fire-containment damage-

avoidance model. The other three involve dissimilar disasters: floods, earthquakes, and 

epidemics. Despite the differences, there are some commonalities therein that are seen 

throughout the cases – e.g., the use of similar forecasting methods, problems in 

decision-making under uncertainty, the impact of climate change on disaster structure 

and models, and missing or incomplete ground-truthing records. 

The final section discusses general lessons learned. The empirical predictions 

described in this chapter have been implemented by researchers in academia, 

government, and private industry along with the end-users in the respective forecasting 
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decision chain, such as emergency managers, planners, agencies, and companies. Both 

predictive and normative methods are emphasized. Notably missing, however, are any 

descriptive studies. The case studies and examples reflect the disparity between the 

theoretical importance of explanatory methods and their practical applications to date 

and suggest that there is much potential for expansion in the relative need for 

interpretable disaster forecasts. 

4.1. Wildfire Alerts: Predictive Models in Action 

Following the theoretical background presented in Section 2, we now illustrate 

practical applications and outcomes of interpretable machine learning and statistics in 

forecasting and modeling for risk mitigation on wildfire and flood. These two natural 

hazards trigger recurrent economic crises in a number of states and countries 

worldwide, and they are challenging threats to the global community in terms of 

disaster preparedness and consequent recovery. 

Both research areas presented application examples of statistical and machine learning 

methodologies for different lead times. Thus, for short and medium lead forecasts of 

fire events, they proposed the combination of deep neural networks with rule-based 

classifiers of commonly discussed intermediate machine learning solutions such as 

bagging and boosting and classical state-of-the-art techniques. For long lead 

predictions (at least 6 months in advance), they proposed the application of simple 

deep neural networks such as regression and classification models with boosted and 

bagged trees for the prediction of fire occurrence and area burned in Canada, and 

bagging when forecasting area burned in Greece and the Italian regions of Calabria and 

Sicily. 

Diverse explanatory input variables are considered for each proposed lack vision, 

including atmospheric variables, climate indices, and fire and lightning climatology. 

Also, in addition to predictive accuracy, their configured scenarios underscored some 

interesting economic advantages for the application of its solutions. For instance, in the 

specific case of the summertime decade-long fire events monitored in Greece, 

overestimated predictions were able to issue timely red (high-risk) alerts, more 

frequently leading to false positives without costly, additional expenses for ground 

operation. 

4.2. Rainfall Predictions: Techniques and Challenges 

Rainfall is a commonly cited example of forecastable meteorological hazards. 

Available forecasts from numerical weather prediction models exploit the principle of 

predictability, in that, by specifying their initial conditions with more skill, they can 

improve the predictability of weather for some upcoming time horizons. In contrast 
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with the task of elaborating a correct model to describe the dynamics and the 

potentially chaotic nature beyond the observed current state and its evolution, 

numerical weather prediction preemptively constrain the dynamics of atmospheric 

systems by performing a data assimilation step, letting the often minutely updated 

model output flows through all the computed domain adaptively adjust to the chaotic 

dynamics. 

Despite the many advantages of being able to leverage numerical weather prediction 

model predictions and other weather observations, as well as the now widespread 

accessibility of hydrodynamic machine learning models, which are trained to learn the 

convolutions in their inputs needed to model decisions with transfer function 

convolutional neural networks, surrogate drought, albeit not flooding direct 

meteorological hazard variables, groundwater, and streamflow machine learning 

models have been shown to produce better prediction accuracy than first principles-

based core hydrology models at fine spatial and temporal resolution prediction levels. 

Further, the potential of deep learning to learn latent hydrological predictive flows in 

streamflow/hydrology prediction without directly relying on use of numerical weather 

prediction model predictions or other co-variate weather observations has been 

abundantly and positively discussed, ever since the meteorological variable meta-

category of controlled justifying explanatory variables of its input space was first 

introduced [36,42-43]. This is particularly true for non-permanent and permanent 

snowmelt and sediment transport forecasting, as well as very high and high resolution 

streamflow predictions. 

4.3. Climate-Risk Scoring: A Comprehensive Analysis 

Climate risk scores serve as a bridge between various predictive models and 

unstructured risk score drivers. These scores incorporate predictions from specific risk 

factors and accommodate likelihood-distribution uncertainty. This allows for a finer 

resolution of risk variations in windstorm, heatwave, and other regional climate 

change-driven hazards. Compared with machine learning-based and multi-grid 

resolution models, or parameters exhibiting natural resistances, or vulnerability-

derived framework solutions, climate risk scores are a well-balanced compromise. 

They combine realism with an attractive cost-benefit ratio, and include both event 

severity and exposure as key risk factors. The result is a globally consistent, validated 

and event-exploring approach that is also highly adaptable to internal data-driven 

business requirements. Moreover, a shared, yet adaptable solution supports climate 

risk-category focussed product portfolios and clearer multi-branch division 

responsibilities. As such, climate risk scores may be employed to identify low-light 

risk locations for properties requiring special catastrophe covers, or developing product 

portfolios targeting individual climate risk domains. Furthermore, climate risk scoring 
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outputs can be used to align original spend and prioritization in the dedicated 

underwriting regions, and sensitivity reward-driven message align model outputs with 

internal sales processes. Climate risk scores can also be utilized as an optimal pre-

consult phase-driven support for underwriting capabilities, for various natural 

movement cost assessments, or rank-based climate extreme-sensitive specified risk 

listing across global regions. Risk management is essential for understanding the 

inherent risk in a property, and for the establishment of strategies to deal with 

possibility and extent of consequences associated with such risks. Early identification 

of increased or changing levels of risk is an important part of managing climate risk 

throughout the life of a property. 

4.4. Lessons Learned from Case Studies 

Our case studies support the view that interpretable forecasting can close existing gaps 

between predicted and actual event outcomes for DP. Currently available forecasting 

tools tend to miss events, risk underestimation, or forecast irregularities rather than 

displacing gradual events. Climate-evolving events yield narrow lead times. While in 

some cases the automatic detection of forecastable events yields innocuous outcomes, 

in other case studies the provision of local tools boosts user trust, assists decision-

making, and provides warnings of risk level-triggered preventive measures. Predictive 

skill does not always translate into economic value or improved preparation. 

Despite the need to synchronize decisions across governmental and regional levels, our 

findings suggest that coherence of prediction harmonization is severely lacking in 

practice, heightening the risk of populational dishealth and hampering DP. We identify 

unsupervised nesting in spatial co-clustering as a useful predictor and warning of 

destructive climate events. Further, an analysis of the multitimescale leads to stable 

predicted probability density functions for cyclone- and tsunami-explaining covariates. 

Yet, the latter can still worsen predictivity. Predictive risk mapping via exclusive 

scanning window techniques can indirectly store information about critical thresholds, 

geo-localize it within a physical model, and assist in distinguishing between what may 

appear similar but is actually very different. 

These case studies underscore the need to disentangle different predictive indicators 

before they can be used to jointly provide informative predictive distributions cross-

timely and spatially. They argue against the popular wisdom that observation model 

tightness can substitute interpretation. The cyclone case study exemplifies that, despite 

prior reservations, econometry techniques can be useful predictive tools, especially for 

need-short term predictions until novel signals are lectured reliably. 
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5. Challenges in Interpretable Forecasting 

Predictive modeling with novel machine learning tools faces a myriad of challenges in 

being adopted into real-world practice in procedural workflows that have historically 

used simple methods [6,9]. In addition to contextualizing a new model into established 

workflows with stakeholder input, a model also has to be meaningful and trusted to an 

audience that might not have data or programming expertise. This audience likely 

considers themselves the experts in the field and the messages that model predictions 

convey must be those which practitioners find useful as they pertain to the problem 

space reporting quantifiable and relevant results. Data science reports filled with new 

and exciting results alone are insufficient to generate interest. Therefore, we explore 

here some of the technical issues with statistical predictions, the need for tragedy 

informatics to mitigate loss of property and life, and the communication expectations 

of information users. There is a delicate balance between complicated statistical and 

data science assemblages that create exciting predictions and those that have a charge 

of duty to inform and enable harder socially responsible tasks such as disaster 

preparedness and potential mitigation. 

The main paradox is that model quality is often at odds with the speed, interpretability, 

or frequency of updates that decision makers require. The selection of an appropriate 

forecasting method for a particular space and place, with the right temporal granularity, 

is not trivial. The tools from forecasting package solutions are often black-boxes built 

with out-of-date foundations. Transparent results are expected as regards error on fit 

period datasets and comparisons with equally simple but systematic other methods are 

rarely provided. In other areas of the social sciences, users expect transparency and a 

critical democratic dialogue surrounding model uncertainty about assumption 

violations, the appropriateness of goodness-of-fit tests, error metrics, and predictive 

evaluation. Predictive modeling in the data science spirit is not yet accountable to these 

fair ideals. 

5.1. Data Quality and Availability Issues 

Demand and supply data can suffer from problems like missing values, noise, 

resolution mismatch, multicollinearity, nonlinearity, and nonstationarity. Relatedly, 

demand data is typically attributed based on complex and proprietary data and 

algorithms given limited and noisy supply data. The effectiveness of the interpretable 

models and analyses, in this case, is limited. Clean data over long horizons is 

preferable. Given the socio-economic impacts a disaster can have on the demand and 

supply for some products, disaster events provide good out-of-sample test cases for 

interpretable models developed on clean data. In classical forecasting, or in supervised 

learning scenarios in general, using too much data can be as problematic as using too 
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little. The models devised are too complex, leading to overfitting. For interpretable 

forecasting, we find that the practitioners prefer interpretable methods as long as they 

are not substantially outperformed by their more complex competitors. In case local 

models are developed, avoid local outliers. The presence of such outliers helps the user 

make sense of local models, reducing but not eliminating complexity. While some 

researchers have overcome training and prediction delays, exploring most to all 

configuration and operational settings of complex military operations are significant 

hurdles, limiting the use of interpretable machine learning comparatively. Consider 

using simple historical models as benchmarks for comparison. The usage of such 

models is unlikely to suffer from data quality or availability issues. 

5.2. Balancing Complexity and Interpretability 

Throughout the history of statistics, models with a larger number of parameters or 

functional forms that allow for richer structures have been seen as more accurate for 

data heavy problems. For example, after the introduction of very flexible thin plate 

spline use in modeling, the interaction terms and polynomial power augmentations 

became less favorable options. However, even in forecasting, which is one of the main 

applications of statistics, the interpretability and explainability of prediction is 

important. Maybe unsurprisingly, the trend towards more complexity being more 

favorable has also been taking place. Deep learning, and certain recipes to fit very 

large models where induced and complexity ideas are tried in the data-driven 

prediction. However, the models are not very helpful when doing what the old patterns 

saw, as were depicted on the workshop dealing with departmental forecasting of 

budgets and enrollments, respectively, and the college-age population. 

Furthermore, the expansion in the number of models being used has highlighted the 

fact that it is now infeasible to do the many checks on residuals, parameter estimates, 

and out-of-sample accuracy that should be routine for simpler parametric models. 

Therefore, practitioners have opted to use very complex but opaque models in certain 

areas like sports forecasting, deal-making, and potentially forming important aspects of 

recommendation algorithms in directing us to what is "popular." Theory seems to 

indicate that deeper models allow describe more structures if we indeed want to imitate 

the brain. On the other hand, humans are hard-wired to understand certain forms of 

prediction, and these may also be what our brains will think better about. 

5.3. Stakeholder Engagement and Communication 

Model interpretability does not guarantee insight. An interpretable model can be easy 

to understand yet yield unintended interpretations, leading to misunderstandings. Risk 

communication in the context of climate disasters goes beyond what occurs when an 



206 

 

interpretable model is misinterpreted to include communication of risks present in the 

model meant to inform parties involved in preparing for climate extremes, the model 

without advanced technical skills. Climate partner organizations can share how 

scientifically developed models inform decisions using standardized messaging. Their 

messages provide practical information regarding decision alerts, lead time, 

uncertainty, and sensible response options. These elements can usefully inform any 

climate or weather-based communication and decision statements and tools, helping to 

build public trust in models that guide responses. Model developers must familiarize 

themselves with model communications, combining their technical skills and those of 

partner organizations to create, deliver, and revise simple, intuitive statements based on 

interpretable model outputs. Such collaboration requires intention to harmonize 

message design and dissemination. It also requires commitment to co-creating 

communication training to develop both model familiarity and communication 

capacity in partner organizations, both at the model phase inception. Testing with 

intended audiences, including users and non-users, is important in understanding 

communication outcomes prior to dissemination. 

6. Future Directions in Disaster Preparedness 

This dissertation presents a new vision for decision-making based on forecasts. The 

work introduces a framework for interpretable multimodal predictions, in which 

human-centered approaches are taken to understand and explore the potential impact 

different sources of forecast uncertainty have on responses from disaster management 

agencies. Equipped with this new approach, disaster preparedness becomes 

collaborative, allowing the many agencies associated with these responses to share 

their expertise and provide feedback to complex model predictions. The future vision 

for disaster preparedness is made possible with advancements in machine learning 

algorithms that can converge with the challenging forecasting problems presented in 

the disasters, as well as the ability to leverage advances in computational techniques 

alongside important sources of real-time data pertaining to disasters. Our research 

creates new possibilities for actionable predictions, supporting critical decision-making 

at the most opportune timescales for disaster responses, and shifting research in 

disaster management towards data-driven approaches. 

The vision set forth focuses on practical advancements in the application of disaster 

prediction science. In this section, we present 3 areas of potential advancement based 

on our key findings: (1) novel modeling developments enabled by advancements in 

new machine learning techniques; (2) the growing potential for real-time multimodal 

forecasting improvements through innovative uses of new data sources; and (3) 

collaborative frameworks that bridge monitoring efforts across multiple disciplines to 

help enable use-case-oriented prediction with a shared multi-agency objective. We 
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believe further efforts in these areas can forge a path towards our vision for disaster 

prediction, which enables better day-to-day management of disaster-related data. 

6.1. Advancements in Machine Learning Techniques 

Machine learning is an exciting research field where, within less than two decades, 

several meaningful results have been achieved in various domains, leading to major 

breakthroughs and state-of-the-art techniques that drive and follow the economy. For 

what concerns Deep Learning, the idea of learning useful feature representations of 

unstructured data led to state-of-the-art solutions in Computer Vision and Natural 

Language Processing. However, models for structured data are still at an early stage. 

On the one hand, traditional learning algorithms have been around for several decades, 

dealing from the beginning with challenges that many modern machine learning 

techniques are not capable of handling. On the other hand, a changing world and the 

big data era, through new sources of available information and better modeling 

techniques, provide the opportunity to exploit traditional algorithms to develop 

efficient, robust, and scalable solutions. 

However, even if traditional algorithms still provide the backbone of most applied 

research, recently we have witnessed a growing interest in boosting traditional 

architectures with the flexibility of more sophisticated machine learning techniques. In 

this context, profound generative models have achieved state-of-the-art results in 

image restoration and generation but, to our knowledge, their combination with 

traditional world models is still unexplored. The role of generative models is important 

not only for discrete data, where classical optimization algorithms may require time-

consuming tuning to solve the problems at hand, but also for structured data. 

6.2. Potential for Real-Time Forecasting 

Static forecasting is at risk for being outdated by the time of the disaster, particularly 

for settings where the data used for analysis are very old. Consider a hurricane 

approaching the US mainland, whose landfall it was predicted several days in advance. 

Open a historical file with cyclone conditions, as well as financial and infrastructure 

data. Suppose that you build a forecasting model today and let it internally estimate the 

coefficients that you observe on landfall day. Then you inspect the effect of different 

intensity values upon people’s 911 call behavior, according to your forecasting model. 

You find that the intensity of the cyclone has a huge effect on those countries’ people. 

The cyclone is intensifying. You announce your latest findings on the news, letting 

your warning come at the right time. This example shows that forecasting models 

which are built internally rather than externally have an advantage over such models 
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built with static analysis: Certain parameters need not be fixed for all time. Instead, the 

true effect varies with the stage of disaster evolution. 

There is room for improvement. In our example, the model would have problems if the 

cyclone intensifies while some people are still evacuating. Thus phase-specific effects 

would ideally be modeled jointly rather than separately. We also need a proper linking 

of intensity to behavioral effect. However, these models are better than static 

forecasting since they account for the dynamics of behavioral change. This is very 

important because traditional static analysis is only able to capture one snapshot of a 

complex process in our examples when people are still allowing for an insightful 

comparison of behavior at the evacuation and the impact stage of disaster-related 

behavior. However, these studies need time to arrive at the public. Therefore, a real-

time recommendation of parameter estimates is crucial in applied disaster social 

science research. In conclusion, there are promising approaches to find solutions to this 

need. 

6.3. Collaborative Frameworks for Multi-Agency Efforts 

Multi-agency efforts are generally present as part of disaster management, however, 

the need for collaboration and shared understanding has only been mentioned recently. 

At the management level, there are networks on disaster risk management and on 

prediction and forecasting in the global community. More locally, platforms exist for 

informal sharing of non-sensitive data. On the technical side, a key requirement for the 

adoption and successful usage of data science in disaster preparedness and other areas 

is an understanding both of the data behind the algorithms and of the models’ 

mechanisms, dynamics and uncertainties. This has often been termed explainability or 

transparency, although in our opinion transparency is the more suitable term with 

respect to the mentioned conditions. Enhanced explainability is therefore a step in that 

direction, and many layers of this transparency are needed, of course with different 

levels of depth and breadth, depending on the audience engaged at each moment and 

occasion. These layers of explainability include presenting parameters and quantitative 

indicators of model performance, model design and model assumptions, as well as 

narratives on the background and predictions. 

Collaboration and transparency between the agencies responsible for disaster 

management is absolutely a key aspect needed to optimize the outcomes of why 

machine learning models were designed and developed. Political decision making and 

negotiations are not at the level that science usually operates, but it is at this level and 

firmly established practices where cooperation and teaming is more difficult. Disaster 

preparedness machine learning modeling can point to the best practices and why, but 

that is only a small piece of the puzzle. 
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7. Conclusion 

Interpretable and trustworthy forecasting is essential for public safety, especially for 

pandemic forecasting and disaster early warning systems. Unfortunately, classical 

forecasting methodologies do not focus on building explicit uncertainty models, and 

even the most advanced AI-driven forecasts are mere black-box solutions. Uncertainty 

quantification is important for time series regression analysis, but its application to 

point forecasts is limited both in their methods and explanations, not to mention the 

difficulty to quantify uncertainty for complex, heterogeneous models. 

In this work, we introduced the task of interpretable forecasting and systematically 

studied temporal coherence — an effective strategy to unify probabilistic forecast 

distributions into aligned yet complex models — to explain existing probabilistic 

forecasting methods and increase forecast accuracy. Thanks to its temporal coherence 

property, we built a curator-friendly and interpretable methodology combining 

hierarchical fork sources, multi-level hidden states, and co-evolving latent variables, 

improving the accuracy of a number of forecasting problems and large-scale datasets 

affected by temporal patterns. 

We hope that the ideas and methods presented in this work can serve as a step towards 

a deeper understanding of interpretable probability forecast distributions and their 

alignment with the real world, especially for time-varying risks like pandemics or 

disasters affected by the time of the year. There are still many open questions. How 

can we explain probabilistic forecasting beyond temporal coherence? How should we 

calibrate complex models forecasting different variable types? How can we achieve 

temporal coherence while dealing with various input and output forecast designs? 

What is the role of quantiles or consistent scoring rules in the explanation of 

probabilistic methods? These are some of the inquiries future research may want to 

tackle in the coming years. 
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1. Introduction 

In recent decades, artificial intelligence (AI) has been put to socio-scientific use in a 

variety of ways and on different fronts. In principle, there are few limits to its 

application for our main societal issues, such as energy or material consumption, urban 

infrastructure and production, ecosystems organization, mobilization, and other energy 

exchanges experienced as natural phenomena. However, up until today, the actual 

realizations of AI implementations and operations have all been limited exclusions, 

made public either through foundational philanthropy or unsolicited entrepreneurship, 

or kept private as specialized economies reliant on ubiquitous public resources [1-3]. 

At present and for the foreseeable future, an overwhelming share of modeling, 

creating, training, and deploying of AI functionalities requires disproportionately 

significant investment, competences, and knowledge. Consequently, AI still operates 

in the sense of an elite trade without replicable scalable organizational architectures. 

These circumstances obviously shape the expected results of using AI for interplay 

with “natural” or “social” systemic agencies responsible for most of the fatigue of 

contemporary human societies. 

Furthermore, the goal of this essay is not only the display of possibilities that AI can 

offer in disclosing identifying, enrolling, and “using” material or energetic flows inside 

and outside, that is, in nature, our socioeconomic systems. It is also a demonstration of 

how the development of particular systemic understanding of the way systemicity 

dynamically selects flows trajectories may offer reusable knowledge in order to 

organize and finance the structuration of basic or advanced AI models and offer them 
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back to the nature–society flows in such a way so that the actual automation of 

accountants, decision-makers, and intelligent actuators be made circular, horizontal, 

“democratized” [2,4,5]. These basic realizations should be used to progressively lower 

the costs and risks of implementation, and thus, gradually increase the quantity and 

quality of AI organizational architectures scalable and repeatable at levels, and 

responsive to actual needs of the nature–society processes. 

2. Cloud-native Design 

The term cloud-native refers to an approach to digital service design and 

implementation that maximizes the properties of the public cloud as a platform for 

agile and resilient services that meet the needs of their users. A growing list of design 

principles and recommendations for cloud-native implementations are available from 

cloud service vendors and research organizations alike [6-8]. These provide valuable 

guidance not only for implementing services in a public cloud but also for the design 

of cloud-native applications that combine in-house data and development assets with 

remote cloud service components. They describe the principles of modularity and 

component-based design, the role of API contracts for interoperability, and the use of 

open standards for transport, messaging and identity management. They also highlight 

the importance of data management practices that abstract and protect the data assets, 

the need for resilient, self-healing fault management approaches, the value of stateless 

service components and the principle of automating as much as possible to minimize 

human error and effort. 

The goal of these principles and recommendations is to help service owners achieve 

shorter development and deployment cycles, predictable scaling and elastic capacity, 

and efficient, low-bandwidth use of network communications, while also freeing 

service implementation teams from many of the burdens of daily and operational 

service management [9,10]. In a typical cloud-native implementation, solution 

components that are prone to failure are not only monitored, but actively recycle 

themselves for key failure types. Database calls are offloaded to asynchronous job-

queuing services. Access control policies and authentication/authorization transitions 

through the service lifecycle are defined in understandable, literal policy files managed 

on distributed storage services. These capabilities allow teams to focus on service 

improvement rather than fire-fighting. Such a focus is key to enabling innovations in 

the accuracy and analytics of health and climate-related services that need to improve 

but often languish. 

2.1. Overview of Cloud-native Principles 

The term cloud-native describes a set of design principles that apply for workload 

intended to run in cloud infrastructure. Cloud-native workloads are designed to 
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effectively leverage the scale and elasticity of cloud environments, be dynamic and 

distributed, and leverage managed services offered by cloud platforms [11-13]. Cloud-

native principles describe how to design and architect workload that is optimal for 

cloud environments, but are not an indication of what type of workloads can or cannot 

run in the cloud. While cloud-native principles were pioneered by the world of 

application design, the principles are also valid for many data-oriented workloads and 

pipelines. 

Fundamental to cloud-native are scalability and elasticity. Cloud-native services are 

designed from the outset to be able to be scaled up and down massively – at a finer 

granularity than perhaps ever before, per geographic region or even per cluster for the 

case of machine learning – to absorb heavy utilization load during certain periods 

while still being cost-effective during the rest of the time. To take advantage of the 

scale of the cloud, cloud-native systems should be developed as microservices – 

collections of loosely-coupled, independently deployable services with one focus and 

line of business logic. Microservice architecture increase agility by decomposing 

monolithic builds into smaller components whose release cycles can be parallelized, 

decreasing time-to-market. 

The third pillar of cloud-native applications is relying on managed services. Every 

cloud provider has a collection of services they offer per tenant. A premise of cloud-

native design is to use these services and write glue code that makes components work 

together, not custom-coding every layer of the stack [2,14-17]. Examples of managed 

services include but are not limited to relational databases, serverless data processing, 

NoSQL data stores, Pub/Sub coordination, hosted Kubernetes services, and cloud 

resource orchestration. 

2.2. Benefits for Health and Climate Applications 

Data-driven and AI-first innovation in health and climate are the biggest hope to 

expand our understanding of the vast complexities in biological systems and 

ecosystems, and also to make the best use of all available data for decision making, for 

detection and tracking of outbreaks, for predicting future events, for optimizing 

resource allocation, and many other exciting possibilities. As data from various sources 

is increasing in volumes and complexity, making the best use of all possible data 

sources in increasing dimensions and complexities, to contextualize in time and 

location using appropriate methods, and inferring in the right way by deploying 

scalable and flexible probabilistic graph models are the key to gain useful insight, and 

making accurate and timely predictions. Bayesian Network and Probabilistic Graph 

Models provide us with the right instrument to combine various data sources, simple 

and complex relationships in a hierarchical framework, causal and correlative 
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dependencies available from other sources, the penalty on complexity and how 

complex on the space of sensible solutions in a smart way [9,18-21]. 

From a design and infrastructure point of view, Cloud-native AI enables close to real-

time access to massive amounts of data in the cloud and provides distributed execution 

capability for many AI methods that are typically bottlenecked on limited CPU cores 

on a workstation/subcluster thereby facilitating near real-time learning or lowering 

turn-around time on research projects. Data freshness is one of the significant factors in 

achieving reliable inference, involved in various aspects of Health and Climate 

applications such as high-resolution time-series-based prediction models for climate, 

distributed training and inference in high-level models of epidemics, modeling for rare 

events in surveillance, forecasting and anomaly detection models for health. Scalable 

cloud-native architectures naturally explore cloud resources to learn from and compute 

validation, uncertainty, and decision thresholds thereby lowering turn-around time 

during the research phase or lowering the turnaround time for trust-building, help for 

improved support during the decision phase thereby improving confidence in using AI-

driven insight for health and climate. 

2.3. Challenges and Considerations 

Deploying AI in the health and climate spaces is no small feat, as both areas involve 

processes and sensitivity to scale that shouldn't be overlooked. Moreover, these areas 

have unique risks which make deploying fragile prototypes risky, and force more 

complicated processes for transition from private cloud to public cloud. In the health 

space, private data governs the availability of a solution, while compliance and 

planning task specialization are critical to get right [22,23]. In climate, latencies and 

scale can be massively more involved, such as waiting for a hurricane to hit land, 

deploying sensor communication at scale, waiting several months for seasonal weather 

to iterate, etc. Both areas also involve multiple data partners or product integrators that 

imply greater responsibility management, balancing trust and public accessibility, and 

workflow configuration that often can't get planned out all at once. 

Both domains naturally have data at multiple levels of granularity, requiring smarter 

cross-model training. While computer vision and speech tasks for human-environment-

sensor modeling are more straightforward, abstract human behavior and policy 

allocation for training on patients or users requires producing or ingesting semi-

structured data at a higher dimensional moment level. Bridging the single-enrollee 

training data gap with synthetic data becomes a crucial requirement, allowing models 

to predict the remaining effect on the people waiting to be modeled, and become 

increasingly effective over time. Above-norm faulty concentrations create more short-

term, self-filling gaps, also reducing training validity time bins for inference systems 
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[24-26]. These models balance coverage and latency optimization differently at every 

profile phase, which can conflict across distinct goals of a federated training or batch 

cycle. 

Localized but temporal and individualized phase-influence modeling can ameliorate 

these conflicts flexibly, energy and liquidity planning using pre-concise labels or agent 

data. Clinical patient implied decision intervals deduce and reduce possible input 

structures for consequential phase aggregation across locations. Mixing short- and 

long-term horizon modeling together could be a valuable research pathway, while 

competition could accelerate refinement of these models into robust product solutions 

with low price and user stroke risk. 

3. Microservices Architecture 

3.1. Defining Microservices Architecture refers to a high-level technical pattern for 

organizing software into distinct services. A scalable architecture for Health and 

Climate AI applications starts with the right architecture. These applications typically 

take a combination of dimensionality smaller than the full-dimensionality data, 

combining a large number of diverse sources about events and entities to assess 

phenomena and decisionmaking about the likelihood of conducting specific acts at 

specific times which may vary in scale spatially and/or temporally. They lend 

themselves particularly well to a microservices architecture, where pieces can be 

combined into a loosely coupled but coherent application program interface. 

Microservices refers both to the APIs and to the presentation of function and data by 

the piece, and also to the low level implementation of the pieces [27,28]. Health and 

Climate AI applications are likely to perform specific and global functions very 

differently, but they need to integrate seamlessly by taking advantage of knowledge 

representation. 

3.2. Implementation Strategies The microservice APIs are usually exposed on the 

World Wide Web, and are implemented using a set of services maintained by what 

would be considered distinct program development teams within an organization. 

Standard practice is that each microservice would serve a specific task within the 

Health or Climate system, and that implemented as a “few lines of code” solutions 

calling down domain knowledge to access the task through an interface specially 

designed for that specific microservice. This task specific service provides. Small 

specialized code that can be reused by other domain teams within an organization, 

exposing the APIs that address the implementation of specific components of the 

Health and Climate tasks makes it possible. 
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3.1. Defining Microservices 

Microservices decompose monolithic applications into smaller units, which progress 

and deploy independently from one another. This concept reinvigorates the way 

software is delivered as each Microservice provides modularized capabilities through 

well-defined APIs. Cloud computing and Serverless computing technologies are key 

enablers of this architectural approach. The advantages of Microservices architecture 

are well-known: independent deployability, technology heterogeneity, shared code 

repository, improved fault isolation, easy scaling, reduced impact of friction in 

provisioning, and reduced time between incremental releases [19,29-31]. Advantages 

such as time to market and high quality of independently deliverable Microservices 

compensate the developers suffering the cost of distributed environments, thus 

refocusing modern development towards the deliverable as a more important factor 

than the development environment. 

Microservices are customarily designed following five guidelines. They include single 

responsibility, organized around business capabilities, independently deployable, 

loosely coupled, and owned by a small team. Single Responsibility requires that a 

Microservice is responsible for one action, which ensures high cohesion in the 

Microservice implementations and results in re-usability in other modern design 

techniques. The organization around business capabilities guideline states that 

Microservices need to map towards business capabilities for easy calls. The 

independent deployable guideline expects that a Microservice must be able to deploy 

independently of the others, thus requiring a robust structure that takes care of 

Microservices’ interdependencies. The loosely coupled guideline requires that 

Microservices do not expose their internal structure and call another one through a 

well-defined API. Finally, the owner by small team guideline states that a Microservice 

must be owned by a small team that must ensure the Microservice has enough demand 

to be developed, evolved, and maintained, thus taking a business decision not solely a 

technology decision. For Microservices to be effective, these five guidelines must be 

taken seriously; otherwise, organizations will not reap the rewards offered by 

Microservices such as the invitation to focus on Small Is Better principle. 

3.2. Implementation Strategies 

Microservices are small, autonomously deployable services that communicate via 

lightweight protocols. Today, the problem involves architecting, creating and 

deploying technology "in the cloud" (which translates to low-cost infrastructure and 

the ability to quickly design, deploy, test and iterate technology) using APIs to enable 

microservices to connect together to solve a much broader problem than any one 

service could solve alone. These microservices focus on a single area of functionality 
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[32,33]. These microservices can be strung together using API technology to provide a 

specific solution. IT Services of the kind used by technology companies rely on cloud 

agency delivery infrastructure to deliver solutions that took years to develop in-house 

from big outsourcing companies. Enterprise medical systems like Electronic Medical 

Records (EMR) systems is perhaps the single biggest untapped market. These systems 

can cost in the order of tens of millions of dollars and effort – to code, test, and deploy. 

Technology partners should be looking at the microservices APIs that provide basic 

functions such as lab/pathology reporting, patient registration, encounter scheduling, 

clinical imaging, treatment order scheduling, treatment administration, pharmacy 

services, etc. These microservices exist in many medical organizations and need to be 

provided as solutions on the cloud to replace the custom developed solutions currently 

in use. 

3.3. Case Studies in Health and Climate 

It is informative to look at a couple of cutting-edge but non-trivial examples of 

architectures of the types we are proposing from the health and climate arenas not just 

for inspiration and context-setting but also for the varying strategies they employ. As 

already mentioned, there are mainly three challenges in deploying AI in the real world 

corresponding to the three D’s: dimension, deployability, and data. To make earlier 

visioniers in deploying AI for social good with the adequate breadths and depths of 

their mission, we briefly discuss these projects. The first case study is MMHealth 

which has pioneered several deployed health solutions at multiple dimensions across 

the health value chain from prediction to prevention to diagnosis to intervention. The 

second case study, Clair which is also a deployed climate AI solution seeks to help 

realize the vision of 1.5° stability. 

MMHealth is a health microservices system for a collaborative network of hospitals 

around the world to build, share, and inform the ML/AI-based “digital twins” of 

patients for timely, interpretable, and trustworthy actions [34-36]. It offers an evolving 

ecosystem with unique deployment strategies, involving privacy-centered real-world 

data collection with distributed data partner domain hospitals, clinical use-case-driven 

algorithm development and validation, model-release and monitoring as model-based 

recommendation-action engines, and telemonitoring infrastructure for risk-based tele-

prevention, tele-diagnosis, tele-intervention, and tele-reporting. 

4. Data Pipelines 

The ability to work with AI-enabled technology solutions for health and climate hinges 

on the availability, accessibility, and use of the vast amounts of raw, cleaned, 

processed, label-enhanced, augmented, and integrated data that these AI-enabled 

technology systems can use. However, effective, reproducible, and scalable data 
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pipelines and other data solutions must tackle coordination and resource-related 

challenges as public, academic, and private data management capabilities and needs 

further develop and, as a result, increasingly complex multi-partner collaborative AI 

projects in health and climate become the norm rather than the exception. In talking 

with informatics and data engineers, developer scientists and researchers, and ML 

engineers, we identify key characteristics of good data pipelines: ease of access, 

support for reproducibility, data quality, support for diverse file locations, 

synchronization of heterogeneous datasets, support for multiple ML formats/data 

types, support for a variety of data runtime environments, multi-partner support, 

support for data exploration, governance, and compliance, and user support and 

documentation. These key characteristics are not universally required or prioritized for 

every type of project or every phase of a project involving AI-enabled technology, but 

they are feature priorities to consider when designing and selecting tools and solutions 

for data and its movement. 

We will highlight various tools and technologies that emphasize these types of data 

pipelines and actions in our roadmap. For example, core pipelines may be looked at as 

presenting data in a standardized shape/schema that all downstream application users 

can rely on. An application that requires the cognitive and visual skills of a human 

should be run as close as possible to the actual pipeline which means localizing it to a 

small subset of data to move on-premise for the lowest bandwidth. Tasks that use 

considerable ML processing but require less human intervention or feedback may be 

run remotely. 

4.1. Designing Efficient Data Pipelines 

Data is the lifeblood of AI and ML, and in the case of Health and Climate, the 

quantities and complexities of data to validate and implement are enormous - small 

wonder the process for collecting, organizing, preparing, cleaning, and streaming data 

is one of the most specialized and challenging pipelines to build. The traditional 

process of manual data collection may take weeks or even months before software 

training can begin, with data streamed to an inference service after ingest - typically a 

background task. In contrast, the need for real-time validation means that a streamlined 

pipeline for continuous live data ingestion from connected medical devices for Health 

will improve accuracy and responsiveness. Perhaps most important is the price of 

cloud and edge services for these pipelines, which can add up immeasurably with very 

large data. 

Old-fashioned brittle databases that rely on heavy use of SQL, JSON, on-disk flat files 

and schema requirements can hamper flexibility as well as sluggish I/O performance. 

Flexible cloud-native services such as cloud object stores, NoSQL and other 
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lightweight document and graph databases can assist in achieving low-cost, rapid 

development of solutions. However one of the leading emerging challenges to 

scalability and cost optimization of AI and ML in the enterprise is the emerging 

quantum of real-time metadata generated by cameras, sensors, and other connected 

devices for many domains. In particular, compliance and management of sensitive 

medical data for resource-constrained edge devices for wearable medical technology 

and remote patient monitoring will require advanced encryption techniques and packet 

structures. The need to minimize latency and monitor for compromised data bearing 

personally identifiable information will add to software development challenges. 

4.2. Tools and Technologies 

To create scalable architecture for AI and ML applications, suitable tools and 

technologies for data pipelines should be selected based on the required functionality 

of the data pipeline, data, and resources available to build the pipelines. These 

considerations will help define the scope of planning data pipelines. Generally, there 

are four major types of data pipelines with several specialized functions in each 

category according to modes [37-40]. These pipeline categories are batch processing 

pipelines, real-time processing pipelines, hybrid processing pipelines, and specialized 

pipelines. A batch processing pipeline's goal is to transfer large datasets from one place 

to another. A hybrid/passthrough processing pipeline performs parsing, 

transformations, or enrichment of records flowing through it and passes the resulting 

records along to other systems. Either of these pipeline types operates on a fixed 

schedule which means several hours or days of data are gathered before firing up the 

engine. 

A real-time processing pipeline is responsible for continuously processing small slices 

of data that are then delivered to an application for consumption. This type of pipeline 

can make records available for consumption seconds after they are generated, although 

it typically takes several seconds to process the records. Specialized pipelines can use 

one or more different tasks and combine them to build a complex task into a pipeline, 

or can embed a third-party service and create an intermediary storage to create an 

integrated pipeline. Data pipelines can be created using templates or solutions. 

A popular asynchronous data pipeline service is a powerful solution because it allows 

you to decouple your cloud service from applications, services, and dependencies. It 

lets you break up monolithic APIs and microservices. You can easily publish messages 

to a channel to make them available for other services to process asynchronously. 

Serverless solutions enable rapid iteration and scaling, and also a reliable queue for 

other services and servers. But remember, when designing data pipelines using this 
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service, it’s merely an async data pipeline and it doesn’t provide reliable persistence 

for your messages. 

4.3. Real-time Data Processing 

Real-time processing is a complex task that requires fast and reliable processing 

architecture and an intricate configuration which is tricky to set up and manage as it 

constantly needs to be calibrated and fixed. Below let's first dive into the complexity of 

real-time data processing. Real-time data processing is a unique combination of 

resource intensity with real-time performance requirements that focuses on the 

presentation and reporting of the data with guaranteed performance levels. For 

example, this application might take data from a logging pipeline or telemetry 

operation and report to a UI and communicate results including statistics and alerts. 

These applications often are a hybrid between batch and pure stream where data is 

allocated into batches and each discovery and result takes a near real-time processing 

effort [41-43]. These applications are demanding in that they need high throughput for 

ingestion as well as UI reporting and visualization presentation with low latency for 

both ingestion and results presentation. The data is consistent and high volume coming 

in from IoT, telemetry, and mobile applications with the demand for both analytical 

and alert response to the data events. These applications place more resource ability on 

the consumption side where the UI and analytics just need a constant data heartbeat to 

generate results based on rules and algorithms than the data ingest can be resource 

hungry. There are no addresses in the events coming into the data pipes; they arrive in 

streams and in bursts and focus on asset address information from the ingestion rules 

and reports for presentation. Latency tolerance timeframes are relied on pure ingestion 

application which is not micro-batch based. 

5. Streaming Tensor Analytics 

5.1. Introduction to Tensor Analytics 

Tensors, as a generalization of matrices to higher orders, are multi-dimensional data 

structures that have attracted increased attention as we continue to navigate the data-

rich era of scientific discovery. Tensors formalize the modeling of multi-relational data 

in AI/ML including temporal data such as videos, spatio-temporal data such as 

geoscience information and sensor measurements, and relational data such as 

knowledge graphs. Due to their intrinsic properties, tensors are widely used to 

accomplish the fundamental tasks of multi-relational data, including machine learning 

estimation of probabilities, and inference of missing entries and tags, parameterization, 

and structure discovery for latent variable models. Tensors serve in many applications 

of modern society including scientific discovery and advancement in space and earth 
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sciences, computational material sciences, life sciences, astrobiology, geophysical 

sciences, environmental monitoring and modeling, planetary science, and ocean life. 

Machine learning and AI are now consistently leveraged in sensors that measure, 

quantify, and control the climates of Earth and beyond. With ever-increasing amounts 

of multi-relational data collected by Earth and planetary observing sensors, the data 

streams at unprecedented scale and diversity. Furthermore, the inference services that 

these data streams support are expected to facilitate seamless operation and broad 

adaptation of societies of Earth and beyond in synchrony with the climate. Machine 

learning and AI have successfully demonstrated their capacities to provide inexpensive 

intelligent services for many tasks expected of a scalable architecture to characterize, 

quantify, and model the climates of Earth and beyond. But there is also a huge gap 

between the results and expectations for inference accuracy and cost, which opens up 

immense research, technical, and business opportunities for scalable tensor analytics 

infrastructure that can boost the practical utility and deployment of intelligent 

inference services powered by tensor machine learning models. 

5.2. Applications in Real-time Inference 

We consider here tensor analytics for Its Cloud to support new services that 

characterize, quantify, and model the climates of Earth and beyond, with supervision 

from scientific and domain expertise. To meet the demands of diverse inferencing 

tasks, the planned tensor analytic services include supervised and semi-supervised 

inference, monitoring and ensemble forecast/batch prediction, scalable four-

dimensional learning, embedding, and continual learning. 

5.3. Performance Optimization Techniques 

In the next several sub-sections, we detail performance optimization techniques for 

streaming tensor learning and inference. We first describe some tensor-space models 

and how they can accelerate tensor analytics. 

5.1. Introduction to Tensor Analytics 

Tensor computing is a promising computing architecture for handling real-time AI 

problems related to climate change and public health. In this work, we implement, 

optimize, and evaluate tensor-based algorithms. We build GPUs accelerated tensor 

networks to optimize inference in a variety of models ranging from CovNets to deep 

GNNs. The proposed methods achieve higher accuracy and faster inference than 

contemporary algorithms. We focus on real-time classification and detection problems, 

where multiple messages are ingested through streaming APIs, models are 
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continuously updated and improved through active learning techniques, and various 

solutions need to be tested in a time-efficient manner. 

Laboratory analysis of health and climate data is limited by the available sampling 

period, but careful model design and pupil-in-the-eye sensor placements allow for 

localizing and detecting key events within a defined but limited period of time, such as 

volcano eruptions, natural disasters, or outbreak of viruses. Solutions to these events 

have the capacity to inform larger decision making processes, but they need to be 

accessible and performed in real-time. Multi-dimensional data collections are being 

used and augmented with continuously streaming data from geo-sensors. The data 

needs to be analyzed for model selection in complex AI pipelines linking remote 

sensor observations and laboratory analysis, while also identifying the need for new 

laboratory data collections. Tensor decomposition-based methods have been proposed 

for these problems. 

The previous work focused on either separate traditional matrix-based classification 

methods or high-level architecture design for tensors or on lossless data compression 

for GPU architectures. We extend tensor analytical methods to address multi-

dimensional data analysis for event detection and localization, task assignment, and 

model selection for climate AI powering models deployed as online proxies or along 

online inference pipelines in healthcare. 

5.2. Applications in Real-time Inference 

Streaming tensor analytics platforms target real-time situations where tensors become 

available incrementally at high data rates and decisions must be taken as quickly as 

possible. Many such applications arise in domains where sensors continuously collect, 

accumulate and transmit high-dimensional data at very high speeds. Some prevalent 

examples include surveillance systems that continuously process streams of images 

and videos collected for targets with a potentially infinite number of spatial and 

attribute attributes, weather monitoring systems that track tornadoes, cyclones, storms, 

tsunami, floods and landslides through data from environmental sensors and remote 

sensing satellites, networks of smart grids and smart meters that monitor power 

outages and theft, nanomedicine systems that procure signals from nanobiosensors for 

monitoring the time-varying levels of viruses, proteins, hormones, etc. for different 

public and personalized healthcare applications, mobile crowd sensing and machine 

learning-assisted applications for a variety of city management services and for several 

personalized environmental monitoring services; and healthcare systems that collect 

personal health data through wearables, secure cloud environments and data service 

infrastructure to provide personalized care. 
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Data streams in all of these applications produce rich yet dynamic information of 

interest. However, either due to the continuously exploding volumes of visual, 

environmental, healthcare or smart city data produced or due to the limited budgets and 

collection lifetimes, just handling this information to develop scalable, accurate and 

efficient inference methods is a challenging task. In traditional tensor inference 

literature, as well as in most of its non-real-time counterparts, models are typically 

either absent or are simply built offline by pooling the available tensor observations 

over the entire data collection window. However, as any real-time monitor would 

agree, building a model merely on occasional data samples is an almost impossible 

task. In addition to the glaring analysis shortcomings, in utilizing such models for 

inference, one has to frequently reload and reread huge amounts of occasionally 

available data to make most transformation-related decisions. 

5.3. Performance Optimization Techniques 

We introduce a computation model for achieving perfect throughput in streaming 

tensor analytics. Given the building block of tensor analytics, we first extend it to a 

sequence of tensor-structured input data to enable computation over a stream of 

arbitrary length, given by Z = f(X). Streaming tensor analytics also supports complex 

data dependencies between the output tensor Z and the input tensor sequence X. The 

model contains a set of unit tensor element operators, corresponding to each input-

output element pair in the equation. The operators apply the element-wise mapping zi 

= fi(X) for streaming tensor analytics and prepare its output from input tensors, 

buffered temporally. These operators can be executed on a streaming processor or a 

cluster of streaming devices, with multiple input-output pairs in parallel, to obtain the 

output tensor sequence {Z}[t−wmax,t], where t is the current sniff time in X, and 

wmax is the maximum output buffering delay. Our emphasis is on optimizing 

throughput during streaming inference and not for the entire async analytic pipeline 

model. 

Despite all exciting research into the analytical complexity, fundamental limits of 

approximation, task graphs, and inter-task communication latencies, in order to 

introduce practical, efficient methods and models for realizing high throughput 

streaming inference for tensor analytics, we have to dig deeper and analyze the 

problems of bottlenecks and parallelization in the pipeline model itself. In particular, 

while specialized inference pipelines can exploit task parallelism, inefficient memory 

access patterns and poor input-output locality during inference are known to be major 

bottlenecks in achieving high throughput at scale. Tensor representations compactly 

encode the memory transfer volumes, latencies, and virtual memory access patterns for 

mapping data streams into inference pipelines. Exploiting the tensor data model 
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prescriptively, then enables designs that improve the aforementioned locality issues 

and parallelism bottlenecks. 

6. Edge-AI for Real-time Inference 

As introduced before, a major complication in the deployment of AI-based models for 

health and climate is the fact that many of them cannot deliver inference in real time or 

that inference has limited scalability. This is especially the case when models are 

deployed on large datasets such as those based on sensor data measurements over large 

geographical areas or those that track changes over time. For these reasons, it is 

important to utilize or develop Edge-Centric AI models, which combine the benefits of 

Edge Computing with AI in order to achieve scalable and fast edge AI inference. For 

example, for brain MRIs or other complex images, image classification or detected-

object modeling would involve heavy computational costs since it might be infeasible 

to deploy the trained models remotely for each individual patient's opportunity request. 

Especially, Edge-AI for health-related AI inference is needed for situations involving 

natural disasters, military interventions, or other emergencies whenever time-sensitive 

risks are prevalent. 

Integrating Edge Computing with AI Models is an essential part of facilitating these 

local inference procedures. Edge AI enables local data processing, local intelligent 

inference, fast communication, more added-value services, and secure central control. 

Different types of data can be efficiently preprocessed near the data source before 

being sent to the Cloud, central office or HQ. Preprocessing near the Edge can greatly 

reduce the power consumption and cost. 

Because of the characteristics of climate data sensing, collecting, and transmitting, and 

the volume of climate data collected, Edge-Centric AI for climate research is indeed 

content-relevant. Phenomena such as tornadoes, hurricanes, floods and droughts 

involve extreme events that are expected to become more severe and frequent and yet 

are still often poorly simulated. Research on the optimal placement of Edge AI-Centric 

architecture under a hierarchical setting can provide important insights into enhancing 

the predicted reliability, robustness, security and accuracy of climate change 

monitoring and climate crisis management. 

6.1. Concepts of Edge Computing 

The edge, or more precisely the Edge-AI concept, aims at optimizing this last mile of 

the sensing-processing actuation AI data pipeline, which is associated to an edge 

device. The goal of the Edge-AI concept is to execute parts of AI inference at the edge 

of the network in real-time, and to execute the remaining complex parts of AI at the 

cloud in batch mode. The minimal model size for AI is the de facto Edge-AI 
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configuration, where the entire reason to believe layer executes at the edge in real-time 

and the complex AI model executes at the cloud in the offline batch AI inference. The 

edge must first and foremost have real-time autonomous actuation capabilities since 

the goal is to develop a deterrent cyber-attack architecture. 

The operational distinction of Edge-AI is that the inference needs to occur in real-time 

at the edge, which in turn requires a minimal footprint model in the reason-to-believe 

and the actuation layers. The core idea of Edge-AI is to identify the layers of AI 

inference related to the R2B and the real-time actuations at the edge, and then deploy 

these layers at the edge for real-time actuation. All non-real-time plateaus of the 

inference pipeline can be executed at the cloud for higher efficiency and accuracy. The 

action and R2B layers of deep networks corresponding to the outputs of these layers 

should be much smaller than the original network, and can deploy models with an 

accuracy nearly close to that of the original larger network. These smaller networks or 

parts of networks can be constructed using a wide range of techniques. Various 

techniques have been proposed to quantize, compress, prune, and distill a large model. 

6.2. Integration with AI Models 

AI can automatically find synergies of the relevant dimensions for specific 

applications. For a task defined by an objective and a set of training examples, the 

architecture defines how individual examples are transformed iteratively to converge 

towards the optimum. Multitask and multi-input architectures allow AI to discover 

low-complexity representations by leveraging similarities between tasks, inputs, or 

both. Coordinated layers constrict representations, by following the object identity 

signalled by an input or task. Very large models trained with much larger data on non-

unique related tasks discover such integrated representations. Specifically for Edge-AI 

serving time-critical applications, narrow and deep architectures allow much quicker 

inference. For real-time health surveillance, events have characteristic time scales, 

related to disease dynamics and the way the health signal is collected, and large 

changes in a class at a pre-defined frequency identifier-an event; at the particular 

temporal resolution of the modality, are detected. Events, anomalies, or discontinuities 

are efficiently resolved by difference and derivative calculations. 

Edge devices are computation-constrained, often battery-operated. Models on device 

must be as small as possible, discretized, and neuromorphic, performing the equivalent 

of parallel inner products of feature vectors followed by conditionally actuated 

activations. Mobile applications must aggregate over population groups, using 

localized models on device, preprocessing raw data to extract shareable lower-

dimensional embeddings, and uploading to a central Edge service where they are 

pooled or aggregated to update model parameters. Edge-in-the-cloud does not incur 
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latency for model training. For real-time inference to serve critical applications, 

models can be trained with transfer learning on new examples, agnostic to modalities. 

For Edge-AI supporting mobile access, the cloud must use swappable local cell closing 

with multi-sensor satellite and drone modalities that upload geo-tagged lower-

dimensional embeddings for coalescing training. 

6.3. Use Cases in Health and Climate 

The COVID-19 pandemic triggered the need to equip citizens with warning tools based 

on reliable, real-time, high-frequency datasets. The use of wearable health devices is 

no longer limited to lifestyle and fitness tracking but has shifted toward monitoring 

individuals' critical health conditions, from sickness to recovery. During the pandemic, 

devices like the oximeter jumped into public use and monitored patients' blood oxygen 

levels. Smartwatches and fitness trackers began to display new information, such as 

abnormal body temperature, heart rate variance, and blood oximetry. Researchers 

opened discussions about the use of Artificial Intelligence on health wearables data. 

Distancing and lockdowns prevented physical contacts posing barriers for professional 

physical examinations necessary for regular disease monitoring. Citizens became more 

concerned about their long-term conditions and were always looking for non-invasive 

ways to contact physicians for advice. AI-Based applications started to help in disease 

detection through constant telemonitoring and remote reporting. This sort of cost-

effective preventive measure offered by new-generation devices was covered by health 

insurance. 

The search for a direct correlation between premature deaths worldwide and 

subsequent historical causes linked to climate change is no longer carried out only by 

specialized agencies. The world is now more aware and asking for regular reports 

input. New technologies show AI will play a role and already work to support, 

simulate, and improve findings. Researchers and policy-makers are aware of the 

synergy between Health and Climate and are joining forces to develop explorative 

models to obtain simulated-impact-based future scenarios. 

7. Secure Data Sharing 

Securely sharing sensitive data is a fundamental concern where the delivery of digital 

consent is a matter of life and death, as is the case in health and climate. Further, the 

owners of the data often have a clearer idea of how that data should be used for mutual 

benefit. In these cases, having a secured and trusted environment is essential for both 

the owner and the user. An organization running ethical climate studies may need data 

from an emission detection model run by a user on the edge. Secure outputs in a 

version-controlled manner would provide valuable information to both parties. 

Unfortunately, there exists no secure solution for these use cases today. Existing 
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options include either public exposure of the potentially-sensitive output or requiring 

the user to trust the requesting data study organization with their outputs. 

Further, with stricter compliance requirements, such as existing compliance and future 

regulations suggested by organizations, increased trust among the entities in a 

collaborative architecture with end-to-end security will be the difference between a 

successful architecture and an ethical failure. Other methods may be unable to resolve 

these privacy requirements due to other constraints, such as excessive cost or lack of 

regulatory compliance. A real-world requirement for compliance is being able to 

attribute any breaches in security since they might reveal sensitive information, such as 

the ethnicity or financial strength of a patient. There has yet to be a model proposed 

that allows on-device AI deployments while also embedded with ethical solutions for 

secure data sharing. 

7.1. Importance of Data Security 

A notable tradeoff between achieving the ambition outlined and the increasing 

negligence of user privacy is the question of the importance of data security in a shared 

architecture. Healthcare and the environment are two sensitive domains that generate a 

large amount of publicly available data. Additionally, these two domains present a high 

potential for unethical and harmful model inversion attacks. Model inversion attacks 

work by figuring out what individual subjects are like using shared model parameters 

or, if a sufficient number of explicit outputs are available to craft a local model, 

reverse-engineering a local model that predicts an individual subject's outputs. 

Furthermore, such an attack becomes easier if the attacker is familiar with the 

population. 

In healthcare, user subjects are individuals, and each subject has a personally 

identifiable history linked to potentially sensitive medical consultations and treatments. 

In climate, user subjects are social agents, and such agents are sometimes linked to 

identifiable businesses known to produce high amounts of carbon emissions or 

deforestation. While sharing non-sensitive models trained on aggregate data is 

perfectly acceptable, applying architecture sharing to sensitive healthcare and 

environmental data is an abstraction that conflicts with the ethical and legal principles 

of the two domains. Principles that deeply govern policy and decision-making in these 

domains are based on two factors: risk and perceived risk. 

7.2. Methods of Secure Data Sharing 

This section details methods of secure data sharing that are generally applicable to 

health and climate domains. We encourage investigators to seek collaborators with 

expertise in data security and legal guidance in developing secure data sharing 
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procedures. Research protocols typically include highly sensitive private data in large 

quantities, best managed by a small number of specific institutions, given limited data 

sharing incentives. Limited and targeted data sharing can ensure that high-risk data are 

stored and curated only in specific organizations, including domain-specific 

repositories for genetic research, secure servers, resource-intensive or frequently-

updated datasets on high-access-need abstracts. Cloud-based services with strong 

security do provide rapid access and can enable investigators to build scenarios. 

Data from private organizational servers can be shared to external collaborators in 

either of two different approaches that protect data: Identify-external control/agency-

based solutions keep granular information about data identifiers and possible 

actionable data housed together in secure local servers at external collaborator 

institutions that guarantee high accountability. Support-shared identifier-based 

solutions create a structural mapping between distant identify changes in database and 

development of a controlled set of supported mapping identifiers that could never 

make the shared data usable by third parties. An estimate of the identifiers given 

vulnerabilities for many data use cases using encryption, secure multiparty 

computation, or differential data privacy could provide useful guidelines for queries. 

Aggregated data groups by the pillar identifier, temporally delocalized access could 

also be appropriate for either solution. 

7.3. Regulatory Compliance and Ethics 

Beyond security, legal compliance and ethics of data sharing are major concerns. First, 

data holders have to check whether their data creation/regeneration process is 

compliant with relevant regulations. If the answer is no, the data cannot be shared 

regardless whether a secure solution is in place because the organization may be 

subject to severe penalties. These violations stem from legally established principles on 

which several laws rely. Regulations are not only about data transfer to third-party 

organizations, but also about the purpose of the data collection and how the subjects of 

the data are informed. In particular, principles of lawfulness, fairness, transparency, 

purpose limitation, data minimization, accuracy, storage limitation, integrity, and 

confidentiality must hold when collecting personalized data. Furthermore, there is a 

strict definition of patient data, as well as a specific protocol of how to handle it. 

Additionally, many countries have recently promoted new laws directed to the ethical 

use of AI technologies. AI systems must avoid bias and discrimination against 

historically marginalized groups, offer appropriate recourse measures when things go 

wrong, and show transparency and explainability. 

Second, even if the compliance check is passed, organizations holding sensitive data 

may still be reluctant to share/publish it, as well as associated features not protected by 
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regulations. Secure solutions implementing differential privacy may use parameters or 

be configured in a poorly designed way. Releasing more criteria about differential 

privacy mechanisms would reassure stakeholders that the proposed methods are 

adequately privacy-safe. Addressing ethical concerns on data sharing is a growing 

topic in machine learning. Broadly, two methods have been discussed: improved 

methods that address the shortcomings of traditional approaches and solutions that 

mitigate historical biases. 

8. Federated Learning 

Yet, multiple analytical purposes demand joint access to health or climate data on the 

level of single individuals, such as personalizing interactive systems or studying health 

or climate disparities. In this case, federated learning could enable joint model training 

without exposing sensitive data to each other. Federated learning was developed in the 

context of deep learning and enables a set of parties to train a centralized model 

collectively without accessing each other's picture datasets. Each party trains the model 

on its own data and sends the trained model parameters to a central server, which 

aggregates these updates and uses them to improve the centralized model. The central 

server orchestrates the data exchange but never has access to the data. Federated 

learning is based on the observation that AI models can use a useful amount of 

knowledge after being trained through many iterations on huge datasets without having 

access to the dataset in a standard way. This solution allows parties who do not trust 

each other with their local data to still benefit from joint model training and thus larger 

training datasets. 

In health, federated learning has been proposed for problems such as estimating the 

risk of brain aneurysms or predicting the severity of COVID-19. In climate, its use for 

coupling Earth system models has been explored. Though very promising from an 

ethical point of view, federated learning is still comparatively immature and 

participation is cumbersome. Second, federated learning is a challenging solution that 

requires a broad research basis and the infrastructures to implement it in certain niches. 

In particular, it is hard to optimize a centralized model through the contributions of 

local models that were not trained more than on five epochs. This is especially true if 

those datasets differ starkly in size and nature. We will not be able to do federated 

learning without overhead and some knowledge of the model to be trained. 

8.1. Overview of Federated Learning 

Federated Learning is a novel approach to machine learning that enables multiple 

individual users to train a common model collaboratively, whilst minimizing the 

sharing of sensitive and private data. Centralized machine learning has shown 

impressive success across numerous domains, yet data-driven health and climate 
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science applications often require individual user data sharing to achieve model 

generalization and utility. This is especially critical in highly heterogeneous user 

settings, where individuals avail very limited amounts of data with potentially 

idiosyncratic patterns. However, sharing private user data can cause major privacy 

concerns or heavy regulatory constraints, especially in health domains, where there are 

strict legal guidelines on sharing patient data, and in climate science, where the 

original data may belong to individual users. Further, centralized methods for model 

training present additional barriers, especially in health domains. Sensitive data, such 

as genomic data, can be gargantuan in size. Storing that data in a central repository, 

even temporarily, is both costly and time-consuming. 

Federated Learning addresses these problems. On the surface, it is a distributed 

optimization solution, wherein model parameters are jointly optimized by iteratively 

exchanging updates between a central server and multiple distributed clients. Clients 

running local copies of the global model use their own data to update model 

parameters, and send these updates to a central server. The server aggregates updates to 

get a better version of the model parameters, and communicates them back to clients to 

repeat the process. FedAvg, the first federated learning method, enables efficient 

training on distributed client data by using a synchronous variant of a simple 

algorithm. Clients run local stochastic gradient descent for multiple epochs before 

sending their updates to the server, thereby reducing communication cost. Data 

heterogeneity across clients leads to many challenges in implementing FedAvg 

effectively. These challenges have motivated a host of subsequent methods. For 

instance, adaptive methods take data heterogeneity into account when optimizing, 

enabling faster convergence. Other solutions adopt new frameworks for reducing 

downtime during the optimization, such as allowing asynchronous methods. 

8.2. Benefits for Health and Climate AI 

Federated learning allows for training powerful but complex models on sensitive data 

scattered across institutions without requiring organizations to pool their data, which 

could otherwise violate data sharing agreements or data privacy regulations. There are 

additional potential advantages specific to the realms of health and climate. Federated 

learning allows for a much lower barrier to developing AI tools in sensitive fields and 

have those tools be leveraged by many organizations while potentially enabling more 

fair solutions that are more aware of marginalized groups. Federated learning allows 

for the scalable development of generalizable AI methods that can produce better 

results for many, while intentionally avoiding the biases often hardcoded in non-

federated products from consideration. These solutions may additionally require less, if 

any, data sharing. 
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Due to both data privacy and data sharing concerns, there is often a lack of large global 

datasets available for training the powerful AI tools of today. Achieving good model 

performance for these fields typically requires fine-tuning the model that was trained 

on the largest dataset available. However, the risk of overfitting to a single location is 

very high in these fields. Federated learning allows for a large initial training on 

diverse, though sensitive datasets to ensure better performance without the dangers of 

overfitting with fine-tuning on only a single dataset. In fields like health and climate 

where the repercussions of failure are high, utilizing techniques like federated or multi-

task learning are essential for developing truly generalizable tools. 

8.3. Implementation Challenges 

Although FL has an inexpensive communication cost and delivers a more personalized 

and higher-utility AI model than traditional approaches, the implementation of FL has 

several critical challenges. First, FL introduces additional non-IID data and system 

challenges. Non-IID data refers to the straggler issue, where only a few clients may 

generate model updates based on a small number of training samples. Existing studies 

have shown that the performance of federated-mask training relies heavily on the 

selection of the learning rate schedule. The difficulty of the worker-specific 

optimization hazards will cause the divergence of the global model. Such a divergence 

phenomenon severely degrades model performances compared to traditional 

centralized learning. The server may discard the model update sent by a single client if 

it infers that the uploaded gradient is contributed by a few outliers, which could 

increase the generation of outliers from untrusted clients and also other non-IID 

problems. The non-IID problem is further complicated when the implemented AI 

model has different memory and computation footprints. Another critical challenge is 

that FL suffers from a lack of monitoring mechanism for edge and server devices. 

Considering the privacy concern of end-users, confidentiality and integrity assurance 

of the global AI model in FL research is intrinsic since model update aggregation and 

sharing have a lot of privacy risks. As the parameters of a model may capture sensitive 

information that can be utilized by attackers to expose the private training data, the 

aggregated model may leak sensitive information about all clients. These privacy 

problems may cause stigma and social distrust among the users who may have 

sensitive data in the training set. The stigma and distrust about critical data can make 

the model inaccurate in sensitive task areas and, in turn, the service provided by the AI 

model may not be reliable. The non-IID data and stigma problems are particularly 

important in health domain AI solutions, where the data have privacy and trust issues. 

Data and model integrity assurance is essential to avoid adversarial examples in deep 

networks. If a malicious user succeeds in proposing an adversarial example that is mis-
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classified, the performance of that AI model in real-world operations may degrade and, 

accordingly, may generate a service threat. 

9. Integration of Technologies 

This section describes the available and planned n-tier stacks, exposing the functional 

components needed to easily integrate and extend health and climate AI systems. We 

highlight the interaction pipelines using cloud-native and serverless technologies and 

microservices, exploiting caching and Pub-Sub models to share among systems 

intermediate and near-real time outcomes from core AI pipelines. These add-up to the 

batch pipelines triggering compressed batch processing and long-term storage of AI 

outcomes typically based on data lakes aligned with cloud Processing and Analytics 

services. Such n-tier stacks are designed to optimise the integration and security of 

third-party modules and shared infrastructure, co-location of core services and data, as 

well as near-real time batch-triggering and in-batch notifications required to 

orchestrate and monitor the parallel processing of fragile multi-source and unforeseen 

geolocal mappings. 

We also introduce the principles and available tools for SOA-based interoperability. It 

is implemented between activable components providing REST APIs and/or exposing 

Pub-Sub channels, via a front API gateway and event routers modules. Thus, it 

advertises APIs’ location and components notifying of events triggering third-party 

services activations, open to external microservices and modules sitting behind their 

private channels and gateways. Such automations are coordinated through a SOA 

interface defined meta model and catalogue. It allows model creators to expose 

catalogue items’ templates, enforced by defined hooks and security constraints. It is 

used by Data Administrators to schedule flows, which has a light footprint. Thus, we 

take advantage of previously scheduled data caches able to reuse channel paths to be 

invoked upon changes in inputs published by third parties. 

9.1. Combining Cloud-native, Microservices, and Data Pipelines 

Developing a scalable architecture for health and climate AI is about more than simply 

selecting a technology stack. At each layer of a software stack, different technologies 

interact together to produce real-world systems. When we develop a specification of a 

computational system, we may be working at any of a number of levels and then we 

may be able to descend down to lower levels or we may need to map across domains. 

For instance, we may specify a pipeline processing satellite images that we then 

implement on a cloud native microservice stack. 

We also need to carefully consider the shapes of the data as they flow through the 

various layers of the technology stack. They may flow through the various stages of a 
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pipeline for media processing as transitory artifacts, stored in different forms in a 

database, or batched on disk or in memory for processing by analytics functions. In our 

work, this various data shapes usually lie at the interfaces and the key points of 

integration between technologies. For example, the microservice that is installed onto a 

clustering of serverless functions may be invoked by request-response or other 

protocols. Stored data may be managed by cloud services or have a more conventional 

access method. These services and functions may be automatically controlled by 

orchestration tools or called up from a standard programming language. Functions on 

cloud storage may be accessed by batch and streaming services. 

9.2. Interoperability Between Systems 

Interoperability is a core principle of scalable architecture used in design, 

documentation, and deployment of software applications. It is an essential part of 

scalable architecture as it defines how two independent applications can work together 

to share data and tasks. An example of allowing two applications to share and 

communicate with one another with defined interface and contract is the use of APIs or 

application programming interfaces. The API ecosystem has become complex with 

different standards of API represented by various interfacing applications, in addition 

to a myriad of standards of document-based messaging through different formats or 

protocol-defined messaging. Relative advantages and disadvantages of each of the 

available choices of implementing API are trade-offs between bandwidth efficiency, 

latency, ease of use, and discoverability for request-response lifecycle of data flow. 

Existing software tools and libraries have been created to offer these different types of 

available API in boxes. Either implemented by others and made open-source or 

released as commercial offerings. Furthermore, there are software tools that offer API 

wrappers for ease of use for developers to quickly encapsulate any underlying data 

flow faster with less hand-coding, thus speeding up the development of vertical 

applications. Additionally, there are available tools from middleware developers for 

managing and monitoring all types of API services for developer services. These tools 

also include authorization and access control services. API gateways allow internal and 

external APIs to be listed, called, and permission-checked for both types of services. 

9.3. Future Trends and Innovations 

Hybrid cloud and on-prem systems will continue to become more common, 

particularly in health and climate where we’ve got long data investigation times but 

potentially need the processing of the cloud for very short windows of time. Thereby 

enabling reduced friction and improved collaboration between researchers, scientists, 

and the tech platforms, we will see highly specialized role-based data sets with limited 
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compute support are made available and rack space for charging for both access to the 

resource and data will be used by larger organizations to seamlessly share their 

specialized data under very limited conditions. We are starting to see the impact of 

very large foundational models trained with compute at the discretion of scientists who 

sees value in creating enormous integrations of not only health data but also other risk 

related areas – such as genomic, and other anthropological insights – can be mixed 

with climate modeling data. With inter-operable tools spanning all of those specialized 

domains, recent research demonstrates that this sort of foundational work can lead to 

vastly improved new generation tools for both data analysis and risks modeling. 

Highly structured resources will be created to be built upon while remaining locked 

down to brass tax so that massive scrutiny can be put into those foundational resources. 

The next big jump in scale won’t be from the use of the current resources available but 

from the researchers able to authorize the clear use of the wide variety of tools and 

technologies needed to solve these massively multi-dimensional yet converging and 

distinct challenges. We are increasingly working with consortiums of local health 

policymakers with wide insight into both health trends and distinct health indicators for 

various groups who use their authoritative voice to both clarify the parallel but super-

distinct work that each scientist is doing – often with disparate groups, data access, and 

research goals – can be peeled off so that all the work is transparent yet distinct. 

10. Case Studies 

To illustrate the working concepts of scalable architectures for hybrid digital-twin AI, 

we summarize a few projects and their outcomes. The novel reusable infrastructure 

building-bits described above were applied during these implementations, allowing us 

to avoid falling into common architectural challenges and scalability traps. Notably, 

there are no other examples of similar multilayer interoperable architectures, especially 

in climate and public health domains. During the "temporary suspension of regular 

data collection", the focused collaborative implementation with local partners of 

layered, explained, transparent and reusable digital twins of populations, people, and 

systems is an opportunity to be seized now and prepare for "better, safer, health 

systems, and planetary health in a post COVID-19 world". Examples and project 

themes may be broadly grouped into Health AI, and Climate AI. 

The Health AI applications revolve around the Resident Safe Cities data assembly and 

the City Health Score, using local health data from the addressable resident population 

with local customized actionable intelligence and advice. Variable-source and variable-

destination SCOR "Smart Cores On the Road" pace and modes composition data is 

collected and analyzed to inform advice about prevention and possible amelioration of 

the major burden of preventable disease and reduce the diseases of desolation such as 
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anxiety, depression and loneliness. Scalable, explainable, and understandable 

recommendations can be produced depending on the data availability and destination. 

Community Hotspots are “color coded” and further recommendations are given when 

cities face spikes in empty space with no residents. 

10.1. Health AI Applications 

Health and healthcare are domains where scalable models have traditionally played a 

minor role. Perhaps the greatest deployment of AI/ML techniques in public health is 

prediction of health resource needs such as hospital capacity, intensive care availability 

or health need due to disease spread from proxy modalities that change more 

frequently than disease outcomes such as hospital utilization in response to flu or RSV. 

Recently, several modeling teams have transitioned from prediction based on inverse 

modeling trained with frequent proxy information to prediction with direct models that 

require no training or rely on very sparse training due to the long intervals between 

previously available disease data instances. Disease prediction throughout an episode 

is useful for helping coping resource allocation and health management decisions 

including case isolation. 

Expansion of deep learning into emission reduction from people and businesses makes 

health impact modeling of emissions-attributed diseases and other exposure-attributed 

diseases high-impact health application areas that are, however, not yet well-scaled 

applications. Exposure-response models are commonly fitted to country-level exposure 

data, so they need to be dis-aggregated to health prediction resolution. Over and under-

aggregation can cause large uncertainty in the disaggregated estimates of health 

impacts. Population scaling relationships for disease prediction may also be nonlinear 

or may differ across regions. Resume utilization is distinctive by country. Therefore, it 

is important to set separate parameters by country. These distinctions motivate careful 

consideration of how controllable factors differ across regions so that they can be 

incorporated in causal and statistical health models. 

10.2. Climate AI Applications 

Climate AI systems are AI applications deployed to address challenges of climate 

change. They are also part of the general family of AI systems applied to climate 

science and geography, inexpensively automating many labor-intensive tasks within 

these fields. 

Climate Change Monitoring from Space. A new generation of Earth observation 

satellites are providing the remote sensing data required to support Climate AI services 

at new levels of detail. Satellite systems are providing daily or frequent revisit 

coverage of Earth at high resolution. This data is being used to help governments, 
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insurers, non-profit groups, and scientists understand where present-day climate 

models are failing to properly incorporate human activity, and to help improve climate 

model projections into the future. Using these higher resolution observations will better 

calibrate models of land-use change, agriculture productivity, forest biomass, 

greenhouse gas emissions, and other systems highly dependent on local human activity 

and practices. 

Climate-informed Decision Making and Reporting, at scale. Increasingly governments, 

corporations, and enterprises are under incentives to become better corporate citizens, 

to report on their own emissions, and to build out sophisticated emission-reduction 

plans. In turn, they have to process vast quantities of climate data, including satellite 

observations, weather and climate forecasts, climate projections, and more. Climate AI 

systems can help in structuring markets for carbon attributes, or in directly governing 

the reporting, verification, and reconciliation of carbon attributes stimulating the 

International Carbon Markets, estimated to become a trillion dollar market. 

10.3. Lessons Learned from Implementations 

There is no lack of scalable architectures or systems for AI hardware and software in 

the world today. In the area of AI operations for third party cloud services, there are 

companies that offer specific and unique solutions for model training, model serving, 

data storage, or data labeling; companies that specialize on the optimization of AI 

algorithms; and companies that provide solutions to speed up the deployment and 

operation of AI-enabled applications. Here we only discuss a few lessons learned from 

our own implementations of AI solutions for health and climate problems. 

Multi-modal systems are easier to build than single modal ones, as more mature and 

more functional interfaces are available for end users. For several projects with air 

quality public dashboards, for example, we were able to obtain visitors feedback 

through image overlays and visual recognition, instead of explicitly asking for their 

opinion about the air quality on the area. Latent spaces learned from one modality can 

be a good initialization for other modalities. For example, early versions of a project 

were based on a computer vision system trained only with images of faces wearing or 

not wearing masks, and able to segment the whole image area with head detection and 

mask wearing information in the latent space; It was re-trained with user tissues and 

health behavior data, and then supplemented with real-time hospital admission and 

mortality information; And adapted for the several user groups and geographical areas, 

until able to provide accurate and reliable local predictions. Another example where 

latent representation knowledge transfer worked well was during implementation of 

deep learning tools for the matching of names in public records data sources. A 

template matching tool for image segmentation of handwritten documents did an 
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excellent job to suggest similar records generated with different forms or spelling 

variations; And even for different recorders handwriting. 

11. Conclusion 

AI has the potential to be an essential tool to help society deal with unprecedented 

challenges associated both with climate change and the many aspects of the related 

intricacies governing the health of the population. The scalable architectures, resource 

utilization and research agendas defined in this text should be taken into account when 

developing innovative algorithms, and applications leveraging existing and or novel AI 

methods to solve problems of great urgency and to create great societal and economic 

impact. The traces or footprints left behind by the efforts of developing such 

algorithms and applications as well as the datasets released into the public domain for 

the sake of speeding up present and future technological innovation must comply to 

both business ethics and regulation so that they accelerate progress and do not 

exacerbate the inequalities linked to the digital divide. 

We also encourage researchers and companies from all AI-related sectors to take on 

board and act upon the advice provided regarding explainability and transparency of 

the intelligent assistants they conceive and deploy and the AI-supported decision-

making flows into which they are integrated. The deployment of intelligent assistants 

in sensitive domains linked to our daily life that other industries have irresponsibly 

postponed and or resisted should be validated beforehand through a variety of 

processes that require the involvement of experts in the six stages mentioned: (Human) 

problem formulation; efficient and effective data collection; intelligent assistant train-

test; validation and deployment; public and private exploitation; and monitoring and 

surreptitious improvement. 

Above all, we invite the readers of this text to join forces and collaborate. Only 

together can we overcome the many barriers and obstacles currently preventing an 

effective use of AI for Health and Climate. Only together can we work upon what is 

currently a molecular approach rather than a systemic one in the attempt to leverage 

the many scientific and technological capacities Artificial Intelligence is empowering 

to tackle the Health and Climate challenge at scale. 

References 

[1] Ueda D, Walston SL, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, Yamada A, 

Yanagawa M, Ito R, Fujima N, Kawamura M. Climate change and artificial intelligence in 

healthcare: Review and recommendations towards a sustainable future. Diagnostic and 

interventional imaging. 2024 Nov 1;105(11):453-9. 



240 

 

[2] Kodakandla N. Scaling AI responsibly: Leveraging MLOps for sustainable machine 

learning deployments. International Journal of Science and Research Archive. 

2024;13(1):3447-55. 

[3] Sai S, Chamola V, Choo KK, Sikdar B, Rodrigues JJ. Confluence of blockchain and 

artificial intelligence technologies for secure and scalable healthcare solutions: A review. 

IEEE Internet of Things Journal. 2022 Dec 29;10(7):5873-97. 

[4] Kaack LH, Donti PL, Strubell E, Kamiya G, Creutzig F, Rolnick D. Aligning artificial 

intelligence with climate change mitigation. Nature Climate Change. 2022 Jun;12(6):518-

27. 

[5] Giuliani M, Zaniolo M, Castelletti A, Davoli G, Block P. Detecting the state of the climate 

system via artificial intelligence to improve seasonal forecasts and inform reservoir 

operations. Water Resources Research. 2019 Nov;55(11):9133-47. 

[6] Rutenberg I, Gwagwa A, Omino M. Use and impact of artificial intelligence on climate 

change adaptation in Africa. InAfrican handbook of climate change adaptation 2020 Oct 

24 (pp. 1-20). Cham: Springer International Publishing. 

[7] Tariq MU. Leveraging artificial intelligence for a sustainable and climate-neutral economy 

in Asia. InStrengthening sustainable digitalization of Asian economy and society 2024 

(pp. 1-21). IGI Global Scientific Publishing. 

[8] Panda SP. Artificial Intelligence Across Borders: Transforming Industries Through 

Intelligent Innovation. Deep Science Publishing; 2025 Jun 6. 

[9] Panda SP, Muppala M, Koneti SB. The Contribution of AI in Climate Modeling and 

Sustainable Decision-Making. Available at SSRN 5283619. 2025 Jun 1. 

[10] Shivadekar S. Artificial Intelligence for Cognitive Systems: Deep Learning, Neuro-

symbolic Integration, and Human-Centric Intelligence. Deep Science Publishing; 2025 Jun 

30. 

[11] Ballestar MT, Martín‐Llaguno M, Sainz J. An artificial intelligence analysis of climate‐

change influencers' marketing on Twitter. Psychology & Marketing. 2022 

Dec;39(12):2273-83. 

[12] Rodriguez-Delgado C, Bergillos RJ. Wave energy assessment under climate change 

through artificial intelligence. Science of the Total Environment. 2021 Mar 

15;760:144039. 

[13] Panda SP. Securing 5G Critical Interfaces: A Zero Trust Approach for Next-Generation 

Network Resilience. In2025 12th International Conference on Information Technology 

(ICIT) 2025 May 27 (pp. 141-146). IEEE. 

[14] Bird LJ, Bodeker GE, Clem KR. Sensitivity of extreme precipitation to climate change 

inferred using artificial intelligence shows high spatial variability. Communications Earth 

& Environment. 2023 Dec 12;4(1):469. 

[15] Ajagekar A, You F. Quantum computing and quantum artificial intelligence for renewable 

and sustainable energy: A emerging prospect towards climate neutrality. Renewable and 

Sustainable Energy Reviews. 2022 Sep 1;165:112493. 

[16] Rane J, Chaudhari RA, Rane NL. Data Privacy and Information Security in Deep Learning 

Applications: Risk Assessment and Patient Safety Protocols for Big Data Analytics. 

Ethical Considerations and Bias Detection in Artificial Intelligence/Machine Learning 

Applications. 2025 Jul 10:54. 



241 

 

[17] Li JJ, Bonn MA, Ye BH. Hotel employee's artificial intelligence and robotics awareness 

and its impact on turnover intention: The moderating roles of perceived organizational 

support and competitive psychological climate. Tourism management. 2019 Aug 

1;73:172-81. 

[18] Tzuc OM, Gamboa OR, Rosel RA, Poot MC, Edelman H, Torres MJ, Bassam A. 

Modeling of hygrothermal behavior for green facade's concrete wall exposed to nordic 

climate using artificial intelligence and global sensitivity analysis. Journal of Building 

Engineering. 2021 Jan 1;33:101625. 

[19] Mohapatra PS. Artificial Intelligence-Driven Test Case Generation in Software 

Development. Intelligent Assurance: Artificial Intelligence-Powered Software Testing in 

the Modern Development Lifecycle. 2025 Jul 27:38. 

[20] Imanian H, Hiedra Cobo J, Payeur P, Shirkhani H, Mohammadian A. A comprehensive 

study of artificial intelligence applications for soil temperature prediction in ordinary 

climate conditions and extremely hot events. Sustainability. 2022 Jul 1;14(13):8065. 

[21] Tian P, Xu Z, Fan W, Lai H, Liu Y, Yang P, Yang Z. Exploring the effects of climate 

change and urban policies on lake water quality using remote sensing and explainable 

artificial intelligence. Journal of Cleaner Production. 2024 Oct 10;475:143649. 

[22] Rodríguez-González A, Zanin M, Menasalvas-Ruiz E. Public health and epidemiology 

informatics: can artificial intelligence help future global challenges? An overview of 

antimicrobial resistance and impact of climate change in disease epidemiology. Yearbook 

of medical informatics. 2019 Aug;28(01):224-31. 

[23] Mohapatra PS. Artificial Intelligence-Powered Software Testing: Challenges, Ethics, and 

Future Directions. Intelligent Assurance: Artificial Intelligence-Powered Software Testing 

in the Modern Development Lifecycle. 2025 Jul 27:163. 

[24] Chen L, Chen Z, Zhang Y, Liu Y, Osman AI, Farghali M, Hua J, Al-Fatesh A, Ihara I, 

Rooney DW, Yap PS. Artificial intelligence-based solutions for climate change: a review. 

Environmental Chemistry Letters. 2023 Oct;21(5):2525-57. 

[25] Cowls J, Tsamados A, Taddeo M, Floridi L. The AI gambit: leveraging artificial 

intelligence to combat climate change—opportunities, challenges, and recommendations. 

Ai & Society. 2023 Feb;38(1):283-307. 

[26] Huntingford C, Jeffers ES, Bonsall MB, Christensen HM, Lees T, Yang H. Machine 

learning and artificial intelligence to aid climate change research and preparedness. 

Environmental Research Letters. 2019 Nov 22;14(12):124007. 

[27] Singh S, Goyal MK. Enhancing climate resilience in businesses: the role of artificial 

intelligence. Journal of Cleaner Production. 2023 Sep 15;418:138228. 

[28] Kadow C, Hall DM, Ulbrich U. Artificial intelligence reconstructs missing climate 

information. Nature Geoscience. 2020 Jun;13(6):408-13. 

[29] Nordgren A. Artificial intelligence and climate change: ethical issues. Journal of 

Information, Communication and Ethics in Society. 2023 Jan 31;21(1):1-5. 

[30] Leal Filho W, Wall T, Mucova SA, Nagy GJ, Balogun AL, Luetz JM, Ng AW, Kovaleva 

M, Azam FM, Alves F, Guevara Z. Deploying artificial intelligence for climate change 

adaptation. Technological Forecasting and Social Change. 2022 Jul 1;180:121662. 



242 

 

[31] Luccioni A, Schmidt V, Vardanyan V, Bengio Y. Using artificial intelligence to visualize 

the impacts of climate change. IEEE Computer Graphics and Applications. 2021 Jan 

14;41(1):8-14. 

[32] Verendel V. Tracking artificial intelligence in climate inventions with patent data. Nature 

Climate Change. 2023 Jan;13(1):40-7. 

[33] Amiri Z, Heidari A, Navimipour NJ. Comprehensive survey of artificial intelligence 

techniques and strategies for climate change mitigation. Energy. 2024 Nov 1;308:132827. 

[34] Khan MH, Wang S, Wang J, Ahmar S, Saeed S, Khan SU, Xu X, Chen H, Bhat JA, Feng 

X. Applications of artificial intelligence in climate-resilient smart-crop breeding. 

International Journal of Molecular Sciences. 2022 Sep 22;23(19):11156. 

[35] Panda SP. Relational, NoSQL, and Artificial Intelligence-Integrated Database 

Architectures: Foundations, Cloud Platforms, and Regulatory-Compliant Systems. Deep 

Science Publishing; 2025 Jun 22. 

[36] Akomea-Frimpong I, Dzagli JR, Eluerkeh K, Bonsu FB, Opoku-Brafi S, Gyimah S, 

Asuming NA, Atibila DW, Kukah AS. A systematic review of artificial intelligence in 

managing climate risks of PPP infrastructure projects. Engineering, Construction and 

Architectural Management. 2025 Mar 28;32(4):2430-54. 

[37] Zhao C, Dong K, Wang K, Nepal R. How does artificial intelligence promote renewable 

energy development? The role of climate finance. Energy Economics. 2024 May 

1;133:107493. 

[38] Pimenow S, Pimenowa O, Prus P. Challenges of artificial intelligence development in the 

context of energy consumption and impact on climate change. Energies. 2024 Nov 

27;17(23):5965. 

[39] Yang T, Asanjan AA, Welles E, Gao X, Sorooshian S, Liu X. Developing reservoir 

monthly inflow forecasts using artificial intelligence and climate phenomenon 

information. Water Resources Research. 2017 Apr;53(4):2786-812. 

[40] Suura SR. Integrating Artificial Intelligence, Machine Learning, and Big Data with 

Genetic Testing and Genomic Medicine to Enable Earlier, Personalized Health 

Interventions. Deep Science Publishing; 2025 Apr 13. 

[41] Fousiani K, Michelakis G, Minnigh PA, De Jonge KM. Competitive organizational 

climate and artificial intelligence (AI) acceptance: the moderating role of leaders’ power 

construal. Frontiers in Psychology. 2024 Mar 25;15:1359164. 

[42] Da Silva RG, Ribeiro MH, Mariani VC, dos Santos Coelho L. Forecasting Brazilian and 

American COVID-19 cases based on artificial intelligence coupled with climatic 

exogenous variables. Chaos, Solitons & Fractals. 2020 Oct 1;139:110027. 

[43] Lozo O, Onishchenko O. The potential role of the artificial intelligence in combating 

climate change and natural resources management: political, legal and ethical challenges. J 

Nat Resour. 2021;4(3):111-31. 

 

 

 



243 

 

 

Chapter 11: Experimental Methodology and Validation 

Strategies 

Samit Shivadekar 

University of Maryland Baltimore County and Research Associate at Center for Accelerated Real Time 

Analytics (CARTA) UMBC, United States 

 

 

 

1. Introduction to Experimental Methodology 

Experimental research is used to evaluate changes and their effects on a given 

response. In the expression change, it is meant the change of the values of one or more 

factors, whose levels can be modified, which is normally carried out in the process 

where the evolution of the response is evaluated under all those conditions where it 

should behave differently. The access to the conditions where the response behaves 

differently is in practical applications unfeasible, because it would imply the 

consideration of errors of considerable magnitude [1,2]. Nevertheless, it is possible to 

create controlled conditions in observations, for instance, modifying block parameters 

that are previously defined in their levels for a period long enough to evaluate changes 

in the response. Each change should be assessed with a minimum number of 

repetitions. 

Experimental research can be performed in isolated experiments or a set of 

experiments that are jointly evaluated. The first ones evaluate problems at design time, 

but the second ones allow assessing instructions provided on line during the operation 

of the system. The isolated experimental methodology is more developed than the joint 

experiments one, that are usually performed by sets of replicated space-time 

observations that are used to eliminate the influence of randomness by their average 

over time. Both methodologies can be used to estimate models that are going to be 

applied in order to control the operation conditions of the process to keep its response 

at the levels that prevent undesired events caused by the errors in the influential factors 

or to minimize the effects of their changes. 
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Non-systematic experimental questioning procedures are often the only available way 

to improve the behavior of complex systems, since other available techniques are not 

easily applicable or simply unfeasible [3-5]. However, performing experimental 

research in the real world raises a fundamental issue. In existing systems, all factors of 

the systems are involved in the observed response. Actually, the response is influenced 

by changes in the levels of these factors. Assessing the joint effects on the system 

response of all these factors, some entirely foreign to the particular subject of study, 

would require an impractical effort to apply all possible ways. 

2. Cross-Domain Benchmarking 

Despite the broad applicability of deep learning in geoscience, enabling data-driven 

discoveries from sensor observations, core tenets of experimental methodology are still 

observed only in select studies – with the majority of models developed in domain-

specific silos. In the scientific craft of developing a new model, common pitfalls 

include overfitting, lack of reproducibility, claiming superiority of models that share 

the training dataset, and missing truly independent test datasets. Cross-domain 

community efforts aim to remedy these gaps by providing platform-agnostic 

downloadable model weights; also including peer-reviewed experimental methodology 

and validation strategies. Going further, cross-domain benchmarking studies are 

particularly valuable as they address the very real concerns of stakeholder communities 

that already exist in silos, including finance, energy, transport, ecosystems, agriculture, 

and health – in doing so forming unexpected interdisciplinary collaborations among 

scientists. To illustrate these tenets of software and experimental methodology and 

validation strategy reuse, as well as scientific collaboration, we detail two cross-

domain examples, and benchmark them against five geoscience-specific studies that 

complete the broader paper overview. 

As first-hand examples of cross-domain benchmarking, recent work translates state-of-

the-art deep learning models from the computational efficiency and accuracy of natural 

images to the rendered images of 3D tomographic reconstructions of patients’ lungs, 

labeled in accordance to the COPD diagnosis by medical experts, and downscaled 

through nearest-neighbor interpolation. Other researchers from disparate institutions 

develop a convolutional neural radiative transfer-specific architecture that outputs the 

accuracy of atmospheric surface solar radiation products collocated with surface 

measures as a function of visible downwelling solar flux for 170 locations over Mexico 

across five years. Because each chosen location-to-collocated satellite pixel association 

at any datetime provides the radiative transfer input, in doing so, they immensely train 

the deep learning model. Performance fingerprints are generated, which quantify the 

varying influence of model inputs to the differences in accuracy across locations and 

dates. 
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2.1. Medical Datasets 

Many medical image analysis methods have been developed in the last two decades. A 

majority of them provide either quantitative or qualitative comparisons within a single 

dataset domain, such as MRI brain images of patients with a certain disease. Binary 

segmentation is the more concentrated on task, as a result achieving higher accuracy. 

This conduct has provoked an exploration concept bias effect that results in overfitted 

algorithms. 

To overcome this domain bias, certain authors have proposed to expose algorithms to 

multiple datasets in the training stage. The key idea is to utilize data from diseased 

patients of diverse origins, scanners and sequences. Unfortunately, few are the works 

that provide benchmarking protocols on the latent space. The reason behind is that pre-

trained networks tend to implode, limiting the exploration of the latent space. We 

benefit from the Boosted Dataset Curation (BDC) digital image processing task that 

was proposed to reduce data heterogeneity. This task consists of generating synthetic 

data using Style Transfer (ST) neural networks that are pre-trained on other data 

domains, e.g. the natural image data domain. This paper goal is to investigate the 

ConvNeXt medical image segmentation task. 

The major shortcoming of the state of the art studies is the fact that they only utilize 

internal datasets without conducting domain adaptation methods nor exploring cross-

domain pretrained encoders. Furthermore, the proposed Boosted Dataset Curation 

(BDC) benchmarking lacks the search for the best resources. In this work, we 

investigate the internal dataset size; the encoder type and the input overlap ratio (IOR) 

for the ConvNeXt based medical image segmentation task for two different 

architectures with, respectively 25M and 88M parameters. We focus exclusively on the 

Contrastive Learning pre-training phase as it is the more tutor-inductive phase (i.e. it 

provides better inductive biases). The scientific features of the ConvNeXt architecture 

are related to a series of architectural modifications proposed in Vision Transformers 

for better tailoring images. These changes are replaced from the Conv2D-Maxpool 

block to Boosted CNNs (BCNNs). 

2.2. Atmospheric Datasets 

The atmospheric domain consists of different subdomains like thermodynamics, 

radiation or cloud physics. Here, we demonstrate our transfer function on selected 

atmospheric variables simulated or observed worldwide over the last decades. The data 

can be used for validation of new modeling approaches or perform cross-domain 

assessments. In state-of-the-art numeric weather or atmospheric reanalyses models, 

different physical processes are solved. Due to the different physical solving 
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approaches, correlations between predicted and observed data are on a lower level for 

atmospheric models than expected. With the presented transfer function, narrow 

mapping functions for model parameters can be derived, so that a post-processing step 

could bridge the gap between model and observed data, reducing further discrepancies. 

Forecasting or analyzing weather data is crucial for our everyday life, starting from 

when to take an umbrella with us, to how much snow to expect when going skiing. 

Physically based models for atmospheric simulations have a strong tradition supporting 

foreign applications like machine learning or deep learning. Still, the output of 

atmospheric physics-based models can lack realistic detail compared to high-resolution 

observations. The purpose of the Transfer Function is to estimate expected high-

resolution observations from the output of a low-res and/or low detail physically-based 

model for atmospheric simulations, supporting various applications, like the reduction 

of perceived clouds from low-res satellite data. For the probabilistic Transfer Function, 

we show results for 6, 12, and 24-h lead time for precipitation, 2-m temperature, 10-m 

wind, and TOA radiation (upward and downward). 

3. Evaluation Metrics 

In supervised classification problems, the main goal of performance evaluation metrics 

is to allow the analysis of model prediction accuracies and thereby provide guidance to 

the user on the selection of models based on their specific needs and requirements. 

Performance metrics are usually related to types of costs associated with 

misclassifications such as computational expenses or misclassification penalties. The 

general measure for classifier accuracy is the proportion of verification samples that 

are correctly classified. The following equations provide a set of accuracy metrics for 

evaluating classification performance and are widely used for classification studies. 

Let a set of S denote the samples used for performance evaluation, in which N is the 

number of samples in the set S. Also let a set of P be the set of corresponding predicted 

labels of the samples in S. The accuracy, ACC, sensitivity (or true positive rate), TPR, 

and false negative rate, FNR, can be computed as follows: 

where GT is the set of corresponding ground truth labels of the samples in S, and 

Ctotal is the total number of unique labels in both the predicted and ground truth sets. 

The accuracy metric can be used to provide information on the ability of the model to 

generalize over the training data (i.e., no or low overfitting) as well as the hold-out test 

set if a suitable number of tests have been performed. It is advisable not to base the 

performance of a model on a single run of the model on the hold-out test set. The true 

positive rate metric can provide insight on the ability of the classifier to correctly 

predict the presence of different classes. It provides information to the user on possible 

misclassification events that may exist for different classes. Possible misclassification 

events can be analyzed from the ground truth labels by delineating classes based on 
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coordinate conditions, or other pre-identified conditions associated with the input 

features. 

3.1. Accuracy 

Many system tasks are evaluated on how accurately they reproduce their intended 

output. The simplest form of incorporation of systems evaluation through accuracy is 

through the correctness of the perceivable output. For example, in generating visual 

images or 3D shapes, the accuracy can be evaluated by directly measuring the 

perceptual distance with that from the ground truth. Most algorithms share a similarity 

in this respect and many ground truth-based datasets exist. The distance metric used for 

evaluation is typically an average of representative samples, across a closely sampled 

grid or random sampling, with the average typically summarizing the geometric 

Euclidean distance of data points from the ground truth or the perceptual distance such 

as the Structural Similarity Index, Peak Signal to Noise Ratio for visual tasks or Point 

to Plane / Point to Mesh distance, Mean Perceptual Distance, Chamfer Distance for 

shape tasks. Some functions, that depend on the type of discrete correspondence used, 

can interpolate between the two. One metric is often defaulted without consideration of 

the task. 

Nevertheless, current methods are unable to approach human capability in many modes 

of generative tasks across a variety of generic and category specific datasets. The 

growing disparity between human capability and automated system accuracy creates a 

need for a specialized system to avoid failure mode collapse since tendency for bias 

sample is a common occurrence in earlier attempts of datasets where learning capacity 

was limited. Often a similar sample shared with the ground truth becomes the default 

with a large disparity between the rest of the samples in the dataset and in high 

accuracy mode of such methods, convinces the evaluator to believe the generated 

sample to be of high quality. All these factors need to be taken into account and while 

accuracy remains ground truth dependent, the task remains the deciding factor for 

importance of accuracy in evaluation too. 

3.2. Area Under the Curve (AUC) 

3.2. Area Under the Curve (AUC) 

In general, supervised learning models learn a mapping from labels and features. The 

problem is that the number of different possible labels can be really large; for example, 

in a typical talk, the number of different ways a speaker can say one sentence can reach 

numbers on the order of hundreds of thousands, simply because there are so many 

possible co-articulated phone variations in any language. So far in supervised learning 

for speech recognition, it is not possible to evaluate the quality of the scores of the 
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learned models because we need a particular correct label for each input. However, 

there exist more metrics to evaluate models than just the WER; in our case, to enable 

also the early selection of promising models during training, we use the number of best 

hypothesis model counts and an incremental extension of this metric, called the AUC. 

The AUC has already shown to be one of the best supervised learning feedback metrics 

in the case of unsupervised deep learning. 

The basic assumption is that to predict the output class of input data with a supervised 

model, sequence-dependent feature maps are learned, mapping speech data into the 

space of possible labels for a specific word. The different phases while computing the 

AUC consist of iteratively computing audio features with the lowest data 

representation error. When the optimal parameters of the speech data are found, the 

model is used to check the common phonetic coincidences of the different possible 

predictions of the model. The output is the word with the highest counts in the space 

for each input audio feature, thus called the AUC (Area Under Curve) metric. 

3.3. Interpretability 

Interpretability is one of the most important properties of computational models, and is 

usually defined as the degree to which a human can understand the cause of a decision. 

Models with increased interpretability can improve trust in their usage, while less 

interpretable models may require more extensive validation to address risk mitigation 

across key stakeholders. Indeed, in models requiring a high degree of trust, decisions 

should be testable and explainable by model creators [6,7]. Work has demonstrated 

that users are typically satisfied with explanations provided by especially interpretable 

models, and that they lead to greater trust in the model’s behavior. Naturally, the most 

interpretable type of model is one that is fully understandable to a lay audience. 

Conversely, complex or black-box models are typically considered not interpretable. 

According to these definitions, our intent is to select an experiment approach capable 

of producing an interpretable predictive model. Experimental approaches that produce 

surrogate predictive models are generally more interpretable. 

Interpretable models are also required to produce interpretable results, including 

coefficients and error metrics, testable hypotheses, and testable model designer 

assumptions. The concept of verifiability is synonymous to interpretability. A more 

complex model is more verifiable if it replicates the results of a simpler or lay model. 

The concept of local explanation translates to interpreting groups of training data. 

Explanatory tools exist that construct visual representations of the decision regions of 

certain classifiers, enabling interpretation of binary classifications across feature 

values. For example, counterfactuals-users-explanations explain a model’s decision by 
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describing a user, or stakeholder, group as in need of special interventions to assist in 

preserving their employment. 

3.4. Robustness 

It is desirable that classifiers are robust not only when the feature set is modified, but 

also when certain properties of the training set, model, or classes in the model are 

modified. For example, robustness of a model is usually evaluated over a set of 

samples not included in the training set and presenting a different distribution. For a 

model to be robust to a modification of the sample distribution means that the 

performance does not significantly drop, and is measured using the performance 

metrics of the classifier. Usually, the validation set is the one used to control for these 

differences, but such modifications may create problems if the validation and test sets 

are separate. Inverse Probability Weighting has been introduced to manage different 

distributions over the training, validation, and test sets. 

Due to the complexity of real world data distributions, as well as the computational 

and human efforts, the size of the training set is much smaller than in other supervised 

learning applications, such as image classification [2,8-10]. Therefore, several 

techniques have been proposed to increase model robustness for classification of small 

samples. Given the size of test sets used for classification, it would be unreasonable to 

propose that robustness of a model to perturbations of the test set should also be 

demonstrated. Nonetheless, it is simple to perturb the test set for certain problems, such 

as in cosmology, where image quality is controlled by the Point Spread Function and 

blurring, contrast, and noise perturbations can be easily made. 

4. Clinical Trials 

When a medical device has successfully undergone experimental methods but has not 

been manufactured and tested in the field, it has the status of an experimental medical 

device. Experimental medical devices retain this investigational status until they have 

successfully done so in the field during clinical trials. Clinical trials differ from other 

forms of research in that they typically take place after a medical device has reached 

the level of maturity specified and demonstrated effectiveness at the accuracy and/or 

precision level specified in the Standards against which the device will be evaluated by 

the appropriate regulatory body [1,11-12]. They differ from the research described in 

prior sections in their methods, purpose, and outcomes of study. 

Clinical trials assess whether a device can perform well when used by the intended 

population as designed, and not just when used by someone who is well-trained, using 

specialized protocols in a controlled environment. Tests are designed to be 

representative of the actual intended user and clinical environment in which the device 
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will be used, with all of its benefits and limitations of intended use. Because of these 

differences, clinical trials differ from other research studies in their design, protocol, 

execution, and data analysis. Standardization of procedures is difficult, and factors 

affecting the outcome may be difficult to control. Therefore, stated goals of the study 

may go beyond efficacy and efficiency, and include sensitivity and specificity, ease of 

use, user interface acceptance, or level of work. Despite these limitations, a clinical 

trial is the most effective and efficient method of determining whether a medical 

device is ready to be marketed. 

5. A/B Testing 

Perhaps the oldest and simplest experimental methodology is A/B testing. In its 

simplest form, A/B testing consists of assigning test subjects into two groups. The first 

group (the control group) is shown the current, baseline example of whatever is being 

studied, while the second group (the treatment group) is shown an experimental 

example that differs from the baseline in a controlled manner. After the test subjects 

interact with the example they were shown, a metric related to performance is 

computed and used to determine how the two groups of test subjects compared, and 

thus whether it is likely that there is a difference between the two conditions. 

A/B testing is used to measure differences in a performance metric between two 

versions of a product or service. For instance, the conversion rate of a webpage could 

be the metric of interest. Problems are typically small in scale and short in duration. 

Because running A/B tests causes test subjects to be assigned to one or two conditions 

with a random assignment, confidence can be easily calibrated using statistical 

sampling methods. When done routinely to evaluate changes to a product or service, 

A/B testing is a form of experimentation that delivers intermediate feedback during the 

development process and thus enables rapid learning. 

6. Stakeholder Validation 

Some validation processes examine the artifacts generated in the activity of designing 

artificial systems. Other validation processes interrogate the adequacy of a particular 

methodology with regards to a particular domain. Both sorts of validation are 

ultimately shallow, epistemologically speaking [13-15]. They do address the questions 

of whether the methodology allows for the successful generation of artefacts, and 

whether it is useful for some applications. The first question is an empirical one 

concerning the relationships between the methodology and the activities of the artefact 

designers. The second states a formal requirement for methodological soundness but 

cannot be addressed by methodology design alone. 
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While addressing these two validation questions is important, they are fairly routine. 

They put the focus on the methodology as a tool for artificial design. Concurrently 

escalating in difficulty is the question of whether the scaffolding provided by the 

methodology leads to any actual improvements in the activity of designing artificial 

systems, and, especially, whether these potential improvements constitute the sort of 

increases in wealth, welfare, and satisfaction of stakeholders that sociopolitical and 

ethical tenets prescribe for the systems developed through this exercise. 

Difficult as it is to assess the impact of a particular methodological framework on the 

work of design, some meta-methodological contract designs demand that the 

methodologies they elaborate be designed for the stakeholders, in a responsible and 

ethical way – the purposeful design of the social scaffolding into which the developed 

systems are ploughed, upon which they rely, and with respect to which they should be 

validated [16,17]. In this sense, the responsible scaffolding of socio-artificial systems 

lies beyond the mere adequate functioning of the artificial systems themselves. 

7. Comparison of Methodologies 

In the previous sections, we have described selected methodologies for exploratory 

validation applied to potentially latent and predictive models. The selection reflects our 

subjective opinion and is not limited to the reviewed methods. In this section, we 

describe the main methodological differences and similarities. 

In the comparison of methodologies, we include a summary of criteria that potentially 

define their applicability, advantages, and disadvantages; validation-oriented variants 

of modeling tasks; and an underlying model framework. The summary of the 

characteristics pertinent to exploratory validation is presented. The validated modeling 

task correspondence is highlighted [12,18-20]. The comparison of the considered 

methods is portrayed. 

Now we briefly discuss mapping the examined methodologies to the model validation 

tasks summarized and elaborated. All validation methods can be considered and 

applied as extensions of model building methods. Statistical data mining methods, as 

well as visualization approaches based on clustering, outlier detection, linear 

regression, and local modeling tasks can be utilized as a potential alternative and 

supplementary answer to the predictive modeling task. Certain algorithms can be 

considered possible answers to the class-imbalance handling problem in predictive 

modeling, albeit with certain limitations. The models of local modeling, clustering 

data, and some outlier detection methods could be used as an answer to the explanation 

of concept distribution problem. The model agnostic validation approaches are 

representatives of information extraction tasks. 
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8. Challenges in Validation 

There are further challenges to validation that are tied to the way the data collection 

and analysis processes were originally set up. The first is that in the family of work 

that usually falls under the label of qualitative research there is an explanation of how 

the data was collected and analyzed as part of the study but often the ‘validation’ 

processes are largely absent [21-23]. For example, take the classic AAR. It is a written 

record of the details of a group discussion that was facilitated to an uncontrolled or too 

poorly controlled degree. That record is of group opinion at that particular point in 

time so not only is it readily interpreted in numerous ways but the ideas raised are 

susceptible to distortion and even distortion by the researcher in his or her subsequent 

analysis. Further confirmation is hardly ever provided. Another simple idea in 

qualitative research is triangulation—that is, use of multiple sources, methods, 

investigators or theoretical perspectives—should increase the accuracy of the findings. 

Such triangulation is rarely found in qualitative studies. Great promises of insight into 

our concerns by qualitative methods are often not reciprocated by concern for 

validation. 

A related challenge for these qualitative methods is that whilst they have become the 

go-to-place for many ideas of practice designers and practitioner instructions, 

qualitative interview programs for the objective of insight generation are remarkably 

absent from the qualitative literature in the main [24,25]. This may indeed be a 

reflection of the starting point for many of the methods—user testing, redundancy 

testing, instructions, prompting, feedback—that are primarily explicative in the 

objective they serve. Indeed famous qualitative researchers writing on practice explain 

these methods solely in terms of the explicative and then propose a conversion process 

design that uses interviews from a validation perspective. In contrast, however, user 

tests, focus groups and the like, are widely used in practice for the validational 

objective [26-28]. Yet the qualitative literature has created a kind of market within 

practice—designing for qualitative work and validating, often at an entirely different 

level, with quantitative methods. Enhanced by the use of qualitative methods described 

by many researchers as being exploratory on an entirely different level of empirical 

concern. 

9. Future Directions in Experimental Methodology 

This chapter emphasized a general framework of strategies that can be employed for 

carrying out experimental research in psychology, psychiatry, and neuroscience. The 

goal of introducing this Experimental Methodology and Validation Strategies 

framework was to provide guidance for the implementation and assessment of 

experimental research strategies and to help improve their quality and previous 
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validation. Yet, as is often the case in science, although introducing a methodological 

framework is a first step towards improving the methodology in future research, 

questions continue to remain. 

In the introduction to this book, we quoted a historical figure who claimed that "nature 

is a book written in mathematical language." Our view is that to make this language 

understandable, we need the right experimental tools and approaches. In this final 

chapter, we will devote some time to analyzing possible future developments in 

experimental methodology and suggest possible future experimental tools that have not 

yet been developed for psychological, psychiatric, and neuroscientific basic and 

applied research. We will address three different questions. Firstly, what new 

experimental tools and approaches can psychology and psychiatry borrow from 

neuroscience? Secondly, what new experimental tools and approaches can 

neuroscience adopt from psychology and psychiatry? Thirdly, how can all three 

disciplines bridge the gap between applied and basic research by devising experimental 

tools with possible translational value? 

10. Case Studies 

A fundamental goal of science is to arrive at universal, predictive principles. However, 

advances in knowledge typically begin with the careful watching, measuring, and 

recording of some noted deterministic interesting events and relationships, i.e., 

phenomenon. The experimental researcher takes the first steps toward advancement of 

knowledge by attempting to predict or explain or better yet, elegantly simplify the 

impressive complexity of natural and societal systems. This is a significant activity in 

science. Case studies serve several important functions. After the experimentation and 

hypothesis building stage of research, case studies precede the quantification needed 

for theory formulation. As a scientific process, research is fundamentally iterative; the 

theory, experiment, and case study phases are mutually informative, feeding off one 

another, leading to improved calculations and models. Thus, case studies often precede 

experiments. This is clearly seen in engineering, where prototype construction and 

testing serve to refine concepts and formulas. Of course, the case studies may also be 

done in a later phase, serving the purpose of model validation, where the design and 

implementation efforts are greatly aided by documenting and understanding existing 

systems. In applied dynamics, the predictions of models based on theoretical core 

concepts are confirmed or refined by comparison to the measured behavior of a 

repository of “real-life” systems. 

11. Ethical Considerations 

Research in the area of human-computer interaction is an experimental science, to 

validate or develop fundamental principles requires understanding the whole system 
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and often much experimentation [29-31]. There are therefore ethical considerations 

associated with any research that relies upon interactions with people, who may have 

to provide responses under time pressure in unnatural conditions. The expected 

benefits may be covert, where the participants are unaware that they are participating 

in a test, while at face value the participants may not realize that they are engaged in 

experimental work. Recent changes to societal views about such techniques suggest 

that further discussions may be entered into regarding tolerability of covert task-based 

experimental work. In particular, there are groups in society that are more sensitive to 

exploitation. Vulnerable groups include refugees, children, elderly citizens, individuals 

who have mental disabilities or who are suffering from other shocks. For the reasons 

noted above such research demands the highest ethical considerations on experimental 

design, and to-date there are very few guidelines available [3,32,33]. Current 

guidelines focus on organization at the institutional level and on human rights within 

the system. 

As more technologies, from surveillance to recommendation systems, delve deeper 

into the social and behavioral fabric of societies, those interested in human-computer 

interaction must think critically about the implications of their work. From before the 

inception of a project until the end of its lifespan – including failure – interaction 

design is filled with the potential for harm, but often devoid of the ethical scaffolding 

to help guide researchers through those waters. Researchers are often unaware of the 

negative impacts of their work in the short, medium, and long-term and may not 

prepare for these eventualities. Interdisciplinary work with areas such as design ethics, 

ethics of care, critical design practices, provocative design, or concept-driven design 

can help address ethical questions. 

12. Data Collection Techniques 

A collection of various techniques, as described below, was employed for information 

gathering. A particular department in a private business school in central India which 

conducts training for various professional and job oriented courses was chosen as the 

case under study [4,34-36]. This institute also operates one of the B-schools approved 

by the Government of India. However since it is relatively small operation with a 

limited scope, the research questions are best answered through a busy service 

perspective or observations by relevant members, thereby helping meet the research 

objective. 

Discussions with the director of the institute were first held to establish an 

understanding of the industry scenario and specific challenges in managing such a 

training environment. Executive coaching was identified and defined with the help of 

this discussion and results of the preliminary interviews. A detailed interview guide 
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was developed, drawing on relevant academic literature and primary interviews 

conducted previously to highlight important issues to be discussed. Pre motivation 

training perspectives were next obtained from sixteen members involved in career and 

leadership development processes of the coaching [37-40]. Responses to this guided 

set of face-to-face interviews were recorded, transcribed, and coded using software to 

identify specific patterns and themes to design a more general study from the patterns 

in the data. 

Interview results were first reported separately for each specific respondent category. 

Furthermore, implications from the qualitative expert-exchanged knowledge were also 

detailed and followed up through an informal discussion with selected members. This 

provided further realization of the perspectives of the mentors on specific implications 

and parameters of predictiques. 

13. Statistical Analysis Methods 

Statistical analyses of bioscience experimental data are common. Most experimental 

results, especially in biology, contain noise, and statistical methods help address that. 

Such analyses help in understanding if an experimental result was just an outcome of 

random noise, or if there is a belief level associated with the result. Statistical 

evaluation using various tests is a standard part of experimental results today, as such 

analyses add confidence and believability to the experimental results [4,41,42-43]. For 

determining the impact of an experiment, data comparison is done primarily in three 

common ways: during the course of an experiment, or in assessing the final data 

outcome. Statistical tests are primarily used for the second methodology. Aspects such 

as sample size, normalization methods, repeatedly performing the experimental 

procedure for every condition, need to be factored in. Common statistics software 

packages include common statistical tests widely used are ANOVA, t-test, Chi-square 

test, and K-means clustering. Popular methods used for clustering experimental data 

together are the heatmap method and the principal component analysis method. These 

common tests are highly useful. Even so, it is important to realize that these tests are 

meant to address a single aspect of the variability present in the experimental data, and 

other methods and robust confirmatory tests should be done. Often there is no clear 

and simple method available to choose from, or the correct statistics cannot be done, to 

analyze every type of experimental data outcome. Therefore, it is essential that careful 

testing and choosing analysis methods that make sense for all aspects of the 

experimental data are chosen. 

14. Software Tools for Validation 

This chapter discusses computer programs that help people conduct some parts of 

validation. Some software tools integrate many validation activities from all stages of 
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the research process. Acknowledging that validation has a high degree of subjectivity, 

others are built to deal with particular aspects of validation, supporting or automating 

the decision-making, which are generally performed by the researchers. In both 

situations, the collected results, which help or automate the researchers’ decisions, also 

need verification. 

To the best of our knowledge, no other software manually conducts, supports, or 

automates the type of empirical validations previously mentioned in this chapter. 

Available software tools provide only basic mechanisms to inspect artifacts that 

harvest the kind of results expected from validations shown in this chapter. Such tools’ 

existent capabilities partially automate traditionally manual support activities. Thus, 

we detail options for developers interested in building validator assistants. For some 

activities in this chapter’s descriptions, specialized software exists; some are macro 

programs embedded in commercial tools developed for other purposes, which are then 

adapted for validation. 

Additional software is available for the attributions of information extractors, 

comparing results with multiple extraction methods, and statistical analyses. Many of 

these validators work with specific model types, such as defect prediction, mutation 

test, and sentiment analysis models. These tools incorporate the most used validation 

methods on prediction, testing, and exploratory validation methods. Nevertheless, 

proper use of these tools requires knowledge of the earlier detailed validation methods. 

Little or no user interaction is required, whichever the validation or the tool. These 

tools’ results, such as the parameters for using models, need validation for information 

obtained from other results using validation methods. 

15. Interdisciplinary Approaches 

Although interdisciplinary collaboration presents its own challenges, it opens the door 

for potentially enlightening research and findings that can only come from a pool of 

experts in multiple subject areas. By taking on similar questions or investigating ideas 

that can only be understood from the results of other disciplines, researchers can 

realize the full impact of their research topics; for cognitive systems and sciences, 

working with those outside of related fields enables larger implications than previously 

imagined. Combining topic elements across disciplines is a natural and often 

foundational means of investigation and experimentation, driving more complex 

models and system functionalities than available given the limits of a single field 

focus. The implications of reasoning, cognition, and study are across all aspects of the 

human experience. The further researchers step into advanced methods and deeper 

understandings, the larger the impact remains. These pursuits should be unavoidable 

and encouraged, given that they broaden the implication pool for all. 
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The field of human-like cognitive capabilities development is still in an infancy state, 

only recently able to begin tackling problems that advance the range and depth of 

intelligence feats possible. The convergence of humans and machines at the level of 

complex behavior and action creates a view that requires justification for existence 

from both embodied in their respective environments. In looking at the areas 

surrounding both entities, it becomes possible, and probably necessary, to look at the 

topics in a focused perspective of both the human and the tool, considering them fully 

functional entities and systems. These ideas emerge from the evolvement and 

discussion of the relationship between humans and technology and how the joint 

actions within the environment define and understand both from a full aspect view. 

16. Best Practices in Experimental Design 

What makes a good experimental design? First and foremost, a good experimental 

design distinguishes between a controlled manipulation of the factors of interest, and 

the measurement of the outcomes. Policy evaluation is often about understanding the 

causal impacts of some action or event on other variables. These variables may often 

be of interest in their own right, or they may act as intermediaries to further impacts. 

Treatment and impact – two sides of the experimental coin – need to be defined. In the 

case of laboratory or field experiments, treatment is usually some sort of controlled 

intervention manipulated in a random manner by the experimenter. In the case of 

natural experiments, this usually consists of some specific set of circumstances that 

arise, but are not manipulated by the experimenter. 

Impact consists of a set of variables which are not manipulated by the experimenter but 

are measured as part of the experimental process. In an idealized context, that is, we 

would want to make sure that the only differences in the outcomes across participants 

in an experimental setting were the result of the inputs manipulated within the 

experiment. This is not a trivial exercise. In particular, we would want to make sure 

that the treatment is not confounded with other factors that vary across participants. 

And this is why we conduct controlled manipulations in a laboratory or other 

controlled settings, or use randomization in field experiments. The ideal of a well-

executed experimental design is one in which comparisons can be made without 

concern that results could be affected by other processes occurring outside of the 

experiment. In short, a well-designed experiment reduces the possibility that the 

observed results are affected by confounding factors. 

17. Limitations of Current Strategies 

Despite the wide use of experimental research methods and their increasing popularity 

in various research fields, there still seem to be several limitations concerning their 

application. In this section, we will elaborate on some of these limitations. It seems 
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that most of the current experimental work has focused on its scientific rigor at the 

expense of its naturalness and potential contribution. Drawing on issues raised in 

interpretive research, we argue that experimental researchers should take the context of 

the study, the emotional reaction of the participants and the short duration of the Q&A 

into consideration, in order to enhance the naturalness of the study and to contribute to 

additional outcomes, additionally to cognitively evaluative outcomes. Moreover, we 

suggest that research contributing to a Q&A pattern would greatly benefit from careful 

longitudinal field work in real context, informed by insights from experimental 

methodology and its focus on delineating connections among phenomena of interest. In 

our review of previously conducted work in experimental methodology, we note that 

there has been greater emphasis on cognitive and less on emotional outcomes, perhaps 

because of emotional outcomes being arguably harder to study using experimental 

strategies. However, in the context of the traversal of agential transformations inherent 

to answering a question, other than merely event outline or closure types of outcomes, 

we suggest future researchers must explore the trajectory of emotional marking that 

makes for a complete response to a question addressing anticipated informational need. 

In short, we see an identified gap in contributing to emotional outcomes using 

experimental research methodology. We point out that some of the tasks inherent to 

question and answer exchanges, such as asking, directing, or justifying are moral, as 

they imply that one member of the portfolio distribution retains the right to dictate how 

an event will be played out. This introduces power relations to the research project, 

which due to the nature of this type of research, is very difficult if not impossible to 

eradicate or mitigate, as it is usually the researchers’ presence that elicited the Q&A 

dynamics they measure. Finally, we note that while experimental approaches are 

predisposed towards uncovering cause-effect relationships, the type of claims 

researchers can make heavily depends on the context and the nature of the stimulus 

used, which is something researchers applying experimental strategies must always 

take into consideration. 

18. Integration of Findings 

One of the basic tenets of an experimental study is that key findings of the study must 

inform the real world. The classic way to do this is to generate post hoc conclusions to 

the effect that, for example, “this represents progress towards the study of some 

interesting aspect of the real world” or perhaps “these results may help inform decision 

making in some interesting application domain.” Increasingly, however, experimental 

researchers are feeling the need to go beyond such post hoc claims. They are making 

intentional efforts to develop research agendas that derive technology, design, or other 

social implications from their research findings—that tie their findings into a larger 

whole. Of course, not all experimental studies have to attempt these ambitious goals; 

this level of integration is not a requirement for an experimental study. In fact there 
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may well be good reasons not to undertake such integration within a given 

experimental study, either because the study is one of a series of studies working 

towards some eventual goal, or because there are other mechanisms for integrating 

your finding with world use—for example, you may generate an external proposal 

mechanism, like a framework or theory, that others will use to make that tie-in. This 

section describes some of the techniques that experimental researchers are using to 

bootstrap their research and not simply rely on the good fortune of being cited. 

19. Feedback Mechanisms 

The common view is that scientists and engineers receive feedback on a project’s 

conformance to requirements only at the end of a project, as manifested in product test 

and evaluation activities. The purpose of testing is to see how well a product meets the 

customer needs. Feedback on the engineering design is only one aspect of product 

testing. The other aspect is a check on the correctness of validation or experiment 

planning. Implementation tests should first demonstrate that a significant experiment is 

feasible in the method being considered. When that is accomplished, the final 

experiment can then be executed. Conformance tests confirm that the product meets 

requirements but have a special significance for the engineer. Those conformance tests 

can point the engineer in the direction of errors in the engineering design. They 

provide alternative explanations for the apparent problem during the engineering 

design process known as the “happy path”. 

Giving feedback to the scientist is much more complex than providing feedback to the 

engineer. The scientist must be allowed the creative freedom to explore; to risk making 

an error that will fail validation in order to advance knowledge. This freedom must be 

governed by an understanding that validation is a more sensitive tool than conformance 

testing: at least errors in the design of the validation event carry many more 

implications than an error in an aspect of the engineering design. It is our belief that 

the first step in structuring feedback on validation planning is to stress the importance 

of such planning and to develop early test plans with the scientist. The plan must be 

more than a simple listing of the aspects of validation and the design of studies to be 

employed to study them. That plan can easily be too long and intrusive to be practical. 

What we propose is an understanding, formal or informal, that is recursive but escapes 

being an unwieldy document. 

20. Summary of Key Insights 

This chapter concludes our thesis about the role of experimental studies in empirical 

software engineering (ESE). It urges researchers to deliver useful research-based 

guidance on how to make decisions. Big data analyses yield many guidelines 

addressing the question of what to do, but few addressing the questions of why or how 
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to do it. This chapter proposes a new type of empirical study, experimental 

confirmation of observational studies, whose purpose is to contribute to our 

understanding of ESE and how to deploy it more effectively. This chapter also presents 

eight guidelines to improve the practice of experimentation in ESE. The proposed 

research direction is valid independently of whether ESE is considered a real 

engineering discipline or not. The guidelines are equally valid for ESE whether one 

considers it to be in a jungle state or not. Experimental confirmation of the results of 

observational studies can benefit developers of both academic and industrial 

applications of ESE, irrespective of the particular applications being developed. The 

ideas and guidelines discussed in this chapter are informed by our combined 

experience of formulating, conducting, analyzing, reviewing, and discussing empirical 

studies in the area of ESE. 

Although ESE researchers collectively have many years of experience developing 

empirical studies, we still make mistakes that lead to suggestions of questionable 

practical value. Many of the mistakes that we make relate to maximization purposes, 

study unit selection, lack of attention to noise, and moderator variables. These suggest 

several recommendations for improvement. To make a valid comparison, a study 

should include a sufficient sample size that justifies the allocation of units to different 

experimental conditions. The units should involve sufficiently homogeneous data 

points to avoid masking effects due to noise on achieving different outcomes. There 

should be enough noise control and/or correlation in the moderator variables of interest 

to permit their study if necessary. The conclusions should make clear the limitations on 

the conditions of practical value based on the study's design, duration, and data 

collection. 

21. Conclusion 

We worked through a variety of considerations and proposed some methods and 

techniques to those working in the Computational Intelligence field, first in 

experimental design and second in experimental validation. Everyone working in AI, 

Computational Intelligence, and any applied Databases needs to understand what is, 

and is not important given the state of our understanding. Such exploration should be 

done with little fanfare, and in such a way that it does not mislead those who will build 

upon it. That understanding is expressed in the details of design of an intelligent 

system, whether as an agent, a theoretical construct or something more abstract – 

differences that are often overlooked. 

Too frequently the question of what exploration demonstrates, and the point it makes is 

never adequately explored. The gap between the new work and the earlier work should 

be underscored. A question posed in the early work should be asked. What was 
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experimental economy in getting to that point? Was it that the earlier work once made 

assumptions thought naïve but rather clever? Did it explore tiny corners to reach 

conclusions so general they need to be debated in fine detail? Why did no one earlier 

think of it? Design pride is why it doesn’t happen more often. Comparison of 

performance amongst similar methods is error prone. Comparison of methods with 

distant similarities tends to suggest reasons on performance related to slight changes in 

the details. No one would propose leveraging an AI system to detect race conditions in 

programs, lift design from diverse branches, and insert it all together. No one would 

propose even lifting one class of function and then inserting them together again. 
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1. Introduction 

Artificial Intelligence (AI) has progressed in leaps and bounds over the past few 

decades, more so over the last few years, becoming an almighty tool in the arsenal of 

researchers and practitioners. However, translating these developments in AI research 

for use in society is a herculean task. It requires collaboration and compromise from all 

parties involved, researchers and solution designers on one side and solution end-users 

on the other. This 'technology push' and 'demand pull' needs to happen in the same 

direction to realize the potential impact of AI. Therefore, an essential function of the 

research community is also to provide technological solutions for real-world problems 

and to develop collaborations with possible end-users to deploy the newly developed 

solutions, primarily focusing on resource-constrained settings [1,2]. In the past, a few 

researchers have taken mainstream research trends such as AI for Climate Change, AI 

for Road Safety, AI for Disaster Recovery, AI for Public Health, AI for Mental Health, 

and attempted to align them with the efforts of the UN for developing a socio-

economically balanced and environmentally sustainable world community. 

At the same time, there is also a need for the collaborative efforts from domain experts 

from various fields, such as humanitarian aid, public health, disaster recovery, and 

others who develop the ground-level need-based solutions, and researchers from AI 

who collaborate with these experts and help with the solution design aspects [3-5]. The 

objective of this write-up would be to present the usual process for building and 

deploying a solution powered by AI, describe some of the use cases where AI was 

successfully translated into practice with examples, present the working of both 

collaborative and multidisciplinary aspects of this process through a couple of photo 
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books, and finally, discuss the present-day and future challenges in this endeavor, 

particularly from inter-disciplinary collaboration and diversity perspectives. 

2. Cross-disciplinary Collaboration 

A major theme in work to bring research in AI to bear on real world problems has been 

the importance of cross-disciplinary collaboration, synthesis, and translation. A key 

motivation for funders and impact-driven researchers is the desire to ensure that 

findings in AI lead to concrete and tangible impacts on challenges that humanity is 

collectively facing [2,6]. Specific areas have been prioritized as especially deserving of 

support, including climate and Earth Sciences, breakthrough discoveries in the 

biological and medical sciences, and newly enabled computational capabilities that 

mix and match both existing approaches and novel formulations. 

Integration of Medicine and AI 

Advances in quantitative and dense biomedical data acquisition are converging with 

rapid progress and readiness of machine learning methods. The challenge is to 

integrate the many modalities of bioimaging and other measurements enabled by 

decade-long investments in new-generation biotechnologies with epi- and meso-scale 

modeling of the complexities and emergent properties of living systems [7-9]. There 

are examples of clinical translations and realizable technologies but limited sampling 

and access is a recurring barrier in all areas including cancer, neurodevelopmental 

disorders, and neurodegenerative diseases. Possible applications in biomedical imaging 

include multi-modal and/or temporal domain synthesis, denoising, and segmentation as 

well as auto-regressive applied diffusion modeling. 

Applications in Earth Science 

The Earth Sciences are facing enormous challenges to understand a rapidly changing 

planet and its feedback on the living systems it sustains. Realizing the full potential of 

automated scientific discovery processes will require radical rethinking of both the 

input-output and closure relationships that connect observations to 

parameterizations/models that govern latent dynamics [10,11]. Physics-informed 

machine learning techniques might integrate new domain knowledge, efficiently 

harness diverse streams of geolocated image and time-series data, and interactively 

connect modeling and discovery to allow investigative discovery-driven exploration 

and learning. 

Computing Innovations in AI 

AI is driving innovation in the design of computing systems, component architectures, 

and stacks. Large Sensor Arrays enable unprecedented new confocal fluorescence 
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imaging of cellular tissue structures. New Algorithms and Hardware Architecture co-

designs aim to capture up to a factor of a thousand improvement using Optical 

Computing principles. Many emerging applications in communication, computing, 

signal processing, and AI would may be better served via novel periodic 

nanostructured media platforms compared to current electronic and photonic devices, 

components, and integrated circuits. 

2.1. Integration of Medicine and AI 

Perhaps the most straightforward application of AI technology is to medicine. Most 

applications of AI in medicine seek to employ the ability of supervised learning to find 

mappings from some input features to a predefined output label to augment the ability 

of physicians to provide treatment [12-14]. These input and output variables vary by 

application. For example, disease diagnosis tasks seek to predict a disease label from 

clinical input variables. Disease stratification tasks seek to predict an outcome of 

interest such as survival time, disease recurrence, or treatment resistance at a later time. 

Treatment recommendation tasks seek to predict the ideal drug or therapy for an 

individual patient given a set of clinical features. Phenotype discovery tasks seek to 

attribute certain clinical features to a certain disease label for a group of patients. 

The requirements for all of the labeled data used in these supervised learning tasks 

have arisen from real-world medical problems. Clinical data from millions of patients 

have been utilized to train, tune, and evaluate the predictive performance of the 

models. These models translate pilot studies in clinical practice and medical research 

into quantifiable statistics in clinical prediction, acting as important tools for decision 

making in clinical practice [3,15-17]. AI models relating to image or genetic data are 

especially influxing into medicine, as they can include input data that are challenging 

and expensive to collect, but greatly benefit from approaches. By combining the 

strengths of physicians and AI, we hope to decrease the time spent diagnosing 

infectious diseases or the path towards developing a rare disease and personalize the 

therapeutic strategy. 

2.2. Applications in Earth Science 

The quest to realize AI's potential for impact is nourished by a variety of 

interdisciplinary joint projects, such as climate modeling, weather forecasting, 

geotechnical applications, and resource monitoring for oil and gas. Whether through 

in-house innovation labs at traditional industry players or by startups created and 

performed by investors, the domestic resources sector is increasingly recognizing the 

benefits of adopting AI techniques to enhance and expedite resource identification and 

monitoring applied to geophysical and other properties characterization or prediction. 
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Peer pressure from successful industry or academic partners in geosciences will benefit 

resulting products quality [18-20]. 

The geophysical modeling capability within the SimNet tool combined with reliable AI 

technologies such as the Deep-Equations technology overlay for solving ordinary, 

parabolic, hyperbolic, and elliptic modeling differential equations open the way for 

other very different but equally useful internal R&D Joint Projects such as: improving 

the geophysical inversion speed and accuracy; provide a much richer set - multiple 

scatterers, compensated data - than that currently available, and use easily accessible 

geophysical observational data, very much like already being done with the electricity 

consumption data, to spur innovation and advances in the geophysical scientific 

adventure. AI techniques, including the DeepEq overlay in particular, realize unique 

capabilities and enable disruptive projects in Physics- and Mathematics-Informed-AI 

over the Breaking the Curse of Dimensionality, wave and other related industry 

standards; is the industry benchmark for complex 2D and 3D geophysical earth 

inversion and modeling. The Disruptive Physics-Informed-AI Breakthrough is 

obtaining such inversion results in seconds on a laptop risk-free. 

2.3. Computing Innovations in AI 

Advancements in AI have their roots in accelerated innovation in computer 

architecture, distributed computing systems, massively parallel architectures, and novel 

computing primitives. The co-design of algorithms and hardware has proven highly 

effective. Algorithm-friendly hardware architectures specialize in accelerating 

fundamental tensor operations [21-23]. Specific neural network layers may be 

optimized in speed, precision, or power consumption. Cloud-scale systems built on 

these accelerators, with high bandwidth between chips, nodes, and racks, now provide 

tremendous raw compute power in addition to model parallelism, data parallelism, and 

pipelined parallelism. These platforms have allowed researchers to leap beyond what 

might be possible with inference on surfaces and solved relatively quickly in the back 

end of the design pipeline and instead combine generative neural networks with 

inverse rendering, differentiable rendering, and diffusion processes. The future of real-

time graphics and fabrication of novel products lies in integrating symbolic AI with 

deep learning generative models inside these accelerated systems. 

The co-design of hardware and software algorithms is also the key to embedding large 

learning models into resource-constrained devices, such as cars, phones, drones, and 

robots. Custom silicon, with many architectural innovations such as architectural 

sparsity, low bit width data types, and mixed precision training, is critical for both fast 

inference with great user experience and low carbon footprint due to user-scale 

ubiquitous deployment. These devices may also leverage novel optimizations, like 
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pruning, quantization, model compression, and students-teacher distillation to embed 

large deep learning models into mobile or edge devices. Because the data-rich 

applications on the edge may induce new data distributions and makeup new 

requirements, the AI model will also need to self-adapt using low-volume streaming 

data. 

3. From Prototypes to Scalable Platforms 

The ultimate test of any engineering achievement is whether it is scalable, meaning 

that it is actually applicable to a global problem and can be executed in a cost-efficient 

way. Any engineering achievement could be conceived in many different forms 

ranging from something specific and focused on one instance of the problem, 

something generic and capable of applying to a myriad instances of the general 

problem – i.e. a business architecture – and something that arrives at the latter, 

powerful scalable solution incorporating the feedback obtained from a multitude of 

prototype deploys. These two approaches are aimed at enabling deployment at scale. A 

scalable solution is ultimately amendable to the architectures of businesses that aim to 

be the long-term major players. In a larger sense, companies and start-ups are 

responsible for translating the innovative research ideas into scalable market structures 

capable of servicing the demand at feasible delivery costs. In this sense the transition 

from research into companies that execute the ideas is the phase that pretty much 

dictates the impact of these novel technologies and has been sorely neglected. 

The whole artificial intelligence research area evolved both around fundamental 

concepts of the nature of computation as well as around implementations of prototypes 

that perform impressive feats of human-like intelligence in a limited form [9,24,25]. 

The limited nature as well as the impressiveness of the prototype phase has possibly 

led some researchers in the field to think that a possible extension of the prototype 

behavior may allow at least some degree of scalable capability. Research funding may 

be directed towards one of these ends but more likely will lead to prototypes that do 

not scale but could provide valuable information and insight into the nature of the 

original concept. At the other extreme solutions that are applied to many different 

domains and embodied in an architecture that is successful at scaling and therefore that 

could be the basis of a business and be very profitable. 

3.1. Developing Effective Prototypes 

Research in Artificial Intelligence (AI) has reached a stage of maturity where many 

important products and services are being created. Such products often include 

advanced functionality that has been developed and demonstrated through a series of 

prototypes [26-28]. We refer to these advanced prototypes as "working prototypes" as 

distinct from simple mock-ups that only demonstrate a visual conception of the idea. 
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Working prototypes are highly useful in exploring the problem space for developing 

products eventually, because these prototypes are driven by the use of some special 

tailored technology that incorporates substantial AI techniques. Working prototypes 

that demonstrate special capabilities have even led to important breakthroughs in how 

users can achieve their tasks. Intelligent assistants were initially implemented as 

working prototypes and were rapidly improved based on user feedback before 

becoming mature products. 

Although working prototypes serve an important purpose in helping transition AI 

research into product capabilities, developing such prototypes is not easy. AI 

prototypes often need to use a combination of novel AI tools to demonstrate their 

capabilities and therefore require careful synthesis of these tools. This synthesis 

process often requires experience with implementing related AI tools. However, such 

implementations are often not available and might differ significantly from the scale 

and efficiency in the final product [6,29-31]. For instance, state-of-the-art AI-based 

visual object recognition may report high accuracy but relies on a costly heavy-weight 

support of multiple image samples from the client for training an individual classifier 

before it can be deployed on the mobile camera. Such implementations may be 

impractical for real product use and considerable additional work may be necessary to 

scale the approach effectively enough for prototype or product use. 

3.2. Scaling Strategies for AI Solutions 

While it is often hoped that impactful AI solutions can be deployed with minimal 

resources, delivering scalable solutions requires careful consideration from the outset. 

First, scaling is both a technical and operational issue. The operational element centers 

around organizational capabilities, especially around data engineering [32,33]. The 

technical aspects include both the raw computational and distributed model training 

considerations, but also the software stack being used to deploy the solution, as well as 

the risk of on-time-in-full issues. The most common pitfall for organizations deploying 

AI is underestimating the extent to which the created models are imbedded into wider 

business systems and reporting mechanisms that depend on large volumes of data. 

Second, finding a sweet spot in the context of the application is critical. The need for 

additional, targeted development may be minimal for some AI applications. 

Additionally, delivery partners will sometimes make this risk return consideration for 

you by offering a no-cure-no-pay model. For some kinds of established policy 

optimization problems, the bulk of investment will be in developing new heuristics or 

working solvers [34-36]. However, in most cases, going to deployment usually has a 

high resource and software development cost, and across plenty of applications it is 
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running experiments while kept on a short leash – just to implant self control – which 

will achieve institutional understanding of the return distribution. 

Given the need for many AI solutions to be incorporated into wider systems for ever-

changing decisions, the design of the solution often needs to aim for flexibility. This is 

only heightened in AI safety contexts, and is clearly already an aspect being 

considered. 

3.3. Case Studies of Successful Implementations 

The transformative potential of artificial intelligence (AI) technologies has been 

exemplified by solutions for a range of relevant global challenges. AI tools and 

systems have now amassed a record of successful implementation in diverse areas such 

as climate science, collective action, COVID-19 response, ecosystem management, 

economic development and disaster response, education, governance and credibility, 

health and medicine, law and public safety, information, language and security, natural 

resources and energy, poverty alleviation, social and environmental justice, sustainable 

agriculture, and wildlife conservation [16,37-40]. Moreover, advances in models and 

techniques such as natural language processing, visual understanding, speech 

recognition, or machine learning democratization and optimization, are rapidly 

extending the boundaries of existing AI solutions. 

However, to take prototypes from small testbed contexts to widespread real-world 

impact is a daunting task. The barriers stem from the diverse high stakes problems we 

are considering, and the meager success of research on interest alignment in basic, 

applied, or any of the AI safety, transparency, fairness, responsibility, or accountability 

fields, applied to actual real-world problems [41-44]. In the service of sharing ideas, 

identifying pitfalls and clarifying pathways, in this section, we lay out a few of the case 

studies for publicly available AI solutions that have made the jump to impact, and the 

scaling pathways that worked for them. These case studies provide important lessons, 

not just in the idea-to-govern action pathways but also the impact and virtue incentives 

from both demand and supply sides without which demand-supply matching may not 

be as readily available. The learnings from these cases is not a canonization of the 

temporary, but rather an outline of pathways, actors, resources and key bridging points 

that allowed for a diverse set of AI prototypes to go from what might well be brief 

interludes of academic curiosity to chapters in the annals of engineering for the public 

good. 

4. Policy Advocacy and Global Equity in AI Deployment 

As the pace of technology disruption increases, it is imperative that more entities 

advocate for AI policy, development and deployment that protects and benefits the 
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most vulnerable in society both on a national and global level. There are policy 

decisions today related to the development and deployment of AI that have profound 

implications on creating disparity in who ultimately benefits from the billions in value 

that AI generates. Governments deploying AI on behalf of their constituents should be 

doing so ethically, but also making sure that its constituents, particularly those most 

disadvantaged, are both protected and educated so that it can hopefully elevate them to 

create equity. This requires both a reevaluation of education systems in light of the 

demands of the new economy and an increase in direct feedback mechanisms that let 

people communicate their needs to the corporations and governments creating the 

policy decisions guiding our everyday lives. The bottom-up feedback mechanisms are 

necessary because policy must evolve alongside testing and deploying AI; AI policy 

can no longer be a slow, iterative governmental process. Legislators must embrace a 

flexible, feedback-based approach to better ensure support of the system with the 

ultimate goal of protecting the rights of individuals. 

Understanding AI Policy Frameworks 

With everyone from governing bodies to elected officials creating their own AI 

principles guiding the deployment of AI, understanding these principles, frameworks 

and strategies is becoming imperative for the governing of AI policy [1,12]. The sheer 

number of different entities creating AI governance frameworks signifies a recognition 

that we as a group want to guide AI policy in ethical, responsible and equitable 

pathways. Look at the various entries in the table to see which principles resonate with 

you, your values, and the changes you want to see in the AI policy landscape. To 

ensure AI is developed for the benefit of all and taken all across globalization, it is 

critical that we as the creators of these new AI systems, policymakers and civil society 

members advocate for equity and access as additional AI principles. These could mean 

anything from increased access to free computing resources to decreasing the trade 

secret protections around algorithm sharing so that advantage does not simply tilt 

toward those with the ability to pay and gives back to the trend of personal and 

corporate accountability that suddenly seem to be losing prominence in society. 

4.1. Understanding AI Policy Frameworks 

AI systems are built and fine-tuned in a global landscape of cultural differences from 

established ethical perspectives. From the Westphalian concept of state sovereignty 

and global affairs as a zero-sum struggle for power, to Confucian principles of loyalty, 

propriety, and hierarchy that undergird most of the Asian political world; from a 

collective sense of news such as Ubuntu as reflected in the traditional African 

community, to the idea of mutualism that arises from Buddhist teachings; the 

differences and potentials converge on the real-world artificial intelligence solutions 
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adopted to address local problems, which should correspond to the cultural contexts in 

which these AI systems reside and operate. For the development and deployment of AI 

solutions, this calls for a feedback loop not only from the end-users to the politicians 

with respect to the particular nation-state that these economic and business interests 

represent, but also from AI experts to the AI policy institution makers and economists 

charged with producing those policies in order to ameliorate instances in which local 

approaches diverge. 

The policy-making establishment is comprised of the political actors as well as the 

institutional environment of legislators, bureaucratic structures, and political culture, 

both formal and informal. Policy analysis uses scholarly tools and techniques of 

economics, sociology, psychology, systems analysis, operations research, and political 

science, to develop and evaluate arguments and proposals from which stakeholders 

will choose and that action will be based on. AI policy endeavors to integrate a 

patchwork of regulations from the few areas in which AI guidance has begun to take 

shape, from opt-in consent for experimental AI in healthcare, to civil service 

modernization and the government’s use of technology in support of democracy, to 

monitoring systems that prevent the impersonation of persons or departments in the 

political world. 

4.2. Addressing Global Disparities in AI Access 

Representatives of more than 60% of the world's population arrived at the conclusion 

that more AI solutions are needed for middle- and low-income countries. The 

implication is clear – A significant share of the world's population, with massive unmet 

needs, do not have thriving opportunities to access the benefits of modern AI. We call 

for collaborative and investment initiatives. In an open letter to the global AI 

community, a group of world-leading researchers wrote, "AI tales suggest realignments 

of existing scientific disciplines, often leading to closure of labs at big government-

funded universities or disparate groups at big corporations" and argued for the creation 

of "self-sustainable self-owned labs which will take up the challenges of creating the 

large amounts of quality data needed for AI models which are capable of 

understanding languages other than English." Countries and regions with weak 

scientific and industrial capacity, responsible science and technology policies may 

require policies to ease disparities in AI lab creation, infrastructure and development 

funding. 

Policy work on the global divide has, at least outside of economist-led initiatives, been 

missing a multilingual global and historical sense. In policy terms, two areas with 

stronger international action would be the implementation of pro-competition, 

consumer welfare-based policies and investments in R&D and digital infrastructure, 
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especially addressing local language deficiencies. Governments are very much needed 

in both areas, especially and more strongly supporting bottom-up initiatives breaking 

away from English dependency. In line with the focus on equitable AI access, the 

launch of a European Digital Commons and calls for a Global Code of Digital 

Cooperation call for fostering solidarity-building values in strategically important 

areas, like data and infrastructure, that are critical for the development of AI. 

4.3. Ethical Considerations in AI Deployment 

The Ethics Guidelines for Trustworthy AI emphasize that for AI to be trustworthy, it 

must be lawful, ethical, and robust. With respect to quality, trustworthy AI should be 

technically robust and reliable, and the deployment of AI solutions can be framed 

within the Compliance canonical that recognizes the core role of quality in the delivery 

of a trustworthy AI solution. Additionally, ethical assessments guarantee that data is 

used in a moral manner. Thus, ethics deals with the "data question," addressing what 

ought to be done, i.e., what could possibly justify the AI solution if something goes 

wrong. Importantly, ethical considerations do not only correspond to the solution itself, 

but also to how it is developed, deployed, and put to use. AI policy regulation can 

ensure accountability, compliance, auditability, and on-going sanctioning, which are 

paramount within ethics. This includes establishing ethical, moral, and social standards 

that provide the perimeters within which AI solutions ought to be developed. 

In this respect, ethical reflection addresses the human consequences of AI development 

throughout its lifecycle, investing the deployed AI solution with a component 

empowered to determine whether a responsible impact is being delivered. In fact, there 

is broad consensus regarding the paramount importance of human agency and 

oversight through the entire life cycle of AI technology. Yet, responsibility for 

irresponsible impact does not only correspond to developers of AI solutions; users who 

deploy AI solutions ought to guarantee that these are designed, developed, and used in 

an ethically correct way. Ethics, therefore, addresses the questions of who decides 

whether a solution is responsible or not and how such decisions are made. 

5. Challenges in Translating AI Research 

Translating AI research into impactful solutions that affect real people and 

communities throughout the world is not an easy task, and many research projects stay 

in the prototype stage without any further development. There are a variety of factors 

that can hamper research-to-solution translation in AI. While the barriers can be quite 

different from project to project, it is helpful to identify some of the more common 

challenges that occur often and look at how various translational AI research centers 

around the world have addressed—or are addressing—these key challenges. For 

example, as is common in many interdisciplinary academic fields, AI research can sit 
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at the intersection of diverse academic domains, and effectively engaging people with 

different expertise to foster inclusivity and build upon each other’s knowledge and 

skillsets is not always an easy task. A common challenge in translating theoretical AI 

research into practice is navigating the landscape of rules, regulations, equipment 

requirements, and grant funding opportunities. Not only can this landscape be 

complex, there are often unintended obstacles that impact research participants, often 

in localized, specific ways. 

Solving these issues requires communicative collaboration between the lab and the 

field—all team members need to express their needs and concerns, and want to learn 

about the needs of others in order to create AI solutions and deploy them in a way that 

is beneficial for the people these solutions are made for. However, this is often not 

easy to do in practice. It may seem simple to form an interdisciplinary project team, 

but building trust and a single vision of success between deeply knowledgeable people 

from different backgrounds, with each background lending important skills to the 

project, can take a significant amount of time. Robust AI solutions often need to be 

able to robustly work for a wide variety of inputs, typically have low operational costs, 

and work with little maintenance. Depending on the project, they may need to have 

some capacity for complying with user feedback as well. 

5.1. Barriers to Cross-disciplinary Collaboration 

A critical challenge in the scaling of AI-based solutions is bridging the gap between 

the translation and adoption of novel methods of AI and the advances and availability 

of well-validated AI processes and tools that are transferrable. Indeed, most of the 

major bottlenecks in translating AI models into solutions are interdisciplinary ones, for 

example, inter-ministerial coordination when focusing on public service and policy 

applications, practical sector-specific knowledge when aiming at business and ethical 

implications in the private sector, and a myriad of nuances sensitive to cultural 

diversity, historical contexts, governance, social dynamics, and enforcement 

regulations when applying to LDCs and emerging economies. 

Establishing sustained partnerships bridging different knowledge domains and 

translated expertise demands identifying mutually beneficial structures and spaces, 

e.g., within the public sector and industry, shaping embedded incentives and resources 

that support collaborative projects bringing measurable long-term action impacts. In 

fact, cross-disciplinary collaborations that unify AI researchers with social and 

behavioral scientists are essential to supporting the actual uptake and use of AI 

methods into policy and sociotechnical applications. Indeed, whilst AI research has 

seen booming growth in the past decade due to the extreme proliferation of publicly 

available data and trained models in natural language processing, computer vision, etc., 
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the value of translating and adapting these advances to locally attuned solutions that 

accelerate public policy transitions bringing social impact will continue to overshadow 

more scientific explorations focused on live demonstrations and hypothetical 

applications. 

5.2. Technical Challenges in Scaling AI Solutions 

The vast potential of applied AI research can only be realized when the models move 

from prototype level to system level that is capable of handling millions of queries, 

generating machine-supplied data in large quantities and with sufficient accuracy for 

downstream tasks that are critical for business, making company-wide decisions based 

on AI models etc. But getting it to production is a hard problem. One of the problems 

is there is often limited resources available for massive scaling. Often, the models 

trained are resources hungry and need fine-tuning to run on edge with punchy user 

experiences. Another problem is once such resources are available, the goal posts for 

what it means to scale keeps changing. Sometimes the solution needs to be production-

ready for low-cost, real-time inference. For instance, NLP tasks like paraphrasing or 

grammar checking need to be done fast and cheap for large-scale applications. It is 

easy to reach a pipeline-level solution where models can be parleyed. 

But deploying it into production is less trivial. Such systems need to be automated to 

serve millions of users. They need to support topics like creating models for user tasks 

that need no or few examples, deciding user intent for large number of sentences in 

real-time, invoking and serving machine-supplied paraphrases and keeping quality 

checks on various involved models including quality of paraphrases through several 

metrics such as semantic similarity and lexical similarity. Similarly, sentiment analysis 

tasks need to be done real-time and cheaply especially in marketing and brand 

monitoring scenarios. But when cyber scientists for a large firm at one time took to 

these tasks, the accuracy of models was far from production-ready. 

5.3. Navigating Policy Landscapes 

Policies addressing the challenges AI is being developed to mitigate — such as 

unemployment, inequality, and climate change — may affect the components of the 

systems utilizing AI. In many of these areas data is deeply sensitive, not least because 

these problems are often aggravated by structural inequalities and histories of 

discrimination. Anomalies and outliers are a higher ratio of these populations, and 

therefore can skew results, and reinforce existing inequalities if care is not taken. 

Using AI in these sectors is further complicated by policy associated with the sectors in 

question. The question-cascading data and bias concerns associated with public 

deployment of private technology in health care are extremely complicated, and have 
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explicit precedent in how specific tools are used and what ethical framework underlies 

these areas of deployment. For example, AI deployed for triaging in radiology would 

be subject to clinical verification, validation, and monitoring, similar to clinical 

decision support tools, an area where many companies writing these systems have run 

aground with various forms of enforcement from various policy and regulatory 

agencies. Other algorithms in radiology are viewed more circumspectly, as data differs 

in how widely it is publicly accessible or validated. This patchwork of regulatory 

environments affects both private deployment of private technology in these areas as 

well as widely used tools. 

Transparency has become a touchstone of responsible innovation, and one mode of 

securing greater transparency is what is being termed third-party advocacy. Advocacy 

by civil society organizations such as scientists and auditors accomplishes widely 

acknowledged goals such as leading AI researchers and companies to work on many 

problems that matter to them, incentivizing submission of these tools to regulatory 

processes, and ensuring assignment of liability in the case of failure. Co-regulatory 

models have often been discussed in detail. 

6. Future Directions 

AI Research has made remarkable strides that have the potential to improve many 

facets of our daily life. However, as AI models grow larger and require vast technical 

expertise, scaling them to solve high-impact problems is challenging. As more 

organizations develop expertise in developing language models and more public 

discourse centers on the societal implications of AI technology, we discuss some 

emerging trends in AI research that can help us identify the most impactful paths 

forward. These emerging trends can enhance our ability to generate workplace 

solutions by forecasting directions for AI Research that can facilitate more 

collaborations between academic research and industry, as well as suggesting 

innovative policy support that can help to align AI Research towards impactful areas of 

product development. The rapid emergence of large generative models have surprised 

and inspired researchers and practitioners in many disciplines. These efforts have also 

sung the praises of accessibility - making models open source, inexpensive to use, and 

readily available to developers. As large language models reach incredible benchmarks 

just days after their release, other deep learning areas are starting to see immense 

models that are addressing multiple downstream tasks, such as vision-language 

representation learning and multimodal generative models and the development of 

open training datasets as a parallel effort to boost academic research. At the same time, 

new techniques are advancing the art of open-sourcing these models, such as 

hyperparameter pruning, distillation, quantization, and other techniques for efficient 

inference. As we continue to experience the potential of AI and its future uses in 
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multiple areas, the call for federal action in AI oversight is also at the forefront in other 

areas, such as advancing equity and fairness in policy priorities and shaping the role of 

working people in an economy increasingly transformed by automation. 

6.1. Emerging Trends in AI Research 

What is going to happen in AI research? The aim of this chapter is to outline some 

answers based on recent trends as well as the expert opinions we discussed in the 

previous chapters. While not the ultimate answer, we can at least respond to the 

question regarding the future direction of AI research that is derived from 2 small and 

more specific sub-questions such as: what are the current research directions in AI that 

are underexploited? What are novel technology verticals within which to innovate AI 

research for the greatest potential positive impact in the long run, even possibly going 

beyond the functionality itself? In this chapter, we explore the future direction of AI 

research that answers to these 2 questions. 

Modern work in AI has drawn from and contributed to a variety of fields like 

information theory, cognitive science, neuroscience, computational linguistics, control 

theory, embedded systems, evolutionary biology, philosophy, social resonance to 

mention a few. That said, deep learning has been a phenomenal success with new 

developments showing promising results almost daily. This has raised new questions 

about the fundamental limitations of the approach and has forced researchers to more 

directly address broader AI goals, like robustness, sample efficiency, transparency, 

controllability, and learning in more naturalistic domains. Reinforcement learning, 

generative models, temporal summarization, and autonomous discovery of discovery 

procedures are examples of areas where emerging research trends appear to contribute 

more directly to addressing these challenges. These lines of inquiry are exemplary de 

facto research programs because they not only address instrumental AI goals of 

importance for powerful AI but also are associated with the prospect of substantive 

near-term applications. For example, RL and generative models have been applied 

with some success. 

6.2. Potential for New Collaborations 

The key for creating new theory-to-practice bridges is to develop ideas, methods and 

systems which are both immensely powerful, and flexible to fit into a diversity of 

practical applications in cooperation with domain experts. Collaborations between 

social scientists with domain knowledge, and technical experts from the technosphere 

are rare, and often only take place after the technical researchers have already 

“discovered” the social domain without much expertise or grounding. However, while 

many methods have been adapted to the social science domain at a superficial level, 
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there have been few attempts to change the actual state of a social science field, or 

contribute new insights. This is largely due to the many gaps or unresolved issues in 

domain expertise or collaboration infrastructure between domains. 

We believe the time is now for truly earnest starting points for interdisciplinary 

collaboration. The timescale for transitioning from a successful theory to foundational 

solution is similarly becoming shorter and shorter. While a decade ago deep learning 

experts often posed new systems which used the last stage or a part of an older system, 

now training multi-stage solution architectures from proposals in a foundational area 

such as transformers, and specializing on application areas is en vogue within the AI 

community. As domain adaption becomes not just possible, but also easy, it will be the 

right time for social science domain experts to collaborate with the technosphere in 

earnest. 

6.3. Innovative Policy Approaches 

Creative AI will have profound implications for the roles that technology, policy, and 

business play in determining the trajectory of a diverse and vibrant creative sector. As 

AI systems become increasingly integrated and capable — with the ability to generate 

new content, tools, and even business ideas — what role should public policy play? 

Governments have long played an essential role in ensuring vibrant and diverse 

creative industries, by supporting artistic expression and the tools that creators use. But 

with advances in generative machine learning, the technology world increasingly 

offers creators powerful new tools that might upend some traditional government 

functions, while in other areas it seems unlikely to deliver for artists, or society more 

broadly, without more public support. The need for creative human actors may remain 

or even grow, but over time, the roles played by creators, technology, and government, 

and the relationship between them, will shift. As these changes happen, and the 

technology challenges traditions and assumptions held by many in the creative sector, 

innovation policy will need to maintain robust support for artistic expression, while 

embracing aspects of Creative AI. Creative AI and the machine learning research 

behind it have implications for technology and media policy that go broad and deep. 

Key questions about future work in this area include how best to help new people enter 

a variety of creative fields; how can AI be harnessed to enable and leverage those 

people; and how can AI assist established risk-takers to produce and distribute their 

work? With generative machine learning capable of creating raw materials for the 

development of culture, we must also ensure the inputs to this AI are sourced ethically. 

AI raises issues of authorship and ownership, both for individuals developing personal 

style and technical chops, and larger exceptional artistic bodies, but also for large 
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companies generating their own data proxies, and then contracting talent to create with 

minimal input. 

7. Conclusion 

In the past, researchers have focused on demonstrating new ideas and showing their 

initial superiority for relatively small benchmarks. Now, the AI community has 

reached a point where ideas are so plentiful that attention has shifted to specific and 

well-defined tasks, for which companies and the community are working on better 

solutions. Publicly available data for benchmarking is immensely useful and 

companies have spent substantial resources collecting it. Similarly, businesses have 

started to release their solutions to texts, APIs, downloadables, and platforms for the 

community to use. In this effort, some have prioritized knowledge, performance, 

stability, and safety, while others have favored genericity and ease of use, or rapid 

iteration over all the above. 

AI groups in academia need to transition from building better proofs-of-concept of 

ideas to developing all-things-considered solutions. Research will not only achieve 

greater real-world impact with this approach, but it will also become more helpful to 

the community. Companies are willing to favor decisions that get more attention from 

the community, usually the decisions whose consequences they can assess better, 

either because they are further detached from the core problem, which becomes more 

expensive to measure, or because the corporate resources diverging from the core 

business are significantly smaller. Fitting into a community's roadmap is a necessity. 

Unfortunately, solving a problem better does not guarantee it will capture attention and 

immediate rewards. 
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1. Introduction 

Research in Artificial Intelligence and Machine Learning has made remarkable 

advances, achieving super-human results in some specialized tasks. Multimodal and 

general-purpose models have attracted particular attention, creating popular excitement 

and intense anxiety around the prospect of Artificial General Intelligence. However, 

most of these systems remain brittle, fragile, and opaque — and worse, highly 

susceptible to malfunctions that can lead to irresponsible and harmful consequences 

across a spectrum of domains [1-3]. Issues stemming from cybersecurity 

vulnerabilities, societal biases, and environmental footprints, amongst others, must be 

addressed decisively before we achieve the goal of truly Artificially General and 

Responsible Intelligence. 

There is increasing agreement across the research community, industry partners, and 

policymakers, regarding the need to make general-purpose AI systems more 

trustworthy, robust, interpretable, and responsive to guidance and feedback [2,4,5]. 

These properties may not only help mitigate, but also eliminate undesirable and 

dangerous behaviors exhibited by these systems. However, while there may be some 

consensus on the type of normative safeguards that must be put in place, the 

underlying technological challenges are less clear. More particularly, because of the 

enormous capabilities of these systems, addressing each of these challenges is non-

trivial, and achieving the desired improvements may not be straightforward. In this 

paper, we identify important technological challenges related to general-purpose AI, 

and offer inspiring thoughts that are motivated by our experiences working to create 

responsible and adaptive AI. We hope these thoughts will serve to initiate a dialog 
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towards framing a research agenda that will enable our AI systems to be more 

trustworthy, user-interactive, and aligned with human preferences. 

2. Lifelong Learning, Domain Adaptation, and Resilience 

It is impossible to know a priori all the things AI should know, what the environment 

looks like, what risks the agent is going to face, what other agents are interacting with 

it, and what particular species of agents that AI is supposed to observe, learn, and 

reason about. Thus, it is the version of AI we are going to build today that needs to 

start learning new skills, new knowledge, adding and adapting capabilities 

incrementally, without excessive resources, given the challenges of simulated and real-

world deployment [6-8]. Therefore, making these AI systems generalizable, adaptive, 

resilient, and responsible is the most tantalizing, exciting, and significant challenge we 

should aim for. Adaptive learning is the AI agent's capacity to learn from the 

environment, or other agents when receiving feedback or reward functions, and change 

its behavior accordingly. More generally, it reflects not only the ability to improve but 

to acquire new skills and behaviors. Infants and children in particular have generalized 

learning methods for recognizing increasingly complex structures in the world, alone 

or from parental support [9,10]. They build increasingly sophisticated and 

knowledgeable domain theories and models that help them process environmental 

information. They have cognitive development trajectories that show how junior 

learners can perform at a high level in many domains in which adults are novices, 

while adults are experts for the domains where children have the least domain 

knowledge. These trajectories suggest how to design developmentally friendly learning 

interfaces, scaffolding methods to reduce the likelihood of catastrophic failures, and 

also learning difficulties designed to challenge domain generalization powers and 

domain-specific knowledge. The combination of general knowledge about the world, 

prior knowledge about specific domains, and learning scaffolding tools provided by 

parents and peers leads children to construct sophisticated hierarchical, compositional, 

and domain-specific knowledge structures in a way that avoids the pitfalls of 

overfitting in off-policy learning. 

2.1. Conceptual Framework for Lifelong Learning 

Artificial Intelligence (AI) has rapidly influenced both shaping and solving some of the 

challenging problems faced by humanity. While algorithms can now perform specific 

tasks at or above human capabilities, they are trained artificially on labeled data in a 

disjoint fashion, primarily using supervised learning. These algorithms are able to 

generalize well on them according to some performance metrics. However, in most 

real-world applications, these systems can be found stuck in a distributional regime, as 

either the distribution of data or performance metric for a given task can shift, posing 
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novel challenges to AI systems. Are such algorithms capable of generalizing or 

adapting to these shifts? The problem of re-training the underlying models using newly 

collected samples from the target distribution is expensive, cumbersome, and not 

always possible, e.g. the worst-case scenarios where there are no labeled target 

samples available. Thus, the central ideas behind the concepts of domain adaptation or 

domain generalization techniques have been to devise AI algorithms that can adapt to 

or generalize on tasks with unseen distributions. 

The general paradigm of lifelong learning, also known as continual learning or 

incremental learning, seeks to study how an AI system can continually learn new tasks 

while already being provided different shift experiences and also minimize the 

negative effects of catastrophic forgetting [11-13]. Lifelong learning hence aims to 

develop competence while adapting in a flexible, efficient, and data-driven manner to 

new or modified distributions, directly affecting the resilience of the system. While the 

concept of domain adaptation looks at the transfer of knowledge from a set of labeled 

source distributions to an unseen target distribution, the underlying problem of lifelong 

learning is a temporal one, looking at the effects of being exposed to the unlabeled 

trajectory of such shifting distributions over incremental periods of time on the 

learning process and updated model. Lifelong learning is apparent throughout human 

evolution and learning but is still far from being realized in machines. 

2.2. Techniques for Domain Adaptation 

Domain adaptation is an effective technique in lifelong learning to address distribution 

shifts from one task to a related task by bridging the learning from an earlier task to the 

later one. In domain adaptation, shared knowledge between domains in source and 

target tasks, as well as domain-specific information, are exploited to transfer what has 

been learned in a specific domain to an unseen but related domain. Knowledge transfer 

between related domains can substantially improve performance in the target domain, 

especially when labeled target domain data is scarce [2,14-17]. In general, domain 

adaptation methods specifically model and reason about domain relationships and 

design learning objective functions to capture the differences in knowledge properties 

of shared and private components among different domain models. Broadly speaking, 

most domain adaptation methods exploit sources of information in task relationships 

via transfer learning, probabilistic models, metric-based learning, or generative 

models, among others. Transfer learning, especially its early formulation in embedding 

representation learning, is perhaps one of the earliest approaches to domain adaptation, 

where input data is transformed into another space and the domain relationship is 

modeled in this space. Transfer learning assumes the domain mapping can be learned 

through supervised data labeled with their respective domains, which is often 

impractical [9,18-21]. To overcome this limitation, domain adaptation aims to learn 
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domain-invariant representations through the use of information from both domains. 

Domain adaptation incorporates shared knowledge between the source and the target 

domains and augments the transfer learning methodology under conditions when the 

two domains are related. 

2.3. Building Resilience in AI Systems 

Towards Adaptive and General Purpose AI beyond Labeled Closed World Tasks 

Lifelong Learning, Domain Adaptation, and Resilience For any AI system to be 

applied in a wide array of tasks in the physical world, it needs to be capable of rapidly 

adapting to knowledge and purpose in the presence of scarce or no external guidance 

or supervision. Our ultimate vision for AI systems is that they will be computational 

assistants for our work and everyday living, just as our use of computation to augment 

reasoning, recall, skill acquisition, management of everyday living are aids for our 

lives. In a very loose analogy land and ocean species react and adapt to sudden shifts in 

their biome, such as earthquakes or hurricanes [22,23]. It is adaptation to these 

unexpected changes which is crucial for the long term continuous existence of all 

species. A parallel in the AI domain of supervised learning is a major shift in sample 

distribution, resulting in major degradation in classification accuracy. Resilience, in the 

context of Lifelong Learning and Domain Adaptation, is the ability of an AI system to 

incrementally self improve as more and more applications are processed by the AI 

module. To understand resilient learning, it is important to understand curriculum 

learning. In Curriculum Learning, the learner is trained on a sequence of labeled tasks 

of increasing difficulty – the easy first principle – suggested from the way humans 

acquire skills. The starting and intermediate exercises in Curriculum Learning are 

carefully chosen so that gradients are informative. As long as the learner does not 

forget previously learned tasks, it will eventually have perfect performance on the 

entire sequence. In the concept of resilience for AI systems, the entire process is self 

supervised, may proceed totally without labels, or be done in coordination with 

potential usage experts. 

2.4. Case Studies in Lifelong Learning 

The examples in this section demonstrate the plethora of applications and capabilities 

where lifelong learning can greatly enhance the potential of existing systems, while 

also serving as a bridge during the evolution from narrow- to general- AI. In 

translation, domain adaptation facilitates the generalization of models outside the 

training domain, but achieving natural language processing in many languages 

simultaneously is an enormous task; hence a single language through domain 

adaptation makes utmost sense [24-26]. The same is true for many modalities—

learning from the inconveniently sized constrained data available reveals whether and 
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how much it helps if leaned and grown in lesser languages—what’s the silver lining. It 

hardens the model through few-shot active learning; not managing to wait just a few 

more seconds until the completion of the graph traversal gets the screenshot that is 

eventually used during the work stream that shows how they can help enhance the 

process. 

An open challenge is the unavailability of sufficient and diverse training data. 

Frequently, only a few examples are available, even in the target domain. For many 

tasks and domains, it is impractical to annotate and use tremendous quantities of 

training data due to cost and time constraints that are unacceptable. Some tasks that 

machine learning can perform simply cannot be modeled with that compromise. 

Equipment hosting and processing the algorithm must therefore learn to adapt without 

a performance drop during deployment. Here we show some case studies illustrating 

the use of lifelong learning strategies as well as techniques for domain adaptation to 

help enable machines operate on edge-type tasks on emerging devices. Examples are 

considered from cross-lingual and multimodal applications, robotics autonomy, risk-

life operation for disaster-relief operations, and other relatable ones. 

3. Human-AI Co-Learning and Feedback Loops 

Indeed, learning is a two-way street where knowledge, skills and expertise flow in both 

directions; without a doubt, this is even more true when considering the educational 

collaboration between an intelligent agent and a human user. An AI system learns from 

the human agent providing it feedback in different forms, and is therefore co-creating 

the information it possesses; but at the same time, the user as a biological intelligence 

is learning from the intelligent agent, adapting its behavior to the feedback it receives 

from it, improving the effectiveness of the collaboration [27,28]. Note that humans 

collaborate and solve problems together; AI systems collaborate and augment human 

intelligence to resolve joint goals. Collaborations and joint tasks between humans and 

AI systems differ in natures, and therefore they necessitate different designs and 

implementations. 

Analyzing the feedback stream is fundamental: in Human-AI collaboration, the main 

task is to generate feedback-related representations. The more "introspective" the AI 

system is, the more it is able to provide specific information about its inner states, the 

more useful, personalized, and effective the feedback will be for the user. We therefore 

can put forward the Basic Co-Learning Proposition: empathizing the inner workings of 

the AI agent is a key feature of the user-AI interaction; producing information and 

empathy is essential for user learning and skill improvement. Agent internal states 

therefore need to be shared during the collaboration; psychological investment for AI 

design would pay back for the entire community. These are qualitative arguments that 
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show that co-learning relationships are intricate and sensitive: while pushing forward 

the AI and the human in a complementary way toward the solution of the problem is 

necessary, the balance between AI and human disparateness should be indeed finely 

tuned [19,29-31]. 

There are qualitative psychological and cognitive reasons that support the necessity of 

a fine-grained balance between human and AI learning mechanisms, and of related 

adaptive scenarios based on different collaboration stages. By "adaptiveness" we mean 

here a switch of roles and related styles of collaboration, according to the phases of the 

project: collaborating with compassion, flexibility and differentiation with each other, 

and being aware of both AI and human profiles is essential to raise the quality of 

results. 

3.1. Understanding Co-Learning Dynamics 

Co-learning and co-evolving effectively implies that humans and AI learn from each 

other, enhancing their respective learning and learning capacity, in a positive feedback 

loop. For the AI component, this enables improved learning capability with less data 

and improved generalization. While humans are already adept at providing feedback 

for AI in the task I can do, and the AI technology is increasingly reliable in context if 

not the content of the output, currently we cannot easily teach the AI to perform a task 

outside of the mechanisms already provided, for example using natural language, even 

for tasks that are easily learned by a child. We envision future AI that can accept 

extended feedback beyond current simple feedback or correction, and that learns 

efficiently from the feedback, taking it into account. 

For humans, effective co-learning with AI should be an engaging experience that is 

relatively easy and does not require too much invested effort. Part of this co-design is 

that humans do not need to understand machine learning in detail, but we do believe 

that a basic understanding of how AI learns might make it easier for the human to 

design appropriate feedback mechanisms, especially at the earlier stages of learning 

when the AI is still adapting to the human's requirements. Good models of human 

cognitive biases could help ameliorate the effects of poor design of AI tools that pre-

exist, or new tools that have been poorly adapted to the user's actual learning pattern. 

We see co-evolution as a partnership over time which is currently hampered by the gap 

in understanding of how AI learns given little feedback in teaching from humans. 

3.2. Designing Effective Feedback Mechanisms 

Effective human-AI collaboration relies on an intricate co-learning relationship, and 

therefore we need to design effective AI-enabled feedback mechanisms to facilitate 

this process. One common method is through reward signals - in interactive 
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reinforcement learning setups, the human provides feedback by delivering reward 

signals to the AI and the agent uses these signals to learn a reward model and use it to 

further optimize its policy performance [32,33]. The overall aim is to enable humans to 

communicate their desires, decisions, and intent to the AI efficiently and improve AI 

learning. 

A key aspect of these feedback mechanisms is their fidelity, or, how accurately these 

signals convey all of the underlying human intent. Humans, while providing feedback, 

might not be experts, and engaging all of their efforts might not be viable for all 

settings, causing the feedback to be noisy or inaccurate at times. This typically leads 

the AI, while optimizing its policy based on the imprecise or incorrect signals, to not 

learn optimal behaviors. One approach to alleviate this problem is to allow the AI to 

ask clarifying questions, and choices, while trying to reduce the need for humans to 

give feedback [34-36]. When expressed as a generative feedback model, researchers 

have proposed the approach of Conversational IRL, where the agent can engage 

humans in a dialogue to confirm or clarify its predictions. The dialogue can confirm 

which parts of the prediction are likely to be wrong, and can also clarify ambiguous 

predictions with two or more likely explanations. 

3.3. Evaluating Human-AI Collaboration 

Before studying how to design human-AI interaction to achieve effective human-AI 

collaboration, we must first answer the question of how to evaluate whether such 

collaboration is effective. This is complex because the success of the collaboration is 

inherently subjective. In purely artificial agent AI research, task performance is usually 

treated as the sole evaluation criterion. Such task performance may be measured using 

objective means, such as the time taken to complete a task or the accuracy of the 

produced solution. However, much of pure-AI agent research focuses on the stated 

goal of the AI agent itself, either deterministic or stochastic. This necessitates some 

physical world metric to capture the essence of the task as viewed by the human 

designer of the agent. In the case of designing systems to directly interact with humans, 

success is considered as instances of task performance, combined with user satisfaction 

and trust in the system. In general terms, first-hand user experience during and after the 

interaction becomes a relevant criterion of success. 

In the Human-AI co-learning framework, there is a different objective, the dual task of 

designing effective interaction mechanisms and communication displays that allow 

user understanding of AI uncertainty while at the same time improving the recognition 

and prediction capabilities of the AI [37-40]. This objective adds new qualitative 

criteria to measure the effectiveness of collaboration; for example, the quality of 

explanations provided by the AI, the transparency of communication, and how the 
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interaction, with or without the use of communication aids, affects the burden of 

communication on interactions. We assert that both pure task performance measures 

and criteria based on understanding and user experience are necessary to assess the 

success of a collaborative research approach. After all, a human-AI combination can 

only succeed if both agents perform better together than each one would have done 

alone. 

3.4. Challenges in Co-Learning Environments 

The dynamics associated with the feedback loops and co-learning will depend on 

implementation details and how the task is structured. Sometimes the human provides 

explicit feedback, and sometimes the AI presents intermediate work for review. The 

asynchronous nature of tasks can also affect system dynamics. In some use cases, the 

human will furnish examples over an extended period, and in other scenarios, the 

person may work concurrently with the AI, leading to a more team-like relationship. 

Integrating human feedback needs to empower and inspire humans to direct the 

learning process [41-42]. With weak feedback, the AI may overfit the response to the 

idiosyncratic human preference. Combining the weak critiquing feedback of the human 

rater with a larger dataset can help generalization or transfer the learned reward 

function more effectively. Different types of co-learning systems would face this 

problem in different ways, and some co-learning systems may benefit from this risk to 

express more focused understandings of persons. However, the design of co-learning 

systems is complex. 

Co-learning environments present many challenges in addition to those faced by 

standalone AI systems. A systems perspective is necessary to examine such co-

learning architectures. The AI benefits from the human input, but what is the payoff to 

the human? Humans should not be misled by the AI. Humans should be able to affect 

the process of learning or reward function design at one or more levels of granularity 

and control. Humans do not stay stationary over the long time scale of AI learning, 

particularly with interactive systems that engage in action-selection tasks. Humans 

may come and go or change in focus or even policy. Designing AI that learns from 

humans in the long term is related to modeling human behavior, although the 

complexity of this problem is also shared with human-centric interactive AI. 

4. The Role of AI in Achieving SDGs and Climate-Health Equity 

Artificial intelligence (AI) has transformed how we access technology and information 

and how we connect with one another and the planet. The last decade has seen 

unprecedented growth in AI investments, products, and applications, as well as an 

increasing commitment to diversity, equity, and justice. AI has delivered a myriad of 

applications in a diverse number of fields including education, employment, health, 
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energy, ethics, transportation, and climate change. Notably, addressing the challenge of 

climate change and climate-induced inequities in health, well-being and access to 

resources will require a core understanding of how technology coalesces with policy 

and practice, bridging the social, behavioral, technical, and environmental sciences to 

design and deploy AI systems that are accountable, responsible, equitable, and link 

agency to impact. 

The challenges related to the COVID-19 pandemic exposed long-standing inequities 

that can only be resolved through an integrated approach that lifts people out of 

structural inequities in access to health, housing, education, and nutrition that 

ultimately create healthy societies built on partnerships. Further work is needed to 

reduce the burden on professionals, engage with domain experts, and seek specific 

applications that can contribute tangibly toward people’s lives, the environment, and 

how we deepen our understanding of each other, and social constructs around trust and 

responsibility. In doing so, we believe that researchers, policymakers, and practitioners 

can drive this collective vision while better preparing current and future innovators to 

grapple with the questions of ethics, responsibility, and diversity in AI to ensure these 

challenges are met head-on to build a brighter tomorrow. 

4.1. AI Applications in Sustainable Development Goals 

With multiple intergovernmental institutions promoting global health, climate, and 

development initiatives and universal norms, we must elicit the values and capabilities 

of AI so that all have just and equitable access to AI development processes while 

benefiting from the use of AI. The world is at a leadership moment as countries and 

diverse entities across geographies dialogue to define the values, equity, and interest-

driven joint global investment and collaboration mechanisms needed to advance an 

equitable and universally beneficial AI. 

AI has become part of our everyday conversations and tools. More than ever before, 

we can imagine and benefit from the appropriate use of AI to extract signals from big 

data, optimize and coordinate resources and services at scale, and use AI for AI to 

rapidly innovate and reduce costs in all industries. We can apply AI to accelerate 

progress towards the SDGs in novel ways by leveraging deep learning and 

reinforcement learning, as examples. AI can be integrated with sensor networks, 

simulation models, and conversational agents to spur progress in sectors tied to a 

number of SDGs. AI is already used in myriad applications of targeting, prediction, 

monitoring, deployment, and measurement and evaluation in development and health, 

climate, and humanitarian assistance domains. In low-resource settings, small, low-

cost, computationally efficient AI chips are being deployed on mobile or handheld 

devices for predictive analytics, task coordination, and real-time decision support. The 
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increasing scale and richness of data drive momentum in AI capabilities and 

applications. 

Climate change is inextricably linked with health and development across these 

interconnected domains. Creating more value for people requires sustained innovation 

that brings together synthetic and human intelligence, allowing for algorithms and 

logic to augment reasoning, creativity, and relationship-building in small and big 

decisions and operations. AI can be applied to spur innovation in decision-making 

systems. AI is being combined with models for decentralized intervention strategies to 

support mobile agents, offer unique learning opportunities of data-driven behavior 

modeling, and incentivize simulated agents under adaptive learning. 

4.2. Climate Change Mitigation Strategies 

Implementing renewable power systems and establishing zero-carbon buildings are 

two major strides toward realizing a zero-carbon tomorrow. Available technologies can 

get us fairly close to a zero-carbon tomorrow. Carbon emissions as a byproduct of 

fossil fuel consumption in energy generation can be decarbonized by replacing fossil 

fuel-based electric generation technologies with geothermal, solar photovoltaic, 

concentrating solar power, nuclear, wind, hydroelectric, and sustainable biomass-based 

generation technologies. These sustainable technologies combined account for about 

50% of global electric generation. Additionally, with burgeoning improvements in 

energy transmission, storage, and transfer technologies and algorithms, the wide 

adoption of electric vehicles, which will replace gasoline and fossil fuel-based coal 

burning in transportation, can further reduce the electric generation-related carbon 

emission problem. Another type of decarbonization employs the use of carbon capture, 

utilization, and storage technologies. It is expected that by 2030, available electric 

generation and carbon capture technologies can reduce global carbon emissions by 

15%. 

Making buildings zero-carbon require decarbonizing the electric power demanded for 

heat exchange by utilizing energy-efficient technologies to increase the current 

minimum energy-saving standards established for buildings. These energy-efficient 

technologies include thermal insulation of external walls, ceiling, and roofing; 

double/four-pane window glasses; thermal-heat exchanging vents; and state-of-the-art 

HVAC technologies that consume renewable electric power. Powering all renewable-

enabled zero-carbon buildings will mitigate about 20% of global carbon emissions. By 

2050, about 80% of buildings can become zero-carbon. The remaining dirty, non-

renewable building sector of the economy can compensate by employing carbon 

capture technologies. 
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4.3. Health Equity and AI Interventions 

Technology can help shape healthcare systems toward a more equitable future, and AI 

is increasingly been hailed as a critical enabler. Despite this promise, there is limited 

evidence that AI makes healthcare systems and processes more equitable. In this 

domain, health equity refers to the fair distribution of medical services and 

interventions, as well as their outcomes, with the goal of eliminating ethnic, 

geographical, gender, economic, and other disparities. For over 40 years, the 

fundamental principles of AI—efficiency, accuracy, generalization, and objectivity—

have been challenged by sociolinguistic and anthropological critiques focusing on the 

socio-contextual and historical aspects of AI and on the risks of discrimination in 

algorithm design, validation, and application. In healthcare settings, the Joint 

Commission calls for the provision of effective, equitable, sequenced, and timely care 

for all surgical patients, with work directed at the mitigation of existing health 

disparities and inequities based on ethnicity, culture, gender and sexual orientation 

identity, and economic disadvantage. 

Most of the earliest discussions of bias and discrimination in AI have drawn on the 

moral and ethical philosophy of epistemic injustice. More recently, and given the scale 

of AI interventions in medicine, calls for accountability have become increasingly 

insistent. AI researchers and developers, as well as those applying AI methods to the 

health domain, have been encouraged to move beyond simple claims of fairness linked 

to algorithmic performance, and begin to consider the impact and implications of 

deploying such models in clinical contexts. This focus on data, training, model 

evaluation, and real-world deployment of predictive AI returns us to the issue of health 

equity, and indeed extends and enriches these earlier conceptual arguments into a more 

pragmatic framework for AI interventions in health and medicine. Call for and 

prioritize action are welcome additions to the normative and ethical algorithmic justice 

conversations in machine learning. 

4.4. Ethical Considerations in AI for SDGs 

The race to develop innovative artificial intelligence (AI) solutions for solving the 

world's most pressing challenges has begun to catalyze a new layer in the global tech-

led public sector engagement model where initiatives are shared and scaled in part to 

display the national prowess of soft power. National states increasingly direct their 

scientific and technological resources toward meeting humanitarian needs in low and 

middle income countries, as a means to fortify bilateral relations, define trade 

partnerships and mutually envisioned futures. The digital development approach, 

focusing on locally appropriate technology anchored to SUFs, as the basis for 

exploring a country's potential and preparing for new realities is critical to ensuring 
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that AI solutions are adaptive, sustainable and just. Globally, AI policy discussions 

have driven the rapid development of ethical guidelines to help inform and shape AI 

applications and tech-led funding decisions, which both avoid or mitigate any potential 

harms. Applied AI decision-making involves managing risk and prioritizing guidance 

in four key impacted areas, starting with the protection of human rights and civil 

liberties aligned to fundamental ethical and moral principles, ensuring diversity, equity 

and inclusion in the data, algorithms and the intended beneficiaries reflecting diverse 

stakeholder perspectives, as well as their continuous engagement throughout the life 

cycle. This is particularly important in the design recommendations and evaluations, so 

that these reduce or avoid any existing, implicit or abstract bias or discrimination. 

Second, public trust and government accountability in democratic systems should also 

be established through risk identification and mitigation in integrated decision making, 

guidance provision, outcome transparency, model interpretability, evidence-based 

research, and due process when AI decision-making occurs. Third, industry is called to 

address and avoid operational opacity along the digital supply chain involving the 

sharing or externalization of services and decision-making. Fourth, in response to 

climate impact avoidance, environmentally sustainable principles should be followed 

that also minimize the carbon footprint of the infrastructure and tools that support AI 

visualization, analysis, modeling and conclusion. 

5. Future Directions in AI Research 

This essay, broadly, argues for grounding and shifting the perspective in AI Research 

towards a focus on social and ecological adaptation. We see critique and pushback 

from a broad swath of academics, practitioners, educators and students of the AI field. 

Who argue that although LLMs, AI Tools, and other commercial enterprise creations 

have upset and opened new economies of scales of talent and resource investing in tech 

mode growth. They are not necessarily better at ecosystem modeling and simulating 

dynamics than traditional differentiated techniques employing computation in the loop 

or as tool. This section offers more detail and nuance on concrete points to consider as 

we all reflect and direct our future collaborations in research on AI towards socially 

justified economies of accountability and scale. 

5.1. Innovative Approaches to AI Development 

The claim from detractors on the bumpy new road opened up to discovery and 

innovation specific to domain is, that despite how much funding and interest have 

piggybacked off of the large data model capabilities gap, it does not speak to better 

capabilities at solving more difficult to solve problems in a concrete domain and 

context. At developing new innovative differentiated toolsets or protocols specific to 

those areas or towards associated modeling tasks. The justification and ground 
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returning observation is similar to that critiquing how thick a philosophical layer open 

world models and techniques developed in a lab, and the data compare did not result in 

new easier forms of solving more difficult novel tasks confronting global societies. For 

some of the same reasons promoted by our Critique of CG, Cycles of Deflation, 

Technological Innovation and Market Entry. It has been produced and published, 

endlessly updated and extended, by those it concerns, as becoming acutely aware of 

and facing these stars of our wars. As collaborative as claim driven resource and 

investment trajectories have been. 

5.2. Interdisciplinary Collaborations 

A broader observation and upcoming critique we offer is that in general we feel that 

outside tech corporations and academia connections and expertise trade are poorly 

mapped. Partnering in the formation of new communities of talent and aspiring project 

incubators around shared population learning oriented building cycles. This builds off 

what is implicit in much of what is said here to further unpack the inter and 

transdisciplinary conversation feedback loop around model changes that we think is 

critical to listen to and embrace with regard to both our social fabric and the ecosystem 

at large. 

5.1. Innovative Approaches to AI Development 

While AI development has focused on advancing capabilities of general models, future 

approaches that think more holistically about AI tools and their impact will be needed. 

In a similar spirit, we argue that AI tools work best when they can both reason about 

the real world and learn from their interactions with it to adapt behaviors to new 

domains and contexts without requiring exhaustive external supervision through the 

entirety of their usage. 

To accomplish such a synergistic approach to AI, researchers need to think more 

creatively about paradigms such as few-shot learning, interactive learning from various 

types of humans or even other AI actors, AI-assisted semi-supervised or self-

supervised learning systems, tools that address concepts like domain transfer and meta-

learning, machine learning systems that are adaptable on the fly in real world user-

centered contexts, and others. A collaborative, interdisciplinary approach that includes 

other fields such as robot learning, perceptual control, multi-agent reinforcement 

learning, AI ethics, among others will help here. Generalizable and adaptive AI are 

core topics that can be studied and understood using concepts developed in more 

specialized areas and that have potentially huge impacts in the world. 
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5.2. Interdisciplinary Collaborations 

Over the course of this essay, we have primarily drawn upon ideas and concepts 

proposed in AI and cognitive science; however, there are insights and tools that other 

disciplines are advancing that are also relevant. Throughout our lives, we have 

vicariously borrowed from philosophy, linguistics, sociology, neuroscience, 

anthropology, psychology, enactivism, and economics, among others. Going forward, 

we feel there is an immense value to be gained through a greater breadth of direct 

collaborations. Interdisciplinary collaborations are advantageous to all disciplines 

involved, as we are all exploring what intelligence is, how it can be developed — 

whether in natural or artificial systems — and how it can safely support and empower 

humanity. 

While this may seem idealistic, recent trends in linguistics, sociology, and psychology 

argue that the increasing degrees of automation are contributing to the detriment of 

aspects of our intelligence. Research actually shows there is far less disagreement 

within and across disciplines than one may expect, and that the areas of disagreement 

are being actively explored. Such opportunities for collaborative growth are all around 

us. However, interdisciplinary collaborations tend to be difficult to sustain, because of 

slow disciplinary-maturity and the depth of expertise required to produce interesting 

new research directions. This maturity comes from intense specialization, which is 

ironically often the preferred strength of disciplines, yet caretaking of disciplines 

frequently comes at the detriment of innovative endeavors. It is really up to each 

department to decide. Some universities have responded by allowing for exploratory 

positions that can often be the bridge to further collaborative explorations. 

5.3. Policy Implications for AI Governance 

Several key implications for AI governance can be drawn from the arguments. The 

first is that different domains may require vastly different tailored ethical guidelines. 

Take, for example, the massive progress in the past few years and forthcoming 

capabilities of different modalities, including creative multimodal and temporal 

generalization in GANs, simulated task completion in language models, releasing fears 

about the economic viability of AGI in the mid-2020s, and eventual military interest in 

autonomous deepfakes – upon these capabilities being achieved, there may not be an 

effective scoping process at play. The need for well-timed policies that guide and 

contain the research of these technologies as per risk level is thus urgent. Regulatory 

models must also showcase domain diversity. Namely, AI that augments 

transportation, automated video-conferencing, or remote work must have drastically 

different updates and approval processes than AI that serves healthcare, space 

exploration, or military sectors. Simultaneously, multidisciplinary knowledge on best 
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practices guiding these guidelines is still scarce; as states hurry towards subsidizing 

companies, they do so without accurate calibration, nor have employed a mindset of 

inter-agency knowledge pooling. Lastly, and perennial to policy design, safety and 

quality benchmarks for companies are still arbitrary – no specific taxes, grants, or risk 

discount guides the public economy towards incentivizing safety and superior 

technology transfer, or towards disincentivizing economic mass. What are currently 

treated as stringent company bearer realities – high investment, low churn, people-

intensive risks of entry – are more often than not ignored because promises of reduced 

operational costs alleviate these obstacles for companies. 

6. Conclusion 

In this short essay we have discussed three key components that can enable the 

generalization, responsibility, and adaptiveness of AI systems: continuous learning, 

explicit modeling, and principled design philosophy. We described key challenges and 

directions in the development of system components for these three areas and 

presented early results from our work to address some of these challenges. Although 

individually important, we should note that these three areas are deeply related and 

their cardinality should not be neglected. Because of the nature of AI systems, progress 

in these areas must balance the usability, efficiency, and capability of these systems, 

and prioritize performance in the tasks that are important to the user. Finally, we 

discussed some aims of our research towards making AI systems more useful and 

usable. We believe that these principles promote useful generalizable AI systems that 

will augment the human experience and push boundaries in various domains. 

We also acknowledge the problems surrounding the responsible and ethical use of AI 

techniques. While we address challenges directly related to the generalizability, 

responsibility, and adaptable use of AIs in complex environments, we believe that 

these are just as important as specific applications and domains. AI systems are only 

useful if they solve a real problem and we found it useful to bring some concrete 

examples to discuss in this review. Our work is motivated by the aforementioned 

inquiries and we hope through interdisciplinary work we can enable useful and 

principled systems in the future. 
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