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Preface

A significant and important subject area of Theory of Numbers is the theory of
Diophantine equations which concentrates on attempting to determine solutions in
integers for higher degree and many parameters indeterminate equations. Obviously,
polynomial Diophantine equations are many due to definition. Especially, the third
degree Diophantine equation in two parameters falls into the theory of elliptic curves
which is a developed theory. There are numerous motivating cubic equations with
multiple variables which have kindled the interest among Mathematicians. For example,
the representation of integers by binary cubic forms is known very little.

In this context, for simplicity and brevity, refer various forms of equations of degree
three having many variables in [Carmichael.,1959, Dickson.,1952, Mordell.,1969,
Gopalan et.al., 2015a, Gopalan et.al., 2015b, Premalatha, Gopalan et., 2020, Premalatha
et.al.,, 2021, Shanthi, Gopalan.,2023, Thiruniraiselvi, Gopalan.,2021, Thiruniraiselvi,
Gopalan., 2024a, Thiruniraiselvi, Gopalan., 2024b, Thiruniraiselvi et.al., 2024
Vidhyalakshmi, Gopalan., 2022a, Vidhyalakshmi, Gopalan., 2022b, Vidhyalakshmi,
Gopalan., 2022c].

The focus in this book is on solving multivariable third degree Diophantine equations.
These types of equations are significant since they concentrate on obtaining solutions in
integers which satisfy the considered algebraic equations. These solutions play a vital
role in different area of mathematics & science and help us in understanding the
significance of number patterns.

This book contains a reasonable collection of cubic Diophantine equations with three,
four, five and six unknowns. The procedure in obtaining varieties of solutions in
integers for the polynomial Diophantine equations of degree three with three , four,
five and six unknowns considered in this book are illustrated in an elegant manner.

Dr. M. A. Gopalan
Dr. N. Thiruniraiselvi
Dr. J.Shanthi
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Chapter 1

NON - HOMOGENEOUS CUBIC
DIOPHANTINE EQUATION WITH
THREE PARAMETERS

1.1 Technical Procedure

The non-homogeneous ternary cubic equation under consideration is
x?+y? —xy=2° (1.1)
Various choices of integer solutions to (1.1) are illustrated below:
Choice 1
The option
x=ky,k>1 (1.2
in (1.1) gives
(k> —k+1)y* =2°
which is satisfied by
y=(k*-k+1) a*,z=(k*-k+1) a®*,a>1,5>0 (1.3)
From (1.2) , we get
x=k(k*-k+1) a* (1.4)
Thus, (1.3) & (1.4) satisfy (1.1).

Choice 2



The option
X=u+kz,y=u—-kz,u=kz (1.5)
in (1.1) gives
u?=z%(z-3k? (1.6)
The R.H.S. of (1.6) is a perfect square when
z=(s*+3) k? (1.7)
From (1.6) , we have
u=s(s*+3)k’ (1.8)
Employing (1.7) & (1.8) in (1.5), it is seen that

x=k3(*+3)(s+1),

y=k3(?+3)(s-1) ,s>1 (9)
Thus, (1.7) & (1.9) satisfy (1.1).
Note 1
The R.H.S. of (1.6) is also a perfect square for values of z given by
z, =n”+2kn+4k® (1.10)
From (1.6), we get
u, =(n*+2kn+4k?) (n+k) (1.11)
In view of (1.5) , we have
X, =(n*+2kn+4k?) (n+2k), w12

y, =(n*+2kn+4k?) (n).
Thus, (1.10) & (1.12) satisfy (1.1) .

Choice 3



The transformation
Xx=kz+v,y=kz—-v,v=kz
in (1.1) gives

222K
3

The R.H.S. of (1.14) is a perfect square when
z=(3s* +1)k?
From (1.14), we get
v=s(3s*+1) k®
Using (1.15) & (1.16) in (1.13), we have

x=k*(3s® +1) (1+5),
y=k*(3s*+1) (1-s),s#1

Thus, (1.15) & (1.17) satisfy (1.1).
Choice 4
Introduction of the transformations
X=U+V,y=U—-V,U#V
in (1.1) simplifies to
u?+3v:=2°
which is satisfied by
u=m(m?+3n?),v=n(m?+3n?)
and

z=m?+3n?

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)



Substituting (1.20) in (1.18), we have

X =(m?+3n%) (m+n),

(1.22)
y=(m?+3n%) (m-n).

Thus, (1.21) & (1.22) satisfy (1.1).
Note 2

It is to be noted that (1.19) is also satisfied by
u=m®-9mn?,v=3m?n-3n®,z=m? +3n?
For this choice, we have

x=m?®-9mn?+3m?n-3n3,
y=m’-9mn*-3m°n+3n?,
z=m?+3n2.

Choice 5
The option

X=U+V,y=U—-V,Z=V,U#V (1.23)
in (1.1) gives

u?=v?(v-3) (1.24)
The R.H.S. of (1.24) is a perfect square when

v=s’+3 (1.25)
Using (1.25) in (1.24), we have
u=s(s*+3)

From (1.23), the corresponding solutions to (1.1) are as below



X=(s*+3)(s+1),
y=(*+3)(s-1),
z=(s*+3),s#1.

Note 3

The R.H.S. of (1.24) is a perfect square for values of v given by

V. =n’+2n+4
From (1.24) ,we get

u, =(n*+2n+4)(n+1)

From (1.23), the corresponding solutions to (1.1) are as below

X, =(nN*+2n+4)(n+2),
y, =(n*+2n+4)(n),
z, =(N*+2n+4),n=123,...

Choice 6
The option
X=uUu+V,y=u—-Vv,Z=U,U#V
in (1.1) gives
3vi=u’(u-1
The R.H.S. of (1.27) is a perfect square when
u=3s*+1
Using (1.28) in 27, we have

v=s(3s° +1)

From (1.26), the corresponding solutions to (1.1) are as below

(1.26)

(1.27)

(1.28)



X =(3s*+1)(s+1),
y=@3s*+])(L-s),
z=(3s*+1),s#1.

Choice 7

Treating (1.1) as a quadratic in x and solving for the same, we have

y+.472° —3y?

X = > (1.29)
Let
a’ =47° -3y? (1.30)
Assume
z=a’+3b? (1.31)

Write the integer 4 in (1.30) as
4=(1+iv3) L-iv3) (1.32)
Using (1.31) & (1.32) in (1.30) and employing factorization, consider
a+iv3y=(1+iv3) (a+i+/3b)?

On comparing, we get the values of o,y . From (1.29), the corresponding values to X

are obtained.
For the benefit of readers, the two sets of integer solutions to (1.1) thus obtained
are given below:

x=a%®-9ab?-3a?b+3b?,

Set 1: y=a’-9ab?+3a’b-3b?,
z=a’+3b?%.



Xx=6a’b-6b%,

Set 2: y=a’-9ab®+3a’b-3b°,
z=a’+3b?.

Choice 8

Rewrite (1.30) as
a’+3y*=47°*1 (1.33)
The integer 1 in (1.33) is expressed as

_ (3s° —1+i254/3) (3s* —1-i25+/3)

1
(3s? +1)?

(1.34)

Substituting (1.31), ( 1.32) & (1.34) in (1.33) and employing factorization ,consider

5 (352 —1+i25+/3)
(3s* +1)

a+i/3y=(1+i/3) (a+iv/3b)

(1.35)
-1 R +iVBGE] (@b +iv3a@b)]
(3s° +1)
where
|:(S)=(382 —1—63) ,G(S) :(352 _1+23) (1.36)
f(a,b) = (@° —9ab?) ,g(a,b) = (3a’b—3b°) |
From (1.35), we have
1
o= M[F(S) f(a,b) —3G(s) g(a,b)] ,
1 (1.37)

[G(s) f(a,b)+F(s) g(a,b)].

Y= a5t 1)

As the thrust is on finding integer solutions, replacing a by (3s® +1) Aand
bby (3s* +1)B in (1.31) & (1.37) ,we have



z=(3s*+1)* (A? +3B?),
a = (3s* +1)?[F(s) f(A,B)-3G(s)g(A,B)], (1.38)
y =(3s® +1)*[G(s) f(A,B) +F(s)g(A B)] ,

In view of (1.29), we have

wo o)

2
_ (3s? +1)?
2

{f (A, B)[F(s) + G(s)] + 9(A, B)[F(s) —3G(S)I}

(3s 2+ 1) {f (A, B)[G(s) — F(s)] + 9(A, B)[F(s) + 3G(s)]}

After simplification using (1.36) ,we have

X = (3s* +1)*{f (A, B)[3s* —-1-2s] + g(A,B)[-3s® +1-65]},

(1.39)
(3s* +1)*{f (A,B)[4s] + g(A,B)[6s* — 2]}

Thus, (1.1) is satisfied by (1.38) & (1.39).

Note 4
Apart from (1.34), one may have other representations to integer 1 which are
exhibited below:

Representation 1:

1 @) +i b()v3)(@(s) ~ib() V3)
) (a(s) +1)°

where
a(s) = (6s*—6s+1),b(s) = (2s-1)
Representation 2:

_ (a(s)+i b(s)/3)(a(s) —ib(s)v'3)

1
(a(s) +6s%)?




where

a(s) = (r* —3s?),b(s) = 2rs
Representation 3:

1 @)+ b()V3)(@) ~ib(s)V3)
B (a(s) +25°)?

where
a(s) = (3r* —s?),b(s) = 2rs
Representation 4:

1 @+ivBa,)(A-iV3a,) _ (2+i g,)(2-i g,)

(B.)* (f.)*

where

—L :L n+l _ _ n+1
o =530 =5 @+ =23
B, =2, =2 [@+43)" + 2-43)""1.n = 042...

A similar process, leads to four patterns of (1.1).
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Chapter 2

PEER SEARCH TO NON-UNIFORM
THIRD DEGREE DIOPHANTINE
EQUATION WITH THREE
VARIABLES

2.1 Technical Procedure

The equation under consideration is

X2 +y2 +8k(x+Yy)=(2k+1)Z* , k=0 (2.1)
The option
X=U+V,y=U-V,Z=2U,Uu#+tV (2.2)
in (2.1) gives
(8k+3)u® -3v* =8k (2.3)
Again, taking
u=X+3T,v=X+@Bk+3)T (2.4)

in (2.3) ,it simplifies to the binary quadratic equation
X? = (24k+9) T2 +1 (2.5)
It is worth to mention that, if the value of k is taken as three times the Triangular

n(n+1)

number T ,then (2.5) reduces to

X*=(6n+3)°T*+1

for which the solution is trivial. Therefore, choose k such that 24k +9is positive and
square-free integer. Let (T,,X,) be the smallest positive integer solution to (5) ,a well-

10



known pellian equation. After some algebra, the general solution (T ,X )to (5) is

given by
1 1
T =———0,,X,==f,
" 21/24k+9g” 2
where

fo = (X, ++/24K+9 T )" + (X, —+/24k +9 T,)"",
g, =(X0+,/24k+9'|'0)n+1—(X0 —,/24k+9T0)n+1.

From (2.2) & (2.4), we have

X,=U,+V,=2X, +(8k+6)T,

_f 4 4KH3) o
24k +9
4k
=Uu,—-V :_8kT == - ’
yn n n n 24k+9 gn
zn:2un:2Xn+6Tn:fn+L g, -
24k +9

Note 1
Apart from (2.4), take

u=X-3T,v=X—-8k+3)T
In this case, (2.1) is satisfied by

X, =U,+Vv,=2X,-B8k+6)T,
s (4k+3)

T f2akeg

4k
=u -V =8kT =———— ¢,
yn n n n ’24k—+—9 gn

z,=2u,=2X,-6T, =f — 3

24k +9 G-

(2.6)

@.7)

11



To analyze the nature of solutions, one has to take special value to k in (2.5).
Illustration 1
Considering k=2 in (2.5) , it is written as
X?=57T*+1 (2.8)
whose smallest positive integer solution is
T,=20,X,=151
From (2.6) ,the general solution to (2.8) are given by

1 1
T, =—=0,, X, =1,
PN AN

where

f = (151+20+/57 )" + (151+20~/57)"*,
g, =(151+20~/57 )" — (151+20/57)",

From (2.7), the corresponding integer solutions to the equation
X} +y* +16(x +Yy)=57° (2.9)

are given by

x—f+£g

8
——_° g, 2.10
Yn 57 9s (2.10)

3
z,=f +——g,,n=012,..
e

The recurrence relations satisfied by the solutions to (2.9) given by (2.10) are presented
below:

12



X, —302X,,, +X, =0,
yn+2_302yn+1+yn 207
z,,,—302z,,+2,=0,n=012,...

n+1
A few numerical solutions to (2.9) are shown below:

X, =742,y,=-320,2,=422
X, =224082,y, =—96640,z, =127442
X, =67672022,y, =—29184960, z, = 38487062

Remarkable observations

1. 8X,,,,+11y, ., +16 istwo times a square integer

3(8z,,,, +3Y,,,, +16) is a square multiple of 6

Each of the following expressions is a cubical integer
8X3n+2 +11y3n+2 +3(8Xn +11yn)’

823n+2 + 3y3n+2 + 3(8Zn + 3yn)
4. Each of the following equations represents hyperbola

(8x, +11y )*-57(x,—z,)* = 256,
(8z, +3y,)*-57(x, —z,)" =256,
(8x, +11y,)*—57 y,* = 256,
(8z,+3y,)*-57y,’ = 256.
5. Each of the following equations represents parabola
8(8X,,., +11y,,,,+16)-57y,* = 256,
8(8Z,,,, +3Y,,,, +16) =57 (X, —2,)* = 256.
16X,,,5+22Y,,.5 +32(8x%, +11y,)* —32 is a quartic integer

Formulation of Second order Ramanujan numbers :

From each of the solutions of (2.9), one can find Second order Ramanujan
numbers with base numbers as real integers.

Ilustration

13



Y, =—320
_ 1%(=320) = 2*(~160) = (~4)*80 = (=5) *64 = 8* (—40) = (~10)*32 = 20*(~16)
= 5} F, F F, K R F
F, =F, =(1-320) +(2+160) = (1+320)* +(2-160)°
=319° +162% =321° +158° =128005
F =F, =(1-320)* +(-4-80)* = (1+320)* + (-4 +80)?
=319° +84% =321* + 76° =108817
F, =F, =(1-320)° +(-5-64)* = (1+320)* + (-5+64)*
=319° +69% =321° +59° =106522
F =F =(1-320)* +(8+40)* = (1+320)° + (8—40)*
=319° + 48 =321° +32° =104065
F, =F, =(1-320)* +(-10-32)* = (1+320)* + (-10+32)*
=319° + 42 =321% + 22* =103525
F =F, = (1-320) + (20 +16)? = (1+320)? + (20—16)’
=319% +36% =321° + 4* =103057
F, =F, = (2-160)? + (-4 —80)? = (2+160)? + (~4+80)?
=158 + 84 =162% + 76° = 32020

14



F, =F, =(2-160)° + (-5-64)* = (2+160)* + (-5 + 64)*
=158° +69° =162% +59° =29725

F, =F, =(2-160)% + (8 +40)* = (2+160)* + (8 — 40)*
=158% + 48% =162° + 32> =27268

F, =F, =(2-160)* + (-10-32)* = (2+160)* + (-10+32)°
=158% 4+ 42% =162° +22° =26728

F, =F, =(2-160)* + (20 +16)* =(2+160)° + (20 —16)°
=158° +36% =162° + 4° =26260

F,=F, =(-4+80)% +(-5-64)° =(-4-80)* + (-5+64)*
=76% +69° =84° + 59> =10537

F, =F, = (—4+80)? + (8+40)” = (~4—80)” + (8 — 40)’
=76% +48% =84° + 32> =8080

F,=F, =(-4+80)* +(-10-32)* = (-4 -80)° + (=10 + 32)*
=767 +42% =84% + 22% =7540

F, =F, = (-4+80)” + (20+16)° = (~4 —80)” + (20-16)°
=76% +36° =84° +4% =7072

F,=F, =(-5+64)* +(8+40)° =(-5-64)* + (8—40)°
=59° +48% =69% + 32> =5785

F, =F, =(-5+64)* + (-10-32)* = (-5-64)* + (-10+ 32)*
=597 + 42 =69* + 22> =5245

F, =F, =(-5+64)° +(20+16)* = (-5—-64)* + (20-16)*
=59% +36% =69% + 4> =4777

F, =F, =(-5+64)> + (8+40)* =(-5-64)* + (8- 40)°
=59% +48° =69% +32° =

15



F,=F, = (-5+64)" +(8+40)° = (-5—-64)* + (8- 40)°
=59 +48° =69 +32° =5785

F, =F, = (-5+64)" +(-10—-32)* = (-5-64)* + (-10+32)?
=59 +42° =69° + 22> =5245

F, =F, =(-5+64) +(20+16)* = (-5—64)* + (20-16)°
=59 +36° =69° +4° = 4777

R, =F, = (8-40)° +(-10-32)° = (8+40)* + (-10+32)’
=322 +42° =48 +22* = 2788

R =F =(8-40)° +(20+16)" = (8+40)* + (20-16)?
=32° +36* =48° +4° =2320

R =F =(-10+32)* +(20+16)* = (-10-32)° + (20-16)
=22° +36° =42° + 4> =1780

Thus, 128005, 108817, 106522, 104065, 103525, 103057, 32020, 29725, 27268, 26728,

26260, 10537, 8080, 7540, 7072, 5785, 5245, 4777, 2788, 2320, 1780 represent second
order Ramanujan numbers with base numbers as real integers.

Ilustration 2
Considering k=4 in (2.5), it is written as
X?=105T*+1 (2.11)
whose smallest positive integer solution is
T,=4,X,=41
From (2.6) the general solution to (2.11) are given by

1 1
T =—=-—g,,X,==f,
" 24105 o 2

16



where

f =(41+4+/105)™" + (41+ 4+/105)™",
g, =(41+4+/105)"" — (41+ 44/105)"*,

From (2.7), the corresponding integer solutions to the equation

X} +y* +32(x+y)=92° (2.12)
are given by
X =f +£g
o105
16
= g, 2.13
Yn 105 59n (2.13)

z n=012,..

=f +ig
n n \/ﬁ n?

The recurrence relations satisfied by the solutions to (2.12) given by (2.13) are presented
below:

Xn+2_82xn+1+xn :O’
yn+2_82yn+l+yn :0’
z,.,-82z,,+z,=0,n=012,..

A few numerical solutions to (2.12) are shown below:

X, =234,y, =—128,2, =106
x, =19186,y, =—10496, z, =8690
x, =1573018, y, = —860544, z, = 712474

Remarkable observations

1. The expressions below represent Nasty Numbers.
96X,,,, +114y,. ., +192
9%z,,,, +18y,,,, +192

114z, ,, —18X,,,, +192

17



2. The expressions below represent twice a cubical integer
16X,,,, +19V,,., +3(16x, +19y,)

16X3n+2 +19y3n+2 +3(162n +3yn)
16X3n+2 +19y3n+2 +3(192n _3Xn)

3. Each of the following expressions is a quintic integer

(16X, +19y )*-105y °

(162, +3y,)*-105y,°

19z, -3x,)? -105y,°

16(16X,,,, +19Yy,, ., +32)-105y,°
16(162,,,,+3Y,,., +32)-105y ?
16(192,,,, —3X,,.,, +32) 105y, °

18
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Chapter 3

TECHNIQUE TO SOLVE NON-
HOMOGENEOUS TERNARY CUBIC
EQUATION

3.1 Technical Procedure

The non-homogeneous ternary cubic equation for obtaining integer solutions
under consideration is

(X+Y)(X* —4xy+y?)+42° =0 (3.1)
The substitution of the linear transformations
X=U+V,y=u-Vv,z=2"ku,u=v=0,n>1,k>0 (3.2)
in (3.1) leads to the pellian equation
Y2 =3Vv* +(27"'Kk?)? (3.3)
where
Y =u-2*""k? (3.4)
The smallest positive integer solutions to (3.3) are given by
v, =2°"k%,Y, =2°"K? (3.5)
To obtain the other solutions to (3.3),consider the pellian equation
Y?=3v*+1
whose general solution is given by
VAR IR (3.6)

" ’Vs A /A Ys
S 2 S 2\/§g
where

fs _ (2+\/§)s+1+(2_\/§)5+1’
g, = 2+ (-3

Employing the lemma of Brahmagupta between the solutions (3.5) & (3.6) ,we have
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- 2n-1

~ _ 2
Vo, =V, Y, +Y, V, =2""2Kf +

J3

Y, =Y, Y, +3V, V, =22" K%, + 22" kg, /3,5 =-101,...

k?g,,

In view of (3.4) ,we get
Us+1 — 22n—1 k2 + 22n—1 kaS + 22n—2 kzgs \/§

From (3.2), we have

5*22n—2

X, (K,8,n) = 2"""k? + 3% 27" 2K+

V3

k?g,,

22n—2
k,S, n) = 22n—1 k2 + 22n—2 kaS + k2 o
Ysa(K,s,n) 77

z,.,(k,5,n) = 2"K[22" k2 + 22" 1Kk, +/322" 2 kg, ],5 =—1,0,1,...

A few numerical solutions to (3.1) are given in Table 3.1 below:

Table 3.1-Numerical solutions

S XS+1(k’S7 n) y5+]_(k!81 n) Zs+l(k,3, n)

-1 22n+1 k2 22n k2 3*23n—l k3
3*22n+1 k2 22n+1 k2 23n+2 k3

1 21* 22n k2 3* 22n+1 k2 54* 23n72 k3

The recurrence relations satisfied by the solutions of (3.1) are given below:
X,,s(K,s,n)—4x,,(K,s,n)+X, (ks n)=—2"k?

Ysis (K8, N) =4y, (Ks,n) +y,, (K s,n) =—22"K?
Z,.5(k,s,n)-4z_,(k,s,n)+z,(ks,n)=-2"k?

Interesting relations among the integer solutions to (3.1)

(I) Xs+1(k’ S! n) = ys+2 (k’ S, n)

() [ 1(K,5,1) +Y, 5(,5,1) ~ 27 KT 31X, 4 (k,5,1) — Y, (o5, P = (2K
a quartic integer

(iii) 2[3*2""*KY,..,(K,S,n) 22, ,(K,s,n)—(2"k)*] is a square multiple of
(2"k)’*

(iv) 2[10Z,,,, —3*2™ K X,,,(K,s,n) —(2"K)?] is a square multiple of (2"k)*
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) 2[5Y,..,(K,s,n)—X,,,(K,s,n)—(2"k)?] is a square multiple of (2"k)

Each of the following expressions in (vi), (vii) & (viii) is a cubical integer:

(i) 2" KI5 Y 55.5(KiS, ) — X5 (K5, 1) +15Y 1 (K5, 1) =3X 0 (K,5,1) = 2777K]
(vii)

2%[524,5(K,5,n) —3*2"K X4 5 (K,S,n) +152, (K,5,n) —9*2"k X, (K,S,n) —2°"*?k*]

(viii)
22[3%2"K Yye,5(K, 8, N) — Z5.5 (K,S,N) =32, (k,8,n) +9*2"Kk y ., (K, s, n) — 2°"2k°]

(ix)
(5ys+1(k! S, n) _Xs+1(k1 S, n) - 22n+1 k2)2 _3(X3+1(k1 S, n) _3ys+1(k’ S, n) + 22n k2)2 = (2n k)4

()

2°[5z,.,(k,s,n)—3*2"k X, (k,5,n) —2"K*)* -12[z,,(K,5,n) 2" Ky ., (K,5,n) = 2°"k* + 2*"K*J
=(2"k)°

(xi)

2’[-z,,(k,s,n)+3*2"ky_ ,(k,5,n)—2"K*]* -12[z,,,(K,5,n) 2"k Yy, (K,5,n) = 2°"'k* + 2°"K*]
=(2"k)°

Formulation of Second order Ramanujan numbers :

From each of the solutions of (3.1), one can find Second order Ramanujan numbers with
base numbers as real integers.

Illustration 3.1

Consider from Table 3.1
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2,(2-11) =96 =1*96 = 2*48 =3*32 = 4*24 = 6*16 =8*12
= R F, F F, FE =K
F =F, =(96+1)% +(48—2)% = (96 —1)% + (48+ 2)
=972 +46% =952 + 507 =11525
F =F =(96+1)%+(32-3)* = (96-1)* + (32 +3)°
=972 + 297 = 957 + 35% =10250
F =F, =(96+1)% + (24— 4)% = (96—1)? + (24+ 4)?
=972 + 207 =952 + 287 = 9809
F =FK =(96+1)° +(16-6)* = (96-1)° + (16 +6)
=972 +10? =95 + 222 =9509
F=F =(96+1)°+(12-8)> =(96-1)* + (12+8)?
=972 +4% =952 + 207 = 9425
F,=F, =(48+2)° +(32-3)* =(48-2)* +(32+3)’
=507 +29% = 46 + 35 = 3341
F, =F, =(48+2)% + (24— 4)? = (48—2) + (24+ 4)?
=507 + 207 = 46 + 287 = 2900



F, =F, =(48+2)° +(16-6)* = (48-2)* + (16 +6)*
=50? +10°% = 46% + 222 = 2600

F,=F =(48+ 2)? +(12-8)* =(48-2)* + (12+8)°
=507 + 4% = 46% + 20* =2516

F,=F, =(32+3)% + (24— 4)% = (32-3)? + (24+ 4)°
=35% +20% = 29° +28% =1625

F, = F, =(32+3)° + (16—-6)° = (32—3)* + (16 +6)’
=352 +10% =29° +22% =1325

F,=F, =(32+3)° +(12-8)* =(32-3)* + (12 +8)°
=352 +4% =29% + 20* =1241

F,=F =(24+4)° +(16-6)* = (24-4)* + (16 +6)°
=28% +10% = 20% + 222 =884

F =F, =(16+6)*+(12-8)° = (16-6)* + (12+8)?
=22% +4% =107 + 20?> =500

Thus , 11525, 10250, 9809, 9509, 9425, 3341, 2900, 2600, 2516, 1625, 1325, 1241, 884,
500 represent second order Ramanujan numbers with base numbers as real integers.

Note 3.1
In illustration 3.1, the factors in each of F, ,F,,F ,F, belong to the same parity. In

this case, there is an another way of obtaining second order Ramanujan numbers. The
process of getting the same is illustrated below:
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F, =F, = 25 - 23* =14% -10?

= 257 +10° =14% + 23" =725
F,=F =25 -28 =115’

— 25° +5? =11° + 23 =650
F, =F, = 25? -23? =10? - 2°

= 257 +27 =107 +23° =629
F, =F =14’ -10° =11* -5*

=147 +5? =11° +10° = 221
R =F =11 -5 =10*-2°

=11°+2? =10 +5° =125

Thus,725, 650,629,221,125 represent second order Ramanujan numbers with base
numbers as real integers.

It is worth to mention that one may obtain second order Ramanujan numbers with base
numbers as Gaussian integers.

Ilustration 3.2
Consider from Table 3.1

yo(k,—11) = 4k? = 4k? *1= 4k *k
= A*B =C*D,say

From the above relation, one may observe that

(A+iB)*+(C-iD)* =(A-iB)*+(C+iD)*=A*-B*+C* -D?
(4K +i)? + (4K =iK)? = (4K? —i)? + (4K +ik)?
=16k* +15k? -1

Thus,16k* +15k* —1 represents the second order Ramanujan number with base
numbers as Gaussian integers.

Special case

The substitution of the linear transformations
X=Uu+V,y=u-Vv,z=ku,u=v=0,k>0 (3.7)
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in (3.3) leads to the pellian equation

Y2 =12v? +(k?)? (3.8)
where
Y =2u—k? (3.9)
The smallest positive integer solutions to (3.8) are given by
Vv, =2K*,Y, =7k (3.10)
To obtain the other solutions to (3.9), consider the pellian equation
Y2 =12v* +1
whose general solution is given by
S 1. -
Ys=2fs, s = \/—@Js (3.11)

where

f = (7+2J12)*" +(7-24/12)°",
g, = (7+2412)"* —(7-212)*",

Employing the lemma of Brahmagupta between the solutions (3.10) & (3.11) we have

7 14
== 4k2f =

=Y, Y, +3V, V. =5 szs +Jﬁk2gs ,s=-1041,...

Vo =V Y, + Y, U, =k +——

Y.

s+1

In view of (3.9) ,we get
[ LK== [7k2f +2\12K%g, +2k?]
From (3.7), we have

X, (K, s)—%[Zkz FLUCE, + 8

\/1_k 91,

1 10
k,s) == [2k?* +3k*f,
Vaalks) = 412K +3CH, + 22 Kg,]

3
z..,(k,s) ="?[2+7fs +24129,],5=-104,...

A few numerical solutions to (3.1) are given in Table 3.2 below:

Table 3.2-Numerical solutions

> X5 (K;$) Ysa(k:s) Z;,1(K,S)
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-1 6k2 2k2 4k3

° 77k’ 21k? 49K°

1066k? 286k? 676k?

The recurrence relations satisfied by the solutions of (3.1) are given below:

Xo.3(K,S) —14X,,, (K,S) + X, (K,S) = -6k

Y..s(k,8)-14y_ ,(K,S)+Y,,,(K,S) =—6k?
z,5(k,5)-14z7,,(k,s) +z,, (k,s) =—6k®

S+2

Interesting observations
(i) K[Xq.1(K,8)+ Yok S) =22, (k,S)
(i)
Ko [(%s.1 (K ) + (Veia (K, )T+ 6K *X,1 (K, 8) *Ys,1 (K, 8) *Z4,1 (K, S) =8 (24,1 (K, 5))°
(i) 2[Xy.1(K,S)+ Y, (K,S)] is a perfect square
(iv) 2K[Xg,5(K,S) + Vg, (K $)]+3K[38BY,, (K, 5) —10x , (K, 5)] - 44K = (kf)*
(V) 38Y,.5(K,8) —10X,,, (k,5) —12 k?= (kfs)2
(vi) [19y.,,(k,S)-5x%,,(k,s) - 7k*]* -3[3x., (k,5) -11y,,, (k,s) +4k’]* =k*
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Chapter 4

TECHNIQUE TO SOLVE NON-
UNIFORM DIOPHANTINE
EQUATION OF DEGREE THREE
WITH THREE UNKNOWNS

4.1 Technical Procedure

The non-homogeneous third degree equation is
2XZ2=(X+2)y? (4.1)
The substitution of the transformations
X=U+V,Z=U-V,u#V=0 4.2)
in (4.1) gives the ternary quadratic diophantine equation
u?—y*u-v?=0 (4.3)

Treating (4.3) as a quadratic in u and solving for the same ,we have

y2 +\y* +4v?

u= 4.4
> (4.4)

To eliminate the square-root on the R.H.S. of (4.4), assume
a’ =y +4v? (4.5)

Choice 1

Express (4.5) as the system of double equations

a+2v=y*,
oa—-2v=1.

which is satisfied by
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y=2s+1,
o =8s* +165° +12s* + 45 +1, (4.6)
v=4s"+8s® + 65 +2s.
From (4.4) , we have two values for u given by
U=4s"+8s®+8s” +4s+1,—4s* —8s® —4s?
In view of (4.2) ,we obtain two sets of integer solutions to (4.1) as presented below :
Setl

X =8s" +16s° +14s* +6s+1,y=2s+1
z=25%+2s+1.

Set2
X=28"+2s,y=2s+1
z=-8s*-16s>-10s* - 2s.
Choice 2
Consider (4.5) as the pair of equations
a+2v=y?,
a-2v=y. (4.7)

which is satisfied by

3

_Y+y Y-y
2 2

(0

Note that there are three patterns of integer solutions to the system of double equations
(4.7) and are presented below jointly with the corresponding integer solutions to (4.1).

Pattern 1
The assumption
y=4s (4.8)
gives

a=32s°+2s,v=16s%—s
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From (4.4) , we have two values for u given by

u=16s>+8s°+s,—165> +8s> —s

In view of (4.2) ,we obtain two sets of integer solutions to (4.1) as presented below :

Set 3
x =32s%+8s%,y=4s
z7=8s"+2s.
Set 4
X=8s>-2s,y=4s
z=-325°+8s%.
Pattern 2

The assumption
y=4s+1 (4.9)
gives
o =32s° +24s* +8s+1,v =165 +12 s* + 25
From (4.4) , we have two values for u given by

u=16s>+20s> +8s+1,—16s> —4s?

In view of (4.2) ,we obtain two sets of integer solutions to (4.1) as presented below :

Set5
X =325 +32s* +10s+1,y =4s+1
z=8s"+6s+1.

Set 6
X=8s*+2s,y=4s+1
z=-32s%-16s" - 2s.

Pattern 3

The assumption
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y=4s-1 (4.10)
gives
o =32s° —24s* +8s—1,v=16s°-12 s* + 25
From (4.4) , we have two values for u given by
U=-16s°+20s* —8s+1,16s® — 4s?
In view of (4.2) ,we obtain two sets of integer solutions to (4.1) as presented below :
Set 7

X=8s*-6s+1,y=4s-1
z=-325%+32s*-10s+1.

Set 8

x=32s®-16s*+2s,y=4s-1
z=8s"-2s.
Choice 3
Consider (4.5) as
a+y’=4v,
a—-y’=V.

The above system is satisfied by

a:5_2",y2:3_2" (4.11)
Choosing
vV =6p°
in (4.11) , we have
a=15p%,y =+3B
From (4.4) ,we get
u=12p°,-3p°
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In view of (4.2) ,we obtain two sets of integer solutions to (4.1) as presented below :

Set9
X =18p°,y=43B,z=6p"

Set 10
x=3p%,y=+3B,z=-9p°
Choice 4
Consider (4.5) to be
a+y’ =V,
a-y’ =4.

Solving the above system of equations, we have

Vi+4d  , vi-4
o= =

> 5 (4.12)
Assuming
v=2k (4.13)
in (4.12) , we have
a=2k*+2 (4.14)
and
y?=2k? -2 (4.15)

It is worth to mention that (4.15) represents negative pellian equation. After performing
some algebra, the n" solution for (4.15) is

kn+1 = 3;“ + 2 gn ’
(4.16)
yn+1:21:n+3\/§2gn ’n:—l,o,l,___

where

f =(3+2v2)" +(3-242)",
g, =(B3+22)" —(3-2/2)",
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From (4.13) ,we get
Vn+l = 2kn-¢-1 = 3-I:n + 2\/§gn
From (4.4),we get

2
_y n+l

n+l —

u +k2 +1

From (4.2), we have

X, 4= Vi +(k,,, +1)?
n+l — 2 n+1 ’
2
Zn+1 = % + (kn+1 _1)2

where Y, .,,K,,, are given by (4.16) .

A few integer solutions to (4.1) are shown below:
Xo=24,y,=4,2,=12
X, =612,y, =24,z, =544
X, =19800,y, =140,z, =19404
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Chapter 5

A GLIMPSE ON NON-UNIFORM
INDETERMINATE THIRD DEGREE
EQUATION WITH THREE
PARAMETERS

5.1 Technical Procedure
The non-homogeneous ternary cubic equation under consideration is
ax’+by’ =(a+hb)z’ (5.1)
By inspection, the following choices of x, y, z satisfy (5.1)
x=(m*bn)z,
y=(mzan)z,
z=m’+abn?
and
X =(mFbn) (m?+abn?) (a+b)?,
y=(m=zan) (m*>+abn?) (a+b)?,

z=(m?+abn?) (a+b)?.

However, there are many more choices of integer solutions to (5.1). The process of
obtaining other choices of integer solutions to (5.1) is as below:

Choice 1
The option
x=Kky (5.2)
in (5.1) gives
(ak® +b)y® =(a+b)z®
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which is satisfied by

y=(ak?+b) (a+b)?a*,

z=(ak?+b)(@a+b) a®,a>15>0 53)
From (5.2) ,one has
x =k(ak® +b) (@a+b)*a®* (5.4)
Thus, (5.3) and (5.4) satisfy (5.1).
Choice 2
The option
y=kx (5.5)
in (5.1) gives
(a+bk*)x* =(a+h)z®
whose solutions are
X =(a+bk*)(@+hb)?a’*
z:((a+bk2))((a+b)) o’ 69
From (5.5), one has
y=k(@a+bk?) (@a+b)*a®* (5.7)
Thus, (5.6) and (5.7) satisfy (5.1).
Choice 3
The substitution
X=z-bT,y=z+aT (5.8)
in (5.1) leads to
abT?=2°(z-1)
which is satisfied by
z=1+abs?, 59)

T=s (1+abs?).
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From (5.8) ,one has

X =(1+abs?)(1-bs),

(5.10)
y=(+abs®) 1+as).
Thus, (5.1) is satisfied by (5.9) and (5.10).
Observations
0] ax+by=(@+b)z
(i) asx-y+z°=0
(iii) bsy+x-z°=0
Note 1
Apart from (5.8), take
X=z+bT,y=z-aT
and (5.1) is satisfied by
X=(+abs*)(1+bs),
y=1+abs®) (1-as),
z=(1+abs?).
Choice 4
The option
x=X-bz,y=X+az (5.11)
in (1) gives
X? =z%(z—ab) (5.12)

After performing some algebra , it is seen that the values of z ,X satisfying (5.12) are
given by

z=z,=ab+(s+n)?,

(5.13)
X=X, =(@b+(s+n)*)(s+n)

From (5.11) ,it is obtained that
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_ 2 _
X, =(@b+(s+n)°) (s+n-b), (5.14)
y, =(@b+(s+n)*) (s+n+a).
Thus, (5.1) is satisfied by (5.13) and (5.14).
Observations
(I) yn _Xn =(a+b) Zn
(”) (byn -’_axn)2 = (Zn _ab) (yn _Xn)2
(i) (x,+bz,)*=(y,-az,)* =2z,"(z, —ab)
(IV) (yn _Xn)z [(Xn +bzn)2] = (yn _Xn)2 [(yn _azn)z] = (byn +aXn)2 Zn2

Note 2
In addition to (5.11) , one may also consider the substitution
Xx=X+bz,y=X-az
In this case,(5.1) is satisfied by
X, =(@b+(s+n)?) (s+n+b),
y, =(@b+(s+n)?) (s+n-a),
z, =(@b+(s+n)?)
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A SKETCH OF INTEGER SOLUTIONS
TO QUATERNARY UNIFORM CUBIC

EQUATION

6.1 Technical Procedure
The quaternary third degree equation is
X3 +y? +24zw? =3xy(X+Y)
The choice
X=U+V,y=U-V,Z=U,u=Vv=0
in (6.1) gives
u?=3v’ +6w?

The procedure for solving (6.1) is presented below:
Pattern 1

Taking

v=X+6T,w=X-3T,u=3U
in (6.3) ,we have

U? =X* +18T?
which is satisfied by

T=2rs,X=18r?—s?,U=18r? +s?

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

Substituting (6.6) in (6.4) and employing (6.2) , the corresponding integer solutions to

(6.1) are represented by
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X=3U+X+6T=72r? +2s* +12rs
y=3U-X-6T=36r>+4s>-12rs
z=3U=54r%+3s*
w=X-3T=18r" —s*—6rs
Note 1
Apart from (6.4) , one may also consider the transformations as
v=X-6T,w=X+3T,u=3U
For this choice , the corresponding integer solutions to (6.1) are given by
X=3U+X-6T=72r"+2s*-12rs
y=3U-X+6T=36r"+4s*+12rs
z=3U=54r%+3s°
w=X+3T =18r° —s* +6rs
Pattern 2
Write (6.5) as the pair of equations presented in Table 1 below:

Table 1- The pair of equations

Pair | T Tl \Y; Vv VI
U+X 9T? 3T? T? 18T oT 6T
U-X 2 6 18 T 2T 3T

Consider System I. Solving the pair of equations , we have

2 2 _
U=9T +2,X=9T 2
2 2

For obtaining integer solutions ,take
T=2s
—U=18s*+1,X=18s* -1

Thus, (6.1) is satisfied by
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X=3U+X+6T=725*+2+125s
y=3U-X-6T=36s>+4-125s
z=3U=54s*+3
W=X-3T=18s*-1-65

Consider System Il. Solving the pair of equations , we have

2 2
U:3T +6,X:3T -6
2 2

For obtaining integer solutions ,take
T=2s
=U=6s"+3,X=6s"-3

Thus, (6.1) is satisfied by

X=3U+X+6T=24s>+6+125s
y=3U-X-6T=12s*+12-125s
z=3U=18s"+9
w=X-3T=65*-3-65

Consider System I11. Solving the pair of equations , we have

2 2 _
U:T +18,X:T 18
2 2

For obtaining integer solutions ,take
T=2s
=U=25*+9,X=2s"-9

Thus , the integer solutions to (6.1) are given by

X=3U+X+6T=8s*+18+12s
y=3U-X-6T=4s*+36-12s
z=3U=6s*+27
W=X-3T=25"-9-65

Consider System 1V. Solving the pair of equations , we have



19T 17T

U="—" X="+—
2 2
For obtaining integer solutions ,take
T=2s

—=U=19s,X=17s
Thus, (6.1) is satisfied by
x=3U+X+6T=86s
y=3U-X-6T=28s
z=3U=57s
w=X-3T=11s
Consider System V. Solving the pair of equations , we have

o LT 7T
2 2

For obtaining integer solutions ,take
T=2s
=>U=11s,X=7s
Thus, (6.1) is satisfied by
Xx=3U+X+6T=52s
y=3U-X-6T=14s
z=3U=33s
w=X-3T=s
Consider System VI. Solving the pair of equations , we have

09T x 3T
2 2

For obtaining integer solutions ,take
T=2s
=>U=9s,X=3s

Thus, (6.1) is satisfied by
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X=3U+X+6T=42s
y=3U-X-6T=12s
z=3U=27s
w=X-3T=-3s

Pattern 3
Write (6.3) as

u?-3v’ =6w?* (6.7)
Assume

w =a?—3b? (6.8)

The integer 6 in (6.7) is written as

6=(3++/3) (3—/3) (6.9)
Substituting (6.8) & (6.9) in (6.7) and employing factorization, consider
u++/3v=(3++/3) (a++/3b)? (6.10)

On comparing the terms in (6.10), one has
u=3f(a,b)+3g(a,b),
v=f(a,b)+3g(a,b)

in which

f(a,b)=a+3b?,g(a,b)=2ab
From (6.2) ,(6.1) is satisfied by
x =4f(a,b)+69g(a,b),
y=2f(a,b),
z=3[f(a,b)+g(a,b)]

jointly with (6.8) .

Pattern 4

Write (6.7) as

u?-3vi=6w’*1 (6.11)
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Write integer 1 in (6.11) as

_[Br*+¢7 +./3(2r9)] [3r2 +5% —,[3(2r9)]

1
(3r2 _SZ)Z

(6.12)

Assume
w = (3r? —s*)? (a* —3b?) (6.13)

Substituting (6.9) ,( 6.12) & (6.13) in (6.11) and employing factorization , consider

, [3r? +5% +/3(2rs)]
(3r* —s?)
=(3r2 —s?) (3++/3) [f(a,b) +~+/39(a,b)] [F(r,s) +/3G(r,s)]
=(3r2 —s?){[3f(a,b) +3g(a, b)] +/3[f (a,b) + 3g(a, L) }[F(r,s) + V3 G(r,S)]

U++/3v=(3+~/3)(3r? —=s?)2(a+~/3h)

(6.14)

where
F(r,s) =3r?+s®,G(r,s) =2rs
On comparing the terms in (6.14), one has
u=(3r®> —s?){F(r,s)[3f (a,b) +3g(a, b)] + 3G(r,s)[f (a,b) +3g(a, b)]}
v=(3r* —s*){F(r,s)[ f(a,b) +3g(a,b)] + G(r,s)[3f (a,b) +3g(a, b)]}
From (6.2) ,(6.1) is satisfied by
X = (3r? —s*){F(r,s)[4f (a,b) + 6g(a,b)] +G(r,s)[6f (a,b) +129(a, b)]},

y =@3r? —s*){F(r,s)[2f (a,b)] + G(r,s)[6 g(a, b)]},
z = (3r? —s®){F(r,s)[3f (a,b) + 3g(a, b)] + G(r,s)[3f (a,b) + 9g(a, b)]}

jointly with (6.13) .
Pattern 5
Write (6.3) as

u?—6w? =3v° (6.15)

42



Assume
v=a’-6b? (6.16)

Write integer 3 in (6.15) as

3=(3++/6) (3-+/6) (6.17)
Substituting (6.16) & (6.17) in (6.15) and employing factorization, consider
u++/6w=(3+6) (a+/6b)> (6.18)

On comparing the terms in (6.18), one has
u=3f(a,b)+6g(a,b),

w =f(a,b) +3g(a, b) (6.19)
where
f(a,b)=a*+6b?,g(a,b) =2ab
From (6.2),(6.1) is satisfied by
x =4f(a,b)-12b* +69(a,b),
y=2f(a,b)+12b? +69(a,b),
z=3[f(a,b)+2 g(a,b)]
jointly with w in (6.19) .
Pattern 6
Write (6.15) as
u?—6w?=3v**1 (6.20)
Write integer 1 in (6.20) as
1:[6r2+52+\/€(2rs)] [6r2 +s% /6 (2rs)] 621)
(6r? —s?)?
Assume
v=(6r"-s?)?(a®>-6b?) (6.22)

Substituting (6.17), (6.21) & (6.22) in (6.20) and employing factorization, consider
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U+/BW = (3++/6) (61 —52) (a+ /6 b)? [6r7 +(§i2+_i§§2rs)]

=(6r2 —s?) (3++/6) [f(a,b) + /6 g(a,b)] [F(r,s) + 6 G(r,5)]
=(6r? —s?){[3f (a,b) + 6g(a, b)] +V/6[f (a,b) + 3g(a, L) }F(r,s) + /6 G(r,5)]

(6.23)
where
F(r,s) =61 +s?,G(r,s) = 2rs
On comparing the terms in (6.23), one has
u=(6r2—s*){F(r,s)[3f(a,b) + 6g(a,b)] +6G(r,s)[f (a,b) +3g(a,b)]}
w = (6r* —s?){F(r,s)[ f(a,b) +3g(a,b)] +G(r,s)[3f (a,b) + 69(a, b)]} (6.24)

From (6.2), (6.1) is satisfied by

X =(6r%—s*){F(r,s)[3f(a,b) +6g(a,b)]+ G(r,s)[6f(a,b) +189(a, b)]}
+(6r°—s%)? (a®>—6b?) ,

y=(6r2-s*){F(r,s)[3f(a,b)+69(a, b)]+ G(r,s)[6f(a,b) +189(a, b)]}
—(6r° -s?)* (a* -6b?),

z=(6r" —s*){F(r,s)[3f(a,b) +69(a, b)]+ G(r,s)[6f(a,b) +18g(a, b)]}

jointly with w in (6.24) .

Pattern 7

The solutions to (6.3) are
V=V,=W,Uu=U,=3W
Consider the pellian equation
u?=3v*+1

whose general solution (V,,U,) is given by
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where
fn :(2+\/§)n+1+(2_\/§)n+1,
g, = (2+3)" -2~ 3)™

Employing the lemma of Brahmagupta between (v,,u,) and (V. ,U,) ,we have
Vn+l :VO Gn +U0 vn :%[fn +\/§gn] ’
un+1 = u0 I]n +3V0 ~n :%[3fn +\/§gn]

In view of (6.2) ,the integer solutions to (6.1) are given by
Xn+l = un+l +Vn+1 = W[an +\/§gn]’
Yo =Upy — V@ =W fn )

Zn+l = un+1 :%[3fn +\/§gn]’

where w is chosen arbitrarily.
A few numerical solutions to (6.1) are presented below:
Xo =4W,y, =2W,z, =3W
X, =14w,y, =4w,z, =9w
X, =52wW,y, =14w,z, =33w
Xy =194w,y; =52w,z, =123w
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Chapter 7

ON CUBIC EQUATION WITH FOUR
UNKNOWNS

7.1 Technical Procedure
The cubic Diophantine equation with four unknowns studied for its non-zero

distinct integer solutions is given by
XC+y +(X+Y)(X—Yy)* =16 zW? (7.1)
Introduction of the linear transformations

X=U+V,y=U-V,Z=U,u#Vv=0 (7.2)

in (7.1) leads to
2 2 2
u“+7v°-=8w (7.3)

Now, we solve (7.3) through different methods and thus obtain different patterns of
solutions to (7.1).

Method I:

Assume

w=a’+7b’ (7.4)
where aand b are non-zero distinct integers.
Write integer 8 in (7.3) as

8= (1+iﬁ) (1—iﬁ) (7.5)

Using (7.4) and (7.5) in (7.3) and applying the method of factorization, it is written as
the system of double equations as

U+iNT v =[+iv7) (@ +ivTbf = [+ivT)[f(a.b)+iv7 g(a,b)]
u—iv7v=(1-i7){a—iv7bJ = (1-iv7 ) [f (a,b) -7 g(a. b)]
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where
f(a,b) =(a®*-7b%) ,g(a,b) =2ab (7.6)
Equating the real and imaginary parts in either of the above two equations , we have
u="f(a,b)-7g(a,b) =a*-7b* -14ab
v=f(a,b)+g(a,b) =a®-7b*+2ab
From (7.2), (7.1) is satisfied by
x =2f(a,b)-69g(a,b) =2a* -14b* -12ab,
y=-8g(a,b)=-16ab,
z="1(a,b)-7g(a,b) =a® —7b* —14ab
jointly with (7.4) .
Note 1

The integer 8 ,apart from (7.5) , may be factorized as

8

_ (5+iV7)(5-iV7)
4

_ U1+ V7)(11-i47)
16

g BLriV7)(31-iV7)

- 121

Following the above procedure , three more sets of integer solutions to (7.1) are
obtained.

Method 2
Consider (7.3) as

8

2 2 2
u“+7v-=8w"*1 7.7)
Write integer 1 in (7.7) as

_ (a(s)+i b(s)~7) (a(s) -ib(s)~7)

! (a(s) +1)2 (7.8)
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where

a(s) = (14s* —-14s+3),b(s) = (25-1) (7.9)

Substituting (7.4) ,( 7.5) & (7.8) in (7.7) and employing factorization , we consider

S . [a(s)+i b(s)7]
(u+|\/§v)_(1+|\/7)(a+|\/7b)2 a5+D

L _ [a(s) +i b(s)V7]

— [L+iV7)If a,b) +iV7g(a, b) (a(s)+1)

plae)+i b(s)/7]
T () +1)

Equating the real and imaginary parts in the above equation , we have

={[f(a,b)-7g(a,b)]+i~V7[f(a,b)+g(a,b)

1
u=
(a(s)+1)
1
V=
(@(s)+1)

{a(®)[f(a,b)-7g(a,b)]-7b(s)[f(a,b) +g(a,b)]}
(7.10)

{b(s)[f(a,b)-7g(a,b)]+a(s)[f(a,b) +9(a,b)]}

Since , the focus is on finding integer solutions , taking
a=(@@i)+HA,b=(a(s)+1)B
in (7.4) & (7.10) and utilizing (7.2) ,(7.1) is satisfied by

x = (a(s) +D{[a(s) + b(s)I[f (A, B) = 7g(A, B)] +[a(s) — 7b(s)I[f (A, B) + g(A, B)I},
y = (a(s) + D{[a(s) - b(s)ILf (A, B) - 79(A, B)] - [a(s) + 7b(s)I[f (A, B) + g(A, B)]},
z=(a(s) +D{a(s)[f (A, B) - 79(A,B)] - 7b(s)[f (A, B) + g(A, B)I}

w = (a(s) + )2 [A? + 7B?].

(7.11)

To analyse the nature of solutions,one has to take particular values to s. For
simplicity and clear understanding , the option s=1 gives
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Also,

a(s) =a(l) = 3,b(s) = b(1) =1

L BHiNT)(3-iNT)
- 16

f(A,B)=A’-7B? g(A B)=2AB

From (7.11) ,the integer solutions to (7.1) are given by

Note 2

X =X(A, B) =-256AB

y=Y(A, B) =-32A% + 224B* -192AB
z=2(A,B)=-16A +112B* — 224AB
w =w(A, B) =16A* +112B?

Apart from (7.8), one may have other representations to integer 1 which are

exhibited below

Representation 1:

where

Representation 2:

where

Representation 3:

1

1

_ (a(s)+i b(s)/7)(a(s)—ib(s)~7)
- (a(s)+2)°

a(s) =(7s* -1),b(s) = 2s

_ (a(s) +i b(s)7)(a(s) —ib(s)~/7)

(a(s) +14s%)?

a(s) = (r*—7s%),b(s) = 2rs

(7.12)

(7.13)
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1 @E)+i bE)V7)(@() -ib(E)7)
- (a(s) +252)>

where

a(s) = (7r*=s?),b(s) = 2rs (7.14)
Representation 4:

_@+iv7a,)1-iV7a,) _(2+i g,)(2-i g,)

1 ; 7
(B.) ()
where
_ 1 _ 1 n+l g n+l
oy =5 =0 =5 I8 +3VT) - (63T, -
By = fy = [B+3V7) " +(B-3/7)" 10 =0L2.

Using (7.12) ,( 7.13) ,( 7.14) and (7.15) in (7.11) in turn the corresponding integer
solutions to (7.1) are obtained.

Method 3
Consider (7.3) as

8wW?—7v* =u’*1 (7.16)
Assume
u==8a*-7b? (7.17)
Write the integer 1 in (7.16) as
1=(8+47)(v8—7) (7.18)
Substituting (7.17) & (7.18) in (7.16) and applying factorization , consider

JBW++/7v =(/8+7)(8a++/7h)>?

from which , on equating the corresponding terms ,one obtains
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w =8a%+7 b%+14ab,

v=8a’+7b*+16ab (719
From (7.2), (7.1) is satisfied by
x =16a*+16ab,
y =-14b*-16ab,
z=8a>-7b’
jointly with w in (7.19).
Note 3
In addition to (7.18) , we have
L (2VB47) (2B 7)
25
L (4VB47) (4B 7)
121
The repetition of the above process leads to different sets of solutions to (7.1) .
Method 4
Rewrite (7.3) as
8w’ —u?=7Vv* (7.20)
Assume
v=8a*-b’ (7.21)

Write the integer 7 in (7.20) as
7=(/8+1)(V8-1) (7.22)
Inserting (7.21) & (7.22) in (7.20) and using factorization ,we consider
J8W+u=(~/8+1)(~/8a+b)?
On comparing , we have

w =(8a° +b*)+2ab,

7.23
u=(8a’+b*) +16ab (729
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From (7.2), (7.1) is satisfied by
x =16a°+16ab,
y =2b*+16ab,
z =(8a*+b?*)+16ab
jointly with w in (7.23) .
Note 4
Apart from (7.22) , we have
7=(2+/8+5)(2+/8-5),
7 = (4/8 +11) (4+/8 —11),
7 = (114/8 +31) (11/8 - 31).
The repetition of the above process leads to different sets of solutions to (7.1) .
Method 5
Consider (7.20) as
8w’ —u? =7v**1 (7.24)
Write the integer 1 in (7.24) as

1 (8+2)(\8-2)
4

(7.25)

Assume

v =8a’—4b? (7.26)

Inserting (7.26) ,( 7.22) & (7.25) in (7.24) and applying factorization , we consider

JBW+u = (+/8+1) (\/§a+2b)2—(\/§£r 2)

On comparing ,we have

w =3(4a’ +2b*) +20ab,

7.26
u=10(4a%+2b%)+48 ab. (720)
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From (7.2), (7.1) is satisfied by

X =48a®+16b% +48ab,
y =32a°+24b* +48ab,
z=40a%*+20b* +48ab

jointly with w in (7.26).
Note 5
In addition to (7.25) ,we have

L (5v/8 +2) (548 2)
B 196
_ (5V8+14)(58-14)
4

The repetition of the above process leads to different sets of solutions to (7.1) .
Method 6

1

Express (7.3) in the form of ratio as below:

U+W:7(W—V):gB¢O (7.27)
w+v  u-w B’ '

The above equation is written as the system of double equations
Bu—av+(P-a)w=0
au+7Bv—(7p+a)w =0
Employing the method of cross-multiplication , we have
u=oa’-7p*+14ap,
V=—a’+7p*+2ap, (7.28)
w=a’+7p°

From (7.2), (7.1) is satisfied by
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x=16ap,
y=2a? —14[32 +12a,
z=0’-7p*+14ap
jointly with w given in (7.28).
Note 6

Apart from (7.27) , we may have the following ratio form representations

u+w _ (w-v) o

= =—,pB=0
7w+v) u-w B
U+W:7(W+V):g'l3¢0
W-—V u—-w B
u+w _(W+v):g,B¢0

7wW-v) u-w B

Proceeding as above, we obtain three additional patterns to (7.1).
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Chapter 8

ON UNIFORM THIRD DEGREE
EQUATION WITH FOUR
PARAMETERS

8.1 Technical Procedure
The uniform quaternary third degree equation under consideration is
20 +y)) =(z+wW)* (z—w) (8.1)

On examination, observe that the set of four integers represented by
(X,Y,z,w) =(4s,2s,5s, ) ,(—2s,—45,-55,—S). satisfies (8.1) .In addition ,there are
plenty of varieties of solutions in integers for (8.1) & the procedure to determine
them is analysed as follows .

Procedure 1
The insertion of the below mentioned linear transformations
X=U+V,y=U—-V,Z=U+PpP,W=U—p,U=V,p (8.2)
to (8.1) reduces it to uniform second degree equation having three variables
(u—p)* +3Vv? =p? (8.3)
Assume
p=a’+3b? (8.4)
Substituting (8.4) in (8.3) & applying factorizing technique , define
(U—p)+iv/3v=(a+i/3b)? (8.5)
On comparing the corresponding terms of (8.5) and simplifying, one has
u=2a*,v=2ab. (8.6)

In view of (8.2) ,from (8.4) & (8.6) ,one obtains the integer solutions to (8.1) to be
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x =2a’+2ab,
y=2a’-2ab,
z=3(a’+b?),
w =(a?-3b?).

(8.7)

Procedure 2

Write (8.3) as
(U—p)* +3v* =p**1
In (8.8) ,consider 1 to be (8.8)

_(1+i43) 1-i+3)
4

Inserting (8.4) & (8.9) in (8.8) & implementing factorizing technique , write

(a+i/3b)? (L+i/3)
2

1 (8.9)

u—p+iv3v= (8.10)

In (8.10) ,on comparing the respective terms ,it is seen that

2 2
p=3@+b) oy

2 2
_(@-3p)
2

In view of (8.2) , from (8.4) & (8.11) ,one obtains the integer solutions to (8.1) to be
x=2a’-2ab,
y=a’+3b*—4ab,
Z:5a2+9b2—6ab, (8.12)
2
a’ —3b*-6ab
W= 5 .

where a,b are of the same parity.

v ab. (8.11)

Note 1

Also, in (8.8), represent 1 in the following forms :
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L (32" b’ +i-/32ab) (3a? —b? —i+/32ab)
B (3a% +b?)? ’
L (a2 =3D’ +i+/32ab) (a®-3b? -i+/32ab)
- (a® + 3b?)?
1 (@) +i b(8)V3)(a(s) ~ib(s) V3)
(a(s)+1)°
where
a(s) = (6s* —6s+1),b(s) = (2s-1)
1 (@) +i b() ¥3)(a(s) ~ib(s) V3)
B (a(s)+2)*
where
a(s) = (3s° —1),b(s) = 2s
1 @+iv80,)A-iV3a,) _ (2+i g,)(2-i g,)
(By)’ (f.)’
where

1

_ _i n+1_ _ n+l
o, 2ﬁgn—m[mﬁ) (2-+3)",

B, = %fn = %[(2+J§)”*1 +(2-3)"1,n=012,...

Adopting a similar analysis, various choices of solutions in integers for (8.1)
are determined.
Procedure 3

Rewrite (8.3) as
p?—3v:=(u-p)°*1 (8.13)
Take
u—p=a*-3b? (8.14)
Assume the integer 1 on the R.H.S. of (8.13) as
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1=(2++/3)(2-/3) (8.15)
Substituting (8.14) & (8.15) in (8.13) and applying factorization, we consider
p++/3v=(2++/3) (a++/3b)?
On comparing the respective terms in the above equation ,it is seen that

v=a’+3b%*+4ab

(8.16)
and
p=2(a®+3b%)+6ab (8.17)
From (8.14) & (8.17), we get
u=3(a’+b?)+6ab (8.18)

Substituting the above values of u,V,p from (8.18), (8.16) & (8.17) in (8.2), the integer
solutions satisfying (8.1) are given by

X =4a’ +6b’ +10ab,

y=2a’+2ab,

z=5a’+9b?%) +12ab,

w=a’-3b%.

(8.19)

Note 2
In addition to (8.15), the integer 1 is written as
1 (P*+30” +4/32pq) (p - 39” ~V32p0)

(p* -30°)’ ’

_ (3p* +9° ++/32pq) (3p* +9° —/32pq)
(3p° -q°)*

_ (a(s) +1+Db(s) v3)(a(s) +1-b(s) V3)

(@)’

1

1

where

a(s) = (6s* —6s+1),b(s) = (2s-1)
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_ (a(s) +2+ b(s)V/3)(a(s) + 2-b(s)~/3)

1
(a(s))*

where
a(s) = (3s* —1),b(s) = 2s

Following the above procedure, different patterns of integer solutions to (8.1) are
obtained.

Process 4
Write (8.3) as the pair of equations as below
p+(u-p)=V,
p-(u-p)=3.

Solving the above system of double equations , one obtains

(8.20)

u=v>=2p-3 (8.21)
By scrutiny, from (8.21)
v=2k+1,u=4k*> +4k+1,p=2k* + 2k +2
From (8.2),
X =4k* +6k+2,
y =4k? + 2Kk,
z=6k?®+6k+3,
w=2k*+2k -1
satisfy (8.1).
Note 3
It is worth to mention that (8.3) is also written as the pair of equations as below :
p+(u-p)=3v,
p-(u-p)=1.
Solving the above system of double equations , one obtains

u=3v*=2p-3 (8.22)
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By scrutiny, from (8.22)
v=2k+1,u=12k* +12k +3,p =6k* + 6k + 2
From (8.2),

X =12Kk? +14Kk + 4,
y=12k* +10k + 2,
z=18k* +18k +5,
w=6k*+6k-1.
satisfy (8.1).
Remark
The assumption
X=2U+2v, y=2u-2v, Z=2u+p, w=2u—-p
in (8.1) gives
(2u—p)* +12v* =p?

Following a similar analysis as above, other patterns of integer solutions to (8.1) are
obtained.

60



Deep Science Publishing
https://doi.org/10.70593/978-93-49307-89-6

Chapter 9

Open Access Books

ON QUATERNARY EQUAL THIRD

DEGREE EQUATION

9.1 Technical Procedure

The uniform third degree equation having four variables is
x® +y® =62z w?
The substitution of the transformations
X=U+V,y=U—-V,Z=U,u=xv=0
in (9.1) gives

u? +3v? =31w?

The procedure to obtain patterns of integer solutions to (9.1) is illustrated:

Pattern 1
The option

v=3k,k#0
in (9.3) leads to negative pell equation

u? =31w? — 27k?
which is satisfied by
w, =k,u, =2k

9.1)

(9.2)

(9.3)

(9.4)

(9.5)

To obtain the other solutions to (9.5), consider the corresponding pellian equation given

by
u®=31w?+1
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whose general solution (U, ,wW,) isgiven by

i -if @ -1

n 2 n 2\/§ gn
where

f =(1520+ 273/31)"™" + (1520 — 273//31)™",
g, = (1520 + 273J/31)™* — (1520 — 273,/31)™".

Employing the lemma of Brahmagupta between the solutions (W,,U,) and (W, ,U,)

, we have
W, =< (31f, +2431g,)
62
and
k
ur1+l :E(zfn +\/ﬁgn)

From (9.4), we have
Vn+l = 3 k
Substituting (9.7) & (9.8) in (9.2), one obtains

Xn+l =§(2fn +\/ﬁgn)+3k’
yn+l :g(an +\/ﬁgn)_3k’

Zn+1 :g(an +\/ﬁgn)'

Thus, (9.6) & (9.9) satisfy (9.1). In the above equations, n=-1,0,1,...

The recurrence relations satisfied by the solutions to (9.1) are given by

X,.3 —3040 X, ,, +X,,, =-9114k,
Yoo —3040 y,, +Y,, =9114k,
z,,—-3040z,,,+2,,=0,

X,.3 —3040 X, ., +X,,, =0.

(9.6)

(9.7)

(9.8)

(9.9)
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A few numerical solutions to (9.1) are given below:
Xo =5K,y, =-K,z, =2k, w, =k
X, =11506 k,y, =11500k,z, =11503k, w, = 2066k
X, =34969121k,y, =34969115k,z, =34969118k, w, = 6280639k

Pattern 2
Write (9.3) as
31w? —3v? =u?*1 (9.10)
Assume
u=3la* -3b* (9.11)

Express the integer 1 on the R.H.S. of (9.10) as the product of irrational conjugates as
shown below:

_ (J31+343) (+/31-3473)
4

Substituting (9.11) & (9.12) in (9.10) and employing factorization, consider

\/3—1W+\/§v=(\/3_1+—2?\/§)(\/3_1a+\/§b)2

1

(9.12)

On comparing, one obtains

we get
2 2

(93a% +9b?) 0139
v 7= J 4 31ab.

Replacing aby 2Aand bby 2B
in (9.11) & (9.13) ,we have

u=4(31A%2 -3B?),

9.14
v=186A% +18B* +124AB O19

and
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w=62A° +6B* +36AB
From (9.14) & (9.2), we get

x=310A* +6B? +124AB,
y=—62A%* -30B* -124AB,
z=124A% -12B*.

Thus, (9.15) and (9.16) satisfy (9.1).
Pattern 3
Consider (9.3) as
u®+3v? =31w’**1
Assume
w=a’+3b?
Write integers 31 & 1 in (9.17) as
31=(2+i3+/3) (2-i3+3)

L 1+i4+/3) (1-14+/3)
B 49

Substituting (9.18) & (9.19) in (9.17) and employing factorization, consider

U+i 3v=(2+i3J§)L74‘@)(

Proceding as in Pattern 2, (9.1) is satisfied by

X =—7[23(a* —3b?) +134ab],

y=-7[45(a® —3b?*)-2ab],

z=-T7[34(a®* —3b?) +66ab],

w =49 (a’ +3b?).

Note

a+iv3h)?

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

Apart from (9.19) ,express the integers 31 & 1 on the R.H.S. of (9.17) as exhibited

below:
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(7+145/3) (7-i5+/3)

31= .
gy (14 V3) (11-i+/3)
4

L (i J§)4(1—i J3) | (9.20
L (Ba’-p’+i J3 (2ab)) (3a% -b? -i +/3 (2ab))

- (3a? +b?)? ’

L (8 =3b”+i 3 (2ab)) (a’ —3b ~i V3 (2ab))

- (a% +3b?)? '

By considering combinations between the integers 31 & 1 in (9.20) and following the
process as in Pattern 3, some more integer solutions to (9.1) are obtained.
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Chapter 10

A SKETCH ON CUBIC EQUATION
WITH EQUAL TERMS AND FOUR
VARIABLES

10.1 Technical Procedure

Third Degree Equation with Equal Terms and Four Variabless under consideration is
X+yi=T7(Z-w)?(z+w) (10.1)

By inspection, the lattice points given by
(X,Y,z,w)=(6s,2s,55s,3s) ,(-2s,—65,-3s,-5s) satisfy (10.1). In addition, we
have many more solution patterns for (10.1). The process of obtaining the same is
illustrated below:

Process 1
Taking
X=U+V,y=U—-V,Z=U+p,W=U—-Pp,U=-V,p (10.2)
in (10.1) ,it results in second degree equation with equal terms and three variables
u? +3v?=28p? (10.3)
Assume
p=a’ +3b? (10.4)

Express the integer 28 in (10.3) as

28=(5+i+/3) (5-i/3) (10.5)
Using (10.4) & (10.5) in (10.3) & factorizing, consider
u+iv3v=(5+i3) (@a+i/3h)? (10.6)

66



Comparison of the coefficients of corresponding terms in (10.6) gives

u=5(a* -3b*)-6ab,

10.7
v=(a®*-3b*)+10ab. (10

From (10.2) , one obtains

Xx=6 (a* —3b%)+4ab,
y=4 (a®* —3b?)-16ab,
z=6 (a* —2b*)-6ab,
w=2 (2a* -9b?*)-6ab.

(10.8)

Note 1
In addition to (10.5), the integer 28 is written as
28=(4+i12+/3) (4—i2+/3).
In this case , a new set of solutions for (10.1) is obtained.
Process 2
Write (10.3) as
u? +3v?=28p**1 (10.9)

Assume the integer 1 in (10.9) as
_(@+i4/3) @-iv3)

4
Using (10.4),(10.5) & (10.10) in (10.9) & applying the method of factorization,
take

1

(10.10)

u+iv/3v= (10.11)

(5+i/3)(@a+i/3h)? (1+i/3)
2

Comparison of respective terms in (10.11) gives
u=(a*-3b?*)-18ab,
v=3(a*-3b%)+2ab

From (10.2), (10.1) is satisfied by
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x=4 (a —3b%)—16ab,
y=-2 (a® —3b?)-20ab,
z=2a’ -18ab,
w=-6b*-18ab .

(10.12)

Note 2

Apart from (10.10), consider

3a2-b? +i-/32ab) (3a? -b? —i/32ab)
(3a% +b?)? !

(a> —3b? +i/32ab) (a’ -3b%—i-/32ab)
(a® + 3b?)?

12

1=

A similar analysis gives two more sets of integer solutions to (10.1) .
Process 3
The ratio form of (10.3) is
u+5Sp _ 3(p-vV) _a
p+Vv u-5p p
Solving the above system of double equations ,we get
u=5a’+6ap-154%,
V=—0a’+10 a B +33°

NE

and
p=a’+3p° (10.13)
In view of (10.2), observe that the solutions to (10.1) are found to be
X=4a®+16a p-12 57,
y=6a’—-4ap-185°,
7=6a’+6aB-1253%,
w=4a’+6ap-185°

(10.14)

along with (10.13) .
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Note 3

Also ,represent (10.3) as follows :

u+5p 3(p+v) «

—,p#0,
p-v.  u-5p f
u+5p=(p+v)=g1ﬂ¢0,
3(p-v) u-5p /
u+5p_(p—v):g’ﬂ¢0.

3(p+v) u-5p 2

A similar analysis leads to three more patterns of solutions in integers to (10.1).
Process 4

Assume (10.3) to be

3v? =28p? —u? (10.15)

Take

v=28a?-b? (10.16)

Consider 3 in (10.15) as
3=(/28+5) (/28 -5) (10.17)
Substituting (10.16) & (10.17) in (10.15) and factorizing, one has

J28 p+u=(/28+5) (vV28a+b)?
On comparison of respective terms ,one has
u=5(28a* +b?)+56ab

and

p=28a®+b*+10ab (10.18)

From (10.2) , the solutions to (10.1) are
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x=168a* +4b* +56ab,
y=112a’ +6b* +56ab,
z=6(28 a* +b*) +66ab,
w=4(28 a® +b?) +46ab

(10.19)

jointly with (10.18).
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Chapter 11

ON NON-HOMOGENEOUS QUINARY
CUBIC EQUATION

11.1 Technical Procedure

The non-uniform cubic equation with five variables is

Xy—-zw=R? (11.1)

The insertion
X=U+V,y=U—-V,Z=p+V,W=p—V,U£V=D (11.2)

in (11.1) gives
u?-p?=R? (11.3)

Solving (11.3) through different ways and utilizing (11.2), the integer solutions
to (11.1) are obtained.

Way 1
Consider (11.3) as
_ p3
u+p=R", (11.4)
u-p=1
After some algebra, it is seen that
R®+1 R®-1
u= P = , 11.5
5 P > (11.5)
The choice
R=2k+1 (11.6)
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in (11.5), gives
u=4k®+6k*+3k+1,
p=4k®+6k*+3Kk.
From (11.2), one obtains

x=4k®+6k? +3k+1+V,
y=4k®+6k*+3k+1-v,
z=k®+6k?+3k+v,
w=k®+6k?+3k-v

Thus, (11.7) satisfies (11.1) jointly with (11.6) .

Note 1

(11.7)

Apart from (11.5) , there are values of u,p,R satisfying (11.3). Knowing these

values, the integer solutions to (11.1) are obtained through employing (11.2). For
simplicity and brevity, a few choices of solutions in integers to (11.1) are exhibited as

follows:
Example 1
2 2
sz_{_v’W:@_V’R >1
Example 2

x=n(n+2)+v,y=n(n+2)—v

z=n(n-2)+v,w=n(n-2)-v,R=2n,n=0,12
Example 3

x=n2n+1)+v,y=n(2n+1)—-v

z=n(2n-1)+v,w=n(2n-1)-v,R=2n

Example 4
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x=2n®+1+v,y=2n°+1-v,
z=2n®-1+v,w=2n°-1-v,R=2n

Way 2
The option
p=kR (11.8)

in (11.3) gives

u’=R*(R+k?) (11.9)
Let

o’ =R +k? (11.10)
By inspection,

R, =s"+2sk ,a, =s+k (11.11)

Consider the second solution to (11.10) as

R,=R,+h,a, =h-aqa, (11.12)
where h is an unknown integer to be determined. Inserting (11.12) in (11.10)
& simplifying gives

h=2a,+1
From (11.12), we have
o, =0, +1,R, =R, +2a, +1

A similar procedure gives the n solution (ct,, R, ) for (11.10) as

o, =0, +t=(s+k+t)

R, =R, +2ta, +t? =5 + 25k + 2t(s + k) + t? (11.13)
From (11.8) and (11.9), we obtain

p, =kR, =K(s* +2sk + 2t(s + k) + t*)

u, = (R, *a,) = (s+k+t)(s* +2sk + 2t(s + k) + t*)
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Using (11.2), (11.1) is satisfied by
X, =[(s+K+1t)(s® +2sk + 2t(s + k) +t*]+V
Y, =[(s+Kk+1t)(s® +2sk + 2t(s + k) +t*] -V
z, =K[s® + 25k + 2t(s + k) +t*]+ v
w, =K[s* +2sk + 2t(s + k) +t*]-Vv

jointly with R¢given by (11.13).

Way 3
The option
u=KkR (11.14)
in (11.3) gives
p?=R?(k* -R) (11.15)
Let
o’ =k?-R (11.16)

By inspection, observe that (11.16) is satisfied by
R, =—(s* +25)k* ,a, = (s+1k (11.17)

Following the above analysis, the general solution (a.,,R,) to (11.16) is given by

o, =0, —t

R, =R, +2ta, —t? (11.18)
From (11.14) and (11.15), we obtain

u, =kR,=k(R, +2ta, —t?)

P, =(o, *R,) = (ot —t)(R, + 2ty —t?)

Utilizing (11.2), (11.1) is satisfied by
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X, =[K(Ry +2ta, —t?)]+V

y, =[k(R, +2ta, —t*)]-Vv

z, =[(og —t)(R, +2to, —t*)]+V

W, =[(o, —t)(Ry +2tay, —t*)] -V
jointly with R¢given by (11.18).

Way 4
The option

X=R*y, z=R*w (11.19)
in (11.1) leads to the Pythagorean equation

y? =w?+R? (11.20)
which is satisfied by

y=a’+b?,

w=a’-b? (11.22)

R =2ab, a>b>0.
From (11.19), we get
X = (2ab)(@® + b?),

7= (2ab)(a? —b?). (11.22)
Thus, (11.21) & (11.22) satisfy (11.1).
Way 5
The choice

x=R**y, z=R**w (11.23)
in (11.1) leads to rectangular hyperbola

y?-w? =R (11.24)

which is satisfied by
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y=k+1,

w =K, (11.25)
R=2k+1

From (11.23), we have
X =(2k +1)*(k +1),
7= (2k +1)°k. (11.26)

Thus, (11.25) & (11.26) satisfy (11.1).

Note:
It is worth mentioning that there are other choices of integer solutions to (11.24).
For example, on scrutiny, observe that (11.24) is satisfied by

y=k+2,

w =K,

R =4(k+1).

And from (11.23), one obtains
x =16(k +1)?(k + 2),
z=16(k +1)%k.

The interested readers may search for other patterns of integer solution to (11.1) through
employing the algebraic identities. For simplicity and brevity, after a few calculations,
the patterns of solutions to (11.1) are observed:

Pattern 1:
X =16a’A%(A +a),
y=A+a,
z=16a’A*(A-a),
w=A-a,
R =4aA.

76



Pattern 2:

X = (2aA+1)*(A +a),
y=A+a,
z=(2aA+1)*(A-a),
w=A,

R =2aA+1.

Pattern 3:

X =(a+b)*(2A+a—Db)*(A+a),
y=(A+a),
z=(a+b)’(2A+a—b)*(A-h),
w=A-b,

R = (a+b)(2A +a—h).
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Chapter 12

A PORTRAYAL OF SOLUTIONS IN
INTEGERS TO QUINARY THIRD
DEGREE EQUATION

12.1 Technical Procedure

The Diophantine equation of degree three having five variables for solving is
X +y° =13(z +w)p? (12.1)
Inserting
X=u+v,y=u—-v,z=u+d,w=u—-d,u=v=d=0 (12.2)
in (12.1),we get
u? +3v2 =13p? (12.3)

Solving (12.3) through different ways, we have varieties of solutions to (12.1).

Method I:
Assume

p=p(ab)=a*+3b’ (12.4)
Take integer 13 in (12.3) as

13={1+i2/3)1-i2V3) (125)

Inserting (12.4) and (12.5) in (12.3) and factorizing, we write as the pair of

equations as

U+iv3v = (1+i243) 2 +iv30) = (1+i2v3[f (a,b) +iv3g(a,b)]
u—iv3v =(1-i2v3)(a—iv3bf = (1-i2V3)[f (a,b) i v3g(a,b)]
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where
f(a,b) = (a*—-3b%) ,g(a,b) = 2ab (12.6)
On comparing the respective coefficients , one has
u="f(a,b)-6g(a,b) =a® —3b* —12ab
v=2f(a,b)+g(a,b) =2a*—6b* +2ab
From (12.2), (12.1) is satisfied by
X =X(a,b)=3a® —9b* —10ab ,
y=y(a,b)=-a* +3b* —14ab ,
z=12(a,b,d)=a* -3b* -12ab+d ,
w=w(a,b,d)=a* -3b* -12ab—d
jointly with (12.4) .
Note 1
The integer 13, apart from (12.5), may be factorized as

13— (7+|\/§)4(7—| 3)
13- (5+i3+/3) (5-i3V3)
4
A similar process gives two more choices of solutions to (12.1).
Method 2
Assume (12.3) to be
u®+3v? =13p®*1 (12.7)
Consider
_ (a(s) +i b(s)v/3)(a(s) —ib(s) v3)
1= (a(S)+1)2 (128)
where
a(s) = (6s*—6s+1),b(s) = (2s-1) (12.9)

Substituting (12.4), (12.5) & (12.8) in (12.7) and employing factorization , we consider
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. o . [a(s)+i b(s) /3]
(u+|\/§v)—(1+|2\/§)(a+|\/§b)2 G+

_ (1+i243)[f (a,b) +i+3g(a, b)] [a(si *(')b(sl))ﬂ

) ) _ [a(s) +i b(s)v/3]
~{[f(a.5)~69(a. b))+ V321 a.b) - g(a DY} P

On comparing the respective terms, one has

(a( ) 1){a(s)[f(a ,b)—6g(a,b)]-3b(s)[2f (a,b) +g(a,b)]}

(12.10)

V= (a(s) 1){b(S)[f(r':l ,b)—6g(a,b)] +a(s)[2f (a,b) +g(a, b)]}

Since, the focus is on finding integer solutions, taking
a=(@()+)A,b=(a(s)+1)B
in (12.4) & (12.10) and utilizing (12.2) ,(12.1) is satisfied by:
x = (a(s) +D{[a(s) + b()1IF (A, B) -69(A, B)] +[a(s) - 3b(s)][2f (A, B) +9(A, B)I},
y = (a(s) +D{[a(s) - b(s)I[f (A, B) -69(A, B)] -[a(s) +3b(s)][2f (A, B) +g(A, B)I}.
z = (a(s) +D{a(s)[f (A, B)-69(A, B)] -3b(s)[2f (A, B) +9(A, B)]} +d,
w = (a(s)+D{a(s)[f(A,B)—6g(A,B)]-3b(s)[2f (A,B)+g(A,B)]}—d
p = (a(s) +1)*[A* +3B?].

(12.11)

To analyse the nature of solutions,one has to take particular values to s. For simplicity
and clear understanding , the option s=1 gives

a(s)=a()=1,b(s)=b(1) =1

(1+i+/3)1-i/3)
4

1=

Also ,
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f(A,B)=A*-3B?,g(A,B)=2AB
From (12.11) ,the integer solutions to (12.1) are given by
x =X(A,B) =—4A* +12B* -56AB
y=Y(A,B)=-16A" + 48B° ~16AB
z=2(A,B,d)=-10A% +30B* —-36AB +d
w =w(A, B,d) =-10A? +30B? - 36AB —d
p=p(A,B) =4A% +12B?
Note 2

Apart from (12.8) , one may have other Inspections to integer 1 which are
exhibited below

Inspection 1:
1 @)+ b()V3)(@(s) ~ib(s)V3)
(a(s) +2)*
where
a(s) = (3s* -1),b(s) = 2s (12.12)
Inspection 2:
1 @)+ b(E)V3)(@) ~ib(s)V3)
(a(s) +6s°)?
where
a(s) = (r* —3s?),b(s) = 2rs (12.13)
Inspection 3:
1 @)+ b()V3)(@(s) ~ib()V3)
(a(s) +2s%)?
where
a(s) = (3r* —s?),b(s) = 2rs (12.14)
Inspection 4:
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L @A+ V3a,)(1-i+30a,) _(2+i g,)(2-i g,)
(B,)? (f,)*

where

_L :L n+l _ n+1
o = >z 2ﬁ[(2+ﬁ) (2-+3)™,

1

(12.15)
By = Fo = 12 +43) + @=3) "0 =0L2...

Using (12.12), (12.13), (12.14) and (12.15) in (12.11) in turn ,the corresponding integer
solutions to (12.1) are obtained.

Method 3
Consider (12.3) as

13p* -3v? =u**1 (12.16)
Assume
u=13a* —3b? (12.17)
Write the integer 1 in (12.16) as
1=(V13+2+/3)(13-24/3) (12.18)
Substituting (12.17) & (12.18) in (12.16) and applying factorization , consider

V13p++/3v=(V13+2/3)(+13a++/3b)’

from which , on equating the corresponding terms ,one obtains

p=13a®+3b*+12ab,

12.19
v=2(13a%+3 b%*)+26ab (1219)

From (12.2), (12.1) is satisfied by
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X =39a*+3b*+26ab,
y =-13a*-9b*-26ab,
z=13a*-3b*+d,
w =13a*-3b*-d
jointly with p in (12.19).
Note 3
In addition to (12.18) , we have
_ (2413+343) (2413-343)
25
The repetition of the above process leads to a different set of solutions to (12.1) .
Method 4
Rewrite (12.3) as

1

13p? —u? =3V? (12.20)
Assume
v =13a%-b? (12.21)

Write the integer 3 in (12.20) as

3=(2+13+7)(2\13-7) (12.22)
Inserting (12.21) & (12.22) in (12.20) and using factorization, we consider

V13p+u =(2413+7)(\13a+b)?

On comparing, one has

p=2(13a’ +b?)+14ab,

12.23
u=7(13a*+b?)+52ab (1229

From (12.2), (12.1) is satisfied by
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x =104a” +6b* +52ab,
y =78a’+8b’ +52ab,
z=7(13a*+b*)+52ab+d,
w =7(13a*+b?)+52ab-d
jointly with p in (12.23).
Note 4
Apart from (12.22) , we have

5

V13+1)(¥13-1)
1 ,

3 (213 +5) (2413 -5)
9

The repetition of the above process leads to different sets of solutions to (12.1) .
Method 5
Consider (12.20) as

13p* —u® =3v**1 (12.24)
Write the integer 1 in (12.24) as

1=(5+13+18)(5+/13-18) (12.25)

Inserting (12.21) ,( 12.22) & (12.25) in (12.24) and applying factorization , we consider

V13p+u=(2/13+7)(+13a+h)? (5J13+18)
On comparison, one has

p=71(13a° +b*)+512ab,

12.26
u=256(13a° +b*)+1846 ab, (1220

From (12.2), (12.1) is satisfied by
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X = 3341a° + 255b” +1846ab,
y =3315a% +257b* +1846ab,
z =3328a% + 256b* +1846ab+d,
w = 3328a” + 256b* +1846ab —d

jointly with p in (12.26).
Note 5
In addition to (12.25), we have

1- (v13+3)(v13-3)
4

1

_ (13+2)(13-2)
9

1 G134+ (5413-1)
- 324

The repetition of the above process leads to different sets of solutions to (12.1).
Method 6
Express (12.3) in the form of ratio as below:

u+p =3(2p—v) _a
2p+v u—p B

p#0 (12.27)

The above equation is written as the system of double equations

Bu—av+(P-2a)p=0
au+3pv-(6p+a)p=0

Employing the method of cross-multiplication, we have

u=oa’-3p°+12ap,
vV =-20°+6p*+2ap, (12.28)
p=oa’+3p

From (12.2), (12.1) is satisfied by
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X =—a’+3p° +14ap,
y =302 ~9p% +10ap,
z=0o’-3p*+12ap+d,
w=a’-3p°+12ap-d

jointly with p given in (12.28).

Note 6
Apart from (12.27), we may have the following ratio form representations

u+p _ (2p—v):g'B¢0
3(2p+v) u-p B

u+p :3(2p+v):g[3¢0
2p-v. u-p B’

u+p _ (2p+v):2,[3¢o
3(2p-v) u-p B

Proceeding as above, three additional patterns to (12.1) are determined.
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Chapter 13

HOMOGENEOUS QUINARY CUBIC
EQUATION

13.1 Technical Procedure

The uniform third quinary degree equation is

x*—y?=72"-w?+90 1t (13.1)
Inserting
X=U+V,y=U—-V,Z=p+V,W=p-V,t=V,UV=p (13.2)
in (13.1) gives
u? =15v? +p? (13.3)

Solving (13.3) for getting the values of u,Vv,p and using (13.2), one obtains varieties
of patterns to (13.1).

Way 1
Write (13.3) as
utrp_ v _Apg.o (13.4)
15v u-p B
Express (13.4) as two equations
Bu-15Av+Bp=0
Au-Bv-Ap=0
Utilizing the process of cross multiplication, one has
u=15A% +B*,v=2AB,p=15A%* —-B®
Thus, the integer solutions to (13.1) are given by
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x =15A% + B* + 2AB,
y=15A% + B? -2AB,
z=15A%* —-B? +2AB,
w=15A° -B* -2AB,
t=2AB.

Remark 1

Apart from (13.4), we have
u+p 3v. A

= =— (13.5)
5V u-p B
satisfied by
u=5A%+3B? v=2AB,p=5A*-3B?

Thus,

x =5A% +3B* +2AB,

y=5A%+3B?-2AB,

z=5A% -3B? +2AB,

w=5A?-3B*-2AB,

t=2AB.
satisfy (13.1).
Way 2
Write (13.3) as in Table -1:

Table-1 System of double equations

System I 1 11 v Vv
u-p 1 3 5 15 v

The above pair of equations in Table 1 are solved for v,u,p and utilizing (13.2), the

integer solutions to (13.1) is determined. For brevity and simplicity, the respective
integer solutions are exhibited below:
Solutions from System |

X =30k® +32k+9,y=30k* +28k +7,

z=30k?+32k +8,w =30k? +28k +6,t =2k +1
Solutions from System I
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X =10k* +12k +5,y =10k* +8k + 3,

z=10k* +12k +2,w =10k? +8k,t =2k +1
Solutions from System Il

X =6k?+8k+5,y=6k* +4k+3,

z=6k*+8k,w=6k?*+4k-2,t=2k+1
Solutions from System 1V

X=2k?+4k+9,y=2k*+7,

z=2k?+4k-6,w=2k*-8,t=2k+1

Solutions from System V
x=9K,y=7k,z=8k,w=6k,t=k

Way 3
Write (13.3) as
p?+15v? =u?*1 (13.6)
Take
u=a’+15b? (13.7)

Express the integer 1 in (13.6) as

_ (1+i+15) (1-i+/15)

1 16 (13.8)
Substituting (13.7) & (13.8) in (13.6) and applying factorization, consider
p+iJEv:(1LJ1—5) (a+iv15h)>2
_‘i/_ (13.9)
_ (1%415) [f(a,b) +i~15g(a, b)]
where
f(a,b) =a* —15b?,g(a,b) = 2ab (13.10)
On comparing
f(a,b)-159(a, b)
b= 4
(13.11)
v f(a,b)+9(a,b)
4

As the aim is to obtain integer solutions, replacing @ by 2 A & b by 2B in (13.7)
and (13.11), we have

u=4A*+60B?,

p=f(A B)-15¢(A,B),

v=Ff(A,B)+g(A,B).

89



From (13.2), (13.1) is satisfied by
x=5A%+45B* +2AB,

y=3A%+75B*>-2AB,
z=2A%?-30B*>-28AB,
w=-32AB,

t=A%-15B* +2AB.
Note 1
Also, 1 in (13.6) has the following representations:

(1512 —s? +i2rs+/15) (15r? —s* —i2rs+/15)

® ! (15r% +5%)?
iy 1= (30s? —30s+7+i(25—1)+/15) (3052 —30s+7 —i (25 —1)~/15)
(30s®> —30s+8)°
iy 1= (652 —65—1+i(25—1)~/15) (652 —65—1—i(25—1)/15)
(65> —65+4)?
W 1= (252 —2s—7+i(25—1)/15) (25> —25—7—i(25—1)+/15)

(2s* —2s5+8)?
1 2+ig,) 2-ig,)
(f,)? ’
(v) f =(4+15)" + (4—\15)"*,

g, = (4+15)™ —(4—+15)"* ,n=0,12,...
A similar analysis gives five additional choices of solutions to (13.1).

Way 4
Write (13.3) as

u?-15v? =p?*1 (13.12)
Assume

p=a’-15b? (13.13)
Consider the integer 1 in (13.12) as

1=(4++/15) (4—+/15) (13.14)

Substituting (13.13) & (13.14) in (13.12) and utilizing factorization, consider

U++/15V = (4++/15) (a+~/15b)>

= (4++/15) [(a%® +15b%) + 2ab+/15]
Equating the rational and irrational parts in (13.15), one obtains

(13.15)
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u=4(a®+15b*)+30ab,

v=(a® +15b*) +8ab
In view of (13.2),

x =5(a® +15b*) +38ab
y=3(a’*+15b%) +22ab

z=2a’+8ab, (13.16)
w =-30b? —8ab,
t=a’+15b* +8ab.

satisfy (13.1).

Note 2

Also, the integer 1 in (13.12) has the following representations:

_ (30s” —30s+8+ (25 -1)15) (305’ —30s+8— (25 -1)15)

i 1
W (30s® —30s+7)?
i) 1= (652 —65+4+(25—1)+/15) (65% —65+8—(25—1)~/15)
(6s* —6s—1)*
i 1:(15r2+sz+2rsJE) (15r% +5° —2rs+/15)
(15r* —s?)?
A similar analysis gives three additional choices of solutions to (13.1).
Way 5
Consider (3) as

15v? +p® =u?*1 (13.17)
Take

u=15a*+b? (13.18)

Express the integer 1 in (13.17) as

_ (A5+i) (15-i)

1 16 (13.19)
Substituting (13.18) & (13.19) in (13.17) and applying factorization , consider
\/Ev+ip=(\/§+l) (V15a+ib)?
(13.20)

:(@%i) [f(a,b) +i V15 g(a, b)]

where
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f(a,b) =15a* —b?,g(a,b) = 2ab (13.21)
On comparing, we have
D= f(a,b) +159(a,b)

4 (13.22)
,_f@b)-g@b)
4
Replacing a by 2 A & b by 2B in(13.18) and (13.22) , we have
u=60A%+4B?,

p=F(A B)+159(A,B),
v=T1(AB)-g(A,B).
From (13.2), 13.1) is satisfied by
X =75A% +3B*-2AB,
y=45A° +5B° +2AB,
z=30A%-2B? +28AB,
w =32AB,
t=15A* -B*-2AB.

Note 3
In addition to (19) , the integer 1 in (13.17) has the following representations :

0 1= (2rs~/15+i(r? —=15s?)) (2rs+15 —i(r? —15s?))
- (r* +15s%)?
_ ((2s—1)V/15 +i (30s® —30s+7)) ((2s—1)~15—i (30s* —305+7))

i) 1

(30s® —30s+8)?

A similar process leads to two additional patterns to (13.1) .
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Chapter 14

NON-HOMOGENEOUS CUBIC WITH
SIX UNKNOWNS

14.1 Technical Procedure

The third degree non-uniform polynomial equation having six unknowns is

Xy—zw+2T? =(a’* +b?*)R?® (14.1)
Inserting
X=U+V,y=U-V,z=P+V,wW=P-Vv, T=P,uzv=P=0 (14.2)
in (14.1) gives
u?+P*=(*+b?*R? (14.3)

The process of obtaining patterns of integer solutions (14.1) is illustrated below:

Process 1

It is seen that
u=@>+b*)?m(m? +n?),
P=(*+b?*)?*n(m*+n?), (14.4)
R =(a?+b?) (m?+n?).

satisfy (14.3).

Thus, one obtains integer solutions to (14.1) as
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x=@%+b*)>’m(m?*+n?) +v,
y=(@%+b*>)’m(m® +n?) —v,
z=(a*+b?*)?*n(m?+n?) +v,
w=(a®+b%)>n(m? +n?) —v,
T=(*+b?*)?n(m* +n?)

jointly with the value of R in (14.4) . Note that v is an arbitrary non-zero integer for
obtaining distinct solutions. It is worth to mention that, if v=0, then, the solutions for

the equation x> —z? +2T? =(a® + b?) R? are obtained.
Process 2
Assume
R=A?+B? (14.5)
Substituting (14.5) in (14.3) and employing factorization ,consider
u+iP=(a+ib) (A+iB)?

14.6
=(a+ib) [f(A,B)+ig(A,B)] (14)
where
f(A,B)=A°-3AB?,
(14.7)
g(A,B) =3A’B-B°.
On comparison in (14.6) , observe
u=af(A,B)-bg(A B), (14.8)

P=Dbf(A,B)+ag(A,B).
From (14.2)
x=af(A,B)-bg(A,B)+V,
y=af(A,B)-bg(A,B)-v,
z=Dbf(A,B)+ag(A,B)+v, (14.9)
w=Dbf(A,B)+ag(A,B)-v,
T=Dbf(A,B)+ag(A,B).
Thus, (14.5) & (14.9) satisfy (14.1) .

Process 3
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Let

F(a,b,p,a)=a(p’—q*)+b(2pq),

G(a,b,p,a)=a(2pa)-b(p*-q?)
where p,g are non-zero distinct integers.

(14.10)

Observe that

[F(a,b,p,q)+iG(a,b,p,q)] [F(a,b,p,q) —iG(a,b,p,q)]= F*(a,b,p,q) + G*(a,b,p,q)
=(@*+b?) (p* +q*)?

Thus , we get

2 2\ [F(a1 b, pl q) + I G(a! b’ p’ q)] [F(a1 b1 pi q) B I G(a’ b, pi q)]
@ +b%)= s
(p”+0q°)
Substituting (14.5) & (14.11) in (14.3) and following the procedure as

(14.11)

in Process 2 , one has

u  [T(AB)F(a,b,p,q) ~g(A,B)G(a,b,p,q)]
(p? +0%) ’

_[9(A,B)F(a,b,p,q) +f(A,B)G(a, b, p,q)]
(P* +9%)

(14.12)
P

Replacing A by (p?+09%) U and B by (p?+0q?) Vin (14.5) & (14.12) ,we have
R=(p*+0°)* (U* +V?)
u=(p*+9*)*[f(U,V)F(a,b,p,q)-g(U,V)G(a,b,p,q)] , (14.13)
P=(p*+9*)*[9(U,V)F(a,b,p,q) +f(U,V)G(a,b,p,q)]

From (14.2), (14.1) is satisfied by

x = (p*+9°)*[f(U,V)F(a,b,p,q) -g(U,V)G(a,b,p,q)] +V,

y=(p*+0°)*[f(U,V)F(a,b,p,q) —g(U, V) G(a,b,p,q)]-v,

z=(p*+9°)?[g(U,V)F(a,b,p,q) +f(U,V)G(a,b,p,q)]+V, (14.14)

w = (p* +9°)*[g(U,V)F(a,b,p,q) +f(U,V)G(a,b,p,q)]- v,

T=(p*+0°)*[9(U,V)F(a,b,p,q) +f(U,V)G(a,b,p,q)]
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jointly with R given in (14.13).
Ilustration:
Take
p=2,0=1a=2b=LU=3 V=2 v=1
f(U,V)=1(3,2)=-9
9(U,V)=9(3,2) =46
F(a,b,p,q) =F(2,1,2,1) =10
G(a,b,p,0)=G(2,1,2,1) =5
From (14.13) and (14.14), we get,
R =325 x=-7999 y=-8001z=10376 w=10374T =1037¢
which satisfy
Xy—-zw+2T? =5R?
Process 4
The insertion of the transformations
P=(a?+b?)2kS,
(14.15)
R = (a2 + b2) S

in (14.3) leads to
u?=(@*+b*)*s*(S-k?) (14.16)
After performing some algebra, it is seen that the R.H.S. of (14.16)
is a perfect square for values of S given by
S, =(ck+1t)*+k?,t=012,...
and thus we have
u=u, =@ +b?)?(ck+t)[(ck+t)* +k’]
From (14.15) ,one obtains
P=P,=(@*+b*)’kS, =k(a® +b*)* [(ck+1)* +k?],

14.17
R=R,=(a?+b?)S, = (a2 +b?) [(ck+1)? +k?] (1447
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In view of (14.2) ,the integer solutions to (14.1) are given by

X
y
z

z, =P, +v=k(@®+b*)* [(ck+1)* +K*]+V,
w=w, =P, —v=k(@®+b*)* [(ck+1)* +k*]-V,
T=T, =P, =k(@"+b*)* [(ck+1)* +k?]

jointly with R =R, given in (14.17) .

Process 5

Inserting

X=U+V,y=U—-V,ZzZ=P+Vv,W=P—-Vv, T=5P,u#v=P=0
in (14.1) gives

u’+49P% = (a’* +b*) R®
By inspection, observe that (14.19) is satisfied by
u=(a®+b*)*m(m? +49n?),
P=(a’®+b?)?*n(m*+49n?),
R =(a? +b?) (m? +49n?).
From (14.18),
X =(a*+b?)>m(m? +49n?) +v,
y=(a?+b?)?*m(m®+49n?) —v,
z=(a’+b%)?n(m*+49n?) +v,
w=(a®+b%)>n(m* +49n?) —v,
T=(a’+b?)?n(m? +49n?)
satisfy (14.1) jointly with (14.10).
Process 6:

Assume

R =49[A? +B?]

X, =U, +V=(@%+b?)?(ck+t)[(ck+t)* +k*]+V,
y,=u,—v=(@a%+b*)’(ck+t)[(ck+1)* +k*]-v,

(14.18)

(14.19)

(14.20)

(14.21)
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Substituting (14.21) in (14.19) & employing factorization, consider

u+iP=7%(@a+ib) (A+iB)°
=7°(a+ib) [f(A,B)+ig(A B)]

Following the procedure as in process 2, we have,

u=7%[af(A,B)-bg(A, B)],

(14.22)
P=7%[bf(A,B)+ag(A B)].

From (14.22) and (14.18) , one has the integer solutions to (14.1) as
x=7*[af(A,B)-bg(A B)]+V,
y=7°[af(A,B)-bg(A,B)]-v,
z=7°[bf(A B)+ag(A B)]+vV, (14.23)
w=7%[bf(A,B)+ag(A,B)]-vV,
T=5*7°[bf(A,B)+ag(A,B)].

jointly with R in (14.21).
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Chapter 15

ON UNIFORM THIRD DEGREE

EQUATION HAVING SIX
PARAMETERS

15.1 Technical Procedure

The uniform third degree equation with six variables is
(wW* +p* -2°)(w-p) =(kK* +2) (x +y) R’

Inserting

X=V+l,y=v-1z=uw=U+V,p=Uu—-V,u=Vv==tl
in (15.1) leads to

u®+2v? =(k*+2)R?

Solving (15.3) is, we have patterns of solutions to (15.1).
Way 1:
By scrutiny,

u=k(k*+2),v=(k*+2),R =(k*+2)
satisfies (15.3),
Thus, (15.1) is satisfied by

x=k*+3,y=k*+1,z=k(k* +2),
w=(k+)(k*+2),p=(k-1)(k*+2)

jointly with R given in (15.4) .

Open Access Books

(15.1)

(15.2)

(15.3)

(15.4)
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Way 2:
Write (15.3) as
(k* +2)R*-2v* =u’=u’*1 (15.5)
Assume
u=(k*+2)a*-2b? (15.6)
Take integer 1 in (15.5) to be

1- (VK2 +2 +2) (WK? +2 =/2)
k2

(15.7)
Inserting (15.6) & (15.7) in (15.5) & utilizing factorization , consider
ST 2R3y (VK2 +2+2)(Vk? +2a+~/2b)>
k
On comparing, the coefficients of corresponding terms ,note that
2 2 2 2 2 2 2
R:(k +2)a” +2b +4ab'V:(k +2)a” +2b° +2(k“+2)ab (15.8)

k k
Taking a=kA,b=kBin (15.6) & (15.8) and using (15.2), (15.1) is satisfied by
x =K[(k*+2)A*+ 2B + 2(k* + 2) AB] +1,
y=Kk[(k* +2)A* +2B* + 2(k* + 2) AB] -1,
z=k*[(k* +2) A% -2B?],
w = (K +K)(K* +2) A> + 2B* (k —k?) + 2k (k* + 2) AB,
p=(k*-Kk)(k*+2)A*-2B*(k+k?) -2k (k* + 2) AB,
R =K[(k* +2)A? + 2B’ + 4AB]
Way 3:
Write (15.3) as
(k* +2)R* —u? =2V? (15.9)

Assume Vv as
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v=(k’+2)a’-b’ (15.10)
Take the integer 2 in (15.9) as

2=Wk*+2+Kk)(Vk?+2—k) (15.11)

Following the procedure as in Way 2,the corresponding integer solutions to

(15.1) are given by

x=(k*+2)a’ -b*+1,y=(k’* +2)a’ -b* -1,z=k(k* +2)a’ +k b* +2(k* + 2)ab,
w=(k+1)(k* +2)a*+(k-1) b* +2(k* +2)ab,p=(k-1)(k* +2)a* + (k +1) b* +2(k* + 2)ab,
R=(k*+2)a’ + b* +2kab

Way 4.
Rewrite (15.3) as
u? =(k*+2) R? -2v? (15.12)
Introducing the linear transformations
R=X+2T,v=X+(k*+2)T,u=kU (15.13)
in (15.12), one has
X?=2(k*+2)T?+U? (15.14)
which is equivalent to the pair of equations as in case(a) & case(b) .
Case (a):
X+U=2(K*+2) T
X-U=T
On solving, one has
X = (2k*+5) T
2 1
U= (2k?+3) T
2

Taking T =2s, we get
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X =(2k* +5)s,
U=(2k*+3)s
Inserting (15.13) and using (15.2) ,we get the non-trivial integer solutions of
(15.1) to be
X =(4k? +9)s+1,
y=(4k®+9)s-1,
z=(2k®+3K) s,
R=(2k*+9)s,
w = (2k® +4k* +3k+9)s,
p=(2k®-4k*+3k—-9)s.

Case (b):
X+U=K*+2)T
X-U=2T
On solving, one has
X:(k2+4)T’
2
2
Uo keT
2
Taking T =2s, we get
X = (k?® +4)s,
U=k’s
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From (15.13) & (15.2), (15.1) is satisfied by
X = (3k* +8)s+1,

y =(3k*+8)s—1,

z=k’s,

R =(k®+8)s,

w = (k*® +3k* +8)s,

p=(k*®-3k?-8)s.

Way 5:

Let
R =a%+2b? (15.15)
Take (k*+2) as

(k% +2) = (k+iv2)(k—i/2) (15.16)
Applying (15.15) & (15.16) to (15.3), consider
U+iv2v = (k+iv2) (a+iv2b)? (1517)
= (k+iv/2) [f(a,b) +i V2 g(a,b)]
where
f(a,b) = (a* —2b?) ,g(a,b) =2ab
On comparing (15.17),we get
u=kf(a,b)—2g(a,b) =k(a* —2b*)—4ab
v="f(a,b)+kg(a,b) =a* —2b* + 2kab
From (15.2), (15.1) is satisfied by
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X =a’ —2b® + 2kab+1

y=a’—-2b*+2kab-1

z =ka® — 2kb? — 4ab

w = (a2 — 2b?)(k +1) + 2ab(k — 2)

p=(a% - 2b%)(k —1) — 2ab(k + 2)
jointly with R given in (15.15) .

Way 6
Consider (15.3) as
u?+2v? =(k*+2) R?*1 (15.18)
Write the integer 1 in (15.18) as

_ (1+i22)(1-i242)
9

1

(15.19)

Assume
R=9(a’ +2b?) (15.20)
Substituting (15.16) ,(15.19) & (15.20) in (15.18) and applying factorization ,

consider

, (1+i24/2)
3
=3[k—4+iv2(1+2K)][f(a,b) +iv2g(a,b)]
On comparing coefficients of corresponding terms , we have
u=3[(k-4)f(a,b)—2(1+2k)g(a,b)],
v =3[(1+2k)f(a,b)+ (k—-4)g(a,b)].
From (15.2) ,(15.1) is satisfied by

u+iv2v=(k+i~/2)9(a+i~2b)

104



x =3[(1+2k)f(a,b) +(k—4)g(a,b)] +1,
y =3[+ 2k)f(a,b) +(k—4)g(a,b)] -1,
z=3[(k-4)f(a,b)-2(@1+2k)g(a,b)], ]
w =3[(Bk-3)f(a,b) - (3k +6) g(a,b)],
p=3[(-k-5)f(a,b)+ (2-5k)g(a,b)]

jointly with R given by (15.20) .

Note 1

Apart from (15.19) , the integer 1 may be expressed as below:

_ (2r2 —s* +i2(2rs)) (2r2 —=s? —iJ/2(2r9))

! (2r® +s%)°
l_(r2—2s2+w§(2rs))(r2—2sz—i 2(2r9))
B (r? +2s?)? ’
P CullUYAChl LYY
Y
where

e, =(3+2/2)™ +(3-242)",

h, =(3+2/2)™ - (3-24/2)".
Following the above procedure, three more sets of integer solutions to (15.1) are
obtained.
Way 7

Consider (15.3) as

(u+kR)=2(R_V)=g,B¢O (1521)
(R+v) (@-kR) B

which is expressed as
up-vaoa+R(kB—a)=0
—ua-2vB+R (2B+ka)=0

whose solutions are
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u=-ka?+2kp* -4 ap
v=a’-2p°-2kap (15.22)
R=-a’-2B°
Thus, (15.1) is satisfied by
X=a’-2p* -2kap+1
y=a’-2p*-2kap-1
z=-koa®+2kB* -4ap
w=(1-K) a®+2(k-1)B*-(2k+4) ap
p=—(k+D) o’ +(2k+2) B>+ (2k—4) a. B
jointly with the value of R in (15.22) .
Note 2

Also, consider (15.21) as below

i (u+kR): R-v) «a
2(R+v) (uU-kR) B
i) (u+kR):2(R—v) _a
(R-v) (uU-kR) B

(

(

A similar procedure as in Way 7, one obtains the respective solutions to (15.1) .
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Conclusion:

This book is intended for advanced undergraduate and graduate scholars as well as
researchers. The aim of this book is to give the readers an opportunity to learn and to
know interesting results in the theory of Diophantine equations. We hope that scholars,
researchers & anyone with an interest in number patterns and equations may be
motivated to search for new techniques in solving multidegree and multivariate
polynomial as well as transcendental Diophantine equations for their solutions in real
integers. No doubt that the subject of Diophantine equations (polynomial and
transcendental) is a treasure house and the analysis for getting integer solutions is a
treasure hunt.
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