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Chapter 3: Building a data-driven 

healthcare ecosystem that supports 

evidence-based clinical decision-making   

3.1. Introduction                                                                                                                 

In the shift from a heretofore individual-clinical level to a population-policy level, where 

the decision-making processes typically become more uncertain, variable, and complex, 

it is further proposed that contextual influences play a crucial role in determining what 

constitutes evidence and how that evidence is utilized effectively in making informed 

decisions. Recent research and firsthand experience suggest that innovative evidence-

based policy, grounded on scientific knowledge and available reproduction of the real-

world evidence, is highly relevant across the bio-medical, public health, and clinical 

fields, and can be built by epidemiological case studies. Discussing the potential transfer 

of databases to informed policy and personalized healthcare decisions involves, but is 

not limited to, healthcare providers’ economics as hospital administrators and family 

doctors, public health policy in terms of health promotion professionals, and patients’ 

choices in light of the modern bio-communication technologies of the internet and social 

media. 

Firstly, the issues related to the current transfer of database information into knowledge 

about the health status of the population and about where modifiable predictors (i.e., 

lifestyle and socio-demographic variables) are involved are considered, along with the 

use of this knowledge for designing intervention plans. Some issues of potential interest 

are introduced and highlighted for analysis through a review of the literature, as well as 

the initial code work and the projects delivering participant information, published health 

promotion materials, and e-mail messages. Secondly, it is shown that the back-

transformation of biomedical research versions of treatment efficacy into general health 

policy- and patient-oriented versions, about the compliance of these details with the 
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strict, internationally established criteria of empirical evidence, is severely limited. 

Subsequently, it is emphasized that for the most part, the publicly available databases 

are devoid of the medically meaningful (and expected) detailed topography-based 

descriptions, such as the relative contributions of fibroadipose tissue within the bulk 

mass of the breast and the amount of muscle fiber within the corporeal mass. 

 

                                         Fig 3.1: Data-Driven Healthcare 

3.1.1. Background and Significance 

This realization generated different projects in the following years aimed at the 

development of related standards to which organizations could conform, so that once a 

disaster would be experienced, national healthcare professionals would be able to rely 

on their tight time-limited collaboration. Subsequently, the readiness of information 

transfer regarding a biological or chemical mass destruction event between first 

responders and healthcare institutions has been studied and observed that since such data 

would also arrive from a variety of healthcare settings then differences in them would 

affect the level of care that would be provided to the victims. In an attempt to enhance 

preparedness in cases of mass casualty events it has, therefore, been suggested that also 

clinical data of the patients would have to be formatted uniformly, such as the various 
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administrative, medical, and nursing data items had already been, so that it could be 

easily conveyed and understood.  

3.2. Role of Artificial Intelligence in Healthcare 

A decision support system can be a computerized tool or software that supports 

healthcare professionals by making informed decisions according to patient care by 

integrating patient data, relevant medical knowledge or guidelines, and appropriate 

analytical tools (Google Health, 2024; IBM Watson Health, 2024). In fact, some of these 

decisions, such as complex diagnosis or adjusting drug treatments, have to be taken in 

real time also during surgical procedures. Such immediacy can not be achieved in 

practice without automating the decision making process. In those cases, indeed, the 

availability of such systems can provide an automated way to make informed decisions, 

i.e., providing appropriate recommendations, and support or even substitute healthcare 

professionals decision-making. This offer is open to many possible scenarios like 

conditions diagnosis, recommendations practice like appropriate time frame to visit, 

prevention operation by following lab periodic controls or at least keeping a healthy 

lifestyle, and healthcare operations optimization. 

Artificial intelligence (AI) has been playing a pivotal role in such a revolution. AI 

technologies have deeply changed the way data has to be collected, analyzed, and 

exploited for supporting evidence-based decisions in the healthcare sector. These 

systems are able to harness huge amounts of digital data sources, such as those coming 

from the digitization of healthcare data, thus processing structured and unstructured 

patient data, in order to extract hidden – just before impossible to be identified – 

knowledge. In a nutshell, a decision support system in the healthcare sector is an 

emerging modeling paradigm in which these technologies are developed to enhance 

clinical quality, assist intervention planning, and provide recommendations for clinical 

treatment.  

3.2.1. Machine Learning Applications 

Over the past decades, the healthcare sector has seen an increase in availability and 

overall volume of patient data. With the expansion of electronic medical records, it’s 

estimated that the volume of medical data is doubling every 4 years and will reach 2314 

exabytes by 2020. The emergence of big data technology provided an opportunity to 

analyse previously stored and unused patient data. That analysis has the potential to 

discover new insights in both individual and population health. The healthcare industry 

is expected to significantly benefit from predictive big data analytics. According to one 

assessment, analysing big data in healthcare could result in 300 billion dollars in savings 
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in the US, while the global potential is estimated to be over 1 trillion dollars. Health 

institutions have been working on creating a data-driven ecosystem by accumulating 

data from patient histories, hospital records, insurance claims, clinical data, genetics, 

social and environmental factors, etc. Every second, patients generate large volumes of 

data that pertain to their health, seeking medical advice, being diagnosed and treated by 

doctors in hospitals or clinics. The application of artificial intelligence (AI) technologies 

can effectively assist various clinical tasks, such as case triage and diagnosis, image 

scanning and segmentation, decision making, and risk prediction. Rooted in many 

respected evidence-based publications on healthcare and data analytics, healthcare 

systems that foster a data-driven ecosystem are achieved through the concept of 

evidence-based and patient centred medicine by improving the interoperability of 

clinical decision support systems at point of care. Also, the healthcare system is 

supported by a new approach for secondary use of the patient data generated in clinical 

practice, where these data are analysed to discover new knowledge through big data 

analytics. On the upside, the learned clinical knowledge is later used in clinical decision 

support systems, consequently providing physicians with recommendations that support 

evidence-based and patient centred clinical decisions. 

3.2.2. Natural Language Processing 

The furor surrounding artificial intelligence (AI) in healthcare has led to rapid 

advancement in digital medicine across multiple clinical specialties, primarily enabled 

by big data generated through the digitization of healthcare (Johns Hopkins University, 

2024; PathAI, 2024). Approach to unlocking such information computationally through 

natural language processing (NLP) is of paramount value to advancing healthcare AI. 

Several types of NLP systems currently in popular use are introduced, each 

pragmatically tailored to the scope of its clinical application. The majority of entities are 

captured via NLP-as-a-service, an R&R pathway for data extraction that improves both 

efficiency and precision. Limitations with current practices and desires to better provide 

and standardize NLP in furtherance of healthcare AI development are also discussed. 

Data standardization acts as an enabler for additional AI tasks, such as population cohort 

identification for prospective analyses or surveillance. Several systems for the extraction 

of unstructured medical information that have been in operation are described. For 

example, a Mayo-developed natural language processing system has been screening 

computed tomography reports to facilitate surveillance of pulmonary invasive mold 

diseases in patients with haematological malignancies. Also described is an externally 

developed system that is used to screen the electronic health record for the early 

recognition of multiple sclerosis. Of particular focus are systems that extract 

unstructured medical information relevant to another clinical event (e.g., a cohort 

selection event) and consequently inform clinical decision-making (e.g., a treatment 
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event). Such systems are employed within the scope of several clinical specialties to 

advance healthcare AI. 

Text mining of patient-generated messages commonly made through patient portal to 

predict sepsis using a machine learning network architecture. Sepsis, a leading cause of 

mortality in the United States, is difficult to predict from clinical visits only where 

natural language processing of patient-generated text and information within the EHR 

provide increased predictive value. Patient-generated text includes notifications of their 

general illness and EHR-derived clinical notes. 

Recognition of cardiovascular procedure reports and applying text mining on procedure 

reports achieved successful identification of heart condition patients. Adapting 

cardiovascular procedure report processing method to similar report formats containing 

cholesterol and examining coronary and aortic heart conditions rather than artery. Early 

detection of multiple cancers via lung cancer screening is urged. Building a natural 

language processing tool to extract data from radiology files is suggested. 

3.3. Patient Engagement and Empowerment 

The goal of patient engagement is to involve the patient in the decisions leading to their 

own health and quality of life improvement. Despite recent factual clinical improvement, 

patients perceive that healthcare professionalism still needs to improve patient 

engagement. The disease patient rapid progressive late stage creates a preference for a 

‘frequent results’ healthcare civil contract establishment instead of a professional civil 

dialogue. The angiostrongyliasis from paratenic host infection monitored by serum anti-

BmR1-IgG may be a valuable tool to support clinical decisions. In the perspective of the 

patient, this detection and assessment of angiostrongyliasis infection aeroelasticity 

enhances a better engagement of the decisions leading to the integration of the healthcare 

strategy of disease angiostrongyliasis treatment. Aiming to analyze the laboratory 

outcomes of a hypothetical patient for the same disease with two different civil 

positionalities ‘paratenic host’ and ‘healthcare professional’, a mathematical-physics 

model simulating the PVL model of the serological angiostrongyliasis infection 

monitoring is defined. Using concepts from game theory, it was found that there are 

equilibrium situations where both players, after transmitting and analyzing the test 

results produced by sero-diagnostic tests of the angiostrongyliasis, get clinical benefits 

which are shared according to predefined agreements. It is also observed that different 

from the ‘treatment agreements’, clinical benefit in the ‘symptomatic patients triggering 

protocols’ is not a constant but rather time-dependent. An intuitive reasoning to get a 

perspective of these scenarios is also presented. This ENGAGEment LAB model may 

suppose a significant improvement of the establish of a ‘smart medicine’ enhanced 

PDCA cycle. The precision and individualized treatment strategies of patient-specific 
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health care providers associated with the civil positionality are also discussed gaining a 

better insight of the disease CSP associated with health belles-lettres. This proposed 

theoretical approach can be extended to all kinds of serological tests to detect 

angiostrongyliasis as well as to any other similar infection regarded on medical, 

veterinary, or phytomedicine. 

 

                                 Fig 3.2: Patient Engagement and Support 

3.3.1. Health Literacy Initiatives 

Project partners have continued to collaborate during the NBA YHI to plan for its 

sustainment, and they are investigating the best ways to inform the types of adaptations 

that would be necessary in order for NBA YHI to be scaled. The partnership is 

strengthened by ongoing project rounds, which allows partners to be better informed of 

stakeholder needs and for AD to recognize partner requirements from their perspective. 

Regular evaluation of the partnership has focused on partner roles, interventions, data 

collection, capacity building, primary grant mechanisms, evaluation, and potential 

expansion. This evaluation was found to be critical to both partners involved and to those 

external to the project, and continuous evaluation processes will be needed moving 

forward. 
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Continuation of the ongoing efforts of NBA YHI partners may serve as an important 

road map for health literacy programs initiated in other states. One such guide is 

understanding that after approximately 5 years of collaboration, partners began 

exploring opportunities for scalability of the statewide systems-level combination 

clinical-academic-community health literacy approach to medical services in South 

Carolina. Sustaining this level of effort and collaboration in health systems level 

initiatives can be challenging, as is evident by evaluations of such initiatives. Individual 

working groups may fragment, funding may cease, provider buy-in may lack, or 

competing priorities may arise. 

3.3.2. Patient Portals and Mobile Apps 

Users of healthcare services are not only patients. Clinicians, too, are afflicted with a 

healthcare system teetering on the point of saturation (as well as being at high-risk of 

wear and burnout). When medical records transformed from manila folders to digital 

folders on desktop computers, a system was envisaged in which there would be a 

reduction in human laboratory bottlenecks—blood sample “X” goes into machine “Y” 

and spits-out result “Z.” This would, in-turn, zeitgeist patient throughput ratios, bed 

occupancy rates, and so forth. However, real-world operation of this system was more 

complicated. So-called “medical judgement” was still required to plan, analyze and 

make decisions. Bedside manner was still pivotal for provocation, intentionally 

sympathetic listening. Personal experience, advice from trusted-colleagues, consultation 

of textbooks and/or online journals, were all critical in resolving unsure case ambiguities 

and unknowns. Descriptions sparing of unnecessarily perplexing medical terminology, 

elucidative diagrams, or lay-terminology, were treasured, especially after a typically 

vexing call with a superior. However, such niceties often completely outgrow the time a 

consultation could proffer. All of this fed the mesmerizing narrative of a computer 

system capable of trawling “big data” from records and existing literature that would 

provide just-in-time forewarning, making decisions and diagnoses. In truth, off-the-

backs of simple network hardware and a very basic Human-Computer-Interface (HCI) 

(and with a visceral push from a predominantly doctoral technophile proof-of-concepts) 

vast coffer of private health data started finding their way to the burgeoning number of 

“health-tech” start-ups. Meanwhile, multiyear projects endeavored to develop 

generalisable learning algorithms able to predict cycles of care. A marked success was 

made within academia with the annual prediction challenges. Here was not only the 

opportunity to interrogate existing data, but also examine and incorporate the most 

cutting-edge techniques from algorithmic-machine-learning and statistician-physician-

research from across talents of the world. 
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3.4. Data Sources in Healthcare 

As the amount of health data being recorded continues to grow, so too do the types of 

sources. There are many sources of real-world health data including claims, electronic 

health records (EHR), administrative health data, health outcome data, lab results, or a 

patient's self-reported outcomes . The impact of clinical evidence varies as much as the 

health conditions they describe. For some conditions such as heart attack or stroke, 

evidence based on clinical trial data grounds a wealth of clinical guideline 

recommendations. For the majority of health conditions, the evidential base rests almost 

entirely on evidence developed from retrospective analysis of patient records. The 

practice of medicine increasingly depends on the use of computer systems like electronic 

health record (EHR) systems. When applied to patient care, clinical decision support 

system (CDSS) is computer-based knowledge that employs patient data to generate case-

specific advice and is then presented to clinical staff in real time. 

Shareable CDS healthcare applications are being proposed to develop access and link to 

patient data from EHRs, provide CDS, and add representational features for healthcare 

professionals and patients. The HL7 FHIR standard is being leveraged in support of data 

access approaches. FHIR specifies a library of standard clinical resources, which can be 

readily mapped to existing EHR data models. FHIR utilizes HTTPS and creates a 

standard API to share information among applications such as EHRs. This controlled 

and standardized access provides new opportunities for creating CDS abstraction 

interfaces. A significant shift is the implementation of CDS on the SMART platform to 

embed web applications into EHR workflows. The FHIR-based apps combined with the 

SMART platform pave the way for “SMART on FHIR” app stores. This encapsulation 

of standards-driven data access shows progress towards using sharable and custom 

external CDS to address complex clinical scenarios. 

3.4.1. Electronic Health Records (EHRs) 

Direct provision of care leaves a large volume of complex data in its wake, which could 

be used to create a new, data-driven ecosystem that supports evidence-based clinical 

decision-making. However, health data is recorded primarily for patient care rather than 

secondary uses. Electronic Health Records (EHRs) are central information technologies 

for collecting electronic health data. The pervasive use of EHRs has enabled an 

exponentially increasing collection of electronic health data, which is expected to reach 

2314 exabytes only for the year 2020. EHRs are the core information systems used by 

healthcare organisations to capture textual, numerical and image data on virtually all 

aspects of patient care and wellbeing. Healthcare stakeholders, including researchers, 

practitioners, patients, industry partners, policy makers, and indeed the public 

understand that health data, and therefore EHRs, hold a largely untapped potential for 
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monitoring, tailoring, and conducting interventions to improve both the processes and 

outcomes of care. 

EHR data presents a complex intersection of information that is structured, unstructured, 

trace-based, multimodal and multi granular. Early research on health data analysis 

focused mostly on structured numerical data. The scientific and healthcare research and 

practice communities have shown a growing interest in complex and heterogeneous 

patient data, such as EHRs and other emerging health data types like genetic, imaging, 

sensor-based or social media data. Over 80% of health data still resides within 

unstructured text, images, waveforms or free text clinical notes. Additionally, most EHR 

data generated during care is largely ignored in its current structured form. Information 

on clinical reasoning, care coordination or teamwork, decision-making and socio-

technical implications of care delivery, are some examples of data embedded within a 

richer EHR space that have remained largely untapped. EHR data is also stored at 

different levels of granularities and temporalities, inherently affecting the usefulness of 

data for specific analyses and applications in complex ways. Joint modelling of 

structured, textual, and temporal patient data has only recently begun to emerge, focusing 

in the main on the induction of clinical predictive models. Text and image data appear 

to be the largest untapped resources available for secondary use within EHRs. While 

EHR notes play an important role in the rationale for clinical decision-making, 76% of 

all EHR notes still remain unopened, adhering to the notion ‘that the bigger the haystack 

the harder it is to find the needle’. Given a data-driven healthcare ecosystem, with 

constraints and challenges to harness its potential, the research actions required to 

approach the data volume and variety, challenges at the data, information, and 

knowledge levels are analysed, alongside the hammering role of privacy and security 

concerns. 

3.4.2. Clinical Trials and Research Data 

Broad access to, and understanding of research data by patients, clinicians, and 

researchers are critical to building a data-driven healthcare ecosystem. Although a 

comprehensive and machine-understandable model covering every piece of knowledge 

and data used in clinical practice is highly desirable, attaining that ideal model would be 

nearly impossible. Additionally, empirical research is needed to grow evidence that care 

relationships without an active research protocol are associated with better quality or 

cheaper care. More achievable objectives involve generating datasets of clinical care in 

ways that are either independent of health provider incentives or that can be adjusted for 

in the dataset, and to distribute these datasets widely to increase the number of 

researchers who have a chance to find problems. A potential solution would be to 

reconsider the manner in which electronic health record (EHR) data are produced. 
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Specifically, EHR vendors, healthcare systems, providers, and other stakeholders would 

need to consider how EHR data might be engineered, from conception, to be more 

suitable for clinical research. This would entail expanding the consideration of EHR data 

to focus not only on its utility for patient care, but also on its utility for subsequent 

clinical research. Clinician-scientist teams and professional EHR specialists have taken 

the initiative to characterize how medical events are most typically captured in EHRs for 

a given condition. The resultant sets are composed of data elements used by clinicians 

to document patient care, and include endpoints that can be derived directly from the 

patient care entries or related EHR data. Furthermore, as an increasing number of 

initiatives turn to the common EHR as a font for research data, it is crucial to assess the 

quality and utility of the EHR-derived data. There is a disparity of tools and a lack of 

incentive to support the creation and curation of aligned real-world studies data, limiting 

the rate of learning about how to reduce social barriers, exemptions, misunderstandings, 

and infrastructure shortfalls that may be inhibiting the most effective, fair, and efficient 

generation and application of clinical evidence. 

3.5. Building a Data Infrastructure 

The challenges are numerous when creating a data-driven environment given the 

complexity and fragmentation of health data. There are many ways to analyze, 

understand, and ameliorate these risks, many of which have thus far received insufficient 

attention. A first step could be to recognize them, and frame the problem of health data 

more holistically and in terms of infrastructure. Effort to build health data infrastructure 

would need to attend to the sharing, integration, and storage of patient data. While this 

figure is illustrative and stylized, it accurately captures the fragmentation of health data 

in the US healthcare system. Health data are generated, collected, and stored by a number 

of different actors. Clinicians generate data about patients by caring for them. They 

collect data by talking to them, examining them, and ordering various tests. The 

interactions of patients with the health care system also generate data (e.g., their name, 

their insurance information, bills for the care they receive). Because each actor is 

responsible for generating, collecting, and storing the data for its own interactions with 

patients, the interactions of any individual patient involve a large number of different 

entities. Moreover, these actors are diverse, ranging from individual hospitals and 

physicians to large technology companies, and they span both the public and private 

sectors, which has led to substantial risks. 

Given the potential benefits of integrated patient data, considerable effort must be 

expended at a systemic level. A simple health data infrastructure would consist of a 

single actor collecting and storing all relevant patient data, from the interaction of 

patients with the health care system including both digital and analog information. 
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However, there are good reasons to think that would be an undesirable model. As 

discussed above, there are substantial risks to fragments of health data. If these data are 

decentralized and held by a number of different actors, then they are inherently 

fragmented between different patients. Moreover, there are good reasons to want health 

data to be distributed across different types of actors. There is value in the health data 

generated and collected by wearable technology companies that would not be possible 

(or at least as straightforward) to generate with respect to the existing health IT systems 

used by clinicians and in healthcare facilities. By contrast, centralized health data 

ameliorate many of these risks – data are comprehensive and easily obtained, creating 

an apparently complete dataset to guide analysis and policy changes. Further, centralized 

health data provide a means of comprehensive evidence about the failure modes, 

causation, and best practices by generating a complete historical record of all 

transactions. 

 

                                     Fig : AI is Transforming HealthCare 
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3.5.1. Data Integration Techniques 

Building an extended, data-driven healthcare ecosystem that can enable doctors to make 

evidence-based and data-supported clinical decisions demands a lot of technical and 

application-level work. First, data from different sources needs to be integrated. For 

structured data such as laboratory results and other observations, existing state-of-the-

art techniques can be used. For unstructured or complex structured data such as 

histopathology images, a combination of promising research techniques can be reused 

and extended to other data types. Furthermore, medical interpretations should be 

produced from the analytical and computational processing of integrated medical data. 

Although interpretation of clinical data has been a part of clinical practice for centuries, 

computer-based biomedical data and clinical interpretation poses a different kind of 

challenge. A combination of well-known black box techniques such as Decision Tree, 

SVM, and Deep Learning neural network together with a rule extraction method allows 

medical professionals to understand complex mathematical relations and dependencies 

behind the machine-learning-based models better. It is believed that “strong” medical 

interpretations are more understandable and thus have higher acceptance in the medical 

community (as opposed to “weak” medical interpretations). Concepts like relative risk 

and odds ratio that are used in statistical analysis of clinical data can be used to explain 

to patients the mathematical results obtained from complex data mining models. Medical 

interpretations of medical data should also bring significant added value in terms of new 

insights and relations extracted from pre-processed digital data which are not found in 

literature because of the complexity and the amount of considered data. A medical 

interpretation is considered as a complete explanation of particular medical data along 

with all dependencies, relations, findings, and insights that can be deduced from it and 

are stated in natural language. To keep the explanations more concise just the most 

important concepts and relations are elaborated, expanding the interpretation overview 

with different sections. A medical professional would be able to decide on further 

diagnostic and treatment procedures based only on these findings. 

3.5.2. Interoperability Standards 

Interoperability is a key requirement to build a data-driven healthcare ecosystem that 

supports the generation of health data in a seamless way and the reuse of the data in 

different healthcare scopes. The growing interest in evidence-based clinical decision-

making (CDM) urges the integration of clinical practice with research. In this context, 

the need for interoperability is even stronger in order to ensure that clinical decisions are 

supported by high-quality evidence originating from the big data generated in routine 

care. 
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A number of research studies are currently driven to the development of computer-based 

decision support mechanisms that help clinicians directly capture patient data for 

research. Although these systems proved to be able to effectively increase the 

recruitment rate, the translation of research protocols in data entry forms is often a non-

trivial task involving the rearrangement of care-specific ontologies and the 

communication with many clinical vendors. For this reason, there is a growing interest 

in the development of standards and connectors that support broader interoperability 

between EHR systems and a larger variety of data capture mechanisms. In order to 

maximise the socio-economic benefits of investment and foster technological research 

in a sensitive domain, there is a great need for ancillary standardisation. Data 

harmonisation is increasing in importance in clinical care, since heterogeneous data are 

to be captured from different clinical data acquisition systems. The problem gets worse 

in a cross-domain scenario, where data need to be interpreted in different ontologies in 

clinical care and research contexts. Interoperability is the ability of making systems and 

organisations work together (effectively and efficiently), the result of a harmonisation 

process among different parts. In the current scenario, data (i.e. their meaning) is 

supposed to be shared among different organisations providing care and conducting 

research. At least syntactic and semantic interoperability are required, respectively 

meaning that data can be exchanged ensuring standard data formats and with a common 

set of concepts. At present, it is recognised that semantic interoperability can be only 

partially achieved since interpretation is driven by personal, local, socio-economic and 

governmental aspects. EHR with different information models and terminologies have 

been developed in different countries. These EHR are deployed in public healthcare 

organisations at very different levels of care and with a strongly variable degree of 

computerisation, lexical resources capability and integration with external organisations. 

3.6. Data Analytics in Healthcare 

Challenges regarding healthcare data analytics are diverse. Many secondary studies 

highlighted problems with missing data, low-quality data, and datasets stored in various 

formats that are not interoperable. Furthermore, some studies raised the concern of 

missing techniques to visualize the outputs of different data analyses. Many of the new 

implementations and increases in data require new computational infrastructure for 

feasible use. Some studies raised ethical concerns about data collection, merging, and 

sharing. Broad consent is a prerequisite, according to Article 9 of the General Data 

Protection Regulation. Data privacy is a multifaceted concept, especially when datasets 

cover multiple countries with different legislations. Many secondary studies called for a 

multidisciplinary collaboration between medical and computing experts and emphasized 

that analytics implementations must align with medical vocabulary and rules. 

Furthermore, data analytics, especially when more complex solutions are in question, 
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operate on a black box principle. That is, it is not obvious how the implementation 

reaches its conclusion. Some secondary studies also pointed out that existing analytics 

solutions implemented in different environments are not portable into other 

environments and may not be fully integrated into actual day-to-day work tasks. 

3.6.1. Descriptive Analytics 

A data-driven healthcare ecosystem can be built to facilitate evidence-based clinical 

decision-making to improve the quality and cost of chronic care. It is critical to collect 

data for risk prediction, longitudinal monitoring, and policy evaluation. Data silos can 

be broken down to integrate heterogeneous sources of healthcare data. Descriptive 

analytics can be applied to mine health data for evidence generation. Predictive analytics 

can be applied to generate evidence-based guidelines for clinical decisions. Machine 

learning or optimization can be leveraged for policy learning to identify the most cost-

effective intervention methods. Insights are generated more quickly through a 

combination of longitudinal monitoring insights and policy evaluation insights. A data-

driven healthcare ecosystem can be built to seamlessly integrate data collection, 

processing, analysis, and decision-making. Once patients are identified through 

registries, billing claims, or primary care records, a team of physicians, dietitians, and 

care managers at a Disease Management Center conducts a comprehensive Needs 

Assessment to identify medical, dietary, and logistic risks. These assessments are based 

on clinical practice guidelines. Then, a Personalized Care Plan is developed for each 

patient based on the risk assessment. Patient behavior is monitored on a monthly basis 

through Remote Monitoring Sensor Networks. A Rapid Response Team is also sent to 

the patient’s household to investigate emergency cases. This system is unique in that it 

incorporates needs assessments and feedback loops, and combines computationally 

intensive simulations and real-time sensor networks. Over time, policy-relevant data is 

gathered, stored in data silos, and used in aggregate form to optimize the overall 

performance of the Disease Management Center. However, datasets are often locked 

away in walled gardens, and are statistically toxic to one another. Even if a hospital 

system digitizes its patient medical records, it does bar anyone from accessing the 

records to analyze them statistically. Data silos are broken down to collect and integrate 

a diverse range of public and non-public healthcare data sources. Patient medical 

records, public health records and datasets concerning non-medical determinants of 

health are integrated. Descriptive analytics is used to mine healthcare data to generate 

testable evidence regarding healthcare outcomes, health delivery systems, and health 

policies.  
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3.6.2. Predictive Analytics 

In an era of data-driven processes, the health-care industry generates a vast amount of 

data across various sectors. This phenomenon is particularly relevant in a clinical 

environment where the primary focus is patient care. As methods and tools for the 

analysis of clinical and operational big data are readily maturing, the gap between the 

potential for medical data insights and the usage in everyday clinical practice by health-

care professionals still persists. The Paper aims to provide an overview of beneficial 

strategies for the development of a data-driven health-care ecosystem, which helps 

bridge the gap between clinical data insights and patient-tailored, evidence-based 

clinical decision-making. These strategies aggregate aspects from interfacing with 

electronic health records, data collection and analysis, current state-of-the-art medical 

data analysis tools and methods, knowledge generation from medical big data, up to the 

development of predictive, data-driven models supporting personalized medicine 

environments. 

Given the complexity and interdisciplinary nature of the health-care domain, the paper 

targets a wide audience, including medical staff, medical information scientists, 

bioinformaticians, data scientists, decision-makers, health-care IT professionals and 

regulation bodies. A bi-directional, mutual learning paradigm between clinical-end users 

and data scientists will facilitate the development of justified, validated and accepted 

clinical decision-support tools. This is highlighted in the clinical end-to-end use-case 

scenario developed in the paper. Broadly covering the steps from a patient’s admittance 

to hospital, data collection and analysis, knowledge generation and patient similarity 

models will assist in the improvement of patient-specific interpretation of medical data 

up to the generation of evidence-based, patient-specific treatment plans. 

3.7. Conclusion 

The rapid digitization of health data offers a unique opportunity to build a robust data-

driven healthcare ecosystem. Clinical decision-making, traditionally guided by expert 

knowledge and the accumulation of personal experience, may now also be informed by 

accumulated knowledge emerging from the digitization of individual medical data and 

the creation of population health databases that surround the patient. This ecosystem 

consists of an integrated data platform that collects personal medical information and 

medical devices, databases that collect the accumulated knowledge and the professional 

experience from the individual medical treatment of each patient and the accumulation 

of medical data of the patient’s population, and a set of data-driven applications that aim 

to provide evidence that supports clinical decision-making. Regulatory and scientific 

policy framework problems should be addressed before this vision is realized. On its 

own, increasing the quantity of data that can be collected about an individual patient, by 
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collecting personal medical data from medical devices and electronic health records, as 

well as combining it with big data analytics, can monitor the resource consumption and 

health outcome of a patient in an unprecedented resolution and dimension. While 

medical doctors are treating a single patient, their decisions are informed by 

considerations that emerge from treating many other individual patients, and the 

accumulation of problems encountered in the treatment of many patients. 

3.7.1. Future Trends 

This section has several facets of future trends that will change various areas of 

electronic health and medical records. With increasing prevalence of digital health data, 

the use of blockchain for secure, transparent and encrypted data transfer will become the 

expectation. Eventually, Electronic Health Records (EHRs) will acquire the ability to 

not only store records of patient visits, but also provide useful diagnostic advice. As this 

transformation takes place, EHRs will be helmed as diagnostic aids by physicians for 

writing prescriptions and recommendations, as seamless tools that alert doctors to 

abnormal health markers and nudges doctors toward further diagnostic tests, as well as 

a resource for exploring prognoses generally provided by the assistant in hundreds of 

types to help clue providers into aspects of patient care that might improve outcomes. 

Large multi-national EHR distributors already building predictive tools into their records 

include Roche–Flatiron. Rapid adoption and transparency in how the various models 

establish their predictions will determine whether music assistants end up ruling the 

healthcare system, or serving as unethical crutches for care providers to manipulate 

patients against best practices. To avoid discrimination, any AI-based clinical decision-

making support will need to be auditable from physician-time and provider-time creation 

of algorithmically-derived recommendations. As the resolution of this conflict unfolds, 

patients or relevant power of attorney will increasingly demand permanent access to 

models fabricated by Machine Learning (ML) to guard against malpractice, essentially 

bounds on when then models were developed and the data they were developed from. 

The timeline from blanket privacy guarantees for models, to patients insisting upon free 

transfer of secondary decision support devices rigged with heightened early-warning 

performance based on models previously acting on their visit activity will be much 

faster. Furthermore, designing the forthcoming generation of electronic health or 

medical records as both intuitive software utilizable by physicians during patient visits 

and also data logging mechanisms for insurance and litigation will be an around-the-

clock task requiring extensive input from multiple entities. 
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