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Chapter 2: Exploring cutting-edge chip 

design architectures built specifically for 

artificial intelligence and machine 

learning applications 

2.1. Introduction to Chip Design for AI 

AI’s most important driver is the Knowledge Explosion resulting from the internet. 

There is an increasing demand for AI with better cognitive functions to assist human 

endeavors, such as scientific discovery and analysis of massive data sets that cannot be 

intuitively understood. There is an urgent need to synthesize AI hardware and algorithms 

to deliver brain-like real-time intelligence. Neuromorphic computers would 

exponentially increase the varieties and the efficiency of AI applications. Brain-like 

devices that power AI algorithms would have a size compressed by several orders while 

simultaneously consuming several orders of magnitude less energy. Advanced synthesis 

tools could be developed to assist scientists generating hypotheses (Krishnamoorthy et 

al., 2023; Miller et al., 2023; Nagar et al., 2024). 

They must be able to learn complex relationships from structured data, continuously 

update in response to new experience, and generalize from this data to “see situations” 

for which they have no previous data. Nascent efforts in biologically plausible AI have 

thrown a spotlight on a much wider range of resources, from non-ideal silicon devices 

at the sub-nanometer scale to large-scale nanotechnology, NEMS-based sensors, 

microfluidics, and ultra-microchips that orchestrate interactions among vast ensemble 

states of matter. However, this makes real-time learning with these devices a nontrivial 

task and implies the need for smarter ways to train, program, and implement such 

algorithms. 

Existing hardware-nearing-algorithms efforts are generally limited to AI chips that are 

variations of an NVIDIA GPU. Limited biophysical restrictions of existing AI chips 
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mean a constrained biophysically inspired AI SoC architecture, such as one based on 

CMOS micro-continuous-time reservoir computing, cannot be readily explored. Digital 

neural chips are the most established AI chip implementations for practical use. They 

can realize the densely connected networks and very high TP with about 250 pJ energy 

cost per MAC ops. Compared with this, it is difficult and appears impossible to 

implement RNN or spiking neural networks (SNN)-through VLSI circuits (Patra, 2024; 

Rane et al., 2024; Wang et al., 2024). 

 

Fig 2.1: Cutting-Edge Chip Design Architectures for AI and Machine Learning 

Applications. 

2.1.1. Background and Significance 

Dramatic changes in chip design and technology are required to fulfill the rapid demand 

for high-performance chips for AI applications. These chips must provide high 

performance, high performance/watt, low latency, and low form factor to implement and 

execute complex machine learning algorithms locally on the chip and in real time. 

However, the complexity and 3D integration need new chip design approaches. A 

genuine AI-based design, optimization, and verification of these chips needs to be 

developed to explore these enormous design spaces, flows, and algorithms that 

traditional and scripted tools cannot handle. 50+ years of development and billions of 

dollars have gone into making these tools, and they work admirably and cope with 
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standard optimization problems in depth and width to design various chips. But there 

still are some challenges in the architecture, flow, and algorithm level that AI can tackle 

well. 

The VLSI domain is full of opportunities for applying AI/ML ideas and algorithms. The 

high-level specification of the design is made in abstraction/implementation languages 

or in textual languages. This specification is transformed into a circuit design, involving 

numerous operations on the various design parameters, design representations, and 

design types. One of the several components is a synthesis tool that transforms the design 

specification from one representation/level to another one. Design representation 

includes RTL, gates/middle-end, and layout. The transformation could be high-level 

synthesis that transforms from a behavioral to an RTL representation. Or it could be a 

logic/design synthesis tool that takes an RTL representation and performs a wide variety 

of operations to transform the RTL code into a gate level netlist. 

Real-life designs are very complex with 10Ms of lines of code. The design space for 

these algorithms flows and tools is massive with > 1Bn degrees of freedom. Once 

represented in a standardized format, these design spaces would be > 10^30 states. In 

the past decade, there have been significant advances in some of the above components 

and belief that by the end of this decade, a full/chip SOC design can be done in a few 

minutes—massive opportunities for developments either by academia, industries for a 

wider commercial availability and exposure in a myriad of very useful chip designs.  

2.2. Historical Overview of Chip Design 

Artificial Intelligence (AI) is one of the core challenges of the 21st century. There are 

plans of imitating the human brain through Artificial General Intelligence (AGI). At 

present, the following functionalities of the human brain are highly desired: perceptive, 

planning, reasoning, decision making, and understanding. The ability to understand 

knowledge is one of the key characteristics that distinguishes the human brain from 

today’s AI systems. The understanding of chip design development is still in its infancy. 

The present status and trends of three of the many required chip designs are presented – 

perception, decision making, and reasoning/interpretation. Three specific interesting 

implementations of chip designs are presented as illustrations. Much progress has been 

made on emulating the way how the brain perceives information through hardware and 

algorithm developments, building on biological knowledge of the visual processing 

pathway from retina to the human brain. Current imitated functionality includes edge 

detection, brightness detection, motion detection, character recognition, proactive event 

detection, face detection, and facial recognition. Hardware developments can be lumped 

into two categories: silicon-based and non-silicon-based. The silicon-based 

implementations tend to be fully digital or hybrid (parts are digital and parts are analog). 
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Fully digitized chips include various digital neural chips. Most of the present non-silicon 

chips are analog and digital kinds with signal processing based on physical properties. 

Digital neuromorphic chip design implementation allows scaling for very large networks 

with tiny synaptic weights and a vast diversity of models. The integration within widely 

accessible and energy-efficient neuromorphic hardware platforms helps understanding 

the brain by both exploratory research and computationally sophisticated learning on 

large data sets is crucial.The research primarily focuses on the implementation of AI/ML 

algorithms in generating graph neural networks, netlist generation, performer-based 

synthesis, accuracy-aware placement, clustering with a graph neural network, and end-

to-end analog design using multi-stage transformers. Initial perspectives on directions 

for designing integrated circuits tailored to the unique requirements of AI applications, 

including rising areas such as logic-in-memory and neuromorphic computing, are 

offered. AI/ML techniques operating directly on ASIC netlist files and enhancing design 

under consideration expands the opportunities for synergy between itself and electronic 

design automation (EDA). 

2.2.1. Research design 

To provide a comprehensive overview of candidate architectures for AI and machine 

learning (ML), existing research in AI/ML algorithms and applications in VLSI design 

and technology is reviewed. The discussion highlights how AI/ML techniques can 

address challenges in various VLSI design and technology domains such as architecture, 

placement, routing, manufacturing, and reliability. In addition to the algorithms 

themselves, design flow and tool support are also reviewed. Furthermore, an overview 

of research in deep learning (DL) algorithms, architectures, and applications focused on 

chip design is provided. A higher-level overview of the chip design design-space 

exploration space and a systematic analysis of AI and DL for chip design architectures 

is also analyzed. 

Discussion is given about key applications of hardware accelerators for AI. Preliminary 

perspectives on the demand for and global-state-of-the-art of AI chip architecture, 

implementation, and design are provided based on the three important application fields 

of AI—vision, language, and science. The current design methods of AI chips mainly 

follow one of the two paradigms: designing holistic architectures with high-level 

comprehensive design from the scratch or applying required modifications to the 

existing architectures directly. To bridge these two paradigms with the development of 

advanced DL algorithms, the process of architecture generation via multi-stage auto-ML 

is proposed. 
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2.3. Key Components of AI Chip Architectures 

With the recent explosion in AI and ML applications, the need for real-time inference 

and learning puts existing architecture for computing under pressure. While edge devices 

perform inference on pre-trained models, the training of those models is latency and 

power expensive processes done on expensive cloud servers. On existing chip designs, 

networks are run as static calculations. An entirely different chip architecture is required 

for computing the updates to the weights of the networks, as opposed to running them. 

Said chip architecture must therefore have a real-time response to inputs that presides 

over a change in the output, with this sensitivity to recent inputs potentially being 

implemented with emerging devices using non-equilibrium steady states. The computing 

and transmitting units of the trained models would also need reconvagation, since the 

gradients that update weights require completely different calculations than what was 

needed to evaluate the pre-trained models. Digital neural chips are the most established 

AI chip implementations for practical use. Input spikes are discretized down into 1s and 

0s using an ADC, and then grouped as words before transfer to the neuron array. The 

synaptic nodes become purely digital when the ‘multiply and accumulate’ (MAC) 

operation is implemented using digital logic. In other words, all inputs and weights 

become either 1 or 0, and the neurons only fire if the total spike for the time in crosses a 

threshold. Only about 10% of area in the chip is occupied by neurons, while the rest is 

occupied by memory units and control circuits. The developed chip design has good 

propagation latency, as the dispersed circuitry minimizes redundant paths that delay 

same-value bits. Power dense neurons are desirable, due to their combination of non-

linear computing and good scaling behaviour at large counts. Existing implementations, 

however, have an inherent trade-off between precision and latency. The input spikes 

need to be discretized first by an ADC before the neural calculations are run. Another 

emerging system consists of carbon nanotubes (CNT) along with thin film transistors 

(TFT) to build synapses for the neurons to communicate read forward in time. This 

approach shows the possibility to have high package densities that could be used to scale 

up the neural network implementations. SNAP shows sparsity at edge classification tasks 

where most weights are set to zero, but significant sparsity is also found at the inputs. 

This may lead to a higher need for extra circuits to prevent artefacts in the learned 

weights. Basing neurons on published hardware demonstrators would allow the use of 

exponentially stochastic states and good scaling thereof, but on-chip learning wouldn’t 

be plausible and initial networking would be characteristic of random waffle rather than 

coherent. Another proposed option is the use of semiconducting nanowires that 

demonstrate non-volatile memory (NVM) properties. These devices can be configured 

to have multiple resistance states that would allow them to act as low-power memristors 

within the reservoir. The average voltage output of the aggregated photon spike inputs 

caused variations in the mean resistance of the five nanowires (from 2.4 kΩ to 3.5 kΩ) 

leading to a basis change over time. The nanowires also saturate spikes in a linear fashion 
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while preserving high frequency events, enabling them to perform filtering. After all, 

another post-CMOS strategy is the use of quantum computing. Researchers started 

developing Noisy Intermediate Scale Quantum (NISQ) chips that aim to have 50-100 

qubits. Though some implementations go with fewer high-quality qubits, which causes 

significant reduction of connectivity that degrades performance, the chip connectivity 

inherits critical importance for potential performance benchmarks. The fact that quantum 

chips can run several operations in parallel inspires the design for quantum neural 

networks. The training of a quantum neural network involves re-evaluating the output’s 

amplitudes, for example, using persistent evolving quantum computation. This method 

uses a 3D Ising model with strategically-placed external fields which, when tuned 

properly, can drive the state vector to the target state. Alternatively, the training can also 

be performed with gradient-free methods that exploit suitable structures of the objective 

landscape. Classical simulation plays a key role in understanding which chemistry ‘hard’ 

problems would be suitable for precursory demonstrations. Recent progress here relies 

on using the quantum phase estimation algorithm to extract the relevant eigenvalues for 

standard model Hamiltonians on state vector simulators. 

 

Fig 3.2: Components of AI Chip Architectures 

2.3.1. Processing Units 

Data tiling for hybrids reduces memory bandwidth to weights when the reuse of 

continuous threads is low and is still effective when using wide chips to balance on-chip 

memory on hydrostatic telephones. Mixed-radix in-memory high-radix algorithms that 

serve workloads are introduced for v-chip task indices to use an I/O port hierarchy with 

scheduling to required amount of pitching by 40 tc. 
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Hybrid digits of nodes in a graph form zero-bandwidth matrices of densely-connected 

h-pools that do MACS from four time bins. R-ing counts, derangements, digits of prod-

matrices for the transistors, and filters are precomputed for FPGA offloads of hybrid 

portions, sparse nodes offset, and combinational acceptance. Sample wet taps whenever 

output indications are high to track acquisition on non-parallel wording pools. 

New chips attending tommies of high-density solid state memories with several addrs 

read out portably hits the ceiling of conversion time on counter depth since its product-

band is too dispersed. Envelopes modulate wide chirps to exalt sparsity and oscillation 

fines to attain unity coverage with proper oversampling. Non-linear drop and sampling 

levies on electrical charred diblocks for complete dissolution throw lose-in sorting into 

surface scan brick-tiles with readout dequeue transactions by limited cell adds. Detector 

evolution employing diagnose three levels of defectivities on point particle-snow 

instability. 

Smart Norm Calculator Coefficient Condition surveys 2-D tile readout chain delays on 

multi-Fr placeholder buffer casing, relevance capacitances as charges broadcast from 

millivolt islands controlling 50% error-rates. Set-in default params link chunk-tasks of 

operating conditions discarded in tables for involved CDDs and burst tiling-ops. Edgely 

traded-off embedded address pools point-generated guide fields following trajectory 

registration glyph board table with arithmetic setting rules implicistrict free of sum cells. 

2.3.2. Memory Architectures 

Industry 4.0 applications require the implementation of artificial intelligence (AI), 

machine learning (ML), and deep learning on small power-efficient devices. The training 

and inference of deep neural networks (DNNs) entail huge computations and data 

movements, causing memory-hungry architectures that consume high power and time. 

The von Neumann architecture based on separate processing and memory units suffers 

from the memory wall problem and is unsuitable to achieve higher throughput. In-

memory architecture performs computations inside the memory core itself, improving 

power efficiency and throughput. Therefore, it is essential to make memories brain-

inspired by combining the advantages of both memory technology and digital circuit 

design for an on-chip, power-efficient, energy-efficient architecture for convolutional 

neural networks (CNNs). The proposed hybrid architecture and design achieve online 

energy-efficient training. Additionally, problems of slow learning, inefficiency, and 

restricted bandwidth are examined with potential solutions. 

Industrial solutions have demonstrated that three transistors (3T) can be utilized to 

provide roughly 2× greater bit-cell density than SRAM. Deep sub-threshold (DS) SRAM 

may also be explored, which has been demonstrated to be suitable for utilizing 8T or 7T 
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nodes, and supports pack. The 2T and 3T eDRAM gain cells may therefore be used to 

capably reduce the on-chip SRAM area without affecting the fabrication process [3]. 

Such gain cells reduce the on-chip SRAM area, while ceasing to change the fabrication 

technology. The eDRAM gain cell provides both area and energy advantages compared 

to on-chip SRAM. The eDRAM gain cell's retention time is often substantially lower 

than SRAM's. As a result, there is significant refresh power consumption; therefore, the 

power advantages of the eDRAM gain cells versus on-chip SRAM are mitigated. Hence, 

the eDRAM gain cells are still a feasible consideration in AI chips. In deep learning 

applications, INT8 has been recognized as the optimal numerical representation. 

Generally, in an INT8 representation, there are highly represented zero bits, while bits 

in the Neighborhood of 128 or -128 are comparatively less represented.  

2.4. Types of AI Chips 

Presently AI covers a wide variety of techniques. AI can be classified based on the 

architecture of the models that are used for reasoning. Three major classes of chip types 

are discussed here: 4th Paradigm AI Chips, Analog/Neuromorphic AI Chips, and Other 

Chip types. Further, an evaluation of every main Chip type for three use case scenarios 

Intelligent Assistant Agent, Off-Line Expert Systems, and Autonomous Drone systems 

is given along with their merits and demerits. 

Growing interest in AI has induced much research into new AI Hardware (AI chips). 

Some AI chips are intended to make machines better/faster than current chips; others 

point to new styles of machine reasoning and learning. There is target application space 

for new chip architectures. Finding ASIC designs that are profoundly different from 

NVidia’s clocked GPU chips. Yet much interesting archival work will be how problems 

can be used to outline qualitative differences in chip implementations/architectures. 

Presently AI covers a wide variety of techniques for multiple applications. Attention is 

confined to those techniques that are somewhat more complex than traditional 

association/regression methods and which are trained from multivariate data sets of 

cautious size (number of examples vs. number of parameters; type of model complexity 

vs. degree of non-linearity). 

2.4.1. GPUs 

Graphics Processing Units (GPUs) were once used solely for graphical computation 

tasks but with the increase in the use of machine learning applications, the use of GPUs 

for general purpose computing has increased. While GPUs themselves have been shown 

to speedup the training time of large neural networks (NNs) by many folds, multiple 

GPU systems have certain limitations such as high cost, whereas simpler architecture 
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such as FPGAs can be used to achieve similar throughput as multiple GPU systems. 

These simpler architecture based systems also provide the benefit of lower power 

consumption. However, implementing a new algorithm onto an FPGA based system 

requires knowledge of hardware and special design tools. As a result, there are very few 

open-source implementations of modern CNNs that run on FPGA based systems. The 

other end of the spectrum is software based simulation of neural networks which support 

better tuning of the model, but is orders of magnitude slower than hardware 

implementations as they do not exploit the parallelism and compute architecture of 

modern hardware. Recent advances in GPU technology, for example NVIDIA’s CUDA 

programming model, have opened a new era of parallel computing, lifting the barriers 

of parallel programming. Graphics processing units (GPUs) have become popular for 

purposes other than graphics computation. Developing integrated circuits (ICs) for 

specific applications, called application specific integrated circuits (ASICs), can provide 

very high throughput/ performance levels in either uni- or multiprocessor fashion. 

Nevertheless, ASIC based computing systems cannot be programmed after fabrication. 

This is a substantial disadvantage because advances in hardware and algorithms after 

fabrication may require new designs or would be implemented in a less efficient manner. 

2.4.2. TPUs 

Tensor Processing Units (TPUs) are devices specialized in accelerating machine learning 

workloads. The essential part of every TPU is the Matrix Multiply Unit (MXU module), 

a sideways chip that runs systolic matrix multiplications using processing elements 

(PEs). These chips have high computational density, very good memory bandwidth and 

tolerance to long data paths, which makes them very efficient for working with high 

dimensional tensors. The TPU v1 chip has a technology node of 28 nm, and integrated 

over 1.8 trillion transistors. The TPU v2, v3 and v4 chips consist of several TPU v1 chips 

integrated together, with technology scaling down to 16 nm, and with over 1000 Tensor 

Cores in every chip. Media requires search, recommendation, moderation and content 

label/brand verification pipelines in Artificial Intelligence (AI) and ML solutions. 

Historically, video/audio/image/multimedia providers built their own chips and did 

model deployment by scripting. All these processes were rather slow, difficult to keep 

up with accuracy improvement, area/power-cost-ineffective and less scalable. Cambodia 

consists of media sourcing information extraction and ML model serving on cloud. 

Media data is stored both on GCP and on on-premise data centers or co-location 

providers. To extract media information from GCP storage, retraining based on very 

large schedules of audio/video/images on TPUs has been optimized for over 10 billion 

classification and 1000 classification types. Latency measurements, KPIs, 

uploading/download costs for both browsed media and just wide search/wideframe 

extraction all feed into a recommendation list generator who are trained and fine-tuned 
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for large production competitiveness. The offline bi-model serves FY to broadly label 

content fingerprints to 3000 brands, meanwhile many attempts for diversified 

considerations are on. This paper explores how TPUs can be utilized in a cloud based 

architecture to implement AI and ML algorithms. It focuses on both the strengths and 

weaknesses of TPUs. A practical application for TPUs is built. Installation, Architecture, 

Sample Applications, and specifically an AI application using TPUs are also discussed 

and implemented. Finally, a summary and guidelines for implementation of AI and ML 

using TPUs are presented. 

2.5. Design Considerations for AI Chips 

The answer to how to overcome the hurdles for massively parallel on-chip 

implementations of sensors, memory, and CNNs at the era of block nanotechnology 

cannot be straightforward unless a combined effort from people of various backgrounds 

with more or less knowledge of all aspects of the design is put on, from material 

development to circuit implementation, from architectural design to algorithm modeling. 

This bargain effort must start from the early stage of the design, where requirements 

regarding performance, cost, and mass production yield launching a concept that resides 

in the feasible area of device physics, reliability, scaling, and fabrication. It is also a fun 

endeavor due to the complex interaction between the newly emerging materials, devices, 

circuits, architectures, and algorithms of learning machines. Unlike path following chip 

designers for previously well-defined working points or architectures, designers in this 

emerging domain must be innovative and brave enough in exploring designs at the 

frontier of approximation and unconventional technologies. It is more like wandering in 

a vast land of unknown task space where only a small part has been cleared or already 

well understood. Thus, knocks or sprains are usual at the beginning, a deep 

understanding of the design will build up gradually, broken pieces of knowledge and 

challenges along the road will start to link and a feasible path will emerge. 

Biologically inspired machines aim at pushing the limits of real-time inference on chip 

and energy efficiency in where parallel architectures and massively parallel devices are 

to be employed. It is vital for CNNs as it is widely believed that distributed computations 

for matrix multiplications can easily be parallelized using parallel sensors, storage, and 

computation devices. Different from the analog way of performing MVM used by prior 

work, in-cylinder neuron architectures with a more compact chip design follow a digital 

way of executing the arithmetic of shift-and-add. With this chip design several 

advantages are realized: a smaller device count and more compact chip size; a more 

scalable chip design by contact routing architectures in an embedded way allowing larger 

chip size; a more reliable dual use of W# for the arithmetic of both MVM and activation 

function. Nonetheless, a tradeoff exists in the efficiency of using area and energy versus 
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time. This tradeoff is similar across device types and design methods where 

opportunities for improvement and directions of future works are discussed as well. 

 

Fig : AI Chip Architectures Race To The Edge 

2.5.1. Energy Efficiency 

Energy efficiency at the level of a single transistor due to scaling, both in terms of 

increasing transition voltage (34%) and decreasing transition capacitance (18%), has 

kept the energy consumed per switch roughly constant at 0.4 fJ. This is a different 

circumstance from the dimensioning of several physical parameters, such as the number 

of gates driven. There is an increasing complexity. This increase in expense will continue 

to affect power and performance, both in terms of energy efficiency and wall power. 

Energy efficiency at the bit-level does not map directly to energy efficiency at the 

instruction level. Only about 20% of the energy is used by the critical path. So the energy 

barrier is ~5× larger than expected (4.73 fJ). However, this factor is closer to two orders 

of magnitude when all the extra dynamically switching nodes are included, including the 

clock tree and interconnects, which also consume a significant fraction of instruction 

energy. It is concluded that significant local energy efficiency increases require new 

logic and architectures. 

In addition, with increasing workloads and growing demand for machine learning at the 

edge, Academia and Industries specialize in edge devices that can perform diverse 
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computing tasks and large-scale ML, while keeping power usage affordable and energy 

efficiency large. Similar to ML accelerators created for data centers, edge ML processors 

are transformed from traditional computing architectures to siloed designs specialized 

for a single task. Such strategy allows for power and latency optimizations, but creates 

limitations when new workloads are introduced. Solutions can be applied to avoid start-

from-scratch problems for new applications, yet new task-specific processors must be 

optimized again from architecture to RTL design in a labor-intensive process that 

requires expertise. An alternative goes to tinier RISC-V cores that are more power-

budget-friendly and naturally enabled for a wide range of workloads. However, such 

designs bring bigger challenges in energy efficiency and performance issues under the 

high-performance architecture style and limit their capability of keeping long latency 

tasks from increasing energy bottlenecks. Integrating customizable hardware 

accelerators unused for most of the benchmarking tasks, with no extra cost on the macro 

floorplan, can effectively improve the performance and energy efficiency of tiny RISC-

V cores. Such a flexible architecture equipped with hybrid reconfigurability is paved for 

edge applications where ML neural networks and compression techniques are adopted 

for various workloads. 

2.5.2. Scalability 

As machine learning (ML) workloads evolve towards larger models and datasets, the 

parallel structure of AI and ML applications reveals a resilient elastic-scalability gap, 

providing ongoing gains in efficiency and performance. Training, refinement, fine-

tuning, and inference phases showcase opportunities for adding compute through 

pipeline- or model-parallel structures and architectural innovations. Large model 

training efforts, specialized subgraph parameterization for efficient inference, and 

offloading can expand workloads across such systems. Software frameworks will need 

to address the underlying computer architecture to distribute workloads across many 

more architectures than previously feasible. It may be necessary to rethink data 

transformations and other low-level system functions to enable better performance on 

such designs. 

Model sizes are expected to increase significantly in the near future. Large Language 

Models (LLMs) have led to rigorous system evaluation of single models that are 530 

billion and 175 billion parameters and 65 billion and 30 billion parameters, respectively. 

Across systems, flexibility will be required to ensure each processor is working to its 

strengths. But AI and ML data processor architecture design must fundamentally rethink 

key aspects of the processing engine and how it is distributed across the hardware fabric. 

Most of the computational energy, bandwidth, and latency in AI and modeling pipelines 

are taken today by transfers between processors, accelerators, and memory. These trends 
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can create opportunities to redesign processors with massively parallel structures 

optimized for low-load, low-control, low-word-width, low-complexity, high-yield, 

extremely high-frequency architectures, while ever-changing workloads can be 

accommodated through changes in the assignment of behavior to heterogeneous 

computing clusters.  

2.6. Emerging Trends in Chip Design 

Artificial Neural Networks (ANNs) were inspired by biological neural networks and are 

known as biological neural networks or artificial neural networks (ANNs). A biological 

neural network consists of neurons. The intention was to build models that could learn a 

non-linear mapping such as an ’image to image’ transformation. Machine learning is a 

discipline that uses algorithms to uncover hidden patterns in data, which is often of high 

volume and high complexity. The output of a machine learning algorithm may take many 

forms, such as classification, uniform sampling of the input space, or the discovery of 

relationships in the data. The research work had two broad foci: (a) The training and 

design of innovative machine learning algorithms (b) The design and development of 

low-cost and efficient hardware accelerators for GPGPU/FPGA/ASIC prototyping of 

AI-hardware. Several silicon chip companies have jumped aboard the artificial intel 

dream train. Nvidia has taken the lead, introducing a family of chip kits known as GPUs, 

which implement a standard programming interface called CUDA, where several GPUs 

can be networked together to create a supercomputer, and there is an explosion of growth 

in software and applications. Google is also in the fray, having designed and 

implemented their own chips called TPUs. IBM is also in the race to create their own 

neuromorphic chips. Amazon has pushed deep learning to the Cloud to allow the 

processing of terabyte data sets over large fleets of GPU cards, resulting in the rapid 

emergence of companies offering Cloud AI services. Quanta Industries is also readying 

a new Cloud Quantum annealing platform. There is also the emerging area of quantum 

neuromorphic hardware devoted to persistent storage of qubits in ground-state low-

energy traps. Companies like Rigetti & Co have produced ‘chiplet’ qubit devices, which 

communicate over an optical waveguide via microwave photons, creating a 

‘teleportation’ effect. IBM and Google have both built superconductive gate/coil arrays 

on silicon wafers. Application spaces such as deep learning, GANs, and probabilistic 

Boltzmann machines can take advantage of these new hardware architectures. 

Translation between deeply-layered algorithmic networks and their BNN 

implementations may be aided by cutting-edge tools still under development. 
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2.6.1. Neuromorphic Computing 

Recent developments on the realization of high-density, low-power, energy-efficient 

neuromorphic hardware are described, and key concepts important for their design, 

performance, and applications are discussed. While machine learning algorithms based 

on deep neural networks (DNNs) have demonstrated human-like or even super-human 

performance in tasks ranging from image recognition, video search, and game playing 

to weather forecasting and protein folding, these achievements have largely been made 

in cloud-based computing systems. A significant gap exists between the energy and 

efficiency of the computational systems currently implementing these algorithms 

compared to the energy efficiency of the human brain. Very few of these algorithms run 

on dedicated hardware such as digital or mixed-signal application-specific integrated 

circuits (ASICs) designed specifically for machine learning acceleration. Nevertheless, 

major players in the semiconductor industry are investing heavily in the development of 

such dedicated hardware. Nevertheless, as Moore's law scaling is coming to an end, the 

performance and power efficiency gains from technology scaling of conventional 

approaches are diminishing. There are significant research efforts worldwide in 

developing a different paradigm of computing for AI applications inspired by biological 

principles. Spiking neural networks (SNNs), the third generation of artificial neural 

networks (ANNs), leverage the time-based information encoding and processing aspects 

of the brain. Neuromorphic computing platforms aim to efficiently emulate SNNs by 

distributing computation and memory among a large number of simple computation 

units (CUs), the neurons, passing information via asynchronous spikes to a large number 

of others through synapses. The event-driven characteristics of SNNs enable efficient 

computing architectures with collocated memory and processing units, increased 

parallelism, and drastically reduced energy budgets. With close collaboration between 

neuroscience and engineering, such neuromorphic architectures have been demonstrated 

in various neuromorphic implementations based on different circuit technologies, such 

as CMOS and MEMS. Moreover, steady breakthroughs in nanoscale memristive devices 

compatible with CMOS technology have enabled substantial improvements in area and 

energy efficiency of the mixed digital-analog implementations of the most critical 

building blocks, synapse and spiking neuron, in both CMOS and hybrid 

CMOS/memristive neuromorphic processors platform. A high-level description of the 

design objectives and approaches currently being pursued for building energy efficient 

neuromorphic computing platforms are provided. Neuromorphic engineering combines 

the architectural and computational principles of systems neuroscience with 

semiconductor electronics to build efficient devices that mimic the synaptic and neural 

machinery of the brain. The brain operates with extraordinary efficiency, consuming 

below 20 W for a few hundred million neurons and few tens of trillions of synapses. In 

contrast, electronic devices performing equivalent tasks consume on the order of 

hundreds of megawatts. Recent work demonstrates in real, large-scale applications that 
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the neuromorphic approach promises low energy consumption, comparable to that of the 

nervous system. The neuromorphic principle has been extensively explored but 

restricted to simple circuits and specialized functions. A recent technology developed by 

IBM can realize scalable circuits that operate as classifiers of complex stimuli, emulating 

on-chip up to 256 k of neurons and 64M of synapses. The energy consumption of the 

IBM chip is typically below 1 W, lower than that of conventional digital machines when 

implementing classifiers with comparable performance. For a similar energy 

consumption, the spike-based dynamics display a trade-off between integration time and 

accuracy. Fast, approximate classifications of still a high accuracy cost lower energy. 

Alternatively, the need for more accurate classifications leads to a sharp increase of the 

energy costs. In particular, this work proves that the neuromorphic approach can be 

efficiently used in real-world applications and that it has significant advantages over 

conventional digital devices when energy consumption is considered. 

2.6.2. Quantum Computing 

Quantum Computing the end of the decade, the quantum computing hardware landscape 

will include commercially usable quantum computing systems that process millions of 

qubits through innovative qubit architecture designs like superconducting qubits, trapped 

ions, and photonics. Algorithms that surpass the best classical computational approaches 

available today will run on these systems to provide revolutionary capabilities in many 

fields. Quantum deep learning, the combination of quantum computing and neural 

networks, will be a major application area in quantum computing. This algorithmic 

paradigm would reform the machine learning landscape utilized in many AI applications 

due to its potential capability for significant speedup and performance accuracy. The 

time has come for the field of quantum deep learning to begin its commercialization 

phase. Significant advances in quantum AI hardware have occurred. These efforts 

include building and training quantum neural networks using photonic activity 

recognition, simulating molecules with quantum variational quantum eigensolvers based 

on superconducting qubit chips, and understanding the dynamics of many-body quantum 

circuits with trapped-ion quantum simulators. A next milestone of the present research 

activity is to demonstrate executable quantum deep learning as AI-powered quantum 

applications on these nascent quantum processors. Quantum computing and AI are 

complex subjects and consist of specific intricate terminologies. Central terminology in 

quantum computing mainly consists of the mention of physics, mathematics, and 

engineering formalism like qubits, logic gates, circuit topologies, Hamiltonians, 

elementary operations, and so on. In contrast, AI concentrates its terminology on 

advancements in mathematics like probability theory and complex analysis, 

complemented with computer programming languages and computing architecture 

design. Oftentimes the academic field expertise of a quantum scientist and AI scientist 
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do not intermix with each other. This mainly is due to substantial domain knowledge 

specificity, intuitive difficulty in learning complex terminologies in a foreign field, and 

a paucity of a unifying common high-level terminology. Though many reviews have 

been written addressing these two advancements in discrete sectors, an integrated and 

complete understanding of the interface between quantum computing and AI has yet to 

be addressed. A deep and systematic study elucidating how quantum computing can 

considerably accelerate the performance of AI is conducted. The essence of each 

terminology in quantum computing and AI is introduced. Also, a comprehensive 

investigation on how quantum computing could enhance and elevate AI performing in a 

better manner is presented. All topics in quantum deep learning are organized by a 

coherent framework of quantum AI computation systems comprising five layered 

systems in which quantum computing is the core accelerator while AI provides specific 

neural network architectures to be quantumized. 

2.7. Conclusion 

As AI and ML boom in various fields, ranging from healthcare to road safety, to 

autonomous automobiles, consumer electronics, etc., complexity of functions demanded 

from chips for implementation is gradually rising. Simultaneously, constraints on the 

performance of chips are becoming more stringent due to thermal and power dissipation 

restrictions. These applications often require specialized hardware for massive data 

throughput and lower power, which necessitates the design of hugely parallel VLSI 

systems. This paper primarily focuses on architectures for the design of parallel 

processors or accelerator chips that are dedicated for AI/ML as well as algorithmics to 

exploit them. 

GPUs are now the most widely used for training due to their ability to hide memory 

latency with data parallelism as they often contain a more considerable number of cores 

than CPUs. CAM-based or Multi-Level cell based chips can be used for the weight 

memory in tens of PB/s bandwidth range. Digital hardware had to be redesigned when a 

flooded amount of effort is required to re-estimate modified or new SP, which wastes 

time and resources. Hence, latest innovations in the field of AI/ML like AGI and 

unsupervised learning will be briefly discussed, including their convergence, neural 

network architecture, massive parallelism, and adaptation of weights. 

Beyond processor chip design itself, it will be speculated and discussed that the inclusion 

of adaptive or Heuristic AI/ML on on-chip or off-chip may enormously enhance further 

performance in chip design, ranging from hardware estimators through redesigning of 

cells, and synthesizing SP to neural synthesis and layout etc. Since the one-dimensional 

Hamming network and multidimensional Hopfield network came up, enhancing 

performance in general purpose chips is more suited than problem-specific because of 
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much finer tuning connections. AI increment for SoC design has sought to leverage the 

inherent serial nature of many VLSI designs for predictive performance estimation. 

These AI/ML techniques have made the electric era more graceful but may leave the 

semiconductor era in a dilemma. 

2.7.1. Future Trends 

Intensive modeling of increasing training set sizes consistently improves the model's 

ability to generalize even in this setup. A mid-point analysis with a timeless, high 

capacity network structure makes the observation generically clear that when only the 

weights are changed, every random synaptic weight state is related via changeable 

neuron activity to a unique equivalent state to any synaptic weight state before the 

adaptation commenced. Since all these related states accurately represent the complete 

input, only a tiny portion of the parameters has to be changed while adding new input 

features. Thus as maximum trainability, a higher comprehension category yet unknown 

for the Network is sought. Such clear generalization quality or matching capacity and 

efficiency would oppose, on the contrary, finding a new notion of faithfulness with 

which overconfidence despite unknowable predictions is to be generated. This is 

contrary to Nyström-type non-universal sampling for the state needing to be modeled. 

A sub-linear, circumpolar influence component of the nearest prior state however seems 

favored for inference. Sub-linear influence also provides the mechanism for 

approximating vast function classes. Non-universally, size matters in matching capacity 

according to effective aperture regards p and therefore additive quality must scale 

contrary to behavior near a)). All methods fall behind strictly sub-linear synaptic weight 

change allowance, e.g. respectively doubly-exponential, less unequally weighting 

hypercubes. In recent years, there has been an increased interest to explore AI algorithms 

for VLSI design and technology opportunities, challenges and prospects. Most related 

work has been reviewed in a recent survey. The problems faced in traditional VLSI 

design and technology and the advantages of AI/ML and their applications in VLSI 

design and technology have been discussed. Medical applications of AI in VLSI has 

been a recent research focus and the need to explicitly design AI chips for medical use 

has been emphasized. Chances for AI chips to open up new applications in a variety of 

domains in presence of increasing applications of AI/ML have been indicated. 
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