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Chapter 3: Leveraging data engineering 

principles to streamline semiconductor 

research and development pipelines 

3.1. Introduction 

The Research and Development (R&D) of semiconductor technologies is a multibillion-

dollar effort for the worldwide semiconductor industry. To keep track of the rapid 

advance in semiconductor technology and enhance productivity, there is a need to 

streamline semiconductor research R&D pipelines without compromising research 

fidelity and flexibility. Existing Data Engineering principles in handling datasets 

encompassing scientific data provenance and manuscript rewrite pipeline are employed 

to streamline semiconductor R&D pipelines. A semantic provenance data model, 

structured data integration pipelines, and distributed workflows are demonstrated and 

discussed with respect to three relevant semiconductor R&D tasks: site-specific ion 

implantation for high-performance embedded non-volatile memory, atomic layer doped 

gate technology for sub-5 nm node FinFETs, and pitch-scaled extreme ultraviolet 

lithography implementation for 0.5 nm node logic technologies. The results show the 

potential of Data Engineering principles for semiconductor data management and 

research productivity enhancement by addressing the unique needs and preferences of 

semiconductor R&D. 

Research and Development (R&D) is the foundation of advances in semiconductor 

technology, which drives computer and smartphone performance improvements and 

low-cost ubiquitous electronics and has wide implications for other fields such as 

healthcare and information technology. Semiconductor technologies generally advance 

on the order of 2–3 years, involving multibillion-dollar investments in worldwide efforts 

by semiconductor and equipment manufacturers, fabrication plants, and research 

institutions. During this extended time, new semiconductor devices typically comprise a 
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handful of new processing technologies and precise control of many device structures, 

doping, and chemical composition parameters. R&D is the exercise of empirically 

exploring, implementing, optimizing, and demonstrating new technologies step by step, 

often with little prior knowledge of success. The general requirement for semiconductor 

technologies is that they be manufacturable, which implies extensive investigation of 

conveying, mass production, contamination, yield, and material transition issues (Begum 

& Chowdary, 2024; Ketelaars, n.d.; Raghunathan et al., 2024). 

The semiconductor industry is faced with an impending crisis at its 5 nm technology 

node. There is a compelling need to keep dedicated R&D in wafer-scale fabrication 

without large upfront investments in factories, chemicals, and process equipment, or 

exposing trade secrets. Currently, R&D typically relies on legacy solutions like 

spreadsheets and proprietary solutions from equipment vendors, with custom database-

derived solutions playing a minor role. Such solutions are hardwired to semiconductors 

and result in data silos. There is a need for a general-purpose solution that can be 

implemented within a year and is easily adaptable to many related tasks beyond 

semiconductors (Xu et al., 2023; Schiller & Larochelle, 2024; Schilling-Wilhelmi et al., 

2024). 

 

Fig 3.1: Data Engineer Camp 

3.1.1. Background and Significance 

There has been an incredible amount of speculation regarding the future of 

semiconductors. Moore’s Law obviously cannot continue into the future indefinitely. 

Nevertheless, most analysts agree that future innovation will require the semiconductor 
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manufacturing industry to adapt to completely new physics within the next five- to ten- 

years. During this transition era, however, the industry still has to meet the enormous 

market pressures that previously drove innovation. While it is hoped that the industry 

will emerge from this transition with new and improved technology, tools, and 

infrastructure, this new “super-era” will take billions of dollars and take years of R&D. 

Until then, designing and manufacturing 10 nm nodes presents a daunting challenge. In 

addition, the semiconductor R&D industry is currently at a disadvantage in part due to 

the relative lack of infrastructure and fabrication capabilities. 

There are many challenges facing the semiconductor R&D ingredient supply chain. 

First, the supply chain is longer and much more complex than assumed in the past. 

Disruptions from COVID-19 reveal that even with many options, continent-wide 

disruptions will have far-reaching effects. A complete supply chain microchip in the US 

from first principles utilizing expert skill sets will take decades. Without extreme 

intervention, there will be no alternative to Asian dominance. Second, far more needs to 

be understood for reliable designs, as over-engineering will blindly slow all innovation. 

The broader climate crisis will worsen many underlying aging multi-national issues such 

as poverty, inequality, and energy/disruption instability. The critical path will clearly 

present an opportunity for radically different chip designs and alternatives to traditional 

advancement curves. Thus, there is a need for a product shift to radically different chip 

architectures and approaches. 

3.2. Overview of Semiconductor R&D 

Research and Development (R&D) is a crucial component in the semiconductor industry 

and plays a key role in a company’s competitiveness. Companies must develop new 

technology newer than competitors and bring it to production as fast and as freely from 

problems as possible. Given the high complexity and cost of developing new processes 

for production, knowledge gained during the R&D stage of new processes is generally 

recorded in a set of specifications called a Process Recipe. Although this obtained 

technology consists of a series of instructions representing the best understood condition 

to produce acceptable products, it is often subject to large variability in production 

execution. Technology transfer from R&D to production is finding suitable 

technological solutions to possible problems while adapting to the new environment of 

production, which is complicated in the semiconductor industry by the hijack of the 

R&D process by the production process. 

Within a semiconductor factory, it is unavoidable for R&D and production processes to 

coexist in the same business enterprises. Products in their initial stages of technology 

development go through the R&D process, while those designated acceptable would 

move to production for mass fabrication. Semi-finished products in the R&D process are 



  

37 
 

firstly passed to queue waiting for processing and made subject to scheduled and arcane 

access to fabrication facilities. The combination of meandering product flows and rigid 

transport times gives rise to increased production time and loss of schedule integrity. 

The integration of both endeavors leads to the adoption and hijack of the R&D process 

by the production. 

Consequently, the collection of production-related data stored in the business enterprise 

serves the accountabilities of the organizations who maintain them. The EDA and CAD 

programs being used for chip design generally do not record any of R&D-specific design 

information; the statistics of production yield improvement efforts are often 

incomprehensible even to those who are experienced R&D personnel. These data pools 

give rise to a wide-scattered pondering of process legends. The R&D of a semiconductor 

product often begins before the start of its design. Celebration of the first numeric yield 

of a process technology brings up excitement of a process runner, while it unveils a 

nightmare before the designer. The production and R&D teams need to cooperate closely 

to design and test schemes for the development of compact batch designs that are suitable 

for physical astronomy.Their R&D process efficiency enhancement initiatives are 

conducted via centralized data engineering teams under the corporate office, hence 

ensuring that interviewees from diverse positions and with various experiences 

participate. The interviewees comprise a mix of top executives, a director, managers, 

senior/lead staff, and junior staff. Such diversity allows for a comprehensive 

understanding of the semiconductor R&D function. At least three people with direct 

R&D process management experience are interviewed from each company to maximally 

ensure the validity of the research findings. 

3.2.1. Research design 

This study adopts a hybrid qualitative and quantitative approach. The qualitative 

approach comprises interviews to gauge a deeper understanding of the phenomena under 

investigation. The quantitative approach provides the means to statistically validate 

proposed models and frameworks that support the qualitative findings. In-depth 

interviews are conducted with executives, managers, and senior staff at semiconductor 

companies to identify data engineering practices facilitating R&D process efficiency, 

surge product outputs, and systematically investigate the sources of process 

inefficiencies and waste in order to absorb NPI workload increase. The interviews are 

semi-structured with questions prepared in advance to cover certain themes of interest, 

but open-ended enough to offer the interviewee freedom to elaborate on issues that arise. 

This enables either party to probe deeper on a topic of mutual interest. Each interviewee 

is asked questions calmly, attentively, and patiently and is given sufficient time to answer 

without interruptions. Interview questions are grouped into five themes: general 
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semiconductor R&D process efficiency and data challenges, operational definition of 

semiconductor R&D process efficiency, data engineering processes supporting 

semiconductor R&D process efficiency, R&D process inefficiencies and waste in 

semiconductor NPI, and semiconductor R&D process efficiency enhancement 

recommendations. 

A total of 41 interview candidates are invited. All interview invitations are accepted; 

thus, all candidates become interviewees. The interviewees work at one of the seven 

global top 15 semiconductor companies: Intel, TSMC, Samsung Electronics, NVIDIA, 

Broadcom, Qualcomm, and Texas Instruments.  

3.3. Data Engineering Principles 

Along with increased computing power and smartness, the amount of data produced in 

any organization or discipline is rising. Such advancement has given rise to the concept 

of data pipelines, which comprise a collection of operations performed on data. A data 

pipeline is a set of jobs, each of which implements a single task on data that produces 

data in a predefined data structure format and pushes it to the next job. Such data  

 

                                     Fig 3.2: Data Engineering Principles 

pipelines are usually established using a combination of services and distributed systems, 

and streamlining them with considerations is often an engineering challenge. This is 

partially because, in scientific disciplines such as semiconductor R&D, models and 

pipelines are rapidly evolving as new automated tests and optimization strategies are 
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introduced and existing ones are improved. This has led to disambiguation in both 

variable naming in the context of data preparation and misalignment between data 

preparation and data inference models. Hence, when the data preparation step is 

revisited, it is critical and time-consuming to realign (regenerate) the top half of the 

pipelines in data science workbooks. There is a desire to alleviate the engineering burden 

by decoupling the `data pipeline' model from the `computational method' model so that 

changes in either side will not impact the implementation on the other side. As a first 

step towards realization, a ``pipeline scripting language" is devised. A novel 

mathematical principle called data homogenization is also introduced to ensure that the 

new meta-data pipeline models are equivalent (i.e. redundant) to the original data 

pipeline models. 

3.3.1. Definition of Data Engineering 

Data engineering has received much attention in academia and industry over the past 

several years. Data engineering refers to a wide range of problems related to data 

wrangling and describes the process of preparing data for a later phase such as data 

analysis or data mining . The process involves acquiring, cleaning, and integrating data 

and forming a feature set. Data collection addresses issues such as crawling to obtain 

raw data for data preparation. Data preparation is known very broadly and is much less 

well defined. 

The data cleaning section includes schema and instance-level data cleaning issues. At 

the schema level, the focus is on integrity constraints. On the other hand, the instance 

level contains many problems such as missing data, canonicalization, data integration, 

and data description. Some problems are single-source (e.g., missing data, 

canonicalization) and others are multi-source (e.g., entity resolution, data integration). 

Two phases of the CRISP-DM framework specifically related to data engineering are 

highlighted by data understanding and data preparation. Data understanding includes 

data description, verification of data quality, data collection and data exploration. Data 

preparation includes data selection, cleaning tasks, data integration, and feature 

engineering. 

A comprehensive classification of data engineering tasks is presented tuning up several 

different aspects. A taxonomy split of tasks between missing-data and non-missing-data 

tasks is presented, with further breakdowns into classes (e.g., different classes of missing 

data). The tasks have been refined to three levels: level C (conceive), level B (believe), 

and level A (analyze). Level C relates to the organization of data, especially data parsing 

and data integration. Level B covers topics under data quality and data organization, 

while level A includes feature engineering problems and a semantic description of 

features. 
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3.3.2. Importance in R&D 

For semiconductor companies, design and manufacturing processes used to be far apart. 

With the development of substantial metal-oxide field-effect transistors for which both 

fabrication and design require nanoscale processes, the need to overlap chemical 

mechanical planarization design and its experimental character has emerged. To 

optimize the overlap, it is essential to understand how design may affect manufacturing 

and how manufacturing may affect design. Such a feedback loop needs to be extended 

to other areas of design, this is why semiconductor manufacturing processes are pulling 

downstream semiconductor product design closer than ever before. To explore the 

feasibility of a feedback loop between the understanding of design data used by design 

engineer and manufacturing assays implemented by manufacturing engineer, knowledge 

data model information of parabolic expected direction has been extracted from both 

sides as the first trial by a unity team consisting of both design engineers and 

manufacturing engineers. Because design plays various roles in producing radically 

different device performances in dramatically different shapes, this feedback loop spans 

both on-device and on-chip manners. In terms of a parabola that curves upward and knots 

the chosen parameter lengths of design flows together with practical usage times of 

manufacturing assays, this feedback loop has two knots. One knot consists of four 

individual axioms that link the common pipeline of manufacturing and the common 

pipeline of design—can the fits have the correct order based on slope and shape on 

curves? The other knot consists of heuristic information datums which highlight key 

parameters to explain design diverging effects on and thus expedite modification trials 

in cybersecurity and tensor design. Most semiconductor companies follow an R&D 

model to develop manufacturing processes for new semiconductor devices. While no 

existing products are manufactured, it can be called a discovery fab. In a discovery fab, 

various processes are explored in conjunction with two or more actively investigated and 

manufactured device designs. Uncertainty may arise from the recursive and concurrent 

operations of multiple teams and discovery fab discovering optimization. There are two 

types of product and process uncertainty. One is unavoidable uncertainty, which comes 

from the technology being explored. The other is avoidable uncertainty, which arises 

from familiar technology re-invented, lack of anticipation of variations in quantities and 

ordering windows, poor acceptance or proliferation of emergent research results, and 

diminished focus on problem solving. Aggressive solutions may be pursued or 

opportunistically short-term fixes may be adopted to ameliorate delivery challenges by 

the discovery fab before considering wide ranging changes to the R&D model. 
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3.4. Current Challenges in Semiconductor R&D 

The unprecedented rapid growth of semiconductor applications, spurred by machine 

learning, artificial intelligence, and the internet of things (IoT), has been well-

documented. However, this breakout in applications comes at a time when the 

semiconductor industry faces a critical shortage of engineers. The production of 

semiconductors is a complex process that relies heavily on several engineers specializing 

in distinct tasks. Merely producing an integrated chip (IC) in the fabrication facility 

requires detailed inputs from a wide range of engineers, performing simulation and 

modeling tasks spanning across multiple disciplines. The design task, arguably the most 

critical step in the IC value chain, is carried out exclusively by highly-skilled engineers, 

leading to increasingly sophisticated and complicated designs fed into the fabrication 

facility (fabl). There remains an enormous talent gap in the semiconductor industry 

regarding design, fabrication, packaging, process development and characterization, 

yield improvement, and test. Streamlined semiconductor research and development 

(R&D) pipelines can shorten the design cycle and help mitigate design complexity. 

Datasets generated in recent years from simulation and fabrication must be analyzed to 

recover key performance indicators (KPIs) that are physically interpretable. This 

requires both knowledge of physics-driven models and domain expertise in 

semiconductor devices, materials, and process technology. 

Traditionally, understanding and quantifying semiconductor characteristics depend on a 

simulation and modeling task pipeline that may last weeks. With advanced scaling 

technology nodes, the enormous design and fabrication complexity leads to a cascade of 

those tasks, making extracting indications of physical properties from the datasets 

increasingly complicated. Engineering scripts are often used to scrape data from raw 

output files and represent them in human-readable formats. Those operations vary 

significantly across disciplines but can be modeled as a simple RDF pipeline. 

Nevertheless, the R&D pipeline bottleneck relies on the agile responses to fast-paced 

engineering requests of critical KPIs, which require in-depth semiconductor knowledge 

and are hard to break down into a single step. Although process engineers and physicists 

are able to quickly finger out error distributions and potential hardware problems from 

the probe round file (PRF) through decades of experience, such operations are hard to 

generalize. Existing machine learning (ML) schemes have difficulty bridging the 

interpretability chasm owing to the lack of domain knowledge. 

3.4.1. Data Silos 

Semiconductor data is inherently heterogeneous: while wafer data is structured and high-

volume, observations on semiconductor devices may take the form of unstructured, low-

volume images, documents, or simulations. Although a few high-throughput platforms 
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exist, R&D pipelines are still dominated by small-scale, artisanal efforts continuing a 

culture of silos. These heterogeneity and scale issues make it painfully obvious that 

bridges are needed to prepare and pass the correct content from one isolated case to the 

next. More than any discrete analytics task, this need is common across an incredible 

variety of industry sectors and practices. 

Difficulties of integrating siloed systems and of spreading resources and data across 

them have been well-studied. Contemporary software development offers substantial 

tools for these tasks, beginning inter alia with ESB integrations, which enable event-

driven communication and sharing of lineage in between systems, accelerating on-the-

fly integration—particularly for data streams. In the long-term, robust solutions that 

imitate the natural forms of practice risk compromising usability and configurability, 

and thus must tread a nuanced route. They can take the burden of maintaining the cobweb 

out of the hands of engineers, allowing both rapid development and thorough grasp by 

users. Advanced and mature elements of software development practice from other 

domains are often easily ported over, to substantial first-order effect. 

Data sharing should be distinguished from transfer and integration, both system-to-

system actions. Architecturally, with regards to system composability, data can be shared 

directly or via a middle filtering layer. The former, with raw data streaming from one 

silo to another, should only be applied to low-level systems, such as a server- or file-

based database, with application extraction and storage operations controlled by 

developers. In such cases storing raw data in standard databases allows cheap 

compliance without vendor lock-in. However, because it is cheaper to filter and refine 

singular streams and to do so in silos, sharing by architecture is a far gentler approach to 

implement into high-level systems, preventing leaks of trailing extensions. 

3.4.2. Inefficient Workflows 

Research and Development (R&D) in semiconductor technology is an intensive process 

that requires a combination of design creativity and graduate student effort. Developing 

new ideas can take years, with research reports being handed off between graduate 

students through their roles as teaching assistants or raters. Experiments performed on 

process technology may be obtained months after designs are submitted to the foundry. 

Working with all the stakeholders in design, test, packages, and infrastructure is a 

logistical challenge to get reports back to designers in the laboratory, especially for early 

process development experiments. When these challenges are added to the pressure to 

demonstrate results to funding entities and managerial stakeholders, the chances of 

success diminish. 
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Many research groups independently develop internal applications and a plethora of 

unified, harmonized software infrastructure to meet the needs of their individual work. 

Disk storage keeps mounting with a slew of scripts, patches, and specific applications. 

Each novice programmer has their unique vision of what is best, leaving rounded corners 

on eventual applications. The choice of language tools to work with is even more 

daunting early on because everything is open. The engineering industry standard tools 

are also costly and come with enormous overhead costs. Learning the proprietary 

languages from a fresh trainee can create burdens of months of unproductive time, which 

is cheerfully discarded as they move on from their project. 

3.5. Data Integration Strategies 

Effective and efficient integration of services has significant effects on the success of all 

data platforms. Integrating a service not only means programming interfaces relevant to 

the service but also understanding the logic of how the service operates, which is 

especially demanding for interdisciplinary fields like semiconductor research, where 

data engineers and all other stakeholders are typically from weakly connected domains. 

In addition, the data domains of services are also highly heterogeneous, resulting in 

different syntactical definitions over standard frameworks released for integration. This 

section focuses on two main aspects: Integration interfaces developed to integrate data 

ingestion, harmonization, and push to data platform services, and a syntactic approach 

that helps to automatically map data streams of various data formats to the one expected 

by the target service. 

Particularly, the design of how to connect third-party adapters well with sensors and pre-

process the adapter memories before being sent off will not be covered. To ensure 

extensibility, flexibility, and minimal maintenance during integration and service 

updates, all adapters closely follow the formal service structure defined in their 

corresponding configuration files. This configuration structure is RDF-based and 

contains rich semantic information, describing the core logic span and the data input-

output schema of each service. Using these configurations, the streams from their 

previous steps can be converted. Firstly, the transformation steps (if any) defined in the 

configuration will be checked against each new stream. The original sample values 

collected in raw processing and storage technologies will be modified to the final model 

classes or formats defined in each service and prepared for submission. It is complex but 

has a seamlessly smooth pipeline when implemented. The built transformation models 

can be periodically saved and loaded with incoming streams in a minute. A messaging 

system enforces collaboration in releasing pre-processing services to adapt all kinds of 

data domains still without professional programming. 
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Fig : Leveraging Data Engineering Principles to Streamline Semiconductor Research 

and Development Pipelines 

3.5.1. ETL Processes 

Streamlined semiconductor Device researcher, foundation experimental data are 

collected in various databases and analysis results are generated in various formats such 

as spreadsheets, figures, images, and textual articles. Aggregating and processing them 

to extract the data to which numerically processed descriptions can be attributed to 

facilitate reusability, and enhancing their compatibility for machine learning is an 

essential function to be implemented in a standardized architecture. This functionality 

can be termed as the extract-transform-load (ETL) process. 

In semiconductor Device research, the ETL process typically extracts analysis results 

from unstandardized files, migrates to existing standardized databases, and transforms 

the data into compatible data shapes for machine learning. In the extraction phase, 

unstandardized files produced by the foundation’s Device exploration analysis results 

are analyzed, and a set of existing analysis templates that contains basic operations is 

prepared. In the transformation phase, the downloaded data and Analysis ID are 

analyzed, and corresponding local files are selectively cleaned. After cleaning, the data 

is uploaded to the designated database in a range parameterized by the user. This ETL 
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utility is easy to implement and customize. All variables and constant parameters can be 

controlled upon implementation. Customization of input and output plugin is also readily 

achievable by developers in deep learning, especially related to text similarity search. 

As it is based on markdown format and relational database implementation, it is highly 

flexible for database size and layout. 

3.5.2. Data Lakes vs. Data Warehouses 

Data lakes (DLs) have emerged as a new class of storage architectures to manage 

massive volumes of heterogeneous, potentially fast-changing data, the so-called big data. 

They are different from both traditional databases and data warehouses (DWs). In 

contrast to a DW, which requires a strong pre-processing phase consisting in cleaning, 

transforming, and aggregating data before storage, DLs keep data in raw format. Stored 

data can be structured, semi-structured, or unstructured. Similarly, professionally 

formulated datasets may be mixed with impossible quality raw data and personal notes. 

In comparison to databases and warehouses, DLs have relaxed constraints for file 

structure, format, and also for query languages and use. Integration of a new format into 

a DL can be performed without affecting formerly stored data. Conversely, traditional 

DWs can render useless, misplaced, or exaggeratedly organized a wealth of intriguing 

information, despite its enormous potential. This is a crucial constraint in experimental 

sciences; it is not unusual that research questions evolve significantly over time. It is not 

infrequent that one archive previously stored measurements, analyses, and formulas, 

only to find them barely useful at a later date, when a DL repository might have 

supported on-the-fly production of new datasets. DLs flatten the data organization 

schema; scientists, engineers, and analysts may work at the same abstraction, scale, or 

granularity levels. Nevertheless, DLs have to embed adequate content description and 

retrieval (CR) functionalities and representations. Users require a CBR-like mechanism 

to help them in data querying. Currently, there are two fundamentally different 

mechanisms. 

Content-based retrieval might seem a good approach. This strategy relies on several data 

signatures or fingerprints derived from lower-level information to discriminate between 

different sources. Instead of delving deep into a DL, only looking at the fingerprints 

might help create an idea for relevant datasets. Such signatures are often too expensive 

to compute. The search space may become enormously large, making it intractable to 

explore all combinations of datasets. Therefore, looking for fingerprints may help if they 

are well-implemented in lower-dimensional spaces generated by fast and efficient tools.  
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3.6. Conclusion 

Characterization of emerging semiconductor devices is essential to their successful 

integration into advanced technology nodes. The growing complexity of these devices 

has rendered traditional one-off device characterization impractical, even in high-

throughput semiconductor foundries. Meanwhile, chip or module-level failure analysis, 

often involving huge volumes of data, requires a more sophisticated approach. A 

framework that captures the end-to-end characterization process in a formal way is 

needed. This framework must enable intuitive and faster characterizations by non-expert 

users, seamless sharing and optimization of effective characterizers across applications, 

and the realization of intelligent data-fusion engines that autonomously operate entire 

characterization pipelines. 

The opposing nature of difficult-to-measure device physics and fast-paced commercial 

development poses challenges for semiconductor R&D. Rather than research-first proof 

of concept studies of potentially impactful methods, the presented work aims to share 

industrial-strength insights and tools to co-specify and realize semiconductor R&D 

pipelines capable of adapting to changing needs. These are polymer photoresist, etch 

selectivity characterizer, XFS reader, single-parameter interpolation, machine-learning 

classification, and image augmentation, as well as basic programming language 

principles. It should be emphasized that the proposed tools are neither unique nor 

groundbreaking on their own. Instead, they are intended as pipelines and interpreters at 

the software level for the application of modeling/construction methodologies such as 

finite element methods and discrete mechanics. 

3.6.1. Emerging Trends 

Advances in AI, machine learning, and design space exploration are providing 

unprecedented opportunities to accelerate semiconductor technology innovation. 

However, the pace of innovation is hampered by semiconductor research and 

development (R&D) bottlenecks in architecting, designing, fabricating, characterizing, 

and validating new devices and materials. Cutting-edge AI and machine learning 

implementations applied to semiconductor R&D are generating a surge of interest and 

effort across academia, industry, and the open-source community. Machine learning-

enabled design exploration, cloud-enabled co-simulation, and high-throughput 

experimental characterization pipelines are some examples of machine learning tools 

developed to create, evaluate, and characterize new materials and devices. These 

machine learning tools and pipelines span computing and experimental domains. This 

section describes emerging trends in these pipelines and how the principles of data 

engineering can be applied to leverage, expose, and expand the impact of these tools. 

Semiconductor R&D pipelines for building and integrating machine learning tools are 
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labor-intensive, ad hoc, and often brittle. By adopting data engineering principles in the 

design, development, and maintenance of new machine learning pipelines, 

semiconductor industry players can better leverage and improve machine learning 

capabilities, enabling broader adoption and impact. Semiconductor production and 

design pipelines are not typically seen as software pipelines; rather, they are viewed as 

monolithic, bespoke, and non-reusable systems built by a few engineers in isolation. 

Current semiconductor production and design pipelines often lag in speed, flexibility, 

and feature richness compared to the compute domain. Existing pipelines primarily 

consist of one-off scripts and applications that are ad hoc; not designed to be reused or 

modified, requiring insider knowledge; and are difficult to maintain as historical 

knowledge is lost with personnel transitions. As a result, many workflows across the 

industry are executed on a one-off basis, with frequent regular interrupts in systems due 

to errors and slow speeds. Optimization-based design space exploration is used to 

efficiently find optimal designs. Challenges in accurate metrics of merit. Accurate 

performance metrics provided by analytic solvers, numerical solvers, or nonintrusive 

models as proxy of expensive-to-evaluate domains. Privacy or competition-sensitive 

intellectual property in design parameters. Inherently costly evaluations. 
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