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Chapter 5: Artificial intelligence in 

electronic design automation: 

revolutionizing chip design workflows  

5.1. Introduction 

Electronic design automation (EDA) has been unpredictable. Moore's Law and its 

extension are no longer valid. Chip design has never been more complex and disruptive, 

with hundreds of thousands of design engineers working simultaneously around the 

world on a single chip. Chip design is no longer just a role for seasoned engineers; design 

methodologies are changing, rules are changing faster, and designers need to adapt 

rapidly. All of these changes present designers with daunting challenges. This rising 

complexity, aided by new semiconductor technologies, is propelling researchers towards 

new horizons. 

AI has provided significant solutions to many problems in varied fields, such as speech 

processing, picture processing, and self-driving cars. There are many subfields of AI, 

such as Natural Language Processing (NLP) and Machine Learning (ML). In 

comparison, ML is a subfield of AI, including supervised learning, semi-supervised 

learning, and unsupervised learning. Deep Learning (DL) is a subfield of ML that 

includes CNN and RNN. The goals of AI/ML are Learning, Reasoning, Predicting, and 

Perception. The apparent advantage of AI/ML is its ability to quickly identify the trends 

and patterns in large volumes of data that may be difficult to find either manually or via 

traditional algorithms. AI/ML algorithms can also handle multi-dimensional and 

multivariate data at high computational speeds. Considering the numerous advantages 

of AI/ML algorithms, it is easy to understand their exponential and ubiquitous 

emergence in various fields. With the rapid advancement of VLSI-CAD technology and 

semiconductor technology, there are ample opportunities in semiconductor and EDA 

technology to develop AI/ML solutions to automate various processes at various levels 
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of VLSI design and manufacturing (Koblah et al., 2023; Kumari & Majumder, 2025; 

Pan et al., 2025). 

The EDA tools are mostly old and rules based, and hence make use of shorthand coding 

languages recognizable uniquely to them to input the design in a suitable format. These 

rules or coding should be human written and are well documented in the EDA tools’ 

User Manuals. The human coded design and coding languages are often complicated, 

time consuming, and not so easily abundant and accessible. An ideal EDA tool should 

overcome the limitations of human commercial VLSI CAD tools in terms of quick, 

accurate, and optimal outputs—overcoming design constraints effectively. An AI tool 

should make use of consensus algorithms and programmable design thinking to get 

universal VLSI CAD (Wang et al., 2024; Yuan et al., 2024). 

 

                              Fig 5.1: AI is Revolutionizing Chip Design 

5.1.1. Background and Significance 

Electronic design automation (EDA) tools are extensively used to ensure the functional 

correctness, performance, and manufacturability of large complex integrated circuits 

(ICs) before fabrication. VLSI circuit designers require quick timing closure of the chip 

design to reduce the turnaround time (TAT)—the time taken for the IC from the design 

stage to the final product. There is considerable research expense on the development 

and enhancement of various EDA tools. However, with a tremendous increase in chips 

per transistors, it has become increasingly challenging and complex to design ICs 
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meeting design constraints. New methodologies and tools addressing the challenges and 

bottlenecks at the various stages in EDA are thus needed. 

In more recent technology nodes, with transistor dimensions getting smaller than 20 nm, 

it is becoming increasingly difficult in terms of fabrication to ensure the desired 

performance of the synchronous circuits (i.e., circuits with clock edges triggering the 

operation of latches and flip-flops). Several different process parameters can be varied 

in fabrication and designated as variabilities. Offsetting this design paradigm shift, 

spontaneous VLSI technological advancements are being encountered in fabrication 

processes. Availability of different transistors with different characteristics and 

flexibility to use them is one alternate design methodology. Multi-gate field-effect 

transistors (FETs) are more tolerant to process noise, leakage aware, and more 

advantageous in many other aspects over conventional bulk-type CMOS transistors at 

nanometer technology nodes. However, in a chip consisting entirely of multi-gate FETs, 

design integration with traditional CMOS cannot be achieved wholly. 

5.2. Overview of Electronic Design Automation 

As integrated circuit dimensions shrink, their complexity is increasing exponentially 

which makes it harder for engineers to design quickly and accurately. The inability to 

keep up the pace with rapid technological advancement has turned the design process 

more sophisticated and diverse. This increased complexity has made it infeasible for 

engineers to design and verify integrated circuits on their own. Thus, architecture design, 

logic synthesis and circuit implementation, verification and physical design automation 

has become key components in the overall design flow. The objective of this article is to 

classify these major circuits/design flows according to EDA tools, architectures and 

algorithms, and to prepare a balanced overview of applications of all types of artificial 

intelligence in each category of ten essential design flows. It is also planned to point out 

the limitations of AI applications, challenging tracks in the near future, and desire 

capability and intelligence of EDA tools, hence of chips. 

Online and on-demand, low cost, rapid turn-around high performance design services 

will be available. The question of chip architecture will be thrown back to designers 

because it will always be possible to design a chip that is not manufactureable or testable. 

All chips should be able to post-silicon test, characterize and fix only with a minimum 

amount of knowledge about the chip.  
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5.2.1. History of EDA 

IEDA is a collection of powerful and open-source intelligent design and data analysis 

tools dedicated to the research and development of electronic design automation (EDA) 

technology. EDA plays an instrumental role in the IC design and fabrication industries, 

where the rapid increase in chip complexity presents grand challenges for chip designers 

and EDA developers. A large number of fruitful CAD algorithms, tools, and systems 

have been developed in academic and industrial circles to tackle critical EDA problems. 

The early years of EDA development can be characterized as the “invention and 

experimentation” era (1960-1975). During this period, the rapid development of 

integrated circuit (IC) technologies accompanied by the explosion of chip designs and 

increased complexities raised grand challenges for engineers, resulting in tedious efforts 

and engineering disasters. It thus became extremely urgent to develop efficacious design 

automation tools for the IC design house. Designers initially developed tools such as 

schematic capture, floorplanning, placement, and routing manually. Within a very short 

period, an extensive number of effective design automation algorithms and tools were 

invented and developed, which constituted EDA tools as they are conceptualized today. 

The computational performance of EDA tools for large-scale problems was low. 

Industry giants consequently created their own EDA tools, which were often package 

products with poor connectivity. On the other hand, academia largely worked on the 

fundamental and theoretical development of EDA tools and algorithms, resulting in 

many high-quality algorithms with superior performance on benchmark problems. 

Furthermore, academia was largely isolated from industries and had little influence in 

the EDA market. In response to these challenges, academia and even small startups 

endeavored with great enthusiasm to develop their own general-purpose EDA systems. 

5.2.2. Key Components of EDA Tools 

Electronic Design Automation provides the complete physical design for VLSI circuits. 

EDA is typically carried out using software containing several components or tools, each 

performing one or more tasks on the design netlist. As a result, EDA can be thought of 

as a collection of software tools that produce a single output using some input and follow 

a specific series of procedures. 

Use Case and Limitations: The proposed system is expected to assist the VLSI circuit 

designer in the design process. First, the designer provides the RTL netlist of the 

hardware to be designed. The server’s AI model produces a complete set of code 

containing the required EDA tool invocations to perform the desired task with the 

provided netlist. The long text code can be executed in a Jupyter notebook or terminal 

with Python. EDA tools in the cloud are to be invoked along with software integration. 
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Next, the designer inputs synthesized datasets. The data normally contain fifteen decimal 

values corresponding to one data point. The four decimal points are associated with a 

specific translator, five with the secondary solver, and six with the main fitter. The AI 

model, using the provided data, returns a code containing tool invocations of the 

estimation tools. 

Requirements and inputs: The input to the agent call to code assistant consists of a string 

containing the user’s requirements. A REST architecture is used to set up the server. The 

server runs a large language model that can decode text-to-code for Python language. 

All EDA tools are independently integrated with APIs that can take files as input and 

output the result as a PDF or text file. A streaming function is supported to directly view 

the output from the tools as they produce it. 

5.2.3. Current Trends in EDA 

Before and after fabrication, input into the physical design flow, AI/ML has been 

successfully used for runtime and throughput optimization as well as yield prediction 

and lithography diagnosis optimization. Several tools and architectures based on an AI 

algorithm or machine learning libraries have been researched for prediction value 

attainment. Moreover, the prediction ability has been achieved by inputting previous 

design experience, input-output datasets, or result patterns. AI/ML-based prediction has 

proven superior to related methods using prior heuristics. 

Ample opportunities exist, and a representative example is working with design 

parameterization knowledge combined with heuristics. Commercial software that 

captures this knowledge should further investigate its integration into data-based 

prediction methods. Architectures and tools have been shown at multiple abstraction and 

hierarchy levels, and efficient fine-tuning and training approaches that guarantee 

generalizability and transferability have been investigated successfully, thus minimizing 

the effort required by specialists when using AI/ML. 

Commercial software has been developed. However, addressing the ease of deployment 

into the design flow remains a challenge for AI/ML tools. Research that seamlessly 

integrates and utilizes AI/ML tools in both academia and industry would allow 

advancement of the technology in EDA and IC design. Unsurprisingly, a massive 

amount of funding is heading in this direction, and keeping pace with the availability of 

data may become a bottleneck. 



  

70 
 

5.3. Artificial Intelligence: A Primer 

Artificial Intelligence (AI) is a branch of the field of computer and information science. 

It includes both the theory and the practice of developing hardware and software systems 

equipped with computational components that store, manipulate, and communicate 

information (data). Thus far, efforts in the field of AI have focused on problem solving. 

AI research and development efforts have resulted in the good, bad, and ugly of smart 

tools. AI includes — but is not limited to — such topics as knowledge representation; 

heuristics; search; expert systems (knowledge-based systems); perception, natural 

language understanding and production; neural nets; machine learning; robotics; and 

fuzzy logic systems. Efforts in AI have produced two fundamentally contrasting 

approaches to solving problems and accomplishing tasks: symbolic (or knowledge-

driven) systems and sub-symbolic (or non-knowledge-driven) systems. Symbolic 

systems include — but are not limited to — expert systems, theorem provers, natural 

language understanding systems, and certain computer-aided design (CAD) systems. 

Sub-symbolic systems include — but are not limited to — neural nets, genetic  

 

Fig  5.2: Artificial Intelligence A Primer 

algorithms, and simulated annealing. However, it has become increasingly clear that — 

for many problems/applications — neither of these approaches works well on their own. 

The field of AI wants to develop machines and software systems that solve problems 

and accomplish tasks that — if accomplished by humans — would be considered a 

display of intelligence. The AI field is approximately 50 years old; its roots go back 

somewhat further, to efforts at problem-solving/puzzle-solving. The traditional approach 
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to problem-solving is algorithmic or symbolic. It consists of formalizing the problem, 

stating a solution procedure in a programming language, and executing the solution 

algorithm. The more sophisticated approach is via heuristics: semi-structured, informal 

procedures that are not guaranteed to produce a solution but can be viewed as “problem-

solving aides.” Such richness of content makes AI rather complex, unpredictable, and at 

times cryptic. AI has had a considerable amount of success in solving certain types of 

problems. In some cases, these successes are starting to be commercially exploited, albeit 

in the price range of hundreds of thousands of dollars for consultancy prices. 

5.3.1. Definition and Scope 

Artificial intelligence (AI) and machine learning (ML) algorithms are playing a 

prominent role in the electronic design automation (EDA) industry. EDA is an important 

part of the VLSI chip design flow, aiding designers in rapidly designing complex chips 

while adhering to corner-case parameters. With advancements in the number of 

transistors in each technology node, the art of chip design and compliance with design 

rules has become so intricate that it is impossible for a designer to design a chip manually 

without using EDA tools, thus resulting in a profitable business for semiconductor 

foundries and EDA vendors. Semiconductor foundries manufacture chips and supply 

them to consumers, while EDA software companies sell the software tools which assist 

a designer in designing a chip. 

AI is a wider umbrella term in which a machine performs tasks that normally require 

human intelligence, such as natural language processing, speech recognition, and 

computer vision. Machine learning is a subset of AI used when the learning is done by 

means of data for trend and pattern recognition, while deep learning neural networks 

perform further deep dives into analyzing complex data. Overall, the goals of AI and ML 

are learning, reasoning, predicting and perceiving. Overly large chunks of data make it 

cumbersome for a human to analyze and derive relevant conclusions. AI and ML help 

overcome this bottleneck. Algorithms identify trends and patterns in vast volumes of 

data and help users make relevant decisions. This ability to spot trends and associate 

them with meaningful classes or functions makes their applications endless. AI-ML 

applications are already vast in consumer products, banking, medical field, 

manufacturing, real estate, climate research, stock markets, and insurance audits. 

5.3.2. Types of AI Technologies 

The AI techniques can be broadly classified into the following categories: Machine 

Learning without Artificial Neural Networks, ML with Artificial Neural Networks, 
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Computer Vision, and Natural Language Processing. The various algorithms/methods 

used in each of the classes of AI techniques are listed below in a tabular format. 

5.3.3. AI in Engineering Applications 

As synthetic intelligence (AI) and enormous records hold to grow, simulation is 

becoming a commodity. As software becomes more sophisticated and inexpensive, 

designers are able to simulate large, complex circuits and do layout exploration based 

on effects. Rapid analysis preamps on a single chip enable the development of fast-

sampling multi-channel sampling oscilloscopes for high-frequency measurements. A 

variety of memory cell structures and array styles has been investigated. A survey of 

memories available for designers and a prediction of future trends in materials, 

structures, and parameters were presented. The emphasis is on features and advantages 

of an integrated approach which considers the entire link from input signals through 

transmission media to final application, removes the boundary between the IC chip and 

the printed circuit board enabling reduction in costs and improved performance. With 

large systems, this approach calls for modeling at a high level. These modeling languages 

emphasize hierarchical statements close to high-level design. Abstract test generation 

algorithms and developments in the field of proving the correctness of models against 

specifications have been outlined. A wide range of packages spanning from academic 

prototypes to commercial applications have been covered. 

Some of these packages are both fully and partially commercialized. Significant 

improvements over conventional methods have also been reported. Some of these 

approaches employ relaxation methods to accelerate convergence and handle large 

systems while others involve algebraic approaches with multigrid acceleration. A unified 

approach was proposed to obtain filtering structures. Simulation of stray capacitances to 

wideband circuits was investigated. Also scheming of couplers of novel topologies 

optimized to conventional technology was undertaken. Finally filters (analog and 

permanent) were designed with an innovative graphical-oriented package and a new 

concept of frequency curvature. 

5.4. Integrating AI into EDA Workflows 

To harness the potential benefits of AI, EDA tools can partially and incrementally 

incorporate various AI models into their existing workflows. In the context of AI-

Assisted EDA Workflows, the Autonomous Scene model divided the workflow into five 

modules, namely Task Understanding, Knowledge Retrieval, Task Planning, Task 

Execution, and Result Analysis. Each module contributed to the EDA process from a 

different perspective, and their effective execution ensured the successful generation of 
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the final results. AI models can be employed at different fidelity levels, including 

interfacing with existing ones or being tightly integrated. For domain-specific AI 

models, circuit designers can record the design iteration of a circuit with underlying 

hypotheses. The learned engineering knowledge can then be used for redundancy 

identification to eliminate design errors in future versions. AI models with unrestricted 

domains can also be utilized in brainstorming novel circuit topology or EDA methods. 

Overall, after establishing a well-defined integration with human designers, the 

knowledge base of the EDA tools can be expanded significantly. To enhance an existing 

AI model’s performance in a specific problem, the model can be fine-tuned with 

corresponding data. Most AI models are trained with publicly available data, and they 

may not be adept at processing EDA tools, which are inherently domain-specific 

knowledge. However, by compiling a large knowledge base of EDA tools’ usage from 

publicly available resources, an AI model can be customized to understand the circuits 

and tools better. It can help interrogate the EDA tools more finely and produce more 

convincing results. Moreover, through generative techniques, the fine-tuned AI model 

can help researchers brainstorm new algorithms and even partially generate patents. 

Together with the seamless interactions between AI models and EDA tools, the design 

automation of circuitry would thus be further developed. 

Various documentation standards exist for different purposes in EDA specifications. 

Nevertheless, additional standards are often needed for parameter programming 

compatibility, which can be laborious and complicated. A data source translator might 

need to be developed for each EDA app. A layered data plan consists of three sections: 

an information layer, a documentation layer, and a programming layer; and serves as a 

concise representation for simulation specification. The suggested representation should 

be independent of any design process and structure to enable input from various tools. 

Transforming parameters to a limited number of tags reduces initial selection ambiguity 

by clarifying understanding. 

5.4.1. Data Acquisition and Management 

Quick access to raw and instrumental data is a pivotal yet daunting task within EDA, as 

it directly affects the availability and quality of machine learning models. Deciding on 

the needed data before actual modeling is crucial because limit-induced information loss 

or damage is very costly. As an inhabiting area of research, many excellent solutions 

exist; nevertheless, they have rarely been established for an EDA application 

specifically. Most EDA programs frequently use user- and/or process- specified 

parameters for simulation. Parameter selection may need to go through up to ten 

iterations within a large design space of more than hexadecimal traces due to parameter 

sharing or interdependencies. As a result, a clear and concise representation of use 
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specifications is essential for all interested parties: designers, modeling specialists, and 

verification/datasheet engineers. A machine learning representation of knowledge-

structure deviation may not be too far-fetched in the next decade. 

Among different multi-dimensional visualization styles of data connection extraction, 

the tanglegram process seems more suitable in EDA as it captures parameter dependency 

by connecting two trees. The interpretation of document tree pairs is reliant on the 

sequence of notations. For example, a forest drawing indicates no output affinity of 

tagged parameters. The input of a forest tree may be represented by parentheses-aligned 

notation. Searching is another critical task in EDA; a visual query device attached to the 

process tree helps designers reveal the use intention of any technology. A possible 

extension of the query method, a way to prompt knowledge displacement, is an active 

query that addresses the location intention of one or two tree nodes and returns a path 

for operation. 

Governing a machine learning model progressively proves to be a reliable way that is 

very similar to human learning. To address the inclination of while-stated precision and 

resulting in out-of-box reasoning, output micro-generating specifies found conditions 

and randomizes all decision gaps. Producers and users usually might prefer faster, 

compressed growth; a mental effort output should also be involved in model fatigue 

estimation, abstraction limitation testing, and local behavior inspection. Various policy 

stream independence conditions exist for different conditions establishing robot 

processing sophistication. 

5.4.2. AI-Driven Design Automation 

Due to aggressive process scaling, shrinking technology nodes, and rising manufacturing 

costs, electronic design automation (EDA) tool performance is one of the most critical 

concerns for the semiconductor industry. The complexity of integrated circuits (ICs) is 

rising exponentially. As a result, the development of quick, efficient, and high-quality 

EDA tool solutions is required. In addition, fast and efficient designs are required to keep 

up with market speed and encourage chipmakers to migrate to the next technology node. 

With advances in IC technology, design complexity continues to rise, leading to 

increased design automation challenges for design engineers. The primary goal of EDA 

tools is to ease the design challenges facing design engineers at both the front-end and 

back-end levels. The turnaround time of a chip depends on the performance of EDA 

tools in overcoming design constraints. 

Nevertheless, such designs often contain very challenging mixed-signal circuit design 

problems that must adhere to a large number of tightly constrained competing 

performance specifications. Some designs are so complex that no readily available 
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human knowledge and design expertise can solve the design problem in a finished 

design. In such complex cases, the only option is to automate the design of a large portion 

of the design task. The traditional rule-based methodologies in EDA take longer to yield 

an optimal solution for the set design constraints. This bottleneck is commonly referred 

to as “the EDA bottleneck.” Though many research papers and ideas gradually make the 

EDA flow very smooth, there are still many upcoming challenges to be conferred and 

solved. Additionally, AI-based EDA tools are predicted to become the normative 

paradigm for the industry within the next ten years. In terms of quantum computing, 

design for manufacturability (DFM), and AI, EDA tools have the potential to connect 

with the downstream economic environment. AI has provided prominent solutions to 

many problems in various fields such as healthcare, finance, management, and many 

more vertical segments. 

Artificial intelligence (AI) is the provision of human-like intelligence to non-human 

entities or computers. Deploying algorithms, machines, and software to think and act 

like humans is broadly termed AI. AI can also refer to creating systems that can act in a 

self-learning and pre-programmed manner to solve problems. Machine learning (ML) is 

a subset of AI, which is also the application of AI. The goals of AI/ML explicitly relate 

to learning, reasoning, predicting, and perceiving. AI/ML can quickly identify the trends 

and patterns in large volumes of data, enabling users to make relevant decisions. AI/ML 

algorithms can handle multi-dimensional and multivariate data at high computational 

speeds. Considering the numerous advantages of AI/ML algorithms, their applications 

are endless. 

VLSI–computer-aided design (CAD) tools are involved in several stages of chip design 

flow. Out of these stages, the design and performance evaluation of highly complex 

digital and analog ICs depends on the CAD tools’ capability. Advancement of VLSI–

CAD tools is becoming increasingly challenging and complex with the tremendous 

increase in transistors per chip. The design activity will occupy the largest share of the 

entire chip design time as technology scaling continues. As a result, several opportunities 

are available in semiconductor and EDA technology for developing/incorporating 

AI/ML solutions to automate processes at various VLSI design and manufacturing 

levels. The primary work done in this paper is to present the application of AI/ML 

algorithms on topics in VLSI CAD and design automation that are popular, impactful 

and have significant potential for use of AI/ML algorithms. 

The scope of discussion includes the application of Convolutional Neural Networks 

(CNNs) and other deep learning (DL) algorithms for CAD problems like layout 

extraction, circuit netlist generation, signal integrity analysis, etc. Reinforcement 

learning algorithms for the design of domain-specific algorithms in CAD tools for 

physical design automation are discussed. AI/ML-based advance timing optimization 

using multi-corner and multi-mode static timing analysis with a selection of optimization 
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algorithms is discussed. Local pattern matching embeddings and circuit characterization 

of standard cell libraries using instance-specific linear regression algorithms are 

discussed. AI/ML-based systematic analog circuit design automation for popular blocks 

like biasing circuits, current mirrors, voltage references, operational amplifiers, etc. 

using supervised, reinforcement, and generative modeling approaches are discussed. 

5.4.3. Machine Learning for Circuit Design 

The applications of machine learning in Electronic Design Automation (EDA) range 

from Machine Learning (ML) based designs, where ML algorithms are used in designing 

either software or hardware functionality, to using ML to assist with EDA problems 

encountered during physical design. Therefore, a typical ML flow consists of: (i) Data 

preparation and transformation, where data is either simulated or extracted from a given 

champion data. At this stage, data can be transformed to other formats if necessary; (ii) 

Model selection, where the architecture that substitutes the given EDA task is selected. 

It can involve using simple ML models or implementing deep networks with several 

experimental runs; (iii) Model training and evaluation, where relevant metrics are 

defined based on how the model is fit to the simulated/truth labels, along with real 

production data constraint checks. It usually involves either supervised or unsupervised 

learning and/or Hyper-parameter tuning; (iv) Model deployment, where the models are 

incorporated in EDA tool flow, either in an offline mode or in the loop with on-chip 

optimization. 

Such pathways are applicable for a variety of EDA tasks, including those dealing with 

simulation data, graph-like data, string-like data, and {mixed, unlikely combinations}. 

It is complex and ambiguous to categorize EDA tasks in the aforementioned definitions, 

so the focus is on tackling specific EDA tasks rather than on database formation. In this 

survey, the ML approaches for different EDA tasks like cell placement, timing 

optimization, post layout design-rule-check, and pointer netlist generation are described. 

Classic methods with state of the art ML algorithms are addressed in detail as success 

stories, along with discussions of pros and cons. 

The Digital VLSI design flow consists of several important steps: RTL design, synthesis, 

place & route (P&R), DRC, extraction, and circuit simulation. In each step, unique 

problems must be solved while fulfilling a series of constraints, including timing closure, 

technology rules, power & performance, yield, etc. Some of these problems can be 

efficiently solved using hard-coded algorithms/heuristics and are in few core commercial 

tools. However, several problems remain difficult due to their computational complexity 

or lack of thorough problem formulations. A majority of these yet-unresolved problems 

are tackled using custom EDA flows with human experts involved to fulfill 

requirements. With technology advancement on both the design and manufacturing side, 
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a growing dataset and potential knowledge are available in the form of both simulated 

and production data extraction. 

5.5. Benefits of AI in Chip Design 

The gradual involvement of AI in each phase of IC design is beneficial for designers, 

engineers, and the overall EDA, besides reducing the design cycle time. The arrival of 

AI is expected to tackle the current challenges of crowded design specifications and 

exploding costs of design and process development, fabrication, and testing in chip 

design [1]. Artificial & Machine Learning (AML) methods have been introduced, and 

tools developed to take advantage of analytical and statistical methods for various tasks 

in system design and verification, physical design, timing verification, testing, etc. The 

transformed methodologies are more scalable than original ones, enabling the addressing 

of problems at a much higher complexity. A more profound impact is expected from the 

acceleration of AMD and general implementation of neural networks by 

GPU/FPGA/ASIC hardware accelerators through recent advances in neural architecture, 

representation learning, the availability of big data, etc. The EDA algorithms based on 

these new architectures, paradigms, and workflows would not only be more scalable but 

also fundamentally different from the traditional methods. Nevertheless, there are issues 

to be resolved to create reliable EDA tools with AI at each stage of chip design and tackle 

its grand challenges sparked by new deep-learning techniques. 

 

Fig : Innovative Is China in Semiconductors 
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Demand for AI chips is growing exponentially due to continuously growing data 

generation and its associated analytics in various sectors. This demand for performance, 

power, and area is extremely tough and the existing chips need to be fashioned again 

with radical architectural changes. This poses challenges on architecture research since 

existing principles of them are impossible to follow. The ever-going global tech war is 

creating trade->war tech barriers, which leads to abrupt growth of local portrait foundries 

or unexpected bankruptcy to establish some other advanced nodes by existing foundries. 

This significantly increases the design complexity on unseen technologies due to an 

uncontactable process corner. As semiconductor technology nodes become smaller, the 

side effects of their inherent physics increase. It results in variability in both functional 

and physical domains - to databook and exhibiting a power law behavior. 

5.5.1. Increased Efficiency 

Electronic design automation (EDA) is a key area in computer-aided design (CAD) and 

is crucial for the development of digital systems. The exponential growth of design 

complexity has resulted in the widespread usage of automatic algorithms. EDA has 

advanced significantly in the past 40 years. During the earlier eras of EDA, heuristic 

algorithms were defined explicitly and were problem-specific. Around the end of the 

1990s, with the growth of computer processing speed, more generic and broader 

algorithms came into focus, targeting various applications. A sufficient amount of library 

data was then available for better initialization of the algorithms, which increased their 

convergence speed. This in effect broadened the applications of meta-heuristics in 

industrial CAD tools for timing closure and physical design. Even in the last decade, the 

industry has witnessed a dramatic increase in capacity, which amplified the scale and 

complexity of backend designs. More importantly, advanced technology nodes have also 

been adopted for AI, which brought more challenges to the design aspects in both 

processing and manufacturing. The capacity limit of computers has also been 

challenged, which resulted in updated versions of older EDA algorithms. In this 

background, academia embraces more autonomy from the industry regarding numerical 

algorithms, which has resulted in a wealth of algorithms, software and ideas that can be 

revisited for new potential. Many emerging techniques in optimization, classification, 

modeling, simulation, etc. can be well adapted in EDA applications and are expected to 

have huge potentials, because they have different convergence speeds, accuracy ranges 

and solution accuracies. In this context, machine learning (ML), especially deep learning 

(DL), has attracted extensive attention and has been adopted in many fields. However, 

its applications in EDA are still limited. Thus, the goal of this review is to summarize 

existing ML-based methods for various applications in EDA. The specific objectives are 

as follows: 1) identify the necessity of applying ML in EDA; 2) review existing ML-

based methods for diverse EDA tasks; 3) delineate the challenges of this riveting area 
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for future research directions in more depth; and 4) point out the challenges and open 

issues in detail. 

5.5.2. Enhanced Accuracy 

With the increasing economic demands, many ASIC/FPGA designs are pushed to 

several hundred million gates, resulting in an ever-growing optimization resource 

consumption and hindering users from achieving the desired quality of results in time. 

Many advanced EDA tools are adopting AI-based methods to accelerate analysis and 

optimization, resulting in significant speedup compared to traditional computational 

methods. Early AI-based VLSI design systems performed layout generation/trimming, 

placement, and routing. After this, they were proposed for netlist synthesis, estimation 

and fault detection of manufacturing defect, and circuit simulation. The use of AI 

algorithms and heuristics in EDA tools is certainly not new. Hence, after a 

comprehensive introduction to EDA, basic definitions and parameters, corresponding 

AI/ML models and algorithms are provided along with practical examples on their use 

in EDA tools. 

Recently, many AI approaches have been used for 2D FE-based post-layout RC 

extraction. A two-step method is developed to obtain accurate and efficient parasitic 

capacitance extraction results based on a combination of ML and the FEM, which has 

been incorporated into Synopsys StarRC. A fast post-layout 3D RC extraction flow using 

the AI approach is also reported, which includes two phases of a machine-learning-

enabled SRAMs RC extraction flow. Post-processing was conducted on the extracted 

RC nets to achieve speedup of various timing analysis tasks. 

The rapid advancements in electronic products and technology have put tremendous 

pressure on the semiconductor industry. Semiconductor devices are continuously 

integrated into smaller areas, consuming reduced power and yet achieving higher 

performance at a lower price. For example, the number of transistors on an integrated 

circuit (IC) is estimated to double in size every 18 months, according to Moore's law. 

However, this new generation technology is getting very complicated. In particular, with 

the introduction of multi-patterning, with reduced technology nodes, the number of 

possible design rules has taken a huge leap. The industry has come to realize that new 

computational approaches are required in solving these complicated problems and 

satisfying these new design rules. 

On the one hand, there has been a ton of new research in different advanced forms of 

computing, including approximate computing, CPU-GPU collaboration, etc. These 

forms of computing take advantage of huge performance gains provided by new 

hardware architectures. Implementing well-studied algorithms into these new forms of 
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computing could gain performance improvements over standard computing platforms 

greatly. On the other hand, with the growing availability of very large datasets and 

dramatic advances in machine learning, there has also been a surge of interest in using 

learning algorithms as alternative computational engines to design chips, detect faults, 

and even predict future VLSI designs. 

5.5.3. Cost Reduction 

primary driving force for the down-scaling process. Over the years, the dimensions of 

the logic devices have shrunk at a maximum rate of Moore’s law and became smaller 

than the resolvable feature size and the working function of the semiconductor 

technology. Such continued shrinkage has brought about new challenges in 

manufacturing a chip, especially the interconnectivity among the devices. The level of 

manufacturing process complexity has attained an avalanche increase resulting in huge 

fabrication costs. Current technology nodes fabricated in weak lithography are generally 

considered the corner process technology nodes. The level of design complexity has also 

increased at an unmanageable level in pentascale designs. As a stewardship on design 

productivity, the advancing of design tools is the key to the declivity region of the Kumar 

curve below 280 nm. In other words, there is no tactical retreat for existing design tools 

since otherwise, design productivity will be exponentially deteriorated. The complexity 

of design tools is also expected to increase proportionately. In contrast to the other areas 

of CAD research that are currently processing at a static state, the dynamic nature of AI 

learning methods could be two-phased of inherent cracks for the other than standard 

CAD methods. 

Conventionally, a large number of methodologies have been developed for the CAD of 

VLSI chips on a cost and time-effective basis. High demands, various potentials and 

prospects, investments, and research-collaborations have been devoted and pursued. 

Nevertheless, no one architecture of these CAD tools has yet been matured and 

established as a standard flow of usage, preventing their practical applications in a wider 

community. Machine learning (ML) and AI learning algorithms have been investigated 

and proposed for a wide range of learning strategies and tasked problems. In terms of 

their wide availability, easy engineering, and relatively low requirements of the training 

database, these learning algorithms are anticipated to unfold their usage on a variety of 

VLSI CAD methods, especially on the methodology development and optimization of 

cost and time-effective basis. More generally, learned tools can be of network 

architectures facilitating parallel computation in a workstation with variable computing 

cores. 
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5.6. Conclusion 

Artificial intelligence (AI) and machine learning (ML) algorithms are playing an 

increasingly critical role in the electronic design automation (EDA) of silicon devices. 

Given the challenges posed by modern nanometer-scale semiconductor technologies, the 

need for EDA techniques that are faster, smarter, and more reliable has never been more 

critical. AI, with its versatility and flexibility, is well-suited to this task. In contrast to 

conventional techniques that leverage rule-based methodologies, AI/ML techniques 

have access to a wealth of historical data as well as other design and technology-specific 

data that were previously considered untouchable. By rapidly identifying trends and 

patterns in the data, AI/ML techniques can create smart heuristics to automate the design 

process and quickly overcome a host of design constraints. This is true across many 

aspects of the semiconductor design ecosystem, from modeling to academic and 

industrial design practices. In particular, in VLSI design and EDA technology, many 

new opportunities are opening up for the development and incorporation of AI/ML 

solutions that will allow the automation of hitherto manual processes. 

Narrowing down to the current capabilities of AI and ML, the challenges and 

requirements necessary for tackling the application of state-of-the-art AI to 

EDA/modeling are discussed. The findings highlight a sizable gap between the 

capabilities of existing AI/ML solutions and the design automation needs in the 

semiconductor ecosystem. AI/ML algorithms for VLSI design and modeling at various 

abstraction levels are extensively summarized, and the literature reviewed from circuit-

level to system-level design automation. The opportunity areas to benefit from AI/ML 

at each of the design phases are discussed, as well as the possible AI/ML approaches that 

can benefit from existing solutions in the broader world.  

5.6.1. Future Trends 

The maturity of machine learning (ML) tools, increased investment in ML research and 

development by leading semiconductor companies and academia, and the growing 

awareness of ML techniques' usefulness to solve EDA problems are expected to aid the 

adoption and deployment of ML techniques to address traditional and emerging EDA 

challenges. A broad scope view of ML in EDA reported more than 1,000 applications in 

CAD and analysis flows. Applications by categories include EDA-related tasks at 

various levels of design abstraction, techniques selected by applications, and the 

resources leveraged to train the models. 

With the consent and collaboration of semiconductor companies and expert researchers, 

this survey endeavored to remove obstacles for newcomers to ML in EDA and spread 

awareness of opportunities to explore new applications for existing research 
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communities. Newcomers can find success stories of ML applications in EDA reported 

in journals, guidance on suitability matched methods of machine learning techniques to 

EDA tasks, and EDA-oriented design environments as sandbox resources for the 

implementation of ML tools. The growing interest of the EDA and IC design-related 

industry in deploying ML tools bodes well for the expansion of the toolkit offered by 

researchers and their commercial implementation. International ML in EDA events are 

expected to be launched in support of this expansion. 

The resurgence of ML techniques has made a profound impact across all disciplines, 

including electronic design automation (EDA). The wide-spread adoption of these 

techniques by EDA companies to solve scattered problems and by semiconductor 

companies to leverage the plethora of EDA data through the collaboration with EDA 

companies and the involvement of academic institutions have further accelerated their 

impact. These proposed tasks and expected trends are expected to guide researchers to 

narrow the search space with respect to the potentially impactful research directions, and 

motivate EDA companies and researchers to fill in the gaps and provide new directions 

to explore under-addressed and completely uninformed problems. 
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