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Chapter 6: Developing low-power, high-

throughput artificial intelligence chips 

for edge devices and real-time inference 

systems 

6.1. Introduction 

Artificial Intelligence (AI) chips are a class of hardware accelerators specifically 

designed for real-time inference of AI algorithms. Digital AI chip(s) are custom CPUs 

designed for efficient implementations of DNN (Deep Neural Networks) workloads. AI 

chips differ from general-purpose CPUs/GPUs in optimizing the compute engine 

architecture such as memory access, and processing elements organization to minimize 

power and latency. Their architecture is driven by their workload(s). Developers are 

continually looking for smarter architectures that can do more with less, hence 

optimizing area, power, and latency. Development of new architectures and circuits for 

the evolving demands of AI workflows is a big challenge. This is an actively explored 

area and is core to the functioning of AI chips. Possible architectures include: (1) 

conventional architectures used in CPU/GPU with optimizations in the access 

mechanisms, (2) architectures similar to FMCW radar that can provide on-chip memory 

and has high fan-in which helps accelerate specific workloads such as DNN, (3) 

processing-in-memory architectures that improve energy efficiency by moving compute 

closer to memory (Lin et al., 2021; Cheng et al., 2024; Omidsajedi et al., 2024). 

AI chips target an increasingly growing number of applications, each with its own unique 

workloads which require the ability to execute diverse algorithms of different 

complexities. Real-time inference systems that need continuous inference are critical in 

this epoch of automated processes and performance chasing machines. However, state-

of-the-art AI chips, architectures, and tools struggle to meet the conflicting demands of 

the number crunching characteristics of inference workloads on latency/throughput and 
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flexibility requirements. Demarketing continuous inference with a microarchitecture 

analysis is performed to identify workloads that stress various microarchitecture 

components of RAIC including conditions that render it inefficient. This identifies 

opportunities to improve area-efficient AI chips. Various techniques based on hardware-

centric software changes and accelerator-specific coils are presented to optimize 

performance in terms of throughput and latency and demonstrate their efficacy on RAIC. 

With continued miniaturization devices in edge devices will be incapable of extracting 

sufficient electrical power from conventional battery chemistry to support growing 

storage, communication and processing demands. Design choices must minimize energy 

consumption per operation, communication costs and fabrication time which will likely 

lead to proposals based on new material systems (Venkataramani et al., 2021; Shuvo et 

al., 2022; Santoso & Surya, 2024). 

 

                             Fig 6.1: Developing Low-Power, High 

6.1.1. Background and significance 

The surging interest in converging artificial intelligence (AI) applications with ultra-low-

power “edge” devices, such as personal health monitoring in smartwatches, autonomous 

vision systems in surveillance and robots, real-time video and audio analytics in home 

and wearables, has stimulated the massive effort in developing low-power, high-

throughput AI chips. Such chips, by incorporating in-memory computing and parallel 



  

85 
 

architecture, could eliminate the bottleneck of the off-chip data movement that generally 

exists in the von Neumann architecture and perform on-chip rapid computation and 

inference with minimum energy consumption. But with such chips, there are still 

challenges to smoothly integrate them into the edge inference systems for practical use. 

Existing software stacks and neural network frameworks for data center and cloud use 

are mostly developed based on the AMD or NVIDIA platforms using GPUs. Country-

specific model compression accelerators have been recently proposed to reduce the 

computational complexity. They could enable pre-trained AI models from open-source 

model libraries faster inference with performance unreduced on edge devices. However, 

they still rely heavily on state-of-the-art AI chips and frameworks originating from the 

cloud infrastructure. 

Real-time learning and adaptation of models with knowledge auto-transferring and 

sharing are necessary to accommodate edge applications’ dynamic environment. The 

flexibility and adaptability of neural structures utilizing some evolving mechanisms like 

neuron/connection growth and death could make replicated networks for the same tasks 

even more efficient. The emerging memory technologies and the memristor synapses’ 

potential in realizing massive parallel MAC operations make real-time learning with 

emerging devices to be a nontrivial task. This also implies the need to have smarter ways 

to train, program, and implement algorithms. Performance scalability becomes a hot 

research point given the ever-growing model complexity or input size. Digital neural 

chips are the most established AI chip implementations for practical use. The synaptic 

nodes become purely digital when the ‘multiply and accumulate’ (MAC) operation is 

implemented using digital logic. Other emerging systems include carbon nanotube 

(CNT) and thin film transistor (TFT) to build synapsis, which could scale up neural 

network implementations. Another upcoming strategy is the use of quantum computing, 

with researchers developing Noisy Intermediate Scale Quantum (NISQ) chips aiming to 

run several operations in parallel, inspiring designs for quantum neural networks. 

6.2. Background and Motivation 

Artificial Intelligence (AI) has gained significant attention in the past decades due to the 

emergence of machine learning (ML) algorithms and big data processing devices. These 

led to the development of the first high level algorithm such as deep neural network 

(DNN). Beyond simple pattern recognition tasks such as image and voice recognition, 

the goal is to build intelligent machines that can learn the task on their own. Memory-

centric real-time learning AI chips such as Resistor Based Artificial Neural Network 

(RAN) Chip are needed to facilitate this. The objective of this project is to develop RAN 

chips by using the low-power highly scalable Analog Crossbar architecture, along with 

Emerging synaptic devices as memory resources. As an Exploring Project, two 
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prototypes with technologies including 40nm CMOS back-end of line and 160 nm 

CMOS rail-to-rail digital are proposed for rapid prototyping and high-speed signal 

verification respectively. RAN chips are aimed to be used in the next generation real-

time running devices such as self-driving vehicles and edge devices in IoT. 

Recently, developing low-power, high-throughput AI chips for edge and devices have 

gained significant attention. Towards this goal, a novel memory-centric architecture, i.e., 

Resistor-Based AI Chip (RAN Chip), is proposed and implemented by using resistive 

crossbar circuits, which achieve large-scale, low-power, and high-throughput 

computing. A crossbar access scheme of the RAN Chip is also proposed, enabling 

programmability and introducing In-Stage-Processing architecture to eliminate 

redundant read-modulation delay, while RAN chip architecture relies on externally 

programmable analogue circuit. Emerging memristor devices are also gaining 

momentum for AI chips, with unique advantages of high speeds in device and 

programming, improved endurance and variability. Conventional memristors use 

crystallinity manipulation to switch the resistance, and are hence incompatible with 

scaled nodes primarily fabricated with amorphous. In addition, RRAMs rely on ion 

diffusion with asymmetric switching speed, leading to poor SRAM compatibility. 

Earlier, an emerging device such as Memristor was integrated with CMOS technology 

to achieve the highest density of an 8Gb RAM chip with cell retention. 

6.2.1. Research design 

The objective of this research is to explore new design techniques that can realize low-

power, high-throughput AI chips for edge computing devices and real-time inference 

systems. Research needs to fulfill both architecture designs and circuit designs in the 

following aspects: (1) A new AI accelerator architecture based on parallel model 

compression and model quantization that seeks a trade-off between performance and 

model size, (2) A comprehensive design flow that includes synthesis flow, quantized 

HDL simulation platform, and CAD tools for performance validation and power error 

analysis focused on model quantization, (3) Circuit designs of mixed-signal digital-to-

analog converters based on regenerative voltage-mode current steering architectures, 

which achieve low area and energy cost on-chip while enabling ultra-low-power, high-

throughput chip designs. This research employs a simulation system-level design for 

architecture design exploration. Model compression and quantization techniques at the 

algorithm level will be comprehensively studied and validated. Additionally, some 

critical techniques, e.g., error-cancellation techniques, matched-designed amplifiers, and 

operation-dependent biasing, will be considered for circuit designs. 

The research will incorporate the following four techniques for architecture exploration, 

performance validation, and power error analysis: (1) Model compression techniques 
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focusing on weight pruning and low-rank approximation, (2) Model quantization 

techniques focusing on weight quantization and activation quantization, (3) A multi-

port-adaptive architecture along with a distributed-interconnect topology for mixed-

signal multi-chip designs, and (4) Simulation tools for language design and circuit 

partition that also include power error analysis on various types of quantized 

distributions like linear, non-linear, or trainable. Researchers will develop tools to 

automatically check the fidelity of weight pruning and low-rank approximation on the 

effect of classification accuracy for deep neural networks. They will also study and 

implement metaheuristic algorithms for network pruning and block-wise low-rank 

decomposition. 

6.3. Overview of AI Chip Architectures 

The AI Chip architectures can be divided into the following five categories: 1) Custom 

chip with only 2D MAP devices, 2) Digital SOC with custom chip for only S/N and 2D 

MAP devices, 3) Mixed-signal SOC for only S/N and 2D MAP devices, 4) Mixed-signal 

SOC for only S/N and R/2D MAP devices, and 5) Digital SOC for only S/N and 2D 

MAP devices. 

1) Custom chip with only 2D MAP devices: The simplest architecture consists of a few 

MAP devices. The proposed method can route weights only using the blank cell and no 

add circuits for non-zero weights, as the original devices have non-zero weight values. 

This can implement different weights and long variable storage using only 2D MAP 

devices. However, due to the low yield factor of the 2D MAP devices, the number of 

devices may be smaller than expected, and the performance of the remaining devices 

could vary severely. In this way, the AI chip could fall short of performance. This could 

be a good choice for chip validation. 

2) Digital SOC with custom chip for only S/N and 2D MAP devices: To increase the 

yield rate and avoid performance variation issues, the overall design could be 

implemented using a digital chip. The co-simulator validates the accuracy of the 

proposed algorithm and the hardware implementation using only digitized S/N and 2D 

MAP devices. The MAP devices could be the same as in the previous one. The digital 

implementation of switching circuits could be tested on FPGA to verify the functionality 

of MAP-based networks. 

3) Mixed-signal SOC for only S/N and 2D MAP devices: To increase the yield rate and 

reduce total power consumption, the overall design could be implemented using a 

mixed-signal chip. The S/N input signals could be digitized and encoded using the ADCs 

in the digital design chip. The MAP-based networks could comprise SOC design with a 
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chip composed of digital blocks such as a shift circuit, timing circuit, decoder, and 

custom analog circuit. 

4) Mixed-signal SOC for only S/N and R/2D MAP devices: Due to the difficulty in 

fabrication, the structure of 2D MAP devices could be changed to R, and the map-based 

networks could be implemented using the newly redesigned SOC structure. S/N input 

signals could be digitized and encoded using the ADCs in the digital design chip. 

Depending on the availability of 2D or R devices, either design could be chosen. 

5) Digital SOC for only S/N and 2D MAP devices: If the performance of S/N devices is 

higher than that of R devices, then the final architecture could be as simple as the 

previous mixed-signal design. The custom ISA would support MAP functions, and the 

resource utilization and routing could be performed using routing assignment 

algorithms. 

 

                             Fig 6.2: Overview of AI Chip Architectures 

6.3.1. Traditional Architectures 

Conventional chip architecture is characterized by fixed function processing elements 

mapped to fixed function on-chip interconnects to achieve a fixed execution schedule 

for max performance while consuming fixed off-chip bandwidth. The assumed hardware 

for computer architecture has been transitioned from room filling multi-board 
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architecture with huge power budget to monolithic implementation of a large scale multi-

core processor with multi-level cache hierarchy. Deep learning algorithms have either 

been implemented using parallel processing on highly scalable chip multiprocessors, or, 

rely on FPGA-like reconfigurable architectures for inference efficiency. All 

conventional architecture assumes a large budget for chip area, power, and bandwidth, 

thus are not suitable for energy efficient processing at the edge due to stringent resource 

constraints imposed by mobile, battery powered, and low-cost deployment. 

High-throughput chip architecture is organized hierarchically, processing elements (PE) 

are grouped into clusters that are connected by a higher level crossbar switch network to 

form a multi-chip system on chip. Each chip integrates multiple clusters connected 

through moderate off-chip bandwidth, and each cluster, in turn, consists of a fixed 

number of PE on a shared local high-bandwidth on-chip interconnect. Such hierarchy 

allows low power and high throughput while a simpler vertex-centric design remains 

applicable. High-throughput architecture organizes a unified cluster of massively 

parallel low-power processing cores (i.e, accelerator) that only support fixed function 

computation for streaming inference. It overcomes the von Neumann bottleneck by 

designing energy-efficient interconnects and routing, thus achieving high throughput and 

is widely adopted in ML DSP. In high density ML with highly burst switched execution, 

it is proven that an inter-core communication graph with a topology close to the 2D 

Hamiltonian cycle achieves the maximum throughput by requiring minimum on-chip 

routing. 

6.3.2. Emerging Architectures 

Edge AI is a collection of systems and frameworks that may be intelligent and able to 

make predictions or decisions about a given environment based only on data acquired 

by local sensors. These systems must be ultra-low-power and inexpensive compared to 

the tremendous computing power available at inexpensive data centers across the globe. 

Key methods to accomplish this goal include specialized low-power IC design circuits, 

novel low-power architectures, improved algorithmic efficiency, and aggressive internal 

representations to minimize energy costs. In addition, in on-chip data storage, efficient 

non-volatile components or resistive architecture cells are emerging but will require new 

low-power reading circuits. 

Neuromorphic architectures pushed Moore’s law to its limits and new parameters have 

to be modeled to fill the gaps between bio-plausibility and functionality compatibility 

with AI. Silicon photonics for optical incoherent SPIKEs or DOPED for mathematically 

coherent likening of crossbar architecture and other emerging technologies are currently 

researched for future neuromorphic implementations. E-in-memory neuromorphic 

systems are on-chip and run energy-saving embedded AI operations while DA is a 
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compute-in-memory strategy limited to production testing of larger chips. These chips 

have to be tailored to existing deep learning network design and thus benefit less from 

the neuro-biological research ideas. Continuing model-hardware co-design on sparsity, 

compression, quantization, or binary/multiplicative networks should retain its utility in 

innovative A1 chip design and runtime acceleration. 

A compact size low-power RFM-based edge AI accelerator chip for CNNs was 

presented for real-time AI object detection and tracking applications with on chip data 

management for best bandwidth utilization. The Montgomery Clarity 64-nm TSMC 

technology can provide more parallel resources retaining the compact size with reduced 

RFM array, and fast analog Varga approximated CNN inference operation with 

improved hidden states utilization. The future work is planned to further enhance the 

tracking throughput and edge-supporting intelligent applications without offline 

training, data downloading, schedule optimization, or high-frequency bandwidth 

telemetry. 

6.4. Low-Power Design Techniques 

Low-power design is fundamentally important for the deployment of AI chips on edge 

devices. Power consumption must scale down as computational workloads become 

intense, as data locality is not fully possible. There are many chip design techniques 

designed for low-power AI chips published in the past decades. Interconnect design 

techniques were firstly discussed in the low-power DSP project and can be applied in AI 

chips as well since AI chips typically have dedicated on-chip buses, interconnects, and 

multi-core fabrics similar to DSP chips. AI chips also study better logic optimization 

techniques. Logic can be simplified through re-formulating the hardware-accelerated 

algorithms, and resultant simpler logic can save dynamic and leakage power. There are 

many power-scaled processing elements so that they remain proportionally 

commensurate with the change in clock frequency through power-scaled voltage reduces 

such means. Overall, recent low-power boosting techniques offer a diverse range of 

solutions that can be implemented in AI silicon chips in different domains and layers of 

abstraction. 

6.4.1. Dynamic Voltage and Frequency Scaling 

Voltage and frequency scaling of the processor impacts the performance of the system. 

The higher clock frequency requires higher supply voltage, leading to high power 

consumption and heat generation. Moreover, supply voltage must be reduced to 

meaningful levels to save power. The processing speed of the processor depends on 

supply voltage. A conventional voltage and frequency scaling technique would scale the 
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supply voltage and frequency based on workload requirements. However, this 

conventional DDVFS approach has a fixed mapping of clock frequency and supply 

voltage pairs. A dynamic voltage and frequency scaling (DVFS) estimator was 

developed to track the workload requirements and provide the output for portable 

microprocessor systems at the lowest power without missing deadlines. This estimator 

predicts the worst case execution time of the portable systems and provides the 

corresponding supply voltage and frequency pairs. Development of a microprocessor 

that monitors the workload of the system and thereby saves power. A powerful 

embedded DSP processor-ring architecture was also suggested to address mobile system 

requirements for on-chip communication, power efficiency, and area constraints. 

Dynamic voltage scaling (DVS) has been developed as an effective technique for 

conserving energy in portable computing. A facility was provided for continuous 

switching between different voltage frequency pairs at run time to speed up the 

computation-intensive tasks and slow down the simpler ones. An evaluation of the 

tradeoffs in value over cost by incorporating dynamic voltage scaling into wireless base 

stations confirmed a power saving of 15%. Clock frequency (f) and supply voltage (Vdd) 

pairs, where the maximum throughput of the coarse-grained reconfigurable architecture 

lies in a variable voltage domain. The supply voltage ranges from 0.85 V to 1.25 V. A 

control strategy is suggested to optimize the frequency and voltage consistently as per 

the throughput requirement. Enhanced voltage/frequency pair mapping is provided to 

examine the anticipated reconfiguration architectures within the same voltage domain. 

A forward voltage/recombinable design of VCOR is implemented in a custom-designed 

dual-path GaAs general-purpose analog floating-point multiplier. 

6.4.2. Power Gating Strategies 

The traditional approach to power gating focuses on using large transistors to connect or 

disconnect power to relevant circuit sections. In a low-threshold voltage circuit, the deep 

sleep state has generally been implemented by shutting down device bias. This takes the 

circuit to a very low current state, where dynamic power is reduced effectively. 

However, waking up such designs takes a longer time, so the circuit may be in this mode 

only if the internal states are not required. A no-change state in ramping a design to its 

operating state has been a big requirement in designs using state-retaining latches or 

similar flops. Here, the state is retained but power to internal sections is isolated using 

large transistors and appropriate boundary conditions need to be provided to avoid 

contention. If adequately handled, power dissipation improves drastically. Many 

architectures use division of circuits into a sequence of states, each of which helps to 

reduce active count, viz., memory blocks. A reduced transition circuit is used to drive it 

out of its no-change state. Feedback from existing designs involving this partitioning is 

used to validate and improve newer designs in either blocks or complete chip layouts. 
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This process is very relevant to designs for mobile applications. In standalone designs, 

bottleneck identification is of crucial importance. Understanding of possible loads and 

their placement provides a basis for power gating strategy selection. Long-term 

investigations regarding partitioning of designs into hot and cold components have given 

aid in mitigating bottlenecks to performance. This is of special interest to purchase 

designs. Here, the design may be fixed but systems level modifications involving 

analysis of packages can aid in tuning implementations to improve performance and 

reduce power. This type of enhancement is most effective when builds of original 

designs have experience from which to draw verification, but can also be applied to 

unintended designs. 

6.5. High-Throughput Design Strategies 

The chip-to-system message-passing buses and register file management, which on-chip 

memory access protocols would allow faster than off-chip access to DRAM-like 

technologies, would allow on-chip level chips similar to FPGAs, TPUs, and Graph-Core 

chips. Image and Scene Processing are fast-growing AI accessory processing in a sensing 

application that benefit greatly from low-power AI acceleration. At the same time, most 

of the existing designs are newly developed architectures based on existing processor-

conceptions without any consideration and integration at chip-level interconnect 

management. AI Chips at the chip-level local-to-global interconnects should be analyzed 

through proposals, which would provide chances to breakthrough retroactively. 

Implementation case studies would be presented to illustrate the designs, assumptions, 

and trade-offs of designs from the industry professionals. 

Low-precision is the first order knob for achieving higher Artificial Intelligence 

Operations. However, the algorithmic space for sub-8-bit precision compute is diverse, 

making FPGAs a natural choice for Deep Neural Network inference. A programmable 

architecture needs to be proposed with the following goals: Flexibility/Versatility and 

Performance. A set of performance benchmarks and design considerations are the inputs 

to the architecture. Finally, how to design an interface, a programming model, and a 

compiler are to be addressed. 

Low-level sensory data processing in many Internet-of-Things devices pursue energy 

efficiency by utilizing sleep modes or slowing the clocking to the minimum. To curb the 

share of stand-by power dissipation in those designs, near-threshold/subthreshold 

operational points or ultra-low-leakage processes in fabrication are employed. The 

upcoming sub-1V solid-state electronics, operating in near-threshold voltage, provides 

unprecedented energy efficiency at peak performance. With assumptions in operand 

distribution, data aggregator architecture to convert the address/interface toggles to 

logic-state toggles, and an SRAM architecture in low-leakage technology targeting up-
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to-20 nm, benefits of near-threshold operational point and massive parallelism are 

optimum energy consumption per instruction operation and minimized memory 

roundtrips. Examples of rapidly growing applications include Advanced Driver 

Assistance Systems, data gathering using drones, surveillance systems and service 

robotics. 

 

Fig : AI Chips Explained How AI Chips Work, Industry Trends, Applications 

6.5.1. Parallel Processing Techniques 

In a parallel computing architecture, multiple processors perform calculations and 

processes simultaneously, thus achieving high throughput while consuming low power. 

First, processing flow, algorithm structure, and processing unit structure are studied. 

Both output-oriented and data-flow-oriented parallelisms are adaptive in processing 

flows. Early polling mechanisms reduce the delay time for a manageable data 

population. Data flow structures rely on data to decide processing engines and processing 

routes. Fixed-rate parallelism achieves real-time inference of slow-moving objects while 

processing units are also adopted for lower power consumption. Localized parallelisms 

are applied to algorithms with a neighborhood or hierarchical settings and include 

maximum area trees in object detection and adaptive grid-searching in key-points 
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matching. Within processing units, layer-wise parallelisms are adapted or newly 

proposed to enable parallel computing of various layers in CNNs. Weight reuse can save 

parameter storage by changing interconnects in convolution operations while directly 

storing parameters into routers can save frequency cycles for fast weight-fetching. Post-

firing data representation can adaptively avoid dropping throughput at low neuron firing 

rates. Pixel-architectured MASH can perform high-speed and low-power operations of 

upsampling, convolving, and deleting hotspots pixel-wise. Letting devices perform 

initial NMS but still leveraging GPGPU for final processing can reduce process board 

area and complexity and save power while achieving high throughput. 

Second, architecture-level pruned algorithms are designed as prototypical architectures. 

Dividing maps to multi-pipelines and processing separately can increase throughput. 

Reduced networks decimate computation while retaining accuracy rates. Modified 

region linking rapidly connects regional pools with exhaustive searches for specific 

pairs. Cross-scanning designs maximize coverage for sharp foveation and uneven center-

point distribution. Design-level re-routed MacSL can enable parallel computing of not 

only weight but also data. Multi-rolling-tiles designs can achieve more than completed 

sign-adding of weights while consuming less than. Searching for coarse aspect ratios 

greatly shrinks the searching space while saving reselection reiterations for regular grids. 

Latency-insensitive designs can make the frame process shareable. Rescaling and 

division in histogram calculation can enable parallel computation while preserving 

quantization storage for higher precision. Cap-based ports avoid blocking by adjusting 

access forces while still keeping simplicity. 

6.5.2. Pipeline Architectures 

The design of real-time inference systems for edge devices requires the careful co-design 

of hardware and algorithms. On one side, large Deep Neural Networks (DNNs) must be 

compressed to a size suitable for on-device inference while guaranteeing a maximum 

achievable accuracy. On the other side, these compact models must be mapped onto 

specialized hardware, such as low-power AI accelerators. This latter step implies the 

adaptation of algorithmic design, data representation, and computation in order to 

maximize the effective usage of both parallelism and sparsity in modern DNNs. 

High-throughput devices normally rely on SRAM-type Memory Hierarchies (MHs) and 

attentively designed dataflow to offer a high bandwidth to the computing units. 

However, such a design can be overly expensive in terms of area and power/energy. In 

contrast, light-weight and restricted edge devices target cheaper and lower-range 

technologies. They typically rely on a low power DRAM-like architecture for weight 

storage, while the slow burden is alleviated through concurrent data transfer and 
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computation at multiple time scales. As a result, these devices may not need to be fixed 

with a large-integer data representation as in high-throughput devices. 

Such a distinct design space also brings many changes in the algorithm side of DNNs 

for edge devices. For example, popular model compression techniques allow for weight-

copy minimizing retraining. By virtue of this design goal, local sensitivity-aware 

truncated gradient updates play a key role to prevent performance plunge in data-format 

adaptations. Partnerships are also necessary for the co-design of DNNs and cross-layer 

architectures given their high intertwining. DNNs for edge inference devices require the 

exploration of extra robustness characteristics that are not desirable in high throughput 

edge devices. 

6.6. Conclusion 

Real-time AI analysis, processing, and decision-making are integral and rapidly growing 

capabilities of edge devices and subsequent autonomous systems. This will further 

catalyze the adoption of various edge AI applications, such as smart homes, smart 

surveillance cameras, smart factories, autonomous vehicles, and drones. Significant 

progress has been made in the AI algorithms and methods for deep learning and data 

analytics. However, the advances in enabling circuits and systems have not kept pace 

with the exponential increase in AI model size, complexity, and compute requirements. 

New architecture, circuit, and system strategies must be developed to address the 

concerns of high power/energy consumption, performance, cost, and die area. Given the 

fast-growing edge AI market, these issues are even more pressing for real-time system 

developments. Notably, deep learning and segmentation model size and edge device 

power/energy budgets must be considered in architecture spatiotemporal design. 

Infrastructure innovation, including scalable modeling/simulation and pre-silicon 

deployment software, is also essential for rapid commercialization and fast design and 

implementation iterations. Notably, circuit and system technologies for wide-bandwidth 

I/O and A/D with high energy efficiency, linearity, noise performance, and flexibility 

are critical for next-generation dynamic vision sensor designs. Multi-modal sensing-

input fusion for vision-edge is a promising direction for achieving noise robustness, low 

power consumption, and compactness. As AI makes increasingly autonomous decisions 

and controls robotic platforms, the traditional separation of perception and control tasks 

remains a significant challenge. Continuing efforts in novel chip architectures, near-

sensor computations, algorithm-computable mappings, and co-design between the 

algorithm and system level will offer edge-based, energy-efficient, and low-latency 

solutions. Further funding is needed by both government and industry in collaboration 

with academic institutions to develop foundational chip and system technologies for 

autonomous perception, processing, and robotics. This is essential for fostering a self-
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sustaining cycle between autonomous systems, infrastructures, 

applications/speculations, and landscape transformations across industries and societies 

and nations. 

6.6.1. Emerging Trends 

The introduction of Artificial Intelligence (AI) systems and algorithms across a range of 

applications has prompted researchers to develop hardware architectures to accelerate a 

key category of algorithmic approaches: neural networks. With rapid advancements in 

computation power, neural networks have been adopted for many commercial 

applications. These high-performance-and-low-power chips enable edge AI, which 

refers to performing AI inference on the edge and is key to next-generation smart 

devices. The design of these chips typically tackles two interrelated criteria: throughput 

and power efficiency, which in turn depends on the architecture and engine. Emerging 

devices such as nonvolatile memory can effectively reduce chip power and area usage, 

performing computation and storage in the same place, which is key to enabling more 

powerful and compact architectures. Even as new devices continue to emerge, dedicated 

Digital Signal Processing (DSP) and Tensor Processing Unit (TPU)-type chips are 

required to process widely used conventional deep learning algorithms, and few 

alternative solutions have proven attractive at scale. 

The interest in Edge AI has prompted a flood of research in accelerators and new 

architectures for neural networks run on digital systems. Digital neural chips have 

continued demonstrating accelerated performance, leading to deployment in major 

applications such as target tracking, computer vision, and natural language processing 

models. As methods develop outside of the typical Deep Learning (DL) architecture, the 

diversity of general-purpose structures will become increasingly important. Post-CMOS 

approaches have again flourished alongside digital systems. New physics have sparked 

novel devices that enable computation to occur with orders of magnitude improvement 

in efficiency, with properties that could either be exploited or replicate effective behavior 

in more robust architectures. Emerging edge devices, typically battery-powered portable 

devices, generate data locally. On-device AI is important to ensure user privacy and 

reduce network bandwidth. However, such devices continue to be limited by computing 

and battery life constraints. At present, mobile or edge devices for efficient AI 

computations typically utilize GPUs to compute fast, with the expected trade-off being 

poor power performance compared to alternatives for small networks. Proposed new 

hardware architectures include orthogonal/core devices and in-memory computing 

chips. The task of the model post-training quantization is to concentrate activity, make 

minimal modifications to the weight vector, and in-rode data into weight buffers. 
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