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Chapter 7: The role of high-

performance computing in scaling 

artificial intelligence-centric 

semiconductor architectures 

7.1. Introduction 

Fast-evolving artificial intelligence (AI) algorithms such as large language models have 

been driving the ever-increasing computing demands in today's data centers. 

Heterogeneous computing with domain-specific architectures (DSAs) brings many 

opportunities when scaling up and scaling out the computing system. In particular, 

heterogeneous chiplet architecture is favored to keep scaling up and scaling out the 

system as well as to reduce the design complexity and the cost stemming from the 

traditional monolithic chip design. However, how to interconnect computing resources 

and orchestrate heterogeneous chiplets is the key to success. This section will first 

discuss the diversity and evolving demands of different AI workloads. Then it will 

discuss how chiplet bring better cost efficiency and shorter time to market. It will further 

discuss the challenges in establishing chiplet interface standards, packaging, and security 

issues. Finally, it will discuss the software programming challenges in chiplet systems. 

Computing workloads are evolving fast, and new demand is also emerging to make AI 

computable in a more efficient fashion. Next-generation AI algorithms and training 

settings are driven to explore better performance while pushing the limits of the hardware 

platform. Additionally, novel AI applications are also proposed to solve scientific 

computing challenges in a more efficient way. All these drivers of new workloads intend 

to maximize the performance on a certain task but also lead to diverse architectures 

ranging from specialized to general-purpose design. Such exploding diversities largely 

overwhelm the effectiveness and efficiency of the accelerator, making traditional 

architectural paradigms less applicable. 
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AI accelerators are already predominantly used to boost up the throughput of training 

and inference. It is expected that AI accelerators would continue evolving and become 

even more ubiquitous in broader areas including data analysis, simulations, etc. to 

achieve higher efficiency. However, with the architecture being dedicated to accelerating 

the AI workloads specifically, the workload capability of such accelerators must also 

evolve as the target AI algorithms. AI training requires huge amounts of data to be 

frequently moving across chips and chiplets. This would lead to escalating energy and 

consumption costs. An emerging workload is using memory side computing by rebaking 

the weight on DRAM chip 3D stack to alleviate the data exchange overhead. However, 

new power delivery and thermal issues arise that need to be researched and resolved (Ali 

et al., 2024; Poduval et al., 2024). 

 

                              Fig 7.1: High Performance Computing Insight 

7.1.1. Background and Significance 

Recent years have witnessed a rise in the number and complexity of mechanical 

components in various hardware systems and applications, from mobile devices to cloud 

data centers. Such a trend results in outstanding performance improvements, signal 

integrity enhancements, and cost reductions, etc. However, it also leads to serious design 

challenges, including huge design complexity, extensive power and performance 

analysis with inefficiency, high cost in implementing a manufacturable design, 

debugging and verifying a robust and reliable design, etc. 
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To meet these design challenges, high-performance computing has been driving the 

advancement of very large scale integration in both hardware and software. Within the 

hardware framework, it gives birth to extraordinary massively parallel computing chips 

with several hundred million transistors, extremely fast junctions that can be fabricated 

very close to each other on a chip, extended scalable system architecture, etc. In the 

software system, evolving and maturing simulation tools for performance evaluation, 

design analysis, functional verification, etc., to support system modeling, simulation, 

and emulation at both a high level of abstraction and very high speeds, have become 

critical for the rapid convergence of the design cycle. On-chip accurate power and 

performance extraction tools, robustness analysis tools, and deep learning-based post-

silicon validation tools further facilitate the evaluation and debugging of a design once 

it is implemented, resulting in a more robust, reliable, and manufacturable design. 

Simulation techniques have helped tremendously and are expected to continue to 

dominate the increasingly more advanced hardware industry. However, the escalating 

complexity of hardware systems can quickly surpass the computing power of simulation 

techniques, and thus the limitations of simulation-based approaches have gradually been 

realized. For example, to avoid unnecessary high-level polynomial time complex 

simulation for performance evaluation, top-down statistical methods have been 

developed. Nevertheless, these sampling and statistical approaches always result in 

performance estimation rather than concrete performance value. This performance 

estimation impediment results in a large discrepancy between the performance 

estimation and simulation environment, which incapacitates various efficient design 

exploration and optimization techniques. Instead of work on performance evaluation, 

work has also been done directly on the design optimization side. For example, iterative 

fast gradient-based techniques have been developed to maximize the worst-case 

performance of a design, but still need a simulation to verify the improvement. 

7.2. Overview of High-Performance Computing 

Computing power is the basis of every computer program. Only a few years ago, the 

computational capacity of a typical laptop was considered extraordinarily high, now 

many AI applications require computing capacity that is thousands of times greater. This 

has led to increasing expenditures in computing power, teraflops, petaflops, exaflops, 

and even zettaflops clusters capable of executing quintillion and sextillion floating-point 

operations (FLOPs) per second. A rethinking of the architecture for computing systems 

is urgently needed to meet the demands of emerging AI applications. Recent history 

demonstrates that AI-centric computer architectures generally achieve more rapid 

advancement with lower cost-to-performance indicators than Von Neumann 

architectures. Nevertheless, AI-centric computer architectures often come with trade-
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offs in programmability and expandability. Two basic considerations moving forward 

are chips designed with more special-purpose units than conventional chips and 

heterogeneous architecture designs integrating heterogeneous chiplets. 

Chip scale. Progress in AI has inspired the looking back-and-forth exploration of 

computing architectures based on special purpose integration. Traditional Von Neumann 

computing counterparts are architecture-on-chip designs, including probabilistic chips; 

neuromorphic chips; and photonic chips. With phenomenal increase in the number of 

distributed chips, a heterogeneous chiplet architecture would take the advantage of 

seamlessly combining many rapidly evolving application specific architecture design 

paradigms to cope with the fast-evolving nature of AI algorithms. A heterogeneous 

chiplet architecture would tremendously simplify the collision of the expansive design 

space with the growing vulnerability of Moore’s Law, as it would provide water for the 

forward engineering iteration process of many individual and diverse designs. 

Chiplet system challenges. To harness tremendous computing power on a chiplet 

platform, several key technologies need to be conceived and further developed. 

Organizing computing units into a high-performance and efficient interdie 

communication network is the critical first step for chiplet success, because mismatched 

communication rings would cause load imbalance and degradation of system 

throughput. A 3D chiplet needs dedicated circuit designs to match high-density inter-

chiplet wiring fabric. Die displacement on the wafer is a drastic challenge for wafer-

level chiplet packaging technology that should be managed beforehand to enhance yield 

ratio. On-chip communication protocols are also crucial for cost-efficient and fast 

communication. A heterogeneous architecture adopts many accelerators on chip, which 

are also heterogeneous computing architectures on each chip. The interoperability, 

scheduling and load balancing of heterogeneous architectures would benefit from the 

elucidation of fine-grained AI models and workloads to introduce chiplet exploitability 

frameworks and frameworks to aid architecture evaluation just as Windows and Android 

expand the performance accessibility of heterogeneous mobile processors. 

7.2.1. Definition and Importance 

High-performance computing (HPC) has become a broad-encompassing field that 

encompasses high-performance hardware architectures (processor, memory, storage, 

media, etc.), high-performance interconnects and networks, job scheduling and resource 

allocation middleware, high-performance operating systems, high-productivity 

programming languages, compilers and libraries, high-quality numerical and software 

engineering, fault tolerance, and so on. It is critical to clearly establish the concept and 

boundaries of HPC before discussing its major role in scaling AI-centric semiconductor 

architectures, as the term might be interpreted to include faster computing by better 
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software, applications, or data. With the rapid rise of AI and deep learning (DL), the 

term “AI” has become a default prefix of many terms or technologies in HPC as in most 

other fields, which, as a consequence, contributes to the cloudy definition of HPC. 

HPC infrastructures and technologies are critically needed to keep pace with the fast 

growth and huge computing/scaling demands of AI algorithms. In particular, new AI-

centric semiconductor architectures need to be designed and fabricated to satisfy the 

heterogeneous computing demands from divergent AI algorithms, data formats, and 

methodologies. Such an effort involves the co-design of the hardware architecture, the 

architecture-middleware-software stack, the corresponding tool chain, and the AI 

algorithms. Designing semiconductor chip architectures is usually a multi-year and even 

decade-long effort. Even for a simpler design, it usually takes one to two years to 

fabricate a chip. It is thus a big challenge to scale the AI-centric semiconductor 

architectures to satisfy the rapidly growing computing demands of AI. 

7.2.2. Historical Development 

Research efforts aimed at “Heterogeneous Chiplets” for semiconductor architectures 

began as early as 1984, when various types of programmable logic structures and 

problems to chip interconnection were discussed. In the next decade, an adaptive mesh-

like chiplet design was proposed that optimally distributes connections among chiplets 

and locales to a larger chip. A similar design called “circuit on demand” was later 

developed to reconfigure chiplets dynamically via programmable circuits while each 

chiplet is statically designed. More elaborate heterogeneous chiplet systems were 

investigated in the following decades, suggesting connectivity activation before 

integration, a hybrid on-chip interconnection design, dynamic reconfiguration of chiplets 

based on online workload characteristics, and a modular architecture allowing chiplets 

either to remain static with predefined connections or dynamically migrate to on-chip 

locations. Practical examples of homogeneous chiplets like 3D DRAM or CPU to GPU 

interconnects are readily found today. Fully heterogeneous chiplets are comparatively 

fewer, with designs taking square FPGA chips and sequentials for operating GPUs for 

IC logic and cache design. A 28nm 256Gbp 64×32 die stack combined with FET 

memory chips was suggested. The complexity in placement was discussed, proposing 

placements of chiplets in accounts of the fine-grain heat control and small thermal design 

costs thanks to the homogeneous chiplets. The channel on transmitting more than 

independent chiplets over interfacing capacitors was discussed, showing external and 

per-diem ground noise. Recently, the design of a brain-inspired and heterogeneous HPC 

architecture over CPU chips, sensors, racetrack and optical memory chips VLIW 

architectures was detailed. The design has been used for analysis by several other 

researchers. The critical power gain over networks’ throughput on hybrid comparing 
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networks on chips with recursive placements among identical devices through meshes 

and examined distance’s effect on throughputs. 

7.2.3. Current Trends 

As AI algorithms quickly transition from prototype and academic stages to enterprise-

ready systems in cybersecurity, finance, healthcare, and self-driving cars, the underlying 

infrastructure to satisfy the ever-increasing demand for AI computing resources remains 

a challenging and multifaceted problem. In data centers, there have been multiple co-

design avenues to scale up and scale out the AI computing capabilities including domain-

specific hardware accelerators, memory architecture co-designs, heterogeneous systems, 

and even new computation paradigms. An interdisciplinary discussion is presented about 

the major trends in hardware architecture and compact interconnects for enabling large-

scale and AI-centric computing systems. 

As analyzing the unique characteristics of AI workloads considering both emerging 

model complexity and increasing data volume, it delves into the computing, memory, 

and communication resource requirements for AI workloads. The challenges of 

monolithic chip scaling and architecture diversity in IPs and architecture types are 

explored. It is focused on the opportunities and challenges brought by heterogeneous 

chiplet architecture and ecosystem. The M-Scale AI-Driven High-Performance 

Lifecycle Computing is proposed, which calls for close collaboration among chip, board, 

system, co-design stacks, co-simulation, operating system, and compiler infrastructure. 

It is anticipated that interdisciplinary consensus building is urgently needed to address 

the increasing complexity of hierarchical computing systems. 

7.3. AI-Centric Semiconductor Architectures 

While semiconductor chip-based deep learning has achieved impressive results over the 

last decade, massive amounts of data and complex models have fueled the demandability 

for fast, efficient, and high-performance chips in terms of compatibility for recent large-

scale AI models such as ChatGPT. To accelerate these inferences, the typical design 

style for chips is highly scalable, leading to a large number of processing units. As a 

consequence, sophisticated interconnects are often required to hold together the 

programming. Combined with the ever-increasing data movement, it leads to large 

power and bandwidth overheads. To mitigate these problems, emerging Distributed 

Architecture design is discussed, which aims to disintegrate chips into multiple smaller 

chiplets composed of heterogeneous domain-specific architectures, with different 

chiplets serving workload-specific purposes. This design strategy not only significantly 

reduces the connectivity and packaging costs but also improves adaptability, reusability, 
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and flexibility. However, it necessitates an efficient interconnections framework across 

chiplets, which is nontrivial, given the high-performance and high-bandwidth demands. 

In addition, a well-designed chiplet architecture is key to enabling energy-efficient AI-

capable computing solutions. High-level synthesis brings merit by allowing designers to 

work at a level of abstraction closer to algorithms/protocols instead of circuit topologies. 

Such abstraction can make it easier to explore alternative architectural designs. 

However, it is more challenging to guarantee bugs in hardware implementations as the 

abstraction level rises. Moreover, high-performance computing demands of many AI 

workloads can form significant computational bottlenecks in chip-grade AI acceleration. 

Thus, new hardware designs and performance models are needed to facilitate the 

delivery of chip-grade AI accelerators, which is an enabling step crucial to make 

effective use of the rapidly advancing fabrication technologies. 

 

Fig 7.2: AI-Centric Semiconductor Architectures 

7.3.1. Definition and Characteristics 

AI (Artificial Intelligence) models, particularly generative large language models 

(LLMs), are driving an increased focus on high-performance computing (HPC) in both 

commercial and research environments. There is a need to frame AI workloads broadly 

in order to characterize computer, memory, storage, and hierarchical interconnects, 
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spanning from the edge to the data center. In terms of computer architectures, there is a 

need to profile custom ASICs for accelerating AI inference, exploring heterogeneous 

architectures including CPUs, GPUs, and TPUs for scaling up training, and studying 

High-Performance Computing and fast-evolving AI architecture collaboration scenarios 

on exascale supercomputers. As concerns about processor power and capacity density 

increase, there is a need to design high-density architectures for efficient data movement 

and computation during training and inference. In terms of communication and network 

architectures, there is a need to characterize data distribution and model partitioning 

features for co-designs of communication and network architectures based on AI model 

characteristics. The performance bottlenecks of existing interconnects should also be 

analyzed and explored, along with emerging and next-generation application-aware 

switched architecture networks. Dynamic reconfiguration capabilities for efficiently 

composing the most suitable internode communication topology should be investigated, 

as well as task- and data-centric communication abstractions using mixed programming 

models and programming paradigms coupled with heterogeneous architectures. 

AI algorithms demand intricate model architectures that can no longer fit into the 

memory of a single training processor. For good performance, data parallelism and 

pipeline parallelism must be well-tuned together to minimize the inter-node 

communication costs. Also, feed-forward layers within the model must be well-paced in 

the middle stage between communication and computation. Many existing deep learning 

training systems struggle to optimize performance in such models. To address this gap, 

an easy-to-use and high-performance system based on the backpressure mechanism is 

proposed. The newly proposed conversations, making it easier to represent a model 

training process and construction of software frameworks with new AI-HPC workflows, 

along with transition designs to leverage existing training systems are also discussed. 

This software is also successfully integrated with existing big computing clusters and 

widely used by the AI community. AI is transforming every sector of society, from 

medicine, finance, and transportation to entertainment. Heightened interest has been 

paired with rapidly-evolving generative AI model types, architectures, and associated 

software tools and frameworks. AI algorithms and models differ greatly in terms of their 

architecture, layer and data tensor characteristics, and system requirements. These 

differences, alongside wildly different model training frameworks, present a substantial 

obstacle to the integration of AI and HPC workflows. 

7.3.2. Key Players in the Market 

AI-centric semiconductor architecture is in the center of high-performance computing or 

supercomputing as computing, memory, and communication technologies are scaling to 

exascale and beyond. AI-centric semiconductor architecture can use a similar 
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architecture, algorithm, and methodology to massively parallel and distributed 

architectures for traditional supercomputers with algorithm and architecture 

customization. The custom AI-centric semiconductors then feed the value-added AI 

computing and its applications in simulation, cloud computing, and autonomous 

everything. 

Global companies including semiconductor and system vendors, cloud and datacenter 

services providers, AI chip and software developers comprise the AI computing 

supercomputing ecosystem. These players and their products, technologies, platforms, 

and opportunities are summarized. AMD, Intel, and Nvidia compete for the datacenter 

CPU market. AMD’s EPYC CPUs and AI chip MI250 and MI300 use chiplet technology 

for scalability and efficiency. Intel’s Sapphire Rapids and Granite Rapids CPUs and 

Gaudi AI chips with on-package high-bandwidth memory target the AI datacenter 

together with Habana’s Gaudi2 chips with similar technology. Nvidia’s CPUs and chips 

including Hopper GPUs drive the AI datacenter market, supported by its association 

acquisition and omniAI initiative. Custom semiconductor chip and IP vendors include 

Arm, Graphcore, Renesas, and Tenstorrent. Software stack and ecosystem providers 

include software stack vendors ETA and Dwanze, chip and software co-design IDEs 

Semihalo and Kumo, hypervisors Domospace, scheduling middleware scheduler and 

Coigone, x86 programming language extensions Projex and Exsolv. 9886 startups from 

AI software to AI chips leverage these vendor products and services. Enterprises deploy 

these technologies. 

The companies from semiconductor to cloud computing hardware and programming 

languages dominate the first two layers. Consumer innovation, manufacturing 

optimization, and combination are opportunities in the third layer. Low-cost and energy-

efficient optimal smart hardware devices, new unique smart hardware products including 

AIoT wearables, sensor, and actuators with algorithm customization, and flexible and 

recyclable quantum chips and devices with physically unclone-able function and their 

architecture, computing, and programming language remain challenges to avoid 

sleepless nights. 

7.3.3. Recent Innovations 

Recently, the performances of both software and hardware for training and inference of 

neural networks have seen revolutionary improvements. They range from new ResNet 

architectures and new optimizers with better convergence properties to innovative chip 

architectures and training algorithms that facilitate utilization of large supercomputers. 

These advances enable exceptionally faster training, such as the first training of a 1 

trillion parameter model on supercomputers in only a few days. Several extremely 

successful AI companies taking advantage of these breakthroughs have emerged, and 
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the silicon valley AI community has faced an enormous paradigm shift. Unlike the 

traditional software industry with various software-based products, the most modern and 

successful AI companies also need to release prevalent new chips. Traditionally chip 

design and fabrication duration used to be on the decade scale, these white knights should 

form fierce rivalries with long-standing semiconductor giants. There still remains a huge 

knowledge base and unresolved challenges for chip architecting and designing. This 

greatly motivates researchers from both hardware and software communities to provide 

new insights to advance this growing new frontier. Although many newer devices have 

emerged, these revolutionary improvements on massively parallel chip architectures and 

novel computational paradigms for disparate neural network training all help to 

turbocharge this chip-centric golden age. 

Deep learning (DL)-based AI technologies are rapidly revolutionizing every aspect of 

modern society, significantly outperforming their traditional counterparts in diverse 

fields such as computer vision (CV) and natural language processing (NLP). To keep up 

with the ever-accelerating performance demand, massive parallel platform strategies 

from single GPU model parallelism to distributed data parallelism across thousands of 

GPUs, chips, or nodes are extensively investigated. However, the software and hardware 

limitations are making it more and more challenging to scale to trillions of parameters 

and millions of GPUs. Most emerging large-scale training supercomputers are composed 

of more than 400,000 A100 or H100 GPUs with 8–80 GPUs per node all using PCIe 

interconnect. AI-on-CPU-centric architectures are investigated to meet vast 

computational demand and address dramatic interconnect scalability challenges. 

7.4. The Intersection of HPC and AI 

Machine learning (ML) from the perspective of high-performance computing (HPC) is 

one of the hottest topics in today’s field of computing. It is being used in cutting-edge 

applications from seismic analysis of subterranean oil reservoir data to reconstruction of 

the cosmic web from cosmic microwave background sky maps to imaging the first black 

hole in history through the Event Horizon Telescope experiment to modeling polycyclic 

aromatic hydrocarbons in catalytic chemical processes and many more. On the one hand, 

the complexity of the scientific endeavors from these fields pushes the ML algorithms 

to the very edge of computing systems, which leads to the need for a larger scale of ML 

with more compute resources and ingenious utilization of these resources, in other 

words, a scaleup of ML. On the other hand, this wave of adoption of ML brings new 

challenges on how to efficiently scale ML algorithms on large supercomputers and 

utilize cluster management methods usually developed for traditional computing 

workloads in production environments for both large-scale cluster deployment and 

utilization. Consequently, a tremendous number of efforts have been invested in these 
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areas including massively parallel ML libraries and systems such as Lbann, Dask-ML, 

and Horovod, MPI-based sparse deep learning and hyperparameter optimization 

libraries, attempts to enable the efficient scaling of third-party ML libraries such as 

BigDL and LAMBDA on supercomputers either by creating distributed training backs 

or designing novel parallel training methods. However, the education and 

communication gap between the two communities is still prevalent. For instance, HPC 

clusters are equipped with HPC-oriented middleware and libraries to facilitate the needy 

support of scientific computing workloads. What if the ML workloads run on multiple 

nodes using the same backend MPI? Native applications usually call upon HPC libraries 

such as ScaLAPACK for high-dimensional large-scale tensor decomposition of 

necessary input data? Although this endeavor can, in general, alleviate many 

implementation details, bringing in these competencies into the ML world may shorten 

the time to science enormously. Vice versa, ML techniques have been extensively 

employed in numerous aspects of HPC. The combination of these two worlds is actually 

yet to be enriched. 

7.4.1. Synergies and Benefits 

The advancement of AI technologies has fueled the rapid growth of their computing 

demands. Understanding how to effectively deploy a high-performance AI-centric 

semiconductor architecture to address these soaring demands and expand its deployment 

and application in other domains lies at the intersection of heterogeneous processing 

technologies and high-performance computing (HPC) workloads. On the processing 

technology side, traditional approaches mostly rely on optimized monolithic 

architectures, which successfully improve efficiency and performance but cannot cope 

with the exponentially growing demands of new-age applications, such as AI inference. 

Thus, as conventional scaling approaches become infeasible, scalable and chiplet-based 

heterogeneous chip architectures have begun to take the stage, leading to a shift from a 

“design once for all” homogeneous architecture paradigm to a more flexible 

heterogeneous architecture. As an interesting twist, this evolution towards heterogeneity 

creates opportunities for new approaches in high-performance computing by enabling 

the co-design and co-optimization of both architectures and workloads, particularly for 

AI-HPC workflows . 

Traditionally separated HPC and AI have recently converged, and a new paradigm with 

the interplay of traditional structure-based numerical simulations and modern data-based 

machine learning has begun to gain attention. This trend is primarily driven by a strong 

demand for scientific analytics in a more effective and efficient way for better decision-

making. On the one hand, service providers of exascale systems are actively exploring 

the deployment of AI models to facilitate the monitoring of workloads, helping improve 
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system performance, utilization/effectiveness, and reliability. As targeted workloads 

shift from pure simulations to AI-coupled workflows, it is of great interest to study the 

needs from both sides and develop better orchestration strategies for improved 

performance and efficiency. On the other hand, AI workloads require low-latency and 

high-bandwidth inter-chip communication, meaning that abundant PHYSICAL chip-

hops should be designed and implemented in an area-efficient way. 

7.4.2. Challenges in Integration 

With the rapid increase in the Inference workloads generated by Generative AI, 

semiconductor technology nodes, computational structures, AI algorithms as well as 

heterogeneous architectures are all moving towards different directions. New memory 

architectures that are compatible with these nodes, structures, algorithms and 

architectures are critical for unleashing their full potential. In this talk, the challenges 

facing emerging AI-centric semiconductor architectures beyond computing and memory 

will be briefly discussed. AI workloads in Generative AI are characterized with large 

models, diverse data types and real-time model compositions. The capabilities of various 

hardware accelerators beyond computing are summarized against the characteristics of 

Generative AI workloads. In particular, co-optimizing the many-core fabrics, on/off-chip 

memory and high-performance interconnect will be discussed in detail. Emerging chiplet 

technology enables heterogeneous chip design across different IP vendors, and hence 

increases the availability and variety of customized DNN accelerator architectures. A 

well-trained neural network model can have millions of parameters and hence 

impractically large storage footprint. Complicated dataflow and extensive data 

movements inefficiently utilize on-chip memory bandwidth under high precision 

weights. A DNN model can be designed, trained and retrained with an increased depth 

and width to achieve a target accuracy. However, scaling up a model increases 

compression difficulties in Post-training Quantization (PTQ), minimizes the trade-off 

between precision and performance in Federated Learning (FL), and limits the 

representation ability in model pruning. Logic-in-Memory (LiM) devices, with non-

volatile semiconductor materials to implement memristors, and novel architectures show 

good capacity in enhancing the endurance and speed but struggle to utilize less power 

and cost. They can evolve as a product but rich co-design strategies are still needed to 

unlock the technology potential. Under the rapidly changing technologies, a chosen 

architecture may not be the most efficient choice in exascale DNN training 

implementation. Existing chiplet design flow needs to be modified to enable self-tuning 

for a more efficient chip design. 
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7.5. Scalability Issues in AI-Centric Architectures 

High-performance computing (HPC) enables the exploration of various architectures for 

scaling AI-centric workloads. The goal of HPC is to realize the inherent parallelism in 

workloads, whether it is deep learning or traditional scientific computing, and take 

advantage of that parallelism across compute cores. The parallelism is explored at 

different levels and corresponding systems are built that feature high customizability and 

performance on the workloads of a given class. Within the TPU family, systolic arrays 

are used for matrix multiplications and model training, while a bridging chip based on 

custom architectures is used for embedding updates and user assignments . 

 

Fig : High-Performance Computing in Scaling AI-Centric Semiconductor 

Architectures 

There are architectural components of a system that can be off-loaded to hardware to 

support customizability or performance. Systems off-load performance-critical tasks of 

the workloads like training or inference to compute clusters consisting of multiple nodes 

where multiple chips collaboratively work on compute-intensive tasks. The computer 

nodes take advantage of scalable interconnects, snapshots, switches, protocol-offloading 

chips, and data-agnostic bandwidth. Future work will focus on addressing the loopholes 

in the architecture and improving the overall scalability and performance. These systems 

usher in deep learning computing infrastructure with the ability to scale in accordance 

with compute demand. Heterogeneous computing with domain-specific architectures 

(DSAs) opens up many opportunities while scaling up and scaling out the computing 

system. A heterogeneous chiplet architecture is favored by cloud service providers to 
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keep scaling up and scaling out the system as well as to reduce the design complexity 

and the cost stemming from the traditional monolithic chip design. 

7.5.1. Performance Bottlenecks 

With the ever-increasing compute demand of ever-more complex AI models, 

performance bottlenecks are expected to arise. The architectural key resources for 

performance scaling are bandwidth and computation (i.e., the capability to execute 

FLOP). Traditionally, the scaling of bandwidth and computation follow Moore's law as 

feature sizes shrink and, together with the foundry/nodes technology, scaling further 

advances at an ever-increasing pace. However, as feature sizes are reduced to a novel 

node, particular design-related technical challenges need to be addressed, which 

collectively result in RFIs and large performance penalties, especially on both bandwidth 

and computation. Hence, heterogeneous designs, such as a high-performance chiplet for 

the chiplet architecture need to be created for performance scaling. 

Moreover, in the post-Moore’s law regime architectures scale computation localities by 

preserving a strict decentralized bisectional bandwidth balance which enables scaling 

the partitioning of algorithmic and hardware aspects on single and multi-node massively 

parallel architectures. For in-memory/fabric HPC-AI and GPU-free architectures, 

algorithms and novelty heterogeneous architectures execute computations on 

unconventional memory-centric elements within the integrated memory and accelerate 

AI-completions and re-completions cycles on-chip on unconventional memory-centric 

elements within high-speed fabric chiplets. 

7.5.2. Resource Management 

Effective management of distributed resources is crucial in executing applications 

spanning multiple computing resources. Many scientific applications for AI model 

training and inferencing require immense computational resources and often rely on 

multiple machines or computer architectures, such as CPU-GPU, heterogeneous or 

hybrid cloud-geographical computing resources, etc. To address the resource 

management challenge, a multi-resource resource management service for orchestration 

and scheduling of applications was built, with a focus on scheduling of loosely-coupled 

applications across heterogeneous resources. In addition to scheduling procedures, the 

design of application, resource and task models was discussed, serving as the foundation 

of more sophisticated resource management schemes addressing resource contention and 

scheduling compliance. 
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The increasing processing demands of emerging multi-model workloads and high-

performance computing requirements pose significant challenges for current chip 

monolithic multi-chip module (MCM)-based AI accelerators. To address these issues, 

the requirements for scheduling workloads on heterogeneous AI MCM architectures 

were identified, and a general scheduling model was proposed. It has been shown that 

optimal scheduling is NP-hard. A set of fast heuristics to minimize schedule length and 

energy-delay product were developed, which codify advanced techniques such as 

pipelined execution and work-sharing strategies. The proposed scheduling method 

demonstrated effective and efficient scheduling for MC-MCMs, far exceeding previous 

homogeneous MCM scheduling approaches . 

7.6. Conclusion 

There is an urgent need to maximize the compute efficiency, performance, and capability 

of AI-centric semiconductor architectures, deployed in the cloud to support large-scale 

AI workloads will remain ever-present. The constant demands of high-performance 

training and inference of real-time recommender systems, large foundation models, and 

highly efficient AI accelerators, etc., will drive the innovation for faster and more power-

efficient chips. 

AI-centric semiconductor architectures in data centers can have multiple common 

features, including scalable OMI-based distributed memory, on-chip buffering that 

reduces memory access energy and latency, and on-chip triple-TLBs, a key enhancement 

to improve the efficiency and robustness of high-bandwidth memory architecture. A 

novel and comprehensive on-chip bank partitioning of adder trees across various AI 

chips will be demonstrated to reduce HBM memory bandwidth and, hence, energy. The 

performance and energy benefit of global context switching for weight-stationary multi-

dimensional tensor core-based DNN inference are also discussed. 

Lastly, a few paradigms, such as multi-fidelity deep learning, forecasting AI for future 

multiphysics models, and compact modeling for fast transistor-level simulation of very-

large SoCs, can be explored to broaden the current applications of field (and speed) 

programmable gate arrays (FPGAs) in enhancing the design and outputs of other 

computational resources. Lastly, promising future directions such as the advancement of 

fabrication and packaging technologies to mitigate the impact of parasitics on 

performance and robustness, addressing the temperature gradient and non-uniform 

efficiency of AI OMI with a joint consideration of chip architecture, fab technology, and 

architecture into circuit design to break the limitations of mats connectivity between 

chips, etc., are outlined. 
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7.6.1. Emerging Technologies 

The emergence of generative AI has brought new challenges for hardware design. The 

scalability and efficiency of generative AI greatly rely on high-performance computing. 

Beside accelerators, the communications architecture, especially on-chip heterogeneous 

interconnects designs have become critical. Major cloud service providers are proposed 

to build dedicated GPU clusters over 1000X larger than the currently deployed chip with 

thousands of GPU and Infiniband nodes. However, the scalability and costs of HPC is 

becoming a bottleneck for high-end generative AI workloads. Recently, there is also a 

trend of exploring advanced Memory Contributions, from Memory Centric to Memory 

Near. HPC can be in the (near) memory with 2D/3D area-efficient dense processors or 

3D chiplets with HBM interfaces. 

Generative AI workloads scale dramatically to meet the increasing model/parameter 

size. The costs go massively higher and the energy consumption also scales 

exponentially per unit AI generation. Training typically takes weeks on hundreds of 

GPUs and there are growing concerns on the effectiveness of carbon-neutrality. With 

chiplet technology, such GPU replaced predecessors requires hundreds of on-chip high-

speed pairs for interconnects compared to many paired channels on chip with networks-

in-memory, showing 3D a faster performance scale-up. 
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