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Chapter 8: Harnessing big data analytics 

to improve semiconductor yield, 

reliability, and predictive maintenance  

8.1. Introduction                                                        
As the pace of technological advancement increases, the demand for novel solutions 

across fields is also burgeoning. Industries that rely on intricate and sophisticated 

systems of manual assembly lines are tasked with eradicating downtime, increasing 

output, and reducing production costs—all while ensuring the highest product quality. 

In tandem, upcoming technologies are driving change and improvement in industry. In 

this landscape, existing production processes are developed and enhanced through the 

use of cloud systems, data analytics, and connectivity. The goal is to gain insights and 

implement preventive measures. However, the increased reliance on data results in new 

challenges and possibilities that were not present before, thus creating a need for 

organizations to rethink strategy. 

The semiconductor manufacturing sector is at the forefront of complexity and requires 

machinery that produces unique products of intricate design, for which only techniques 

not previously presented in the manufacturing world are used. Thus, existing approaches 

from industries that rely on machinery with tight and repeating cycles may not be 

feasible and might produce results that fail to achieve the expected outcome. Still, the 

market demands for more solutions from production lines that are increasingly complex 

themselves. A semiconductor fabrication plant is a building, commonly several stories 

high and covering more than 500.000 m2 in its entirety, comprising several hundreds of 

machines, dozens of modules, and expected to produce several thousands of wafers per 

day. Alternatively, a semiconductor back-end factory is smaller but with equal 

complexity (Parmar, 2021;  Kalusivalingam et al., 2022; Anang & Chukwunweike, 

2024). 
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As the broadest area of industry, the semiconductor industry is also highly autonomous, 

whereby each machine is tasked with carrying out a subsection of the overall process, 

e.g., a lithographic process that deposits a layer of photoresist and enables designing at 

the nanoscale level. The back-end assembly used to produce and prepare the chips in the 

package is equally technological and demanding. Here, more than seventy individual 

machines handle photonic chips, usually more than 300 times per chip. Still, these 

machines are not perfect, and complexity emerges in the form of machinery breakdowns, 

production invalidation, error messaging, or human decision-making. In the highly 

automated world of serviced machinery, especially in semiconductor manufacturing, Big 

Data Analytics enables plant-wide data utilization turned into actionable insights 

(Siddiqui et al., 2024; Wright et al., 2024; Rath et al., 2025). 

 

Fig 8.1: Big Data Analytics to Improve Semiconductor Yield, Reliability, and 

Predictive Maintenance 

8.1.1. Background and Significance 

Intelligent manufacturing focuses on time-based operation, cost control, quality 

assurance, and responsive production. Complex manufacturing processes generate big 

data. The exploration of process big data can enhance operational efficiency and reduce 

cycle time in semiconductor manufacturing processes. Big data in semiconductor 

manufacturing includes wafer characteristics, metrology, sensor data, and raw test data 

from manufacturing process execution. The challenge of big data is to extract useful 

information and knowledge stored in the data to provide new understanding and insights 
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into current operations. Big data analytics is essential to develop intelligent 

manufacturing strategies and solutions in semiconductor manufacturing. 

Rapid technology evolution in logic processing, memory, and advanced packaging 

integration led to fundamental changes in the semiconductor industry. Important 

technological innovations include advanced lithography, deposition, fusion bonding, and 

etching processes. These technologies result in the biggest chips with enormous 

capability and integration. However, rapid evolution leads to more complex 

manufacturing processes, which reduce the process yield rate and intrinsic quality of 

products. Further R&D investment in new materials costs a great deal. Big data analytics 

is developed to better extract useful information from big data collected in the production 

and explore knowledge to enhance operational efficiency in the manufacturing 

processes. 

Since the launch of the smart factory and the Industry 4.0 initiative, big data analytics 

using the Internet of Things has been widely investigated in manufacturing engineering. 

Overall data analytics solutions are designed to develop intelligent manufacturing 

strategies in manufacturing scheduling, equipment maintenance, and production 

planning. There exist some papers focusing on semiconductor manufacturing big data 

analytics approaches to extract useful knowledge from process data for better 

understanding and enhancement of operational efficiency in semiconductor 

manufacturing processes. The challenges and opportunities of big data analytics in 

semiconductor manufacturing processes remain a new, open research area. 

 8.2. Understanding Big Data in Semiconductor Industry 

Big data concept in the semiconductor manufacturing industry is viewed differently from 

various perspectives. The big data and analytics framework for smart factory defines big 

data as the data that exceed the storage, access, and analytics capacities of traditional 

hardware and software, including data that are large in volume, complex in structure, 

and high velocity. Examples of big data in semiconductor fabs are in Wafer-Level 

Reliability (WLR). With the faster and smarter devices, the test time for 4G devices has 

been shortened to 20 seconds to avoid yield loss due to the thermal runaway. Battery 

leakage failures become prominent among the WLR typical failures which require a 

longer test time of 60 seconds to guarantee device reliability. The new ATEs with a truly 

parallel testing architecture can support 200 devices per second testing, 16,000 I/O high 

speed pins, and memory capacity of 32 GB per W/LNTA. In smart manufacturing, data 

is the core competency. In semiconductor processes, different types of sensors are 

deployed which generate data in terabytes every day. Data generated in equipment, 

process chambers, and FDC systems are heterogeneous in structured and unstructured 

format. Data generated may not be suitable for immediate analysis. Moreover, it is 
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important to select profitable data features for result prediction while data is big. 

Therefore, a systematic approach matching big data analytics technologies is desired for 

task-orienting semiconductor big data analytics. 

The manufacturing industry has been revolutionized by the widespread adoption of big 

data technologies for extracting and leveraging manufacturing big data. This focus area 

emphasizes the significance of adopting and utilizing big data in the manufacturing 

industry and explores the opportunities and challenges brought by big data to the 

manufacturing industry. Specifically, it summarizes recent advances and research efforts 

in facilitating big data collection, storage, query, processing, analysis, visualization, and 

knowledge discovery. Also, key enabling technologies such as big data analytics 

architecture, big data processing, big data analytic models, algorithms/techniques, and 

big data services in WLCSP assembly are reviewed. In addition to an overview of big 

data analytics in the manufacturing industry, research challenges and directions to 

exploit big data for the intelligence of the manufacturing system and the manufacturing 

process are discussed. 

8.2.1. Research design 

Knowledge generated in the BA processes cannot be reused. Thus, separating data 

processing from knowledge generation to enable reusability of the big data analytics 

processes is essential. 

An exploratory research process was employed to gain deeper knowledge of key 

capabilities regarding expert knowledge communities in semiconductor manufacturing. 

The research was contextualized in the case company's context of mature products, 

wherein some big data analytics processes had already been implemented prior to the 

data-analytics program. Furthermore, existing knowledge infrastructures based on the 

company’s digital twin concept were utilized to mitigate the inherent challenges of 

representing the complex domain knowledge of semiconductor manufacturing 

accurately and comprehensively. The research design entailed multiple case studies 

focusing on how the BA processes were separated from the modeling and analysis. 

Moreover, the semi-structured interview-based data collection process was designed 

collaboratively with the company to enhance the relevance and validity of the data. 

Knowledge communities were identified to receive structured data from the building 

blocks of the company’s digital twin concept, and the BA processes applicable to the 

context were derived from research on data preparation and processing. This led to the 

production of a design proposal in the form of a matrix depicting the linkages between 

key components of the company’s digital twin concept, the knowledge communities, and 

the BA processes. 
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8.3. Data Collection Techniques 

Data logging has become a standard procedure in almost all industries. In semiconductor 

manufacturing, production data is one of the crucial elements allowing the process 

feedback loop to function effectively. Ideally, it is also a service to customers who can 

be provided with trace data like production log and electrical test results are the lagging 

indicators affecting product quality. Manufacturing data logging and collection rates are 

increased by advances in high-speed communication and data storage technologies. At 

the same time, data mining and statistical analysis programs are also developed to 

explore and analyze this abundant collection of data. The knowledge banks are 

continually enriched with new data being included and compiled on a 24-hour basis. It 

has also been recognized that only a small part of the knowledge in the banks is extracted 

and analyzed with commonly used data mining techniques such as statistical process 

control and regression analysis. It is estimated that about 90% of the process-related 

knowledge is still buried in the database. This ratio is even worse for large data banks 

where such as one hundred queries return more than one hundred thousand records and 

0.1% of the data can be analyzed with reasonable effort and time using currently 

available tools. 

To target manufacturing quality improvement, it is necessary to divert some resources 

to analyze the accumulated knowledge banks. A quality index is required to assess the 

process capability of the manufacturing equipment. Performance monitoring charts are 

required to ensure that equipment performance is within a set limit over a period and 

warnings are necessary regarding degradation before a process failure actually occurs. 

There are, however, some unique characteristics of the semiconductor manufacturing 

processes which impose constraints on the development of above-mentioned tools. 

Regardless of how sophisticated the analysis technique is, it is still inevitable that during 

this process, the knowledge about previously unrecognized issues is buried. In addition, 

the objective is to improve product quality and discard defective devices in the end. Thus 

the health indication derived should reflect the machine’s influences on wafer and 

product quality. In addition, during the wafer fabrication, the mask process also 

introduces some capability in differentiating and identifying this process-related 

failure/reliability issue. Thus in turn, the tool is required to detect and identify 

systematically defects that have been flagged during the electrical failing test and 

customer returns. 

8.3.1. Sensors and IoT Devices 

Big Data Analytics, big data, internet of things, IoT As semiconductor manufacturing 

becomes more complex, the volume, variety, and velocity of data generated from 

manufacturing equipment are rapidly increasing. Smart manufacturing with big data 
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analytics is regarded as the best practice for deriving business values from the high-

volume, high-speed data generated in manufacturing factories. With the emergence of 

the IoT, a network of smart connected devices, manufacturing equipment have been 

equipped with an array of sensors, which measure a variety of variables including 

temperatures, pressures, voltages, currents, flow rates, and so forth. In addition, there are 

many other devices such as OPC servers, aligners, probes, manipulators, stockers, 

shipping carts, etc., that become available with sensors and other types of smart modules. 

These machines are used in manufacturing processes, quality inspection, factory 

automation, and material handling. IoT devices measure variables associated with their 

operations, including temperatures, pressures, voltages, currents, flow rates, state 

indicators, etc. As a first step toward smart data-driven manufacturing, it has become 

crucial to establish an IoT-enabled smart manufacturing environment in any modern 

manufacturing industry, where production equipment, inspection systems, and logistics 

systems are integrated to monitor the state of the factory with detailed information. 

 

Fig 8.2: IoT Sensors and Big Data to Improve Precision Crop Production 

8.3.2. Data Acquisition Systems 

Data acquisition systems (DASs) can classify as a type of computer-aided, data-driven 

system employing automated means for collection of process data from production, 

manufacturing, and assembly systems. Process data is generated as a by-product of 

production, but such data must be stored into systematic databases before they can be 

utilized for managerial and engineering purposes. In principle, the major tasks performed 
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by a DAS includes data acquisition (softwares acquiring data from distributed intelligent 

sensors), data storage (historically functional data warehouse), data pre-processing 

(cleaning, filtering, and transformation of raw data into specified identified data 

formats), data aggregation (historically functional MSc fields), data backup systems 

(ensuring historical local and remote backup of database contents without data loss), 

secured access and usage (ensuring security by administration of data usage privileges), 

and on-line/offline status monitoring (ensuring health monitoring of critical units in 

runtime mode). 

Data collection from machine tools and processes has been widely studied and 

commercialized. In semiconductor equipment, some data acquisition systems have been 

deployed around the globe. However, improvements in terms of smarter algorithms, 

efficient data analysis methods, and investigation of smarter collection mean-ings in 

high-volume data generation areas would still be needed. Meanwhile, data processing, 

data warehousing, and applied data mining fields are very mature in both research and 

industrial applications. Plenty of software tools that focus on general emphasis and/or 

specific areas have been developed and utilized. Most semiconductor factories also own 

server farms or cloud storage systems for large amounts of data storage and processing 

power requirements. However, since human-machine-enforced intelligent processes 

have not been widely applied yet, improvement opportunities still exist around the globe. 

 8.4. Data Processing and Management 

Data processing and management in semiconductor manufacturing are labor intensive. 

Traditionally, data processing and preparation involve steps including importing raw 

data from multiple measurement tools, quality checking by human annotators, feature 

extraction, and writing model training data. This process is time consuming, as 

inspecting a whole wafer lot containing 100 slices may take days. Each slice must fulfill 

quality checks on all its range of measurements to see whether they meet the pass and 

fail criteria. A half-inch-wide data science tool has to be developed for feature handling, 

as data formatting varies across tools, making unified formatting a challenge. 

Semiconductor manufacturing relies on customized measurement tools and processes. 

Each supplier is responsible for its tools’ design and controlling measurements. This 

arrangement leads to data standardization issues, as the same kind of feature is computed 

in different ways in different tools. Because of an environment requirement that involves 

air humidity and temperature control, equipment malfunctions in the production 

environment cannot be preemptively flagged. Problems are communicated through a 

textbook-sized human inspection report, and solutions are implemented via a lengthier 

revisited-measurement process. External data rich in time series of stalking processes 

and environmental fluctuation, such as air humidity and temperature, chemical 
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concentrations, and maintenance record, have put pressure on computational units. 

Attempts to speed up the analysis path have not yielded the expected result due to the 

linearity of the steps involved. If the explanation generation takes ten days for a worst-

case scenario, model training on new data will take at least another ten days. It is heavily 

reliant not only on prior step processing but also on the vendor side who holds the data. 

Moreover, unsolicited outliers are returned, as representative outliers will trigger 

engineering trials to analyze and calculate the production cost. A novel data processing 

method is needed to integrate on-device preprocessing into the current workflow. 

With greater scrutiny of the air and battery quality and increasing customer demands for 

battery lifetime, rapid-pulse current cycling analysis is becoming increasingly important 

for batteries in daily monitoring. In a pulse current measurement, pulse ing is done 

through rapid switches between two voltage ranges; the lower range has a greater 

resolution but a lesser current range, while the higher range has a wider area but makes 

it harder to detect faults. With a battery pack, in which each cell is different, a better 

solution must be tried on-line to accommodate the variability in these aspects. Any 

responses like a flat current but a distorted voltage signal shift in phase from the 

reference data will trigger a data science tool to judge the health state. A combination of 

an expert-designed heuristic algorithm for wholesale data screening and an anomaly 

detection algorithm for scanty anomalies has revealed potential struggles in regards to 

the time complexity and handling method. Proposed real-time feedback on pulse 

smoothness failure has been modeled using hidden markov chains. 

8.4.1. Data Cleaning and Preprocessing 

Despite advances in streaming analytics algorithms, a significant portion of the effort 

involved in advanced process control, process analytics, and machine learning involves 

acquiring and preparing data. However, when industrial case studies are published they 

often lack important details on data acquisition and preparation. This is unfortunate as 

while data pre-processing is unfairly maligned as trivial, in practice it has an out-sized 

influence on the success of real-world artificial intelligence applications. This text 

describes best practices for acquiring and preparing operating data to pursue data-driven 

modelling and control opportunities in industrial processes. Practical considerations for 

pre-processing industrial time series data to inform the efficient development of reliable 

soft sensors that provide valuable process insights are presented. The analytics landscape 

is rapidly evolving with an increasing interest in extracting actionable insights from 

process data. Advances in communication, sensor, and storage technologies enable the 

collection of vast amounts of monitoring and operational data, but sophisticated 

computing infrastructure to extract insights from this big data remains scarce. 

Automation facilities are attempting to capitalize on the opportunities offered by big data 
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analytics but face numerous challenges managing and analysing the wealth of process 

data they hold. The extremely high dimensionality of process data presents a significant 

barrier in pursuing data-driven modelling and control methodologies. Because of the 

historically exclusive reliance on mechanistic modelling, modelling needs are often 

highly vague and ill-defined. Inadequate understanding of the available analytics tools 

often results in inappropriate use of tools, limiting the efficacy of data-driven analyses. 

Avoiding these pitfalls necessitates a clear and well-defined understanding of the desired 

outcome of the analysis, including clear metrics to assess quality and performance, as 

well as understanding the limitations of analytical methods used. Sewage treatment is a 

complex nonlinear biological process with uncertainties in the form of stochastic 

disturbances and outliers. It falls under the category of big data due to high volume, 

frequency, and dimensionality. Reinforcement learning-based data-driven control, under 

the framework of the Markov decision process, is a promising approach to address 

challenges thought to be impractical. Simulation-based metrics are proposed to discover 

stable control policies that are no longer degenerated and sample efficient, tremendously 

speeding up the learning process. Further performance improvement techniques to 

improve data efficiency, control performance, and interpretability, respectively, are 

combined to augment the application of the framework. 

8.4.2. Data Storage Solutions 

When deciding how to store data, several aspects need to be addressed. First, the various 

data that need to be stored in the system should be identified. Then the right types of 

data storage solutions should be chosen, such as relational or non-relational solutions. 

Finally, solutions to transfer data to the data storage should be established. This section 

starts by addressing the first two aspects, focusing on types of data and storage solutions. 

For the last aspect, architectures for transferring data to data storage transferred and 

transformed during an example of a disruptive event are described. 

Various types of data are collected, analyzed, processed, reported, and stored in the use 

case systems. These include recipe, correlation, signature, parametric, capabilities, 

parameter value history, tool, probe, lot, update, updated, zone, constraint and sensitivity 

basis data. Several data entities, such as alarms, analysis results, and notifications of 

results being updated, are also used but are more reactive and ephemeral in nature. For 

some data types, e.g., alarm, there are numerous attributes, but most are not of interest 

in this section. There are essentially three levels of detail for most data types, which 

consist of summaries, single data point instances, and a history of all such instances. 

For storing on relational systems, a star schema is identified for each type with various 

tables. Some of the tables are used to store general attributes common for all data type 

instances, whereas others are used to store type-specific attributes. In both types, several 
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tables have surrogate primary keys and various foreign keys. A set of simple queries to 

report on contents of the star schemas is also produced. Further, level-1 reports that use 

the aggregate functions of the business intelligence tools are defined. They are aimed at 

displaying either the outcome of traversing through the result table or a desired version 

of a hexagonal plot. 

 8.5. Big Data Analytics Techniques 

Supported by the growth of Information and Communication Technology (ICT) and the 

Internet of Things (IoT), big data analytics has advanced rapidly in many sectors while 

generating emerging opportunities, particularly in semiconductor manufacturing. With 

the construction of the fifth generation (5G) of cellular networks, a large quantity of 

sensing data is collected from nodes such as the terminal equipment and base station 

antennas. In these circuits, many parameters can be collected to model, evaluate, and 

quantify the performance. Semiconductor manufacturing and IoT products not only 

encompass manufacturing environments (factories, cleanrooms) equipped with tools for 

lithography, etching, deposition, and so forth) but also include foundries and design 

stages of the devices. A comprehensive review of previous works on big data analytics 

for key opportunities in semiconductor manufacturing is presented, including challenges 

in the process of converting raw data to highly valuable data-driven solutions. 

Big data refers to large volumes of data, both structured and unstructured. Social media, 

sensors, and machine-to-machine data are a few examples of the growing volume of data 

that can be analyzed for insights. It is easy to define what is big data for an individual 

case, as it varies according to the data source industry, processes, and analytics 

requirements. However, generating valuable analytics from big data requires a robust 

analytics framework to include the relevant analytics sources. With the advent of the 

Third Platform Computing Systems (cloud, big data, mobile, or social), advanced 

production machinery and equipment, inventory control, scheduling, quality control, 

obsolescence forecasting, and supply chain management production activities require 

Data-Volume-Metrics (data acquisition, storage, processing, mining, presentation, and 

decision-making) based data analytics activities. 

Descriptive analytics can be performed to analyze the reasons for these incidents and 

classify them by severity. It provides insights into which modules most frequently raise 

incidents and should consequently be prioritized for fixing. Prescriptive analytics could 

help identify the root causes behind severe and frequent ones and generate concrete 

recommendations. Support logs can be aggregated over the entire product lifecycle to 

build a top view of usage and cold facts about where to focus on.Finally, a novel and 

effective visual display viewed the predicted behaviour of the pins in several time 

horizons. The collaborative configuration between AI and human operators is also an 
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important aspect that has not been widely explored. AI approach methodologies have so 

far been developed in a completely unilateral configuration with humans as passive and 

secluded recipients of AI productivity without space for interaction, feedback, and 

partnership. In this critical aspect, the proposed system bridges the gap between human 

and AI. 

 

Fig : Semiconductor Process Anomaly Detection and Prediction 

8.5.1. Descriptive Analytics 

Big data analytics can be categorized into four general categories as shown below: 

descriptive analytics, diagnostic analytics, predictive analytics, and prescriptive 

analytics. Descriptive, diagnostic, and predictive analytics combine to solve the ‘what 

is/lived’ problem. The outputs of the analysis can then feed into prescriptive analysis to 

help answer the ‘what is/foreseen’ problem. Prescriptive analysis can also combine with 

scenarios built in the earlier stages of product management to provide input for strategic 

decision making. 

Descriptive analytics aims to describe past data and events more clearly, which could 

also help identify trends and patterns that otherwise could go unnoticed and provide 

insights to fuel the other levels of analytics. It typically entails extracting, processing, 

and visualizing data of interest in dashboards and reports. In a software-intensive 

product, the core events of interest for the management can be usage-related (e.g., 
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number and length of incidents in specific product modules), support-related (e.g., 

number and length of issues raised regarding a module), performance-related (e.g., 

product crashes), or demographic (e.g., geographical distribution of instance 

installations). A combination of usage and demographic analytics is used to prioritize 

the product modules to be changed in the next major release. Collaborative visualization 

tools can track product usage with respect to business processes. 

8.5.2. Predictive Analytics 

In the semiconductor industry, simulation processes can be affected by multiple 

uncertainties that directly affect all obtained results. For this reason, predictive analytics 

systems are used in semiconductor manufacturing factories to forecast next and future 

results from several input parameters and conditions. The predictive approach can be 

applied directly on one result or is modularized to allow explanation of the predicted 

behavior on the basis of the physical model. Predictive maintenance is mainly utilized 

in many maintenance operations in semiconductor manufacturing factories. As milling 

and laser repair operations are currently performed manually, knowledge-based systems 

have been built to analyze, in real-time, the history and status of head pins in equipment. 

Process data, manufacturing data, and machine health data are gathered and analyzed in 

a cloud-based architecture. The analytics phase detects potential problematic pins and 

generates a visual explanation view for the operator. The effectiveness of the proposed 

system has been demonstrated through its application to a real data scenario of a machine 

in a semiconductor manufacturing factory. A similar approach can be used in advance 

for other operations in the semiconductor industry based on their existing processes and 

available data. The proposed predictive maintenance system has proven its capability in 

assisting maintenance operations of semiconductor manufacturing equipment by 

gathering and analyzing real conditions of the equipment. A knowledge-based module 

adopted an AI approach using libraries in the data analytics. Business analytics were 

carried out in a cloud-based architecture, while data layers supported the deployment of 

the process.  

8.6. Improving Semiconductor Yield 

In the semiconductor industry, yield enhancement is a pivotal concern, with direct 

consequences for cost efficiency and market competitiveness. Wafer fabrication is the 

stage that incurs the most direct cost in the whole semiconductor manufacturing process, 

while enhancing yield has emerged as a pivotal lever to curtail costs and amplify 

financial returns. In advanced logic wafer fabrication facilities (fabs), a mere 1% 

increase in yield can translate to a substantial $150 million in additional estimated net 

profit, including both the on-wafer profit and the overall fab operation profit including 
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material, equipment, and labor cost. Moreover, a yield decrease of 1% from a 90% yield 

may even result in an estimated $370 million in 1-year profit loss. Recognizing the 

importance of yield enhancement, the semiconductor industry is building and expanding 

robust and comprehensive yield enhancement strategies involving statistical analysis, 

data analysis, hardware debugging, and pattern yield learning, all of which are mostly 

manual processes. Consequently, much effort is dedicated to gathering and curating 

process and inspection data from a plethora of industrial data sources to unveil 

underlying defects in silicon wafers and facilitate yield enhancement measures. 

Machine learning (ML) has been increasingly employed to augment these established 

yield enhancement strategies. ML techniques hold the potential to release engineers from 

tedious and repetitive daily routine analysis, provide insight into the new yield 

enhancement measures, and enhance the overall yield enhancement paradigm. However, 

in terms of statistical data modeling, ML techniques are externally opaque such that they 

are typically not interpretable or explainable even though the comprehension of critical 

data is imperative for process optimization in semiconductor manufacturing. On the 

other hand, despite the potential of these ML techniques, their development and 

deployment typically require extensive expertise in both semiconductor manufacturing 

and algorithm development, presenting a considerable barrier for rapid and agile 

integration and responsiveness in semiconductor smart manufacturing (SSM). 

Consequently, there is a perennial quest in SSM for easily implementable and 

interpretable data modeling measures to quickly adapt to the changing of things, improve 

the yield of semiconductor products, and optimize the utilization efficiency of precious 

resources. 

8.6.1. Yield Analysis Techniques 

The yield analysis can be classified into In-Line Yield Analysis and End-of-Line Yield 

Analysis. In-Line Yield Analysis investigates the root causes of yield loss by taking 

various pre-dispensed data collected from the semiconductor manufacturing process, to 

identify and determine the possible defect types which degrade or destroy the yield. End-

of-Line Yield Analysis, on the other hand, refers to the post-silicon activities after wafer 

fabrication and test. The performance data collected during the wafer test sometimes 

contains a large number of defects so that it is infeasible to analyze them one by one. 

Instead, grouping the defects according to their characteristics would help understanding 

and isolating the yield loss. 

The defect cluster recognition systems previously worked on the wafer test result of 

packaged devices and semi-finished chips. Results were aggregated on mold lines in 

packaged devices and functional test results were tabled on the probe station for 

semiconductor wafer testing. They are much more detailed than current study and should 
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illustrate higher resolution for dependability tests, however in semiconductor 

manufacturing, the activities are far more complicated. There are a huge number of 

different data such as alarming logs, process wafer in-transit data and inspection results. 

Therefore, yield analysis is more complex for semiconductor manufacturing due to 

diversified defects and therefore higher uncertainties. 

The defects are diverse and introduced in any part of the semiconductor manufacturing 

process. However, all embedded defects were masked by patterns and shunted as 

functionality off-chip IC’s after wafer fabrication. This requires statistical process 

capability monitoring of both the fab and the ODT to identify problems. Masking defects 

concentrate in a certain area on the wafer to a pattern and there exists a bitmap to describe 

them. The bitmap can be used to simplify the recognition of a group of defects. Pattern 

matching and image processing methods are currently used for recognizing defects. 

However, it is time-consuming if internecine mask shapes are used. The aim to extract 

the depicted bitmap on the wafer is to compute this from the test data. 

8.6.2. Root Cause Analysis 

In semiconductor wafer fabrication, the production data is singled out as one of the 

crucial elements in aiding the process feedback loop. The tightly coupled 

interdependence and multidimensionality of the fabrication processes require continuous 

monitoring, analysis, and modification. Data logging has become a commercially 

feasible task and is now a standard procedure in virtually all high-volume 

manufacturing-based industries. The data logging ensures that virtually all industrial 

process-related data, be it raw, modified, or newly derived data, are always ready for 

extraction and analysis. There is a lot of knowledge buried in the huge data collection, 

which is waiting to be discovered. The knowledge banks are continually enriched with 

new data. Hence applying new appropriate analysis tools can further improve 

semiconductor manufacturing. 

The production of microelectronic devices has an important feature that makes it 

significantly different from other manufacturing processes. The semiconductor wafer 

fabrication is a batch manufacturing of a multitude of Integrated Circuits (ICs) produced 

simultaneously in a multitude of sequential fabrication steps on a single piece of silicon 

substrate. The pieces of silicon substrate are known as wafers. In addition to the 

traditional analog processing unit, the addition of more and more digital and radio 

frequency processing units makes the ICs more elaborate in design and fabrication. Since 

the fabrication process is quite complicated, there are many possible sources of yield 

loss, including faulty equipment, faulty process parameters, and human errors. Cleaning 

up the small isolated defects before they can propagate into major faults is the goal of 

the current defect disposition process. Many faults in a fabricated wafer are 
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automatically detected. These defects are classified based on their image patterns (shape, 

size, and texture). The probability that the a priori judgment of a defect being bad given 

it is classified as a certain type is calculated and used as the order of magnitude to execute 

the fault detection and diagnosis process. 

Defect clusters are defined as defects that are identified as belonging to the same defect 

type, and that are located near each other on the wafer. In other words, if two defects are 

classified as belonging to the same defect type, and if the difference in positions of the 

two defects on the wafer is smaller than a predefined threshold, then the two defects are 

said to form a defect cluster. It is a known phenomenon that under normal and stable 

working conditions, out-of-specification defects tend to cluster due to a common 

process-related fault. The more closely a defect is grouped with those that already 

possess a defect cluster label, the higher is the chance that the defect label can propagate 

through the defect clustering process. 

8.7. Conclusion 

Recent rapid technological development, active promotion, and extensive application of 

AI technologies on chip methodology, logic, process and EDA tools, an upgrade 

framework has formed and been followed by adoption across semiconductor design, 

manufacturing and supply chain, demonstrating applications of chip deep learning yield 

prediction, die yield and quality prediction, chip cost prediction, device lifetime 

prediction, hot spot prediction, pattern discovery, lithography simulation, circuit 

parasitic parameters extraction, yield ramp-up evaluation, and yield improvement, etc. 

However, there still exist deep challenges and major difficulties to be overcome across 

semiconductor chip manufacture, assembly and test before large-scale deployment in 

chip factories, including: pruning and efficient inference of deep network, graph 

convolutional deep model for heterogeneous chip capacity prediction, failure 

classification and root cause analysis of die FA-test, active learning for hot spot 

discovery, cross-domain pattern mosaic and interpretation, rapid training of simulation-

supported computation model, knowledge-embedded explainable AI approaches for 

AIOL, etc. To address different challenges and extend attention to sophisticated AI 

techniques, extensive development and deep collaboration across academia and industry 

are anticipated to be played. 

Real-time big data analytics with AI-enhanced deep learning and edge computing are 

key enabling technologies to smart manufacturing and smart factory 4.0, with efficient 

modeling and mining of peer-to-peer spatiotemporal high-dimensional data of high 

throughput and data velocity in 5G time-sensitive semiconductor trade with ubiquitous 

manufacturing nodes. The structure and components of intelligent edge-cloud big data 

analytics and mining architecture with novel AI time series models for machine-level 
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big data mining are introduced first. Then, a comprehensive framework of AI-enabled 

big data analytics systems for cross-location multiple users with diverse techniques, 

tools, engine and domain knowledge exploration is elaborated for scenario-based 

predictive modeling and actionable intelligence, supported with different example cases, 

along with research discussion on scientific challenges and trends. 

8.7.1. Future Trends 

Detailed analyses of data generated by manufacturing companies in the semiconductor 

industry have grown enormously in recent years. Several factors are impacting this 

increase and are spurring a demand for real-time, high-dimensional data and processes. 

As a result, the semiconductor industry is experiencing drastic technological changes 

and rapid advances in the tools and platforms to accommodate all the new data. Within 

10 to 20 years, chipmakers and OEMs may not architect chips and their corresponding 

equipment but leave it all to machines working in harmony. The equipment deciding the 

capability of products will be selected and designed by themselves. It is a world where 

deterministic chips are fabricated based on a set of parameters similar to the way more 

than a dozen airlines now operate scheduling of thousands of aircrafts with no human 

intervention. Every company may start in-house manufacture but end up a pure IDM, 

fabless, or supplier of a single piece of equipment if they are unable to keep up the pace. 

Only future mega-cap tech companies branded under Big chips will remain if the balance 

is tipped towards integration. Others may evolve into net cash and then disappear 

altogether. Intelligent manufacturability offers a more complex system and architecture 

that demands a renewed understanding of physical, chemical, biological processes, and 

new quantum, molecular, atomic, etc. As manufacturing companies aggressively 

develop their capability intelligence, they face a discontinuity due to poor physics 

controls at the atomic and molecular levels. In addition to ultra-broadband optics, new 

ways may include shear-thickening fluid as self-sensing and adaptive pressurizing 

media; robotic arms under ultra-high vacuum that can move millions of gallons of heavy 

liquid per second; multi-layer assembly that can print nanostructured coatings that 

change optical properties in real time according to external stimulus; etc. As an 

addendum, while underestimating feedback and loop delay, the majority of today’s 

equipment also cannot account for multiple types of correlations among signals and 

therefore may miss the boat entirely. 
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