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Chapter 10: Architectural trends in 

RISC-V, GPUs, TPUs, and domain-

specific artificial intelligence 

accelerators 

10.1. Introduction to RISC-V Architecture 

For years, the open-source RISC-V instruction set has been driving innovation in 

processor design. After a decade of evolution, RISC architectures are now as mature as 

the CISC architectures popularized by industry giant Intel. Security and energy 

efficiency are now joining execution speed among the design constraints. This unit 

should enable dynamic custom instruction sequence execution whose usage could be to 

compress binaries, obfuscate behavior, etc. RISC architectures are designed to integrate 

few instructions, thus lacking the micro-decoding mechanism. The open-source RISC-

V ISA provides the compiler with about fifty elementary instructions. Many 

architectures implement this instruction set. Currently, high-end RISC-V processors 

feature 64-bit data paths, deep pipelines, and are capable of running a Linux-type 

operating system thanks to their advanced architectural optimizations (Ferrandi et al., 

2023; Kalapothas et al., 2023; Alam et al., 2024). It is up to the compiler to identify the 

appropriate instruction combinations to generate efficient code. This inevitably leads to 

the production of larger programs compared to their CISC counterparts. For applications 

that would benefit from such an approach, the trade-off between CPU resources and code 

savings has been assessed. During the last decade, RISC-V has become a well-

established open ISA standard. RISC-V is the fifth major RISC ISA design from the 

University of California Berkeley. The open ISA provides processor designers and 

implementers with the capability to innovate freely without intellectual property 

restrictions, thereby lowering the barrier to research and education beyond the historical 

reach of ISAs such as ARM, SPARC, and MIPS. RISC-V supports various essential 

features of an ISA: numerous high-quality open-source tool-chain components, 
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including simulators, compilers, assemblers, linkers, and libraries, which are actively 

maintained; a simple instruction set design that can achieve excellent performance 

because of its simplicity; various instruction set extensions that are modularly designed 

and required based on clearly defined markets, and all the RISC-V ISA candidates are 

freely accessible; and extensive applications, with broad commercial, military, 

academic, and research adoption (Peccerillo et al., 2022; Klein, 2024; Tiwari et al., 

2025). 

10.1.1. Overview of RISC-V 

The RISC-V architecture offers an exciting opportunity for the development of both low-

cost accelerator hardware and advanced processors. In this section, the RISC-V 

architecture is first described, followed by a discussion of the latest developments in  

 

Fig 10.1: Architectural Trends in RISC-V, GPUs, TPUs. 

RISC-V hardware. RISC-V is a free, open hardware instruction set architecture (ISA) 

that describes a family of computer architectures that have evolved since 2010. At its 

core is an almost minimal, basic integer ISA together with a modest number of 

“standard” fixed-width integers, floating point, and programmable, custom instructions. 
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The ISA is in the process of being augmented by an increasing variety of extensions 

including multiple address spaces, a vector extension, a GPU extension, support for 

executing compressed instructions, and security features. A contentious topic is 

transaction memory support, with the RISC-V community divided on whether it should 

be added to the ISA proper or positioned as an orthogonal extension. 

RISC-V is implemented on a wide variety of differently sized academic and industrial 

cores including the tiny PicoRV32 with < 500 gates, the low-power T-Head 906, Vega 

8865, and A60 CPUs, the high-performance SiFive U8 and A7 cores, the high-end vector 

processors VexRiscv and Mor1kx, and the extremely complex Galois accelerator with 

256 garbled RISC-V cores. RISC-V has also inspired the rapid production of a wide 

variety of compliant open-source hardware projects ranging from low-cost micro-

controllers to many-core systems-on-chips and custom computer systems. In addition, a 

large software ecosystem of Linux-based operating systems and large high-level 

languages runs on RISC-V cores. Industrial interest in RISC-V is such that, according 

to a recent survey, a large variety of universities, research institutes, and technology 

enterprises are actively engaged in its adoption, with a number of start-ups engaged in 

commercialising RISC-V solutions. 

10.1.2. Key Features of RISC-V 

RISC-V processors democratizing computing through open-source RISC-V processors, 

is being widely studied and innovated upon. Both security and energy efficiency are now 

competing design constraints that now join execution speed in designing a processor. To 

explain, if the security or energy efficiency of a processor is being enhanced through 

implementing a change, a risk of slowing down the processor can occur. In order to start 

to understand the nature of the evolutions facing AI processors, an overview of the RISC-

V one is given. 

Current RISC-V processors are complex cores designed to integrate 64-bit data paths, 

deep pipelines, and a large set of generic programmable instructions. The set of 

instructions provided by the open-source RISC-V ISA integrated in a core rises to fifty 

or more elementary instructions. As a result, it is up to the compiler to identify the 

appropriate combinations of instructions that form the high-level operations of the 

implemented algorithms. The territory to explore for optimizing algorithm execution 

time, energy consumption, and miniaturization is huge. Secondly, due to their 

complexity, current RISC-V processors integrate many uses in a single core, which 

implies a huge area overhead compared to SPC for a reduced performance gain. 

Proliferation of application domains may lead to designing several very different 

processors, each one being a computing platform for a restricted type of algorithms. 
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Addressing these points, a micro-decoding unit is tested for a simple RISC-V processor. 

The evaluation methodology, the cost and benefit metrics, and results are then 

summarized. Proliferation of application domains leads to microchip design shortening. 

The reduction of the IC size required to integrate an AI accelerator directly impacts the 

cost and the energy efficiency of its manufacturing process. Reusing a designed core and 

adjusting its GFLOPS to the new target application is therefore attractive with the 

exception of the regulatory authority constraints. Additionally, a single RISC-V core can 

integrate several different accelerators implemented as RISC-V compliant custom 

instructions in the processor’s instruction set. In that regard, designing AI accelerators 

based on (modular) architectures that are widely known provides a good compromise 

between manufacturing costs and computing throughput. 

10.1.3. Applications of RISC-V 

This section presents a collection of interesting recent works on the application of RISC-

V processors and hardware for various domains. RISC-V processors are being 

investigated for an array of application domains, including cryptography and security, 

deep learning, edge, and internet of things. However, in terms of scientific computing, 

numerical algorithms, and high performance computing, RISC-V has not yet seen wide 

adoption, despite other commercial and research initiatives under way. Efforts so far 

have mostly been at the level of inspirational feasibility studies or the attempt to bring 

one single algorithm to a RISC-V implementation. 

RISC-V ISA architecture has seen an increase of attention and adoption in the past years. 

However, this adoption in the communities of scientific computing and HPC has been 

slower than that of ARM64. Efforts in the past few years on RISC-V include targeting 

the RISC-V compiler and runtime and exploring the architecture and performance 

implications of RISC-V. Performance will eventually be evaluated on thorough testing 

and comparison of CPUs. The goal of this paper is to expand on both topics by discussing 

the porting of the HPX C++ standard library for parallelism and concurrency to RISC-

V and its implementation in architectural detail. 

Given the large number of other hundreds of distributed, heterogeneous programming 

models and runtimes with similar features across the entire parallel computing space, 

some notable mentions include oneAPI Data Parallel C++, Charm, Chapel, Legion, 

Halide, OpenAccelerator, OpenCL, PaRSEC, Swift/T, Coarray Fortran, OpenMP, X10, 

MLIR, TBB, and TCE. From the programming paradigm, HPX and Charm as the best-

known C++ representative runtimes and libraries of distributed, heterogeneous 

parallelism provide a very similar feature set. However, they differ in multiple 

implementation aspects. The biggest difference is an architectural one that governs a 

large number of smaller implementation choices. The HPX API is based on the 
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programming model specification within the C standard; in contrast, Charm is a library 

implemented in C++. 

10.2. Evolution of GPU Architectures 

NVIDIA pioneered GPUs dedicated to rendering high-definition images in games. In its 

quest to find new markets and customers, it opened up general-purpose programming 

interfaces. Today, graphical rendering is no longer the most prominent usage of these 

GPUs. Instead, the applications are broadening, including general–purpose computation, 

machine learning, graph processing, and cryptocurrency mining. 

GPU architectures have also evolved from simple to complex designs. Initially, GPUs 

were enhanced SIMD architectures. Their simplicity helped in achieving high clock rates 

and energy efficiency essential for real-time rendering workloads. With the increasing 

demand for general-purpose programming and workloads, GPUs became more complex 

adopting clustered, heterogeneous, and data-centric designs. The architecture became a 

multi-core architecture with sophistication in aspects like inter-core communication, 

speculative execution, memory hierarchy, system integration, and a heterogeneous mix 

of core types with specialized designs. In these years of their widespread adoption, 

understanding the architecture intricacies became essential to explore the design space 

for the architecture, simulator, compiler, and kernel level. Analyzing the architecture’s 

early efficiency and current architectural trend is indirectly challenging. As architectural 

complexity grows, understanding low-level architecture performance is critical. This 

trend poses challenges to architecture modeling, simulator design, workload 

benchmarking, and software compiler architecture exploration. Numerous aspects have 

been comprehensively analyzed using various directly and indirectly high-efficiency 

approaches ranging from micro-benchmarks to dedicated analysis tools. 

GPUs have evolved for over a decade in terms of architecture, workload, vendor, and 

targeting customers. Architecture has evolved from a pure MEGA SIMD single-ISA 

architecture to a clustered and heterogeneous architecture. Relative failure to 

accommodate the shift in the workload’s arithmetic intensity has led to newer designs 

targeting the workloads better. Each of these architectures is vast and complex, with 

various intricacies detailed in an immense number of papers. Understanding the 

architectural components, nuances, and design choices, and their impact on performance, 

efficiency, and security has been an active area of research for years, ranging from high–

level architecture surveys with a shallow overview of the architecture model. 
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10.2.1. History of GPU Development 

In the early 1990s, GPUs transitioned from fixed-function graphics processors to 

programmable graphics processors. This architectural change sparked the development 

of innovative graphics-based algorithms and gave rise to the GPU-Computer Graphics 

Processing Unit (GPGPU) paradigm. The novel concept enables feeding data into the 

graphics pipeline for parallel processing on the massively parallel hardware and on-chip 

memory. Contrary to the traditional von Neumann architecture that usually relies on 

large multi-core CPUs with fat pipelines, small on-chip cache memory, and deep off-

chip DRAM memory to maintain high CPU throughput, domain-specific processors 

such as GPUs, or more generally, data-parallel Streaming Processors (SPs), have wide 

SIMD architectures to execute different data on the same instruction uniformly. This 

includes units such as pipelines and/or ALUs, as well as a large number of on-chip 

memories, such as registers and shared memories, to hide long memory access latencies 

and boost the throughput. 

However, such a high throughput mainly targets multimedia workloads. The arrival of 

the Big Data era provides a new accelerator market to compute larger datasets and solve 

non-vision tasks. These new workloads, such as Bioinformatics, Information Searching 

and Ree-Info, and Syntactic Parsing, non-vision tasks, generally have irregular memory 

accesses and intensive control flows. They face difficulties on traditional GPUs where 

huge control flows on data parallel architecture are difficult to be efficiently executed. 

As a result, application developers will face challenges in selecting proper accelerators 

to effectively meet their requirements. Therefore, automatic exploration tools are 

proposed as a possible solution to help application developers build suitable 

architectures to meet their performance and power area requirements. These tools mainly 

focus on the exploration of Architecture-Parameter Synthesis (APS) parameters or high-

level framework synthesis. 

On the other hand, recent years have witnessed the emergence of new artificial 

intelligence (AI) workloads such as neural networks and reinforcement learning. These 

workloads are highly demanding and need a million times throughput improvement and 

a new architecture design as compared to massive parallel processors such as GPUs, 

CPUs and DSPs. Key to their successful execution is the concept of energy efficiency, 

which is to perform operations on the data very close to where they are stored (i.e., an 

architecture with good data locality). The emerging Domain Specific Architecture 

(DSA) is identified as an effective solution to meet the performance and energy 

efficiency demands. State-of-the-art DSA mainly consists of a Processing-In-Memory 

(PIM) data access to effectively feed massively parallel processors consuming close to 

tens of thousands of times chip power. This trend poses new requirements on the 

architecture design space. Proper architecture should be examined on a case by case 
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basis, since an architecture that works on one application, e.g. neural networks or 

reinforcement learning, may not work on others. 

10.2.2. Current GPU Technologies 

Advancing image processing and deep learning technology has gained increasing 

attention and thus larger computational resources are needed for image recognition, 

denoising, and GAN. While one approach is to deploy AI acceleration hardware, GPUs 

are found to not fully utilize their calculation power due to template rendering 

bottlenecks and limited memory bandwidth. To address this, food improvement 

solutions are discussed. Further, many image processing applications adopt tensor-level 

parallelism to use the super computing performance of tensor core. A technique is 

expanding this tensor core technique to vision and imaging applications on GPU. DLA, 

meanwhile, is specialized for both MIMD and SIMD workloads and operates pixel-wise 

operations for better power efficiency and performance. The DLA-in-SoC solution is 

implemented using multiple interoperability scenarios targeting performance, power 

efficiency, area, and flexibility to image processing applications. Tensor processing has 

received great interest in on-chip processors, both in devices and high performance. A 

GPU-over-CPU architecture with a multi-GPU video streaming service on the high-

latency network is studied. It shows the performance potential of this architecture with 

optimized designs compared to CPU-only clusters, including end-to-end streaming 

operation cycles. Thus, GPU is on Total Coefficients Higher Scaling, feeling fiber 

tracking signal-noise effectiveness by accelerator/large-scale implementation. These 

design and optimization efforts are also applicable to other deep-learning applications 

on GPUs. 

Yet, GPU microarchitecture and instruction-level performance benchmarking and 

dissection studies are few for the modern and upcoming architectures. Different from 

conventional performance analysis, multi-facet capabilities of ASIC deep learning 

accelerator architecture, instruction set architecture, baseline RTL design 

implementation for architecture simulation, instruction-level budget on parallelization 

and repositioning flows, compilation tools at EDA and architecture levels, system 

bottlenecks and hot spots are investigated. State-of-the-art general-purpose GPU 

architecture, compute capability, instruction set architecture, and architecture micro-

architecture, from the infinite computing element array architecture per view occupation, 

are evaluated. It also explores the memory-controlled design patterns for memory 

optimization methods on data locality statistics and memory bandwidth exploration 

patterns to complement on-chip memory topologies. Instruction-level parallelization 

tools, compiler on deeply pipelined architecture, and instruction-level repositioning 

flows to architecture are studied. After synthesizing and place-and-route steps, 
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performance power estimation nets, instruction-level characterization and budget, and 

design matters for architecture-aware optimizations, compile assembly infrastructure is 

developed and made publicly available. 

10.2.3. Future Trends in GPU Design 

The need for an accelerator has recently become increasingly acute due to the unexpected 

rise of AI/ML workloads. The adaptability of existing GPU architectures to these new 

workloads remains to be seen. If GPUs are indeed found to offer poor performance for 

DNNs, other architectures will be deployed by companies to accelerate AI/ML 

workloads. The most recent Nvidia A10X GPU, the most expensive commercially 

available GPU, appeared to provide better performance for ML Perf training benchmarks 

than TPUs. Thus, the next generation of GPUs is assuringly looking better suited to 

handle DNN training workloads than the current generation. These proposed changes 

raise the underlying concerns of whether they could actually be implemented in existing 

Nvidia GPU architectures, implications beyond performance for ML workloads, and 

ultimately, the subsequent measure of success. Furthermore, designs costly to implement 

in chips are unlikely to be of interest to other manufacturers as they already possess the 

high wall of patents to any algorithmic or architectural innovation. 

A defense against the threat of underperforming GPUs is to ensure that better 

performance for ML workloads can also be achieved without making major changes to 

existing architectures. Smart software design often allows existing architectures to be 

repurposed for new workloads, a goal which has been well achieved for the advent of 

the AI/ML markets. Thus, careful design is needed to ensure that it is indeed possible to 

unlock these new tensor core features. Understanding all the capacity in precision is also 

critical to the effective use of the tensor cores in existing Nvidia GPUs. Without 

understanding the implications of introducing tensor core instructions to a codebase, it 

is unlikely a net performance gain will actually be achieved. In addition to instruction 

set changes, often overlooked details of management, code generation, data layout 

format, etc., are also likely to serve as unknowable walls preventing a net performance 

gain. Aside from ML workloads, this paper will also explore what this neural net 

explosion means for the older workloads GPGPUs usually handle, such as computer 

graphics and computational fluid dynamics, and how architectures can adapt to support 

them.  

10.3. Understanding TPU Architecture 

The Tensor Processing Unit (TPU) is a type of application-specific integrated circuit 

(ASIC) developed by Google specifically to accelerate Machine Learning (ML) 
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workloads using TensorFlow. TPUs are used across Google’s diverse ML products, 

including Search, Translate, and Photos, and have contributed to the significant 

improvements in product quality, efficiency, and holiday shopping support among 

others. Google has made its TPU hardware available through its cloud computing 

platform. Beginning in early 2021, Midjourney has been using Cloud TPU v4 to train its 

generative model that creates images from textual descriptions. This model is the 

foundation of a new, alternative image search engine to Google Search that has rapidly 

gained popularity and exploding user numbers. 

The Cloud TPU v4 can handle one quintillion Floating Point Operations Per Second 

(FLOPS) scale processing leveraging state-of-the-art ML chip designs and 

manufacturing process nodes. Google manufactures its TPUs in production. In 

purchasing a ticket from a cloud TPU to a second analytic engine that offers a subset of 

the cloud TPU capabilities in a smaller and cheaper chip, Google also announced other 

ways to leverage its on-chip hardware, including new ML chips. In 2018, Google 

introduced a series of lighter chips for local processing of inference workloads primarily 

in the IoT domain. The Micro Edge TPU board, produced by Coral, incorporates a 

custom Edge TPU chip with the ability to process 4 TOPS (Tera Operations Per Second). 

 

                                Fig 10.2: Tensor Processing Unit (TPU). 
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This paper’s contributions are clear: an in-depth analysis and definition of the TPUs, 

their architecture and AI tasks performance metrics for both cloud, and edge computing 

in general but also in comparison to other chip architectures, including CPUs, GPUs, 

FPGAs, ASICs, and other older TPUs. Other studies mention TPUs as potential 

hardware accelerators for parallelization to increase AI acceleration but have not been 

widely adopted other than in closed proprietary settings exactly because of this lack of 

exploration and public documentation. Recently, an end-to-end compiler designed to 

implement and deploy pre-trained AI models to TPUs has been published. To facilitate 

better benchmarking of different ML accelerators in cloud TPUs, a benchmark suite has 

gathered the inference and training-speed measures for a large variety of hardware units. 

However, this benchmark only includes the main AI architectures and lacks exploration 

of the Edge TPUs. 

10.3.1. Introduction to TPUs 

Google TPUs, or Tensor Processing Units, are specialized hardware accelerators for 

Machine Learning (ML) workloads. At first, TPUs were designed and implemented to 

accelerate AI training and inference on the Google Search, Google Translate, and Google 

Photos products. Later, TPUs became one of the essential pieces of Google Cloud to 

scale AI to all companies and academic institutions around the world. TPUs are designed 

with a custom architecture that is efficient at performing matrix operations and 

processing large amounts of data. All major Artificial Intelligence (AI) network types 

strongly rely on matrices for their network computations. Alongside the AI acceleration, 

TPUs were bundled with user-friendly frameworks and programming guidelines to ease 

the hardware deployment of AI models. 

Deep Learning (DL) is the most disruptive change of the last decades. Extensive 

applications of Artificial Intelligence (AI) are dominating many fields from computer 

vision to robotics, from drug discovery to compilation techniques. Proposed 

architectures and models have grown massively both in number of parameters and 

complexity, leading to heavily increased training times and costs. These High-

Performance Computing (HPC) workloads are demanding ever-increasing amounts of 

floating-point operations and can only be performed on large state-of-the-art specialized 

hardware, e.g. TPUs, GPUs, and ML-only ASICs. In the other direction, on-device AI 

has been the main focus of the past decade, performing inference on low-resource 

devices. In recent years, Edge AI is starting to explode with an armada of small networks 

being deployed. The training and inference costs of large AI models are considered 

computationally expensive tasks. They require months of training on thousands of GPUs 

or TPUs, while also needing special care on model quantization for post-training fine-
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tuning or distillation. In this scenario, TPUs can provide significant savings in terms of 

time, money and environmental resources. 

TPUs have been proven to accelerate both training and inference of large AI models. In 

this paper we aim at exploring their viability in cloud computing and on-device 

scenarios. This paper is structured as follows: first, a general overview of TPUs is given; 

second, their general architecture is explained; third, a specific overview of TPUs in 

relation to their design for neural networks is presented; next, compilation techniques 

and supporting frameworks are covered; and finally, results on performance 

comparisons are shown along with a discussion and concluding thoughts on the currently 

pressing imperative need of research on alternate optimization techniques for efficient 

deployment of AI architectures on the Edge TPU and on benchmarking standards for 

more robust comparative analysis in edge computing scenarios. 

10.3.2. TPU Design Principles 

The Tensor Processing Unit (TPU) is an application-specific standard microprocessor 

developed by Google for neural network machine learning, particularly using Google's 

TensorFlow software framework. TPUs offer vastly increased performance per dollar 

versus competitors offered by Intel, AMD, and Nvidia. Several technologies enable fast 

and efficient DNN execution on TPUs. Local memory stores weight parameters in a new 

mathematical representation for enhanced efficiency and quality. Five dataflow 

architectures insert effective computation close to data movement on-chip. A new 

custom floating point representation from 8×8 to 32×32 bits enables tight control of 

numerical quality. Logic is composed of specialized circuit blocks, from 4-input 

nonlinear lookup tables to the custom bit-matrix multiply-accumulate logic. A large-

scale infrastructure supports TPU provisioning, calibration, diagnostics, programming, 

and deployment in Google data centers. 

Google's Cloud TPU v4 can handle one quintillion Floating Point Operations Per Second 

(FLOPS) scale processing, and vastly improves DNN training times. Google has made 

its TPU hardware available in the cloud computing market, and external consumers are 

already taking advantage of TPU performance gains. A well-known example is 

Midjourney, which started to use Cloud TPU v4 to train their generative model, which 

took just under 420,000 core-hours on 128 TPU v4 pods. Additionally, in 2018, Google 

introduced lighter chips (Edge TPU) available for sale under the Coral brand. The Micro 

Edge TPU board is capable of 4 TOPS with 2.5 W power consumption for low-budget 

ML Accelerators. A wide variety of applications run locally on devices, thanks to Edge 

TPUs' Fathom Edge TPU neural networks. TPUs refer to accelerators that Google and 

its parent company Alphabet have developed for AI applications throughout its 

existence. 



  

158 
 

The first TPUs, now referred to as Cloud TPUs, were integrated circuits (ICs) with 28nm 

processes sold as a cloud service in 2017. TPUs implemented an 8-bit matrix 

multiplication operation, a wide-range algorithm in ML/DL. On these first TPUs, there 

were also limited 32-bit FPU and 16-bit integer units. 8-bit MAC units were arranged in 

4×4 blocks and shared an internal 64×32-bit accumulator. All TPUs have several Tensor 

units (or cores), a 2D mesh interconnect, a memory controller (or chip), and off-die HBM 

DRAMs. Up to four cores (TPUs) are connected to a memory controller. A 2D mesh 

interconnect connects cores, each with its memory controllers. 

10.3.3. TPUs in Machine Learning 

Tensor Processing Units (TPUs) are a type of application-specific integrated circuits 

(ASICs) that were designed by Google. TPUs are dedicated to accelerating TensorFlow 

workloads, which has made them the most public face of the official TensorFlow ML 

framework. Google’s not-so-private wish is to build the world’s most powerful AI 

supercomputer. Training and inference of massive AI models can benefit from scaling 

up the number of TPUs as they are designed with the ability to communicate with each 

other fast enough to be connected into a single supercomputer. Originally, Google TPUs 

were released as cloud-only items. However, they have slowly leaked out into more 

edge-computing-type applications and products. The latest release of TPUs contained in 

Google’s Pixel 2 and Tensor mobile processors accelerated all computations for its 

intelligent camera. Everyday and all day, many billions of images and high-definition 

video streams are processed in real time on GCP, leading to huge savings in networking 

costs. Tensor Processing Units (TPUs) are specialized hardware accelerators that have 

been developed to train deep neural networks and accelerate their inference. TPUs are 

application-specific integrated circuits (ASICs) designed for high-throughput 

calculations of Tensor-flow operations. 

TPUs work in the field of training and inference of either convolutional neural networks 

or recurrent neural networks and can provide considerable speedups against 

contemporary graphics processing units (GPUs) and CPUs. TPUs also possess a high 

memory bandwidth which enables its fast processing. TPUs were previously available 

only as rental products in the Google Cloud Platform. Currently, TPUs are starting to be 

integrated into edge-type devices (e.g. Tensor processors in the Google Pixel 2), which 

are intended to accelerate AI in a small form factor. To investigate the efficacy of TPUs 

in everyday life workloads, TPUs were deployed on GCP to run AI workloads. Modern 

AI accelerators are being developed in an era where the world is saturated by large-scale 

AI. Such models are considered extremely valuable, as they create amazing experiences 

and innovation for millions or even billions of individuals. On the other hand, power 

consumption, cost, and CO₂ emissions that such gigantic models incur are even more 
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staggering. It is the hope that SPUs can offset computational resources for this class of 

workloads at a larger scale as they are remastered to be complex and efficient. 

10.4. Domain-Specific AI Accelerators 

Large-scale AI models with billions or even trillions of parameters have greatly boosted 

demands for carbon-neutral training and inference. Heterogeneous chiplets integrating 

high-performance CPUs, accelerators, and memory can meet new demand for renewable 

energy- and water-cooled AI supercomputing systems in data centers. General-purpose 

CPUs do not scale efficiently beyond a few thousand nodes. Custom accelerators can 

achieve higher throughput, energy efficiency, and performance-per-cost for matrix 

workloads and become the mainstream compute engines in modern computing systems. 

Domain-specific custom accelerators include graphical processing units (GPUs) for 

graphics and parallel computing, tensor processing units (TPUs) for AI inference and 

training, Microsoft’s DPU for server offloading, and firmware-implemented domain-

specific accelerators in programmable devices. Field programmable gate arrays (FPGAs) 

foil custom ASICs with higher flexibility and reconfigurability with lower NRE.  

10.4.1. Definition and Importance 

The growing computing needs of deep learning (DL) workloads call for hardware 

accelerators that can simultaneously deliver massive throughput, high energy efficiency, 

and low cost. Generative AI is becoming a dominant application in many technologies, 

including large language models (LLMs) and diffusion models. Such workloads are 

compute-intensive and memory-hungry, calling for performance-efficient solutions. 

However, the complexity and execution scale of these workloads bring many new 

challenges to the design and integration of heterogeneous computing devices. Many 

novel ideas in architecture, memory hierarchy, physical design, and heterogeneous 

systems face scalability and realization issues. On-chip memory, data coherency, and 

optimization methods are bottlenecks to adopt novel architectures and design methods 

with increasingly realizing large-scale chiplets. 

Heterogeneous integration has been proposed to realize complex systems with many 

distinct chips or chiplets, each designed to perform a certain functionality. Such designs 

achieve extensive efficiency and performance improvements while tackling many 

challenges with heterogeneous co-design and optimization. At the level of several 

chiplets on the same package, chiplets of different nodes, architectures, and/or vendors 

are integrated to improve reusability and reduce cost. To design and manufacture chiplets 

at a reduced time and cost, layers, bump/through-silicon vias, and packages can always 
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be shared and replicated. Also, electrical or optical I/Os can be customized to relieve 

communication bottlenecks and improve performance. 

The architectural techniques for AI acceleration traditionally focus on processor-in-

memory, memory dans, processing-in-memory, and novel architectures. New ideas to 

ease data movement include the computation movement approach, ternary computation 

encoding, cache-efficient multi-hop weight partition, and multi-Chiplet external memory 

model adaptation. A few high-level design techniques like multi-chiplet pipeline design 

and pruning/block slicing were also proposed. However, the efficiency of these 

approaches is unclear due to the limited execution scales with on-chip 5D SRAM. The 

design techniques and methodologies for chiplets are mostly focused on processor and 

chiplet integration, with few works studying design for on-chip interconnect macro 

modules and novel technologies. 

10.4.2. Examples of Domain-Specific Accelerators 

RISC-NN accelerators for DNNs have been implemented in RISC-V cores, pursuing the 

integration of these accelerators in a scalable manner. In RISC-NN, a vector instruction 

set has been added to the 32I instruction set of the RISC-V ISA. The simulator used for 

most of the Verilog simulations was an in-house Ruby-based simulator together with a 

customized RISC-V simulator that interfaces with Ruby through PLI. Two 

implementations of RISC-NN are provided: a 10-input-10-neuron multiplication add and 

a VHDL-based synthesizable RISC-NN architecture called RISC-NN-FPGA for the 

ZYBO Z7020 SoC FPGA. Improvements over the existing methods include the 

integration of RISC-NN miniature, efficient data memory lookup, value impoverishment 

detection, and replaceable PE types. SYR, SRDU, and other assembly-level instructions 

have been created to enhance the efficiency of ’s methods. 

The ARC accelerator is designed in a 28nm SOI 1P8M technology, optimized for small 

footprint and low power. Logic area, which occupies one third of the overall design area, 

is minimized by utilizing multiple operand adder and shifter, fixed point embedded 

multiplier, and cycle fold architecture schematic designs. Memory area is enhanced by 

miniaturization of memory cells and placement of large arrays. Compact on-chip 

memory design saves area by reducing total connections and delays. Design optimization 

efforts have also been made to enhance circuit robustness, such as implementing two-

powered tower sketches and properly sizing critical transistors. 

AI-centric RISC-V architectures for heterogeneous computing have been proposed. A 

four-stage pipeline has been adopted across the chip, and the caches are grouped into 

three levels: private L0 cache for each of the integer, floating-point, and AI cores, shared 

L1 cache bank for the CPU cores, and an L2 cache shared between CPUs and RPUs. The 
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memory interface controller is designed as a standard memory interface block by the 

following. Based on these, all key modules have been designed and implemented with 

28nm FinFET process technology, resulting in 860Kgates tiny design of 860Kgates. The 

Sunny RISC-V detailed architecture has been developed for both open-source in the 

public domain and further ASIC implementation. 

10.4.3. Performance Metrics 

RISC-V is an open-sourced Instruction Set Architecture (ISA) rapidly being adopted in 

the industry due to its advantages, such as its extensibility and the availability of a large 

variety of RISC-V cores. During the last decade, a new way of designing chips (SIP), 

also known as chiplets or tiles, has emerged. At the circuit level, various substrate 

technologies have been introduced to provide high-performance chiplets. This paper 

proposes new metrics to evaluate chiplet designs considering the diversity of fabric and 

chiplets technologies (together termed as tiles). 3D-holographic technology is a new 

approach to capture, store, and process data as holograms. This paper evaluates the 

performance and power benefits of the 3D-holographic paradigm in handling the deep 

learning workloads, revealing new opportunities of co-design at the algorithm-

architecture-technology level. All hardware architectures experience thermal variations 

over their lifetime. On-die thermal sensors enable a new level of thermal monitoring and 

energy control; however, these sensors’ internal structures and thermal map resolutions 

are tightly coupled with underlying thermodynamics, which are often vendor-specific. 

This paper introduces a novel non-intrusive architecture-based thermal variable-

forensics approach for thermal scene reconstruction. The thermal map is represented as 

a combination of planar heat sources with a rectifier circuit. Under the assumption that 

only a small number of heat sources remain unchanged during the reconstruction process 

for a fixed architectural design, these sources are effectively tracked based on their 

dynamic thermodynamics responses. 

10.5. Comparative Analysis of RISC-V, GPUs, and TPUs 

RISC-V is an innovative open-standard instruction set architecture (ISA) and a family 

of 32/64/128-bit reduced instruction set computer (RISC) ISA, along with a modular 

architecture facilitating tailoring of compute and memory systems: simultaneous 

multithreading (SMT) and vector instructions. System-on-Chips (SoC) with RISC-V 

cores take advantage of RISC-V’s extensibility. The most popular RISC-V cores are 

Rocket, BOOM, and SweRV cores. RISC-V is an emerging open-source ISA. It is an 

innovative and powerful approach to new DSAs due to its popularity, flexibility, 

simplicity, and low entry barrier. RISC-V standardizes the ISA, making RISC-V chips 
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interchangeable. The open-source RISC-V cores and accelerators are customizable 

descriptions of the hardware implementations of the instruction sets and architectures of 

the RISC-V ISA. 

GPUs are another popular solution for hardware accelerators. Due to their SIMD 

architectures, GPUs can improve performance and energy efficiency over the general-

purpose CPUs. With hundreds of SIMD processing units on-chip, modern GPUs can 

execute thousands of threads simultaneously, and the instruction per clock cycle is 

dramatically increased. The CUDA programming model for GPGPU makes 

programming GPUs easier. NVIDIA’s Tesla architecture brings performance 

improvements for data parallel computing over the GeForce architecture. NVIDIA Tesla 

V100 is the first GPU which supports high-speed HBM: up to 300GB+ on-chip memory 

and 900GB/s on-chip memory bandwidth. 

Google designed Tensor Processing Units (TPUs) to accelerate the training and 

inference tasks of DNN. Machine learning as a service is being provided by Google that 

enables customers to take advantage of TPUs. Google Cloud TPUs as architecture-level 

DSAs can be programmed for general tasks with a software translator based on XLA 

and pre-defined ML ops. The first-generation TPU was designed/executed by Hardware 

for ML. TPUs in TensorFlow improve the performance of the most popular open-source 

ML framework. The second generation of TPUs is designed and manufactured by 

Google. The TPU hardware stack is composed of custom-built chips, a high-speed 

interconnect fabric, and a TPU server for powerful systems. The working units of 

floating processing units are COREs. Shared memory architecture improves 

performance and gives programmers more flexibility in choosing the computing model. 

The P. Summary layer enables better external multi-chip systems. 

10.5.1. Architectural Differences 

RISC-V architectural extensions have become very popular both in academia and in 

industry. This innovation survey deals with recent architectures utilizing RISC-V to 

execute Deep Learning workloads at high performance. While BAI databases are mainly 

based on open-source row-level architecture, there are a few early works illustrating the 

use of commercial architectures in a multi-block descriptor. 

Application-specific hardware accelerators are widely used to boost energy-efficiency 

and throughput of DL training and inference, complementing or even taking over 

conventional accelerators such as GPUs. Their optimal design is tightly linked to Joint 

Hardware Software Co-Design (HW/SW Co-Design). On the one hand, such domain-

specific accelerators includes architectures that group tens to hundreds of computing 

units with efficient memory to execute sizeable Compute Engine (CE) arrays on input 
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data that require minimal data preparation; on the other hand, custom compute units 

supporting a limited number of operations with dedicated memory-based neural 

networks reduce drastically the need of data movement. 

Many hardware-software co-design initiatives have started from scratch, while other 

systems augment existing architectures with acceleration capabilities that open up new 

application scenarios or achieve different energy-performance trade-offs. In particular, 

the integration of programmable processors with hardware accelerators is gaining 

popularity in the design of heterogeneous systems. Architecture examples of processors 

augmenting cores with dedicated hardware architecture focusing e.g. on MAC have been 

presented. Such approaches open up new research questions, ranging from systematic 

design space exploration methodology for the architecture and programmability of 

chiplet-based architectures, enhancement of existing accelerators with new types of 

compute units, and novel software methodologies focusing on Neural Architecture 

Search for efficiently partitioning workloads over heterogeneous systems. 

10.5.2. Performance Comparison 

At Hot Chips 33, a class of GPUs designed for RISC-V encompassing conventional and 

specialized designs was presented, focusing on profiling methods being developed to 

analyze the architecture, performance, and efficiency of these GPUs. The profiling 

methods combine simulation with on-design profiling performance in an as-

manufactured device. These approaches demonstrate the capacity to consider the entire 

memory hierarchy, as opposed to a chip's last-level cache, which has been done. This 

work demonstrates a profiling methodology to build upon the design, simulation, and 

test evaluation hardware stacks, as well as the architecture of accelerators. Using rules 

specializing on applications from several benchmarks, a domain-specific accelerator was 

built, demonstrating the potential for modification of the floorplan to include and 

interpolate more difficult-to-design embedded in a standard-cell ASIC-based die. 

Alternatively, with an advanced fabrication process, a DMA-matrix multiply IP to 

reshape matrix cost. 

Graphic processing unit utility exponentiation and algebra representation decoding; 

well-known models for the edge-node problem domain, prior trajectories based on off-

the-shelf digital signal processor devices integrated with the microcontroller unit, joint 

multiplexed electromechanic and compensate actuation was introduced. Throughput 

limits based on field programmable gate array resource constraints were determined 

using programmable logic devices. In a comparative setting, as a domain-specific edge-

host systems interface, an embedded DSP wide OSI stack was synthesized. The first 

distributed time-shared graph dynamic programmable unit with zero context-switching 

handover time and power was presented as enabling feasibility. With respect to basic 
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node-centric functionalities, a parallel multi-unidirectional graph-diameter estimation 

method for delay-tolerant networks, achieving a high degree of synchronization brevity 

for the rigorous transmission it is based on. Nodes can efficiently track states of the 

solicitations, resulting in a nearly constant lifespan for the edit operations. Experimental 

demonstrations were conducted in small-world networks with a tidal-curious collective 

synchronization configuration. 

 

Fig : RISC-V, GPUs, TPUs, and Domain-Specific AI Accelerators. 

10.5.3. Use Cases and Suitability 

Computational genomics is one of the most relevant scientific fields studying biological 

data transformations and supports Biomedicine Big-Data analyses, especially after the 

COVID-19 pandemic. The Variant Interaction Use Case has become a de facto genomics 

benchmark in this Big-Data context. The approach seeks relevant genetic variant pairs 

from thousands of high-coverage genomic data series. This task translates naturally into 

large-scale workloads that execute computations on several emulated massive 

computing nodes, which is currently executed on x86 HPC resources. It is illustrated 

that, based on publicly available tools, full big-scale analyses run on a current 

MareNostrum supercomputer can be executed on a small cluster of RISC-V boards. 

Deploying an RISC-V supercomputer is an exciting challenge that can be addressed in 
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the current open-source effort. Several fine tuned HPC kernels can be released as mature 

open-source codes. 

GPU performance and power efficiency have progressed dramatically. Energy efficiency 

has become more critical due to ever-increasing chip power density. For high 

throughput, GPUs use a mass-parallel architecture with many cores of simple micro-

architecture. For DNN training, enormous floating-point operations per second (FLOPS) 

are needed, which yield a high throughput in training. But for inference scenarios, it 

usually relies on lower-precision operations, which lead to parallelism dropping while 

the compute intensity increases, causing DNN-based inferencing applications to 

experience significant overhead in latency. ASICs are low-latency solutions with real-

time classification. High throughput needs massive compute resources with a huge 

amount of logic gates, leading to tremendous development costs and time. 

Generating DNNs are rapidly evolving procedures and achieving promising results. But 

one side there are many well-tuned and high-efficiency software stacks leveraging GPU 

or ASIC backends. On the other hand, how to deploy and infer a new architecture with 

a software stack, which is the most direct and high-efficiency solution to using them, is 

still a challenge. Understanding the chip architecture to leverage it efficiently and 

effectively and finally providing a software stack matching the chip architecture involve 

many temperate tasks and considerable effort. If the architecture stops because newer 

DNN designs or applications appear, all the previous investments will be wasted. 

Resultantly, FPGAs are more popular since their extra programmability makes it 

possible to adapt to a rapidly increasing DNN structure and practical applications, 

meaning that FPGAs offer an attractive proposal for DNN accelerators with 

programmability. But the disadvantages also exist, mainly with relatively lower 

performance, and adopt different programming models from fixed-function hardware 

designs. 

10.6. Trends in AI Accelerator Design 

The recent introduction of graphical processing units (GPUs), tensor processing units 

(TPUs), and domain-specific AI architecture accelerators has greatly improved the 

throughput and energy efficiency of artificial intelligence (AI) applications. Many 

hardware accelerators for graphics and AI computations have been proposed to speed up 

trained deep neural networks (DNNs). These hardware systems range from general-

purpose architectures to customized architectures. Graphical processing units (GPUs) 

are the most well-researched architectures to accelerate DNNs on both training and 

inference. The highly parallel architecture of GPUs with thousands of cores and high 

memory bandwidth is particularly suitable for workloads with dense linear matrix 

operations. The same time, the extensive support of GPU programming frameworks 



  

166 
 

facilitates the porting of DNN workloads onto GPUs. On the other hand, the integration 

of deep-learning (DL) models on mobile intelligent-terminal devices requires energy-

efficient accelerators. ASICs designed for custom and dedicated DL tasks can consume 

low energy and achieve high memory bandwidth. Nevertheless, ASIC is not the Holy 

Grail for DNN acceleration. The capability of implementation flexibility and timely 

update of mobile AI applications has become a pressing concern. 

Although generic solutions are available for low-power and low-cost designs, FPGAs 

have become competitors of ASICs to accelerate DNN calculations on constraint 

resources of performance and area. On the historical front, custom FPGA techniques, 

including considering circuit-level precision effects on DNNs, embedding programming 

frameworks and designing special-compound DSP blocks, have greatly accelerated the 

process of porting a DNN onto a commercial off-the-shelf FPFA. An increasing trend of 

incorporating hardware DNN accelerator units into mobile CPUs has been observed. 

Vendor-owned DNN accelerator architectures ranging from AEC accelerators to tensor 

processing units have been integrated with ARM-based CPU architectures. With little 

commercial-off-the-shelf alternative architectures, a myriad of neuro-/AI-accelerating 

cores on hybrid architectures has been actively investigated in academia. The AI 

acceleration on specialized instructions has been proposed to accelerate available DNN 

models using neon instruction set architecture, and shout up AI accelerator arrays with 

in-chip interconnects. 

10.6.1. Emerging Technologies 

Artificial intelligence (AI) and deep learning (DL) are transformatively addressing 

complicated tasks in applications including computer vision, natural language 

processing, big data, and drug discovery. AI and DL algorithms have been proposed to 

automate traditional algorithms to better capture hidden knowledge and patterns in data. 

Many AI models achieve state-of-the-art results on benchmark testing datasets. 

Nowadays, Profile GPU be used in DL training to increase throughput; specialized DL 

application-specific integrated circuits (ASICs) are designed to reshape logic for specific 

deep neural networks (DNNs) to achieve high throughput and even higher energy 

efficiency; field-programmable gate arrays (FPGAs) are used to provide programmable 

and reconfigurable hardware that can be customized to model characteristics. 

The quadratic complexity of matrix multiplication limits the training of state-of-the-arts 

on large-scale datasets. AI accelerators such as Tensor Processing Units (TPUs), GPUs, 

and Tensor Cores are introduced to parallelize model training across chips, with hovers 

to reconcile the imbalanced energy consumption among devices. ASICs have become 

the mainstream to accelerate DNN model inference, designed from scratch to each target 

model family and achieving high throughput under stringent computing, memory access, 
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and communication constraints while efficiently deployed on-chip largely through data 

quantization. 

10.6.2. Power Efficiency and Performance 

DLP – Data-Level Parallelism Fermat’s little Theorem has been used with RISC-V to 

perform fast modular multiplication for elliptic curve cryptography, making signature 

generation with RISC-V on an FPGA power efficient. To satisfy low lifting IPv6 traffic, 

flexible and efficient RISC-V packet forwarding was proposed. Efficient 

implementation of stateful LPM packet forwarding tables was reported in C to justify 

reductions that were due to resource allocation of multiplexers, left boundary, and 

register folding. Transformation enables accelerator near threshold work by C/C++ 

function bounding and guarantees rapid performance boost without affecting 

homogeneity requirements. Syntax-guided methods use architecture traits en masse 

while maintaining compatibility in ISA and cache access constraints. Retargetable Halo, 

a closed-loop manner takes design space search for statistics from trained dataflow for 

broader compiler use, accuracy efficiency tradeoff vs non-healthcare domains with 

promising system performance. An open and flexible RISC-V-compatible architecture 

and instruction set with reconfigurable computation engines and its enabling compiler 

support were proposed to support cost-effective RF and SDN development. DHM based 

on the fused with joint model autonomously adapts to channel dynamics and trains the 

entire RISC-V generating tool flows and 3-ISS. A learning-based approach that 

considers defects at the system level choosing RM testing templates instead of DAG to 

reduce the number of RM sequences while achieving a similar defect detection rate as 

its counterpart was reported. Power consumption of domain-specific accelerators on 

large array types such as detailed digital signal processing aggressive PPA video fusion 

was analyzed indicating lower power consumption. 

10.6.3. Integration with Cloud Services 

Artificial intelligence (AI) cloud services have come to dominate AI computing services, 

which have strict service level agreements (SLAs). AI tasks include not only similar 

computing loads but also complex and diverse inferencing modes. For example, 

language models are far more demanding than image classification models for an 

inference task, and real-time performance is stricter than offline performance. However, 

it is challenging for cloud service providers to meet the SLAs with heterogeneous and 

data-focused accelerators. Therefore, flexibility, availability, performance guarantee, 

and MLaaS are potential research areas for providing AI cloud services with 

heterogeneous and data-focused accelerators . 
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For cloud service providers, providing flexibility for AI workloads across heterogeneous 

accelerators is essential. Accelerators optimized for CNN, transformer, or GNN can 

benefit inference across similar workloads with similar DL architectures, but computing 

resources optimized for very different workloads will consume much more resources 

and power than necessary. For edge users, availability is another crucial aspect of AI 

cloud services. AI cloud service providers often struggle to meet SLAs that depend on 

cache-hit rates, making them less feasible for reliability-sensitive applications like fraud 

detection or spam filtering. Therefore, proactively identifying workload bursts, and pre-

scheduling rerouting services, as well as developing debugging-friendly cloud system 

designs, should be considered. Mounting a prediction model is less practical than other 

methods due to the time and resource-consuming cost of data collection. Therefore, 

improving estimation with heuristics could be a promising research direction. 

For end users, latency, throughput, or energy T/ET/reT is a crucial aspect when inferring 

AI models on data centers or edge devices. Guaranteeing performance for AI cloud 

services with heterogeneous and data-focused accelerators requires understanding 

performance foldability across various workload types and intentional performance 

differentiation among different hardware architectures. However, currently offered 

cloud TPUs or GPUs merely speedup one kind of workload type compared to CPUs, and 

MLaaS mostly takes ML model structures as inputs. 

10.7. Conclusion 

This chapter discussed the architectural trends in RISC-V, GPUs, TPUs, and domain-

specific AI accelerators for efficient deep learning inference. First, a brief introduction 

to RISC-V instruction set architecture was presented along with several RISC-V 

adaptations for AI accelerators. Then, the architectures of general-purpose 

programmable GPUs and domain-specific TPUs and how they accelerate large neural 

networks were reviewed, followed by architectural trends of neural network hardware 

accelerators targeting inference workloads. 

RISC has gained remarkable popularity due to its simplicity and extensibility. 

Meanwhile, domain-specific hardware accelerators for efficient deep learning inference 

have seen rapid consolidation of growth and several architectural trends have emerged. 

First, the single-chip design trend refers to the preference for consolidating the computer, 

memory, and I/O via chiplet technology onto a single die to reduce communication 

latency and energy consumption. It has become a banner trend for large-scale chip 

companies to embrace a monolithic single-chip design. The second chiplet design trend 

refers to the preference for decomposing a complex die from a single-cell architecture 

into many small components that are integrated through heterogeneous interconnect 

technology. Although the chiplet level integration adds packaging complexity, it can also 
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provide great design flexibility and better yield. Chiplet-based designs have been 

adopted by several tech players, fueling the rise of a new era with numerous 

opportunities. 

Massive AI models and complicated DNN networks are growing quickly in the domains 

of large-scale computer vision and natural language processing, leading to chip-level 

integration challenges.  

10.7.1. Future Trends 

Following the introduction of smoke-point estimating computers almost 60 years ago, 

AI was dismissed as the toy of the few, never of the many. This situation shifted 

dramatically a few years after the millennium’s change, when a multi-stage, multi-

faceted effort put on the cute toy black/square box with flashing lights led to the 

Demonstration in 2010 of the real-time recognition of class images. FPCs and Fe-

Cpu/MCUs followed then. GPU use in the product began, first in X-boxes, then in 

creeping slow waves across the computing world. 

Already in October 2016, the first TPUs were deployed, with flips expected in the AI 

market. Since then, Deep Learning began to dominate and displace traditional AI, 

envisioning either doing everything Deep, or using ML for faster options, with Deep 

Learning Engine Neurons and Bits approximated as well. Responses from the computing 

world included a combination of many-fronted digital/analogue, hard-

wired/streaming/fixed-function, fully-connected/locally-connected, monolithic/die-

stacked interfaced structures with bespoke chips and dedicated compute systems 

jerseying in just SOIs. At first, such domain-specific AI accelerators acted as ‘bolt-ons’, 

separate from, albeit in the same package as ‘base PCs’, retrospectively understood as 

‘AI = Co-Compute’ situations. Field-Programmable Gate Arrays thus paid a high cost 

for flexibility in this compute compartmentalisation. 

By now, large scale AI systems with accelerated computing continue to be base-

application-cloud-Ethernet-time/100%/point-cloud and, with large scale GPU-based 

training, productising generation R&D still require massive amounts of energy, silicon, 

and copper. The community is in despair concerning all aspects of AI compute from up-

front modelling of the information to be processed through complete de-wooderisation 

of digital processors for inputs to trained network topologies with anticipation of 

exploding run-times and carbon footprints. There are already suggestions for efforts 

addressing embedding modelling in spaces of lower dimensionality with on-chip recoil 

sampling and approximation, through again ultra-analogue convergence in Physics and 

fabric and voltage-induced computing in most or all electrical components. 
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