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Chapter 2: Intelligent underwriting: 

applying machine learning to risk 

assessment      

2.1. Introduction to Intelligent Underwriting 

Intelligent underwriting (IU) is a new, specialized area of work in the smart insurance 

space that seeks to harness the latest advancements in artificial intelligence (AI) and 

machine learning (ML) to deliver near-term rewards for the global insurance community 

and consumers. Policies can be better priced and discounted, thereby relinquishing the 

untimely and undue transactions between creators of risk and insurers. The insurance 

business will apply these advances to deliver higher corporate net profits and shareholder 

valuations. Service empowers insurers to positively interact more quickly, adequately, 

and accurately with consumers and policy owners throughout the insurance process life 

cycle, from the selection of the product to coverage settlement. No technology disruption 

will rescue laggard insurers, but for those insurers that proactively embrace intelligent 

underwriting, the advantages it brings will raise their business fortunes considerably 

(Ribeiro et al., 2016; Wüthrich, 2020; Henckaerts et al., 2022). 

For consumer-facing insurers, improved consumer experiences, driven by information 

technology for acquiring and servicing insurance needs, are enhancing loyalty towards 

the insurance brands. Back-office operations driven by core technology systems, 

however, have been slow in transforming. Processes in many operational and support 

areas are particularly in need of radical overhaul. These areas work best with speedy 

touchless processing of clean business that is the low frequency by definition. Intelligent 

underwriting answers directly to this history of disruption in back office operational and 

support areas. For reasons that we will cover, these core processes - operations, risk 

assessment, pricing, actuarial, grievance settlement, and so on - have missed the AI-ML 

train in recent years when a majority of the world's focus has been on digital enablers of 

front office customer-facing business (Yoon et al., 2018; Wüthrich & Merz, 2021). 
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2.1.1. Overview of Intelligent Underwriting Concepts 

Over the past few decades, the impact of technology has changed how insurance acts 

and how people, as appointed risk-takers, are affected by risk assessment. In the modern 

era, actuaries and underwriters both carry the task of solving risk selection problems. 

Actuaries do so at the macro level and are responsible for setting cost-efficient premiums 

that reflect the underlying risk distribution. In contrast, underwriters make final 

decisions on new and existing business at the micro-level, within the context of one 

specific policy. It is generally accepted that evaluating an applicant's risk at an insurance 

policy level leads to better decisions than evaluating risk at an aggregate level to set a 

general price. However, compared to the large influence of modern predictive analytics 

on actuarial science, no significant innovation has been made on the core problems of 

underwriting over the last five decades. This paper aims to enhance this void by showing 

how the advancements made in predictive analytics and machine learning can transform 

the underwriting procedure towards "intelligent underwriting". 

Around the world, many successful implementations of the predictive modeling pipeline 

at an actuarial level can be found. The actuary states the decision problem at hand, 

obtains data, explores the data, prepares the data, develops a predictive model, validates 

the model, documents the findings, deploys the solution, and finally, maintains the 

implementation. However, what most remain unaware of is that this pipeline and its 

components may be enhanced by an automation-based approach. The principal 

challenge of developing predictive models remains data quality — an automatic 

approach through data mining and cleaning could spend the most time and money but is 

not deemed exciting. In situations where large and continuous amounts of structured 

datasets are available, data preparation could be done via automatic cleaning tools. In 

this work, we propose a more intelligent take on these guidelines. Our version of 

intelligent underwriting relies on three fundamental principles: machine learning, usable 

automation, and real-time updating of predictive models. We believe that the 

combination of these principles will allow actuaries and underwriters to embrace 

automation without losing their control over the underwriting procedure. 

2.2. The Role of Machine Learning in Risk Assessment 

Machine learning is a branch of artificial intelligence that can be used to automatically 

extract knowledge from data and convert it into useful information. In finance, the 

successful application of machine learning spans customer loan underwriting and 

screening, risk modeling, credit risk rating, and corporate debt rating, among others. 

Risk evaluation can be thought of as an exploration procedure to analyze the risk 

character of clients. At the preliminary stage, it is an intuitive review that mainly relies 
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on domain expertise and experience, which is inherently subjective, talking to clients, 

and checking for any clear signals, like credit records and company financial statements. 

In the middle stage, we typically use statistical techniques to analyze available data 

quantitatively, which serves as a prerequisite for tailored modeling and formal scoring 

procedures that combine the result with professional expertise and experience. This is 

usually done under supervision. In the latest stage, we adopt decision models based on 

qualitative and quantitative data, with AI/machine learning techniques as major 

weapons. The models are typically applied to high-volume and relatively lower-risk 

underwriting decisions. At last, we conduct remedial measures and code deciphering. 

 

Fig 2 . 1 : Underwriting & Machine Learning 

Data-driven intelligence is redefining every significant aspect of risk evaluation, 

including risk identification, risk prediction, risk quantification, customer 

interaction/nurturing, and risk change monitoring. New risk signals and prediction 

variables/quantities are belatedly identified and used. Hybrid decision mechanisms and 

monitoring frameworks have been implemented. Data-empowered clients are 

influencing original risk management and shaping new relationships. Large amounts of 

unstructured data produced by external data providers, and internal nonstandardized and 

semi-structured sources like merchant transaction records are being used. Traditional 
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risk evaluation models have been enhanced or enlarged by more informative variables 

and altered by different models/learning instruments incorporating machine learning 

techniques. These new models/techniques have been employed to protect against higher 

risks and for more coverage. A marketplace for unused risk modeling expertise is being 

created, enhancing traditional intelligence-powered risk assessment with data-driven 

machine learning tools. 

2.2.1. Exploring the Impact of Machine Learning on Risk Evaluation 

The emergence of machine learning (ML) has ushered in a new era for risk assessment 

in a variety of fields, including medical care and marketing because it improves 

predictive power. For actuaries, the predictive aspects of ML's power are particularly 

appealing. However, ML originated in computer science, where the algorithms and 

methods differ considerably from those used in traditional modeling techniques such as 

generalized linear models. As a result, ML has posed questions about whether the 

existing approaches used by actuaries are adequate for risk evaluation going forward. 

More urgently, actuaries must investigate this new instrument to comprehend its 

significance while carrying out the discipline's fundamental obligations. We provide an 

overview of the ML revolution and discuss its potential additionally, we present a 

research agenda that focuses on the fundamental issues posed by ML in the context of 

risk assessment, and risk prediction. 

According to various accounts from several fields of study, machine learning (ML) has 

sparked a sea change in predictive modeling methods available to researchers and 

practitioners. Because the earliest implementations were even made available in a 

commercially available modeling package, it is frequently claimed that no new 

algorithmic breakthroughs propelled this transition. Certain items were incorporated into 

more widely known machine learning accounts as "algorithms." However, rather than 

technical characteristics, the innovation was the extensive practical application of certain 

procedures, frequently with substantial amounts of carefully curated data and expert 

tuning of the methods. The peer review procedures that support traditional academic 

publications have only gradually started to accommodate this new innovator, which has 

incited debate and concern over potential risks associated with these evolving 

techniques. 

2.3. Data Sources for Underwriting 

Machine learning models can be built and applied only if there is data available to 

describe how the world works. An attractive feature of machine learning models is that 

they perform well even on data that is not representative of the population that the model 
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will be applied, a drawback of many of the traditional models and approaches used in 

our industry. While this allows companies using machine learning to apply their models 

in countries or regions that are not their own, differences in available data will still 

typically limit such transfers to broad strokes, leaving the situation in the destination 

country to be handled in a manner mainly driven by local preferences, market conditions, 

and cultures, or requiring the model to be retrained to also be effective in the new country 

or region. In the context of applying machine learning to underwriting, we can follow 

the same approach and perform the risk assessment of either a proposal or a portfolio 

based on whatever data sources we have available to us while imposing limitations or 

applying adjustments when necessary for lack of complete information. 

Machine learning models can absorb large quantities of data from a variety of sources in 

a mostly automated fashion. In this section, we will describe the main types of data, 

offering observations and considerations to help practitioners and companies build the 

data environment that will lead to successful implementations of machine learning 

methods to assess insurance risk. Data sources are typically classified into three 

categories: structured data, unstructured data, and external sources of data. With 

structured data, the data is presented consistently or organized into a tabular form, similar 

to the data that traditional statistical models operate on. Unstructured data, as the name 

suggests, is information that has not been structured, stored, or presented in a way that 

facilitates its analysis. External sources of data refer to data from companies or 

organizations other than those connected to the insured or the proposal. 

2.3.1. Structured Data 

Risk assessment traditionally relied heavily on structured data: well-defined, numeric 

information such as an applicant's credit score or prior premium payment history. For a 

typical insurance underwriting decision, the following structured data may be used: 

• Risk feature data. This includes information specific to the risk(s) being insured, such 

as loss history, claimant characteristics, value, coverage limits, and deductible levels. 

• Applicant data. This includes information about the person(s), entity, or group applying 

for coverage, such as age, sex, marital status, credit scoring, occupation, education, 

business strategy, financials, or insurance history. 

• Event feature data. This includes information about the event or peril being insured 

against, such as location, timeframe, and limits or exclusions regarding the peril. 

• Market data. This includes information about the insurance market in which the 

transaction is taking place, such as market capacity, competition, pricing, and regulatory 

issues. 
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• Other information. This includes information about aspects peripheral to the insurance 

transaction that may be relevant, such as environmental risks, political risks, industry or 

national economic factors, and ideas of public policy. 

In many cases, structured data required for underwriting risk assessment is available 

from the data management capabilities of the insurer, agent, or third-party supplier. Such 

information may be stored in standard commercial software databases for insurers or 

even in data warehouses; however, such data may be difficult to access and impossible 

to share with other stakeholders without major cost or time investments. It is commonly 

far easier to use the data supplied in real-time during the underwriting process, even 

when not comprehensive. 

2.3.2. Unstructured Data 

Unstructured data can be defined as information that lacks a pre-defined format. In this 

definition, we consider unstructured not only free text or videos but also images and 

categorical variables. Categorical variables generate strings of characters that can be 

squeezed into hyper-cube representations of fixed dimensionality and contain a low 

amount of information: they are the most primitive representations of semantic 

classifiers. These variables exist for all the underwriting fields for which choices are 

made, some choices are binary, and others are categorical with a finite number of 

choices. An example of a variable with a finite number of choices is the type of 

commercial property: convenience store, office complex, warehouse, etc. It can be 

expected that any data-driven model will benefit from the step of changing the type of 

categorical variable into the associated dummy variables. Free text is more complicated, 

because it deals with large vocabulary files, resulting for instance from the use of an 

insurance underwriting system. Such a system takes in all of the passive and active steps 

associated with assessing insurance underwriting information: it generates the strings of 

characters that define underwriting queries and defines a flow of the queries over time, 

guiding the underwriter to conclusions. Images include photographs, which typically 

illustrate the physical location of an insured building and business-related pictures that 

explain key aspects of the insured commercial activity, such as the key ingredients used, 

the product type, and its internal and external packaging and presentation. Finally, videos 

record in real-time people performing acts that relate to the risk associated with the 

insured building. Videos of businesses in operation allow the most detailed and 

accessible information to be collected for real-time evaluations. 
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2.3.3. External Data Sources 

Data Sources for Underwriting 

Underwriting has traditionally relied on internal company knowledge and trust in the 

submissions for information. However much external information is gradually becoming 

available and augmenting this internal data; it is important to consider how this external 

information can help underwriting. Data for underwriting comes from two main types: 

structured and unstructured data. 

Structured data is, for example, data warehoused in a database, where the relation 

between different data points is known. An example is information on a risk use—such 

as business details, prior loss experience, reinsurance program, and coverage limits, with 

details encoded in different lines of business codes. This data lends itself to traditional 

statistical analysis and predictive modeling techniques. While the dimensional details 

vary across different lines of businesses, the general relations between insurance 

company data pools for the different lines of businesses are generally understood. 

Modeling is done separately for each line of business. 

External Data Sources 

External data is complementary to internal data, especially when the company has little 

experience in underwriting risks of a particular type. Apart from the data required to 

grow the company’s intellectual property pool, it is important to look at when and how 

to use external information in risk assessment based on data availability. Data can vary 

in many dimensions: accessibility, timeliness, reliability, frequency, update cycle, 

granularity, and cost. 

External weather data is available from companies on which tracking featured data is 

central to their business models. Companies specialize in more physical aspects of data. 

Timely, accurate weather data access for the underwriting decision is of the highest 

importance, given that this information can rapidly change on short time scales. 

2.4. Machine Learning Techniques 

Machine learning is a subfield of artificial intelligence that uses statistical techniques to 

automatically learn with data without being explicitly programmed. Machine learning 

can be considered a generalization of rule-based systems, where instead of encoding the 

rules, the system automatically learns the rules by looking at the data. Machine Learning 

can be broken down into three main types: supervised learning, unsupervised learning 

and reinforcement learning. 
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Supervised Learning 

Supervised learning is the kind of machine learning where labels are available for the 

training data. The goal is to learn a model that accurately transforms the inputs into the 

desired outputs. For example, if the decision is whether to insure a certain client or not, 

the training data would have historical information on various clients and whether or not 

any claims were made by them while they were insured. The decision would be based 

on a set of features taken from this information and the model would learn to map from 

the features of the insured client to the decision of whether to insure or not. 

The model learned by the machine learning algorithm would then be used on data for 

new client applications to make a decision. This is known as a classification problem, 

since the outcome is a discrete variable (the decision is either yes or no). Many different 

machine-learning algorithms can be used to achieve this classification. The trained 

model can also predict the likelihood associated with the decision. This would be 

calculating the probability distribution over the output classes instead of predicting the 

most likely outcome. 

Unsupervised Learning 

In unsupervised learning, labels for the outputs are not available for the training data. 

The goal is to learn on the input training data only. For example, if we have lots of data 

where we do not know whether a client made a claim or not and we do not know what 

features differentiate such clients, we can use unsupervised techniques to cluster the 

clients into groups. 

2.4.1. Supervised Learning 

Supervised learning uses a labeled dataset, where the algorithm learns to predict an 

outcome by mapping the relationship between the predictors (inputs) and the outcome 

(target) variable, which means that exact correct outputs are available for some 

training samples to supervise the learning algorithm. More specifically, let X be the d-

dimensional input space from where the predictors are drawn, X ∈ Rd, Y be the output 

space based on which predictions are made, Y ∈ R, and N be the number of 

input/output pairs available for training. In the case of supervised learning, a training 

set consisting of N pairs of input/output values is made available to the algorithm: {(X1, 

Y1), (X2, Y2), ..., (XN, YN)}, Y = f(X) + ɛ is called the underlying relationship that is either 

deterministic, where ɛ = 0, or probabilistic, where ɛ is drawn from a stochastic process. 

The learning algorithm’s goal is to output a predictive function f ˆ that can approximate 

f based on the training sample. This predictive function f ˆ can be either a regression 

function for continuous outcomes or a classification function for categorical outcomes. 
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Supervised learning is arguably the most well-known paradigm of machine learning due 

to its broad applicability to many practical problems in various fields of human endeavor, 

including risk assessment in underwriting. In this section, we discuss how supervised 

learning can fit a specific application of risk assessment, namely the construction of 

prediction models for estimating the incidence of losses based on data from previously 

underwritten policies. The emphasis is placed on why supervised learning is such a 

powerful way to apply machine learning without going into the theoretical details of 

model fitting, validation, and selection. 

2.4.2. Unsupervised Learning 

Despite the importance of researchers, in assessing the risk of insurance claims, and 

looking for structured segmented patterns in the portfolio database, unsupervised 

machine learning techniques have received little attention in the insurance literature. 

Unsupervised learning has the potential to group policyholders or claims into well-

defined risk segments. The information regarding policyholder behavior or risk attracted 

many researchers in the last two years, given the availability of a deep pool of data. In 

general, unsupervised learning techniques can be classified into two categories: 

relational clustering and pattern analysis. Although clustering creates data segments of 

similar observations to optimize decision-making, segmentation by clustering does not 

optimize decision-making. Pattern analysis uses non-clustering methods to discover 

simple, easily understandable models. The second option facilitates decision-making by 

segmentation and can be more efficient. Shapley value decomposition and unsupervised 

decision trees are examples of pattern analysis methods. 

Relational clustering concentrates either on similarity measures or combination 

measures. The first method is based on the distance between observations, and the 

second method creates the clusters to minimize a combination cost at once. These 

methods can be tree-based or graphical clustering methods. Hierarchical and k-means 

clustering are tree-model structures. While hierarchical clustering is computationally 

inefficient for hundreds of observations, k-means clustering requires the prior definition 

of the number of segments. Graphical methods use decision tree models or graphical 

distribution models. Graphical segmentation methods have several drawbacks, for 

instance, they cannot provide information about clusters or segments beyond the 

predictions. 

2.4.3. Reinforcement Learning 

Reinforcement Learning enables machines to learn through experience and feedback, 

much like humans do. While the concept may be familiar from fields such as behavioral 
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psychology and behavioral economics where benefits motivate people to conduct 

beneficial and rational behavior, reinforcement learning implements such ideas for 

machine learning on a non-verbal level. A crucial difference to supervised learning is 

the way we provide feedback to the algorithm. In supervised learning, we explicitly tell 

our algorithm how to correctly map input to result by providing both input and classified 

result. In reinforcement learning, we only provide feedback concerning the result, not 

the way of mapping. We want our machine to systematically explore different 

opportunities to find the most efficient mapping. 

While reinforcement learning is an easy way to realize such feedback loops – and indeed 

equally intuitive and human-like in its basic principle as deep neural networks for feature 

recognition in images – implementation is non-trivial. The machine needs to learn to 

compare and quantify risks because choices might pay out only after a significant amount 

of time. When training the machine, in a lot of cases, it is not known what impact a 

particular action has on long-term outcomes. We learn, as humans, that smoking 

influences health negatively but we do not know the statistics of that influence. Therefore 

the reinforcement learning algorithm needs to learn both the probabilities and the 

consequences, a double task which makes it computationally harder. For certain cases, 

the influence on long-term estimates is so small that humans can incur the risk of waiting 

until certain proof exists. 

2.5. Feature Engineering in Risk Models 

Feature engineering is the process of creating meaningful attributes from transactional, 

behavioral, or demographic information. The attributes created in this way are known as 

features, and together they help the model to become better at distinguishing between 

good and bad outcomes. Poorly engineered features can limit the potential of the model 

to give good predictions. Examples of features to predict whether a non-listed company 

will default include the last-year assets of the company relative to the number of months 

the company has been in operation, and the growth of the company, measured as the 

ratio between last-year sales and the last-three-year average sales. Expansion-contraction 

cycles are critical to understanding company behavior. For a limited liability company, 

allowed losses are part of society’s potential losses and need to be monitored very 

carefully. 

In the context of banking, relevant features include any demographic information 

available on the borrower; any transactional, historical information; policies regarding 

the collection of overdue debts; recovery information; complaints; and any information 

that can help identify milestones in the credit cycle of the borrower. Thus, features are 

critical for building models that make better predictions concerning the default event and 

where policy changes perceived under a behavioral perspective constitute possible 
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sources of changes in the predicted probability of occurrence. In the context of insurance 

and risk protection, financial characteristics, products purchased and the history of 

claims and complaints are particularly relevant. 

 

Fig 2 . 2 : Credit Risk Models with Machine Learning 

2.5.1. Essential Elements of Feature Engineering in Risk Assessment 

Feature engineering is a vital process in any supervised predictive model but it becomes 

particularly important in critical areas like risk assessment where quality is paramount. 

Without clever feature engineering using all relevant domain knowledge, no amount of 

advanced mathematical algorithm wizardry will guarantee good performance and may 

deliver poor results in risk assessment. In fact, for risk assessment problems there are 

thus far no default easy off-the-shelf solutions with applied ML methods that produce 

reliable predictive performance results or express shortcuts algorithmically taking care 

of the feature engineering for us. Rather feature engineering provides us with some 

shortcuts to “be smarter” by asking the right questions about the data, like searching 

through dubious transactions and asking which engine parts or specifications or 

combinations of features allow us to best forecast risk. This reduces the complexity of 

the learning problem at hand without guaranteeing optimal performance. It is unlikely 
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that deep models without feature engineering would produce satisfactory results, the 

interpretability plus an abundance of features requiring some additional filtering are 

crucial for the admissibility of ML methods. Additionally, feature engineering allows us 

to use existing models from the statistical toolbox. Furthermore, besides the performance 

of prediction with ML methods, it is vital that feature engineering is not done to just 

improve numerical results of predictive accuracy of separate methods using similar 

features. In the end, it is important that the whole risk analysis is plausible and the 

advisement of authorities has an interpretive and actionable effect when it comes to 

making important practical loss prevention decisions. 

Employing a well-conceived feature engineering process with an emphasis on domain 

knowledge, suitable ML algorithms, and smart additional treatment of important features 

will help reduce the path to a working risk model. While the final implementation of any 

specific model may be and often is done with just a few features, providing a substantial 

amount of features reflecting the uncertainties of an underlying economic problem 

improves the explanations provided by the model and also the risk analysis. 

2.6. Model Training and Validation 

Training machine learning (ML) models is a nontrivial process that requires the proper 

selection of training data to achieve the desired results. Various validation techniques 

determine if the results of the models can be trusted to make real-world predictions. In 

this chapter, we will explore both areas to aid practitioners in effectively and accurately 

training ML models. 

Training Data Selection 

The training data is perhaps the most essential facet of any machine learning solution. 

Data drives all aspects of machine learning, yet practitioners spend the least amount of 

time selecting the data. The models themselves are trained for a few hours, yet data 

selection can take months. Often the model must be retrained in secondary development 

phases, as the selected data is not the best or most appropriate for the business problem 

being solved. Even defining the business problem is difficult until worse models are 

built. The early phases of development are filled with uncertainty, and naive decisions 

can lead to wasted time and resulting solutions with no practical use. Mirror the real 

world as closely as possible. 

When selecting training data, one major consideration is the predictive feature set. 

Which features are correlated to the outcome of interest? This first means defining the 

potentially predictive features and using domain knowledge is incredibly important. If 

the feature set is already known, then data selection is relatively straightforward. 

Selecting predictive features is one of the few areas of model building in which domain 
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knowledge is best. Most model training is best done by those familiar with ML and will 

result in better and faster results. 

Model evaluation must also be considered when selecting the training data. If the only 

possible evaluation is error rates or predictive metrics, then care must be taken to ensure 

that the training data represents a possibly complete subset of the data across all outcome 

variables. By understanding the evaluation techniques, decision can be made about how 

to partition data into training and test sets to influence model selection and 

hyperparameter tuning. 

2.6.1. Training Data Selection 

Machine Learning (ML) models are built from data that exemplify the relationship of 

interest. By exposing the model to samples of input features along with their correct 

outcomes, the ML implements the desired function y = F(X), ready to apply to future 

samples X test. Therefore, the training data has a predominant role in model building, 

whether the training is implemented with a supervised or unsupervised machine learning 

approach, reformulating the quality of data, and how much data is available for training. 

ML algorithms usually require significantly larger datasets than traditional statistical 

modeling methods. 

The challenge, in this case, is to fill the dataset with more instances, that don’t exhaust 

the available examples’ dataset. This is understood because the amount of available data 

for crucial business decisions in the insurance industry is usually tight. Balancing 

between the need for larger data and the available data will need creativity on the 

business analyst or risk experts’ side. The industry is moving to more socializing 

moments, which makes it easier for companies to extract more data from their clients. 

Better data leads to better models. From traditional unstructured or biased data, to what 

has been called the Big Data, and more recently to complete transparency offered 

through Blockchain technology. 

The data available through these many methodologies is the stepping stone to better and 

better-performing ML underwriting models. However, given that these models perform 

non-transparently and non-explainable functions, they may end up being better-

performed tools for the incumbents than for the startups, as the better data will always 

be with the clients with most business with the traditional player. It is important to 

highlight that these non-linear underwriters shouldn’t be seen as substitutes for 

traditional underwriting. It is extremely unlikely they will manage to be the entire 

underwriter process. 
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2.6.2. Validation Techniques 

While the classification model we are building predicts business outcomes such as ‘Will 

a customer default on loan payment?’ and ‘How likely is the customer to churn?’, the 

best model performance may be hidden in the associated metrics. We build various 

models, and tune the hyperparameters to achieve the best metric score, but how certain 

are we that our trained model will generalize? Generalization is essential for any 

supervised model that we build: the trained model must perform well on the real-world 

data points it has not been exposed to during the training. In simple terms, generalization 

is ensuring that we solve the problem for the stakeholders in the intended manner. It is 

crucial to have a mechanism to assess whether these built models indeed generalize. As 

real-world use cases, we perform a very simplistic exploratory analysis to show how 

many factors estimator styles capture model predicting scores – such as when the model 

is deployed to detect fraudulent transactions or in customer journey scorecards when 

assessing the likelihood of customer retention for marketing promotions. In this chapter, 

we usually partition the data into training and validation sets at an early stage in a typical 

application. The validation data is used to gain insight into how the model may perform 

on unseen data points, and then the results are used to select among competing models, 

their parameters, or both. Even though its name seems to suggest its primary use for 

validation after the model has been built, the validation set is pivotal for the entire model 

development effort, and the major variables are selected or tuned over iterations. 

However, the model needs to generalize well and the objective of these collections of 

data is how well these results mimic what a model would do on future observations. 

Thus, if we don't properly set up the partitions, we cannot trust the results and the main 

advantage of data resampling procedures is to bring some trust into these validation 

results – when it generates an estimate of the generalization effort. Data splitting is usual 

because it is simple, quick, and easy to follow. 

2.7. Ethical Considerations in Machine Learning 

Machine learning has ushered in a new epoch of innovation, with the potential to 

radically transform any field that generates and uses data in significant ways. However, 

this ground-breaking technology can also be misused, leading to societal harm as well 

as impact related to data privacy. Many of our daily activities, from when we put out the 

garbage to our credit ratings, and our social media footprint to our resume for a job 

application, are being monitored and evaluated by proprietary algorithms that affect our 

activities in ways that we may not understand or be aware of. Bias and discrimination 

on sensitive attributes such as gender, race, and ethnicity have long been issues of 

concern, particularly when it comes to fairness for marginalized and under-resourced 

communities. In underwriting and related areas, the additional ethical questions of life-
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and-death issues and accountability, especially when algorithms are used to deny 

individuals healthcare or credit or charge them more based on algorithmically 

determined risk scores, loom large. 

Just what constitutes bias and discrimination in the context of machine learning? 

Traditionally, policy decisions on matters such as hiring of employees or car loans have 

been based on human judgments, and the courts have ruled on whether or not such 

decisions are discriminatory. With the increased use of algorithmic assessments, the 

equal protection clause has been challenged. The inconsistency in finding fairness 

criteria stems from the fact that machine learning models generate risk estimates for 

subpopulations based on a particular set of measurable attributes, usually referred to as 

"features" in machine learning parlance. Machine learning models do not explicitly 

predict sensitive attributes, yet these attributes may well be the basis for determining 

risk-related decisions. 

2.7.1. Bias and Fairness 

Machine learning is a fascinating but complicated new direction for statistical 

methodology, as it introduces flexible and novel supervised risk estimators, typically 

based on least squares minimization or penalty minimization and based on 

nonparametric empirical process concepts such as multidimensional average covering 

numbers. Many such estimators are now in vast use in countless disciplines of business 

and policy-making that affect the outcome of how hundreds of millions of people live 

their lives each day. In this essay, we discuss two important ethical considerations when 

utilizing machine learning in such institutional practices. The first ethical concern is 

whether the predicted event rates form a nonlinear function of the predictor variables 

such as age, income, or gender, so that the model treatment would be more favorable to 

a certain set of groups. This is the bias and fairness issue. The second ethical concern is 

whether, for such large data sizes, these event rates are valid estimators of the true 

predicted probabilities of the predicted event and so as used they are not a source of 

model-based bad predictions and false alarms. This is the transparency and 

accountability issue. 

We then assume that the goal is to predict the probability of the event of interest in a 

specific population based on a large data set, which includes the population in which to 

predict the event occurs for some of the subjects. In practice, one does not have to 

exclusively utilize the locational likelihood estimator, as other point estimators could be 

used, but one computes the predicted probabilities using special plug-in functions whose 

output are estimates of the true conditional probabilities. No matter what unique 

procedure from among thousands is used to compute the event probabilities, once 

derived, these predicted probabilities are utilized algorithms to create policy 



  

35 
 

recommendations concerning an individual or group of individuals. That is, a treatment 

is based on current predicted probabilities. 

2.7.2. Transparency and Accountability 

Many machine learning systems are "black boxes," providing little indication of how 

their internal mechanics translate data into predictions. This opacity presents a problem 

in high-stakes fields since a decision that would radically alter a person's life could easily 

be made based on inscrutable logic. As such, recent moves to increase accountability 

have prompted both renewed interest in model transparency and also in audit 

frameworks that can help inform users about how a given model functions, and the kinds 

of mistakes it is likely to make. Model transparency encompasses two different types of 

explanations; one, which we might call "internal transparency," refers to models that are 

simple enough and used in a manner that allows a human observer to gauge their 

behavior. The second kind, "external transparency," refers to procedures that can be 

applied to arbitrary models to generate insights about their modes of function and their 

particular failures. 

A well-grounded criticism of black box models is that they enable abuses of decision-

making procedures. By allowing operators of machine learning algorithms to maintain 

the ability to depend on inscrutable logic, accountability is undermined and bad actors 

can escape without consequences. In the interest of ensuring that putatively moral actors 

are engaging in moral decision-making processes, it is necessary to determine the value 

of a model's predictions. Output evaluations can be made using tools like data audits, 

which describe the domains of a model's predictions, and error analyses, which assess 

the nature or extent of its shortcomings. These preliminary evaluations set the stage for 

deeper inquiry possible with input-output probes that examine how model predictions 

vary with different data inputs, as well as layerwise relevance propagation, which 

determines the contribution of individual features to layerwise activations. 

2.8. Conclusion 

In this chapter, we summarize the major points of the previous discussion, recapitulating 

the meta-research, problem definition, tasks, data, and predictive pipeline building upon 

which we founded the first complete study to apply machine learning to medical 

insurance underwriting risk classification and screening. In this light, we provide 

practical suggestions for similar development efforts in the future and speculate on some 

possible avenues for further research. We finally subject the technology underlying our 

predictive system to a little deeper scrutiny and give answers to some discussions on its 

implications and impact on humanity. The last standalone chapter is a more general 
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conclusion in which we stress and discuss the openness, exploratory nature, and practical 

focus of the research project supporting our work. We argue that the present modeling 

framework is interpretable enough to be useful in practice, even if some of its 

assumptions are by the way quite strong and somewhat simplistic. We conclude with 

considerations about the critical importance of performing transparency enforcing 

validation and robustness testing of similar models before one can think of deploying 

them for risk management or risk transfer purposes in life and health. Despite the 

questions asked, intelligent or not, underwriting is here to stay and eyewitnessing 

important developments shortly. It will be greatly facilitated and synergistically 

enhanced by recent machine learning advances in algorithms and increasing data 

volumes and granularities, not only in the insurance industry. However, while machine 

learning may help improve pricing accuracy, access better loss history, and alleviate – 

possibly reducing – loss adjustment costs, it is hardly likely to be used seriously for 

building long-term relationships with clients. 

 

Fig 2 . 3 : Machine learning for risk assessment 
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2.8.1. Final Thoughts on the Future of Intelligent Underwriting 

In summary, machine learning and other complex methodological approaches will 

significantly impact underwriting and risk assessment shortly. We are confident that 

these methods, with their unique capabilities, will be valuable additions to - if not 

substitutes for - traditional statistical approaches. Likely, an intelligent underwriting 

process making extensive use of machine learning methods will create additional 

bonding factors between insurers and clients. We believe that in many loss-assessment 

dimensions, underlying risks will be more precisely measured than is currently the case. 

The limitations of catastrophic event modeling will be majorly overcome by an 

intelligent approach to risk pricing. Better assessments will increase client acceptance 

and modeling trustworthiness and will reduce moral hazard - as less risk populations will 

be subsidizing riskier partners within pools and planner’s margins will shrink due to 

fewer deductibles. As a by-product of better assessments of individual risk, the 

proportion of process-induced errors and executive loss decisions will be reduced. 

Ideally, the final decisions will be left to the planner’s human judgment as supervised 

but not restricted by quantitative methodologies. 

We believe that prudent company executives should institute the intelligent underwriting 

ways recommended within their companies in a trial-and-error fashion. Senior 

management must recognize that there is no one-size-fits-all solution and that a wide 

range of options is available. With the assistance of capable consultants, planners should 

get started as soon as possible with constructive work programs. Companies that fail to 

do so will be left behind as innovators and early adopters reap the benefits of these 

methods. Insurers that cannot afford the massive investment involved should consider 

outsourcing underwriting and diary management and at least remain in touch with 

intelligent underwriting methods for the more expensive above-retention limits share of 

loss assessment to appropriately evaluate the performance of the external vendor. 
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