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Preface

It has been five years since the first edition has appeared. In that
time, the book made it to third place in the BookAuthority’s list of
the all time 100 best books on General Relativity with a 4.14 aver-
age. It remained their until one of their ”authorities” actually read
the book, and it was quickly removed from the list. Among their
primary collaborators is Elon Musk. That says it all! The book also
made it to the Black Holes list, and, again every trace of it was re-
moved when it was realized that the book is anti-general relativity
and anti-what conventional wisdom tells us about the existence of
black holes.

I thought about a second edition of the book when I realized an
error in Chapter 2, Eqn (2.5) in that the Newtonian slope is either
a straight line or a circle, depending on how the trajectory is tra-
versed. It, in fact, makes the radius of curvature, (2.1), infinite! It is
anyone’s guess why this error was never picked up in the almost in-
finite commentaries on How Newton would have proceeded with
his proof of the derivation of the elliptical orbit given his inverse
square law for the central force. The error I bear responsibility for
is in the transition from Eqn (2.6) to Eqn (2.8): Dots cannot replace
primes, i.e., the derivative with respect to the angle variable cannot
simply be replaced by the time derivative. Thus, came to be the
writing of a second edition.

The first thing was to correct ”Newton’s slope” r′/r = ± tan θ,
where θ is the complementary angle that the tangent to the curve
makes with the trajectory of the curve. Then the question arises as
to why all the proofs of the derivation of the ellipse go through two
integrations of the denominator of the radius of curvature when it
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is set equal to a constant. This constant supposedly incorporates
the fact that the central force is inverse-square. Why not just inte-
grate the equation of Newton’s slope.

One of the arbitrary integration constants in the derivation of the
equation of an ellipse is not so arbitrary for it represents the exis-
tence of a central potential. In its absence, the ellipse degenerates
to a straight line as it should. Then a comparison with Weber’s
force brings up the interesting point that whereas Weber’s force
takes into account the orientation (angular dependency) of two rel-
ative charges in motion, it does not take into account their relative
rotational energies. Once this is accounted got, Weber’s force is
seen to consist of the relative contraction of the particles in the
direction of motion, the radial acceleration, and the angular mo-
mentum, just like in Newton’s equation for the force. But, unlike
Newton’s mechanical equation, Weber’s equation introduces a lim-
iting speed–more than half a century before relativity was born.

Generalizations to Newton’s slope arise when themetric coefficient
of the angular term in the metric is no longer proportional to the
area of a circle. A major distinction between elliptic and hyperbolic
planes of constant curvature lies in the fact that the latter can sup-
port both open and closed trajectories. Considering the latter, we
find the equation of a soliton, or the equation of a Joukowski ellipse.
Apart from the technical area of the aerodynamics of wing foils, the
Joukowski transform rose to prominence in the transformation of a
circle to an ellipse in the complex plane. The resulting ellipse has its
center at the origin and has a Hookean central force. The square of
the Joukowski ellipse is another ellipse that displaces the origin to
the focus of the ellipse and with it the transition from the Hookean
law to a Newtonian inverse square.
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We will discuss these dual laws henceforth. But in the new chapter
on curvature, we obtain a non-traditional form of a conic indepen-
dent of any constant of integration. The nonlinearity of the hyper-
bolic plane has brought in particle like solutions called solitons that
propagate undistortedly on the surface of constant negative curva-
ture called a pseudosphere. The Binet equation implicates a central
force of inverse-fifth, which is the only self-dual law that exists at
small radial distances, while distortions occur at greater distances.

We use Newton’s impact method to derive the force laws both in
the elliptic and hyperbolic planes of constant curvature. There is
no simple prescription that allows us to replace the radial distance
in the Euclidean plane with the Lobachevskian ”straight” line in the
hyperbolic plane.

Another property will we investigate is the appearance of cusps
in the non-Euclidean planes of constant curvature. Cusps in oth-
erwise continuous trajectories first appeared in epicycles where a
close trajectory orbits a larger closed trajectory. Cusp also appear
in Euclidean trajectories, notably the cardioid which has a heart-
shaped trajectory. When the force is attractive, the Binet equation
has the form of Einstein’s modification for the deflection of light.
However, we would expect such a trajectory to be open, and not
closed, and this will will discuss in due course.

If we allow for nonlinearities in the metric coefficient involving
translation, we get generalized Ampère’s laws and surfaces of revo-
lution. WhereasWeber’s force does not lead to a hyperbolic surface
of constant curvature, its generalization does. Again the Joukowski
ellipse appears in conjunction with the pseudosphere, and the pos-
sibility of particle like-solutions called solitons. Particle solutions al-
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ways appear when there is more than one stationary solution since
no stationary can be globally stable.

In fact, gravitational force have long been noted to be associated
with the pseudosphere. It has been known since Newton’s time
that a doubly connected bugle can defy gravity when it ascends
a ramp at large inclination angles. Also these amazing properties
were documented as early as 1694, the above list of phenomena are
new additions, some of which are still not clearly understood, that
we will touch upon in this second edition of Seeing Gravity.

This only illustrates the adage that it is only through mistakes that
new discoveries are made.

Pervolia, August 2024 Bernard Lavenda
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Preface to the first edition

The first question that might come to mind when the reader picks
up a copy of this book is: Whywrite a book on the optical properties
of gravity? Optics is what you see, whereas gravity is what you
feel. Newton kept them distinct, dedicating Principia to the laws
of physics and gravitation, and Opticks dealing with a “Treatise on
Reflexions, Inflexions, and Colours of Light.”

Curiously enough, Einstein‘s first attempt to explain the deflection
of light by the Sun employed Snell’s law (and not Huygens‘ princi-
ple as he assumed) where he claimed that

The principle of the constancy of the velocity of light
holds good according to this theory in a different form
from that which usually underlies the ordinary theory of
relativity.

This would mean that a space varying gravitational field will de-
crease the speed of light in its neighborhood just like a varying
index of refraction. Whereas in his subsequent formulation of the
General theory of Relativity (GR) he assumed, following Poincarè,
that gravity like light travels at the speed of light. And like light
which is propagated as electromagnetic waves (EM), gravity should
also be propagated as waves, Gravitational Waves (GWs).

Specifying that all particles follow geodesics made it equivalent to
geometrical optics, which saw him derive a modified equation of
a Keplerian orbit, in which he obtained numerical correspondence
both with perihelion advance ofMercury and the deflection of light
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by the Sun in one fell swoop.

This seems rather incredible that the same law should hold good
for a heavenly body as for a ray of light, by only neglecting a single
term in that equation. In fact, it is the optical analogy to gravitation
that is the thread that binds Newton‘s theory of gravitation with
Einstein‘s General Relativity. Moreover, there is no reason to stop
at Einstein‘s modification of the equation of a Keplerian orbit, thus
opening up a whole range of possibilities from Kepler‘s conics to
Cassini ovals, and beyond.

A new branch of optics, dealing with dielectric materials, known
as metamaterials, has benefited greatly from the analogy with rel-
ativistic mechanics. New phenomena, such cloaking and perfect
imaging, are consequences of the fact that when light rays are fo-
cused by a lens they do not conform to Euclid‘s fifth postulate, but,
rather, display a vast range of non-Euclidean behavior: Light per-
ceives a medium as a curved space, and, so too, gravity perceives a
medium of curved spacetime.

In all fairness, the idea is not new but can be traced back to, of
all people, Maxwell who, in 1854 gave an example of an absolute
instrument using spherical geometry.

Although Hooke and Newton were personal adversaries, Hooke‘s
linear law and Newton‘s inverse square law are duals to one an-
other, in the exact same way that a Luneburg lens is the dual of an
Eaton lens. Moreover, Luneburg showed that ellipses in the plane
were stereographic projections of a perfect optical instrument on a
sphere, which is none other than Maxwell‘s example of an absolute
instrument. So already optics has been given generalizations of Ke-
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plerian orbits when we ‘lift our eyes to the heavens,’ where light
can travel in circular orbits. Is there a corresponding analogue for
gravitation? Is the theory limited to conical sections, or are there
a generalizations of orbits obtained from toridal sections, since a
torus is also part of a set of Riemann surfaces?

Like optical and gravitational analogies, there must be electromag-
netic and gravitational analogues based on the very nature of light.
When Ampère came on the scene at the dawn of the nineteenth
century people were concerned about the otherwise instantaneous
propagation of the Coulomb force, which was resolved by Weber
in his law of force of moving and static charges. Although many
astronomers tried to apply the same equation to gravitation there
was no common consensus, and Laplace’s argument that gravity
propagates some 7 million times faster than the speed of light could
hardly be refuted. Any finite speed of propagation of the gravita-
tional force would mean that it would display diffraction phenom-
ena, and, in particular, aberration that would deflect the action of
an otherwise radial force.

An illustration of the union of the EM and GW was found by a Ger-
man school teacher named Paul Gerber just before the turn of the
twentieth century, who was able to get the correct advance of the
perihelion of Mercury. However, no one realized that his modifica-
tion of the equation of the orbit was precisely the Weber force of
electrodynamics, and it moreover predicted that gravity travels at
1/

√
3 the speed of light. This was later confirmed by Schroedinger,

over a quarter of a century later, in his attempt to by-pass GR using
only classical mechanics. Whereas Schroedinger knew the value of
the parameter in advance, Gerber‘s matching with Weber‘s force
would have constrained it to be that value, and none other. This
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would no longer have been considered ‘gap’ fitting.

After developing these analogies it will bring me to the comparison
of EM waves and GWs. Both supposedly propagate at the same
finite speed, yet the former can propagate in the vacuum while the
latter is viewed as ‘ripples’ of space-time, Einstein‘s new ether. EM
waves can be shielded; GWs cannot. EMwavesmanifest diffraction
phenomena; none is known for GWs. The energy of EM waves can
be localized; GWs cannot. Both are considered transverse waves
with two states of polarization.

And here is where I can offer some novelty and reserve. I give what
can be considered a one line derivation of the Peter-Mathews ex-
pression for the decrease of the period of a binary that they de-
rived from a laborious procedure in GR, and show the luminosity
to be four orders of magnitude higher in aberration than that of
black-body radiation. That translates into an unheard of Stefan
law of T 7, compared to black body which has a T 4 law where T is
the absolute temperature. And it predicts that GWs have the same
number of degrees-of-freedom as GR without having to introduce
pseudo-tensors, or worry how a Poynting vector can be employed
when gravitational energy cannot even be localized. All this would
tend to imply that GWs are much closer to their EM wave cousins
than would have been expected.

In the journey I take in this book I have been influenced by rela-
tively few people with the notable exceptions of the late Tom Van
Flandern, whose physical intuition I concur with, Angelo Loinger,
whose insistence on the ”purity” and limitations imposed by the
founding fathers of GR should not be messed with, and to my
late friend, Fred Cooperstock, who believed that ”Electromagnetic
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waves have an intrinsic duality; they are necessarily also gravita-
tional waves.”

This book was (and maybe still is) under contract for publication
with World Scientific Publishing Company. After having submit-
ted the manuscript, the in-house editor decided to send it out for
review–a procedure that should have been carried out prior to the
stipulation of the contract. After several months of delay, five re-
viewer comments came backwithout a single specific criticism–just
a common feeling of ‘concern.’ The concern was over my criticism
of the ‘discovery’ of gravitational waves, which prompted the in-
house editor to ‘suggest amajor revision’ wherein all ‘unwarranted’
criticisms of general relativity should be removed. This was nothing
less than a ‘gagging’ order–something unbecoming of a publisher
who claims to be ‘neutral.’ The fear of readership decline is enough
to suppress any and all criticisms of a theory that has been pushed
beyond its limits. The publisher should have thought of that prior
to the publication of my other two books: A New Perspective on Rel-
ativity: An Odyssey in Non-Euclidean Geometries andWhere Physics
Went Wrong, which are along the same lines. It is fairly safe to say
that Einstein, would he return today, would not recognize his own
theory, and, moreover, would be appalled by some of the results
that its numerical ‘extension‘ has obtained that contradict the ba-
sic premises of his theory.

Pervolia & Shoresh, April 2019 Bernard Lavenda
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Introduction

0.1 The present state of the art

A half a century ago, General Relativity (GR) was a side-show of a
side-show. Even Einstein didn‘t think of his theory as anything
more than rounding off Newtonian theory in being able to pre-
dict minute effects like the advance of the perihelion of Mercury.
In a somewhat apologetic mood, Einstein wrote in his Forward to
Bergmann‘s book: 1

It is true that the theory of relativity, particularly the
general theory, has played a rather modest role in the
correlation of empirical facts so far. . . It is quite possible,
however, that some of the results of the general theory
of relativity, such as the general covariance of the laws of
nature and their nonlinearity, may help. . .

How the times have changed!

What Einstein was referring to was quantum theory which hogged
center stage for the remainder of Einstein’s life. Controversy still
surrounded the existence of GWs In the 1957 Chapel Hill confer-
ence, Feynman was successful in convincing the majority of partic-
ipants that GWs do, in fact, exist. He did so by using a ‘sticky bead’
analogy that assumed a priori that GWs carry energy which could
be transferred to the sticky beads that would show up in frictional
heat. In those days, physics was done by voting.

1P G Bergmann, Introduction to the Theory of Relativity (Prentice-Hall, Englewood Cliffs NJ, 1942)
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Yet, the energy stress tensor in Einstein’s field equations contains
all forms of energy– except gravitational energy. It turns out that
this energy is supposed to be accounted for by a gravitational
pseudo-tenors, which being composed of the metric and its first
derivatives does not contain the necessary second derivatives that
would make it a tensor.

Pseudo-tensors, like the Christoffel connection coefficients of
which they are composed, can be made to vanish by a mere change
of coordinates. They can even appear in Euclidean flat space
through a choice of coordinates, for example, cylindrical coordi-
nates. So even if one is willing to accept the existence of GWs, they
must be very different than how GR realizes them.

GWs are ripples in spacetime, and unlike electromagnetic (EM)
waves, they need a medium to propagate in, yet they travel at the
same speed as light. But, maybe the GWs are not the same as the
gravitational force, and whereas the former propagate at the speed
of light, the latter propagates instantaneously.

This would be analogous to the Coulomb field acting instanta-
neously while the EM fields propagate at the speed of light. But
when Coulomb proposed his law in strict analogy with Newton’s
inverse-square law, the connection between electricity and light
was unknown.

In Weber‘s (Wilhelm not Joseph) theory of EM both static and
motional fields found coexistence through the introduction of a
constant as a limiting speed of propagation of electric charges.
The same approach appears in the Lorentz force which considers
the sum of a static Coulomb potential and a motional magnetic

2
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field. Allowing the constant to tend to infinity would reproduce
Coulomb’s law.

Is there an analogous expression between Newton’s law, and what
would be the gravitational analogue of the Grassmann force? Al-
though this would support the nature of the supposed polarization
of GWs, it would introduce a lot of other problems because GWs
wouldn’t manifest the same optical characteristics as light, once
beyond the geometric optical limit of small wavelength. It would
necessary implicate an orthogonal field to the gravitational field,
which has been called a gravito-magnetic force in analogy with the
magnetic field.

The explanation given by LIGO of what causes GWs, like the
collision of binary black holes, is based on Numerical Relativity
(NR) which is a nascent field that uses computers to solve Einstein’s
equations numerically from prescribed initial data. For example
their exist numerical codes that suggest a collapsing star emits be-
tween 1 and 2 % of its total mass in the form of GWs.

Which part of Einsteins equations contain energy dissipation and
radiation is left unspecified. All this is very surprising in view of the
fact that GR can‘t even solve the two-body problem. And what is
even more remarkable that it confirms that two colliding impulsive
GWs produce a singularity.

The procedure 2 is to discretize the Einstein field equations where
arbitrary source functions are introduced that supposedly “encode
the gauge freedom of the solution.” Black holes are already built
into the system by using a “scalar field gravitational collapse to
2F Pretorius, “Evolution of binary black hole spacetimes,” arXiv:gr-qc/050714.
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1 Curvature: The Geometry of Force

1.1 The Radius of Curvature

When Newton came on to the world stage during the second half
of the seventeenth century, the table had been prepared for him by
Kepler during the first half. Specifically, Kepler laid down his three
laws governing celestial motion, and the timewas ripe to determine
the force, or forces, involved in guiding the planets in their orbits
about the Sun.

It was common in those days to divide the problem into two: The
‘direct’ and ‘indirect’ problems. In the former, the path was given
together with a center of force, and the aim was to determine the
force necessary to maintain that orbit. This was a natural for New-
ton for he already knew that the orbit was elliptical.

In the indirect problem we are given the force and its center of ac-
tion, and seek to determine the orbit. This is the problem of ac-
tual interest because we have universally embraced Newton’s law
of gravity as being an inverse square law.

To arrive at this conclusion, Newton concerned himself with curva-
ture: Curvature should be an imprint of force. In the early 1670s,
Newton derived an expression for the radius of curvature, ϱ, in po-
lar coordinates (r, ϑ):

ϱ = r(1 + z2)3/2

1 + z2 − z′ , (1.1)
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Figure 1.1: Newton‘s revised diagram for his fundamental theorem for the second and third
editions of the Principia with the osculatinq circle inserted. Taken from J Bruce
Brackenridge, “The critical role of curvature in Newton‘s developing dynamics,” in
The Investigation of Difficult Things P M Harman, A E Shapiro, eds (Cambridge U P,
Cambridge, 1992) p 231-260.

where z = (1/r)r′ is the slope of the curve, and the prime stands
for differentiation with respect to ϑ. We will now see how the de-
nominator in (1.1) determines the law of force.

In order to do so, Newton used two additional relations requiring
only that the force be directed toward its source. This limits the
motion to a plane. Figure (1.1) appeared in Proposition 6, Theorem
5 of the revised edition of the Principia.
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The trajectoryAPB has a tangentZPY which is normal to the line
PS, where S is the center of force. PV X is the circle of curvature
whose radius ϱ is OP .

Newton‘s Proposition 1 contains Kepler‘s area law,

L = vr sinα, (1.2)

where the instantaneous radius is SP , and v is the tangential veloc-
ity at the point P . All central forces conserve the angular momen-
tum L, which is proportional to the area swept out by the satellite
per unit time. The angle α is formed from the tangent ZPY and
the radius SP . It‘s complementary angle ϑ is shown in the figure.

The second relation used by Newton is the force that would result
if the actual trajectory were to be replaced by the osculating circle
of curvature whose radius is ϱ. The centripetal force, F0 is related
to the central force Fc according to

Fc = F0 cosϑ = F0 sinα = v2

ϱ
, (1.3)

in accordance with Proposition 4. Implied throughout is Newton‘s
assumption of uniform circular motion, i.e., constant angular speed
as well as centripetal acceleration.

Introducing Kepler‘s areal law (1.2) into the expression for cen-
tripetal acceleration, (1.4), leads to the expression

Fc = L2

r2ϱ sin3 α
(1.4)
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for the central force. Newton‘s proof would be complete if he could
show that

ϱ sin3 α = const.

In terms of the complementary angle, α, the slope of the trajectory
is

z = cotα (1.5)
so that

1 + z2 = 1/ sin2 α,

which appears in the numerator of the expression for the radius of
curvature, (1.1). Introducing that expression into the central force
results in

Fc = L2

r3

1 + 2r
′2

r2 − r′′

r


= L2

r3

(
1 + z2 − r

2
d

dr
(1 + z2)

)
. (1.6)

In terms of the angle θ Newton’s slope (1.5) is

z = 1
r

dr

dθ
= r′

r
= tan θ. (1.7)

Introducing the inverse radial coordinate, u = 1/r(1.6 transforms
into the Binet equation

u′′ + u = Fc

L2u2 (1.8)

In order that the right-hand side be a constant, the central force
must be inverse-square, ∝ 1/r2.
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Rather than dealing with the Binet equation directly (1.8) authors
like J Bruce Brackenridge deal with the curvature equation

d

dr
(1 + z2) − 2(1 + z2)/r = − 2

L2 (Fcr
2). (1.9)

Since the Binet equation establishes that the central force is inverse-
square, we can set the right-hand side equal to a constant, 2A; then
letting f = 1 + z2, (1.9) becomes the ordinary inhomogeneous dif-
ferential equation

df

dr
− 2f/r = −2A.

The complementary solution, obtained by setting the right-hand
side equal to zero is fc = Cr2, where C is an arbitrary constant of
integration. Since the particular solution is fp = 2Ar, the complete
solution is the sum of the two, viz.,

f = fc + fp = 2Ar + Cr2.

Reintroducing 1 + z2 for f , and writing B2 −A2 for C , where B is
another in arbitrary constant of integration, allows Newton’s slope
to be written as

z = r′

r
= r

√√√√B2 −
(1
r

− A2
)
. (1.10)

Integration leads to

θ =
∫ dr

r2
√
B2 − (1/r − A)2

= cos−1 1/r − A

B
− α,

where α is another arbitrary constant of integration. Rearranging,
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we come out with the equation of an ellipse,

1
r

= A+B cos(θ + α). (1.11)

From this Brackenridge 1 concludes

Thus, as Newton has claimed, given the curvature from
the force, the path is uniquely determined. Whether New-
ton could have produced a version of this proof, as White-
side claims, is a matter of personal conviction.I, for one,
have no doubt that he could. But he need not have done
so, for the outline provided in Corollary 1 of Proposition
13 is adequate.

Thank heavens that Newton didn’t present such a proof! This is
nothing in Proposition 13 Corollary 1 regarding his slope (1.7). The
only place mentioned is in conjunction of the logarithmic spiral
where it is constant.

For the question immediately arises why perform two integrations,
introducing two arbitrary constants when one would suffice by sim-
ply integrating Newton’s slope, (1.7)? Actually, there should be a ±
in that equation to take into account the ambiguity in how the path
is traversed. Choosing the positive sign, a simple integration equa-
tion results in

ln r = − ln cos θ − lnB, (1.12)
where B is an arbitrary constant of integration. Equation (1.12) is

1J B Brackenrdige, “The critical role of curvature in Newton‘s developing dynamics, ” in The investigation of difficult
things, eds P. M. Harman & A. C. Shapiro, Cambridge U. P., 1992, p. 231.
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an equation of a straight line! It is what you get when you setA = 0
in (1.11)! The negative sign gives a circle passing through the origin.
And we know that the force responsible for that is an inverse-fifth
power of the radial coordinate 2

The Newtonian force, (1.6),

Fc = rθ̇2 − r̈, (1.13)

where the dot indicates differentiation with respect to time is not
comparable to Weber’s law between charges e and e′

FW = ee′

r2

1 −
(
ṙ

c

)2
+ 2rr̈

c2

 . (1.14)

Weber’s force (1.14) takes into account the relative motion of two
charges and their orientation but not their angular dependence,
and their limiting speed, c. The angular dependence can be intro-
duced through ṙ2 → ṙ2 + r2θ̇2 in which case (1.14) becomes

FW = ee′

c2r

c
2 − ṙ2

r
− rθ̇2 + 2rr̈

 . (1.15)

Whereas the first term in (1.15) is related to the contraction in the
direction of the motion, the last two terms are analogous to New-
ton’s law, accounting for radial acceleration and angular momen-
tum. Newton’s law is purely mechanical, and there is nothing that
would indicate a limiting speed.

In regard to Weber’s law, (1.14), the terms involving Ampère’s law
contain c−2. Ampère established that the ratio between parallel cur-

2J.M.A. Danby, Fundamentals of Celestial Mechanics, Willmann-Bell Inc., 2nd ed., 1988, Sec 4.9
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rent elements to the force between longitudinal current elements
were in the ratio 1 : 2.

In Weber’s Sixth Memoir published in 1871, there appears a critical
length associated with the reversal of the Coulomb force. In his
words: 3

when particles e and e′ are of the same kind, they do
not always repel each other ; thus when ṙ2 < c2 + 2rr̈,
they repel so long as

r >
2ee′

mc2 ,

and, on the contrary, they attract when

the inequality is reversed. The mass, m, appears if, for no other
reason, than the sake of dimensions. The right-hand side will be
recognized as twice the classical electron radius. This was no small
feat taking into account that the year was 1871.

In fact, John Michell, a letter to his friend Henry Cavendish in 1783,
predicted that once a star exceeded that of the Sun in proportion
500 : 1, he prophesied that

supposing light to be attracted by the same force in
proportion to its vis inertiae, with other bodies, all light
emitted from such a body would be made to return to-
wards it by its own proper gravity This assumes that light
is influenced by gravity in the same way as massive ob-

3L Hecht, “The significance of the 1845 Gauss-Weber correspondence,” 21st Century (1996) 22-43.
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jects.

1.2 From Euclidean to non-Euclidean planes

Gauss assumed that any two dimensional surface in a three-
dimensional world had, at least locally, a geodesic polar parame-
terization, (r, θ). Euclidean straight lines are also geodesics with a
flat metric

ds2 = dr2 + r2dθ2, (1.16)

which gives rise to Newton’s slope, (1.7). Our interest, however,
is closed trajectories, of which the ellipse (1.11) is an example. In
order to go beyond the Euclidean plane, we might try hyperbolic
and elliptic planes of constant curvature whose respective metrics
are given by

ds2 = dr2 +R2 sinh2
( r
R

)
dθ2, (1.17)

ds2 = dr2 +R2 sin2
( r
R

)
dθ2, (1.18)

where R is a characteristic scale factor in non-Euclidean geome-
tries.

Unlike the elliptic plane, where all trajectories are closed, the hy-
perbolic plane admits both closed and open trajectories. According
to (1.17), Newton‘s slope will be given by

1
R sinh(r/R)

dr

dθ
= ± tan θ. (1.19)
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Figure 1.2: Two symmetric Joukowski ellipses in the hyperbolic plane of constant, negative
curvature.

Choosing the minus sign, and integrating gives

tanh
( r

2R

)
= coth

( r
R

)
− csch

( r
R

)
= cos θ, (1.20)

where, for simplicity, we have suppressed the arbitrary constant of
integration. Solving for r results in

r = ±2R tanh−1(cos θ) (1.21)

which are two Joukowski ellipses shown in (1.2).
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Taking the derivative of (1.21), we find r′ = 2 csc θ, and whose inte-
gral is

θ = 2 tan−1
(
exp

( r

2R

))
(1.22)

whereR is a constant of integration. Equation (1.22) is just another
way of writing the Joukowski ellipse.

From the metric in the hyperbolic plane of constant negative cur-
vature where G = sinh2(r), we obtain the equation for Newton’s
slope as [cf. Eqn (1.19):

1
sinh(r)

dr

dθ
= ± tan θ.

Now choosing the positive sign, we have the integral:

r = −2 tanh−1(cos θ) = ln
(1 − cos θ

1 + cos θ

)
.

This agrees with (1.22) when we write it in the form

r = ln tan
(
θ

2

)
= ln

(1 − cos θ
1 + cos θ

)
.

In the hyperbolic plane, the inverse of the radial coordinate, u =
coth(r), and

√
u2 − 1 = csch(r). Noting that the secant is

u+
√
u2 − 1 = sec θ, (1.23)

we can add it to (1.20) to get

u = 1
2

(sec θ + cos θ). (1.24)
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Figure 1.3: The reduction to the Euclidean plane gives an ellipse through the origin.

Equation (1.24) transforms in an analogous way to the one that
stretches a circle to an ellipse in the complex plane. In the Euclidean
plane, where u = 1/r, (1.24) gives an ellipse

1/r = 1
2

(cos θ + sec θ), (1.25)

passing through the origin, as shown in (1.3). Unlike the conven-
tional expression for a conic, containing two arbitrary constants
as in (1.11), (1.25) does not contain any constant whatsoever. It is
analogous to a circle passing through the origin that is caused by
an inverse-fifth force, as we shall now discuss.
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Figure 1.4: The Joukowski ellipse, A = 1/2, with its characteristic cusp, characteristic of air-
foils, separates open, A < 1/2, from closed, A > 1/2, trajectories. As A → 1, the
ovals transform into ellipses passing through the origin.

The ellipse in the Euclidean plane, (1.25) becomes a Joukowski el-
lipse,

r = coth−1(A(cos θ + sec θ)) (1.26)
in the hyperbolic plane of constant curvature for the valueA = 1/2,
as shown in (1.4).

Having noticed the similarity between an ellipse through the origin
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and a circle, we write down the Binet equation

u′′ + u = sec3 θ = (u+
√
u2 − 1)3. (1.27)

Let us consider the terms in the expression for the secant,

sec θ = u+
√
u2 − 1 = 1

tanh(r)
+ 1

sinh(r)
. (1.28)

Since the Lobachevskian ‘straight’ line is tanh(r), and this gives
the Newtonian potential as

V = µ

tanh(r)
,

where µ = GM is the gravitational potential. Consequently, the
force is

F = dV

dr
= − µ

sinh2(r)
. (1.29)

Thus, for large values of r, the secant will be dominated by the
first factor in (1.28), and the force will be essentially and inverse-
fifth power of the radial coordinate. This gives a circle through the
origin. Consequently, the second term, which is proportional to
sinh(r) in the denominator of the force, introduces distortions in
the circle transforming it into an oval or an ellipse.

1.3 Newton’s impact method

The proof of the expression for the centrifugal force in the hyper-
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Figure 1.5: A particle at P will collide with a hyperbolic circle at point C . The image is taken
from R L Lamphere, ”Solving the non-euclidean uniform circular motion problem
by Newton’s impact method”, Math Mag 83 (2010), p. 366.

bolic plane,

CF = v2

sinh(r)
(1.30)

can be accomplished by Newton’s impact method. 4 There is a seri-
ous error in quoted papers that the editors refused to correct claim-
ing that the paper was ’too old’ for such a correction to be of any
interest to their readers. Errors are never too old to correct! The
centrifugal force is given there as v2/ tanh(r) instead of (1.30).

The circular path is discretized by an n-sided regular polygon. The
polygonal path is inscribed in a circle of radius r with center S, as
shown in (1.5).

Keeping in mind that we are dealing with uniform circular mo-
tion, like Newton did. The only difference is that we are going to
replace the distance in the source by the hyperbolic distance and
not by the radius of curvature, as Newton did.

4R L Lamphere, ”Solving the non-euclidean uniform circular motion problem by Newton’s impact method”, Math
Mag 83 (2010) 366.
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Moreover, there is the problem that you cannot localize a body
smaller than its wavelength. The LIGO interpretation of a GW
travelling down to earth and stretching space along one arm while
compressing it along the other arm at periodic intervals is unten-
able. The passing GW will ’see’ a speck, and certainly that ’speck’
cannot make out the properties of the wave like its polarization.

At any given instant, so LIGO claims, more space along one arm
and less in the other will cause the laser beam to travel different
distance so that they will recombine in different phases. The re-
sulting brightness is used to produce a current that returns the test
masses back to their original positions. However, the minute mea-
surements of the displacement of the mirrors would make the their
momenta completely unknown make it difficult for the current, or
any other means, to return them to their initial positions.

Recognizing the problem at hand, Thorne writes in the forward to
Quantum Measurement 68 belittling the textbooks on quantum me-
chanic written during the period 1940 − 1970. by saying that they
have ”little respect or interest in the quantum theory of measure-
ment.” Surely, he has not read David Bohm’s Quantum Theory pub-
lished in 1949. There, he spells out in detail the quantum theory of
measurement, and why Heisenberg‘s uncertainty principle has to
be reckoned with in all quantum measurements.

After admitting that the act of “measurement has produced an ir-
reversible and indeterminate change in the quantum object,” the
authors then go on to define a ”non-demolition” quantummeasure-
ment. Their motivation was:

68V B Braginsky & F Ya Khalili, Quantum Measuremet K S Thorne, ed. (Cambridge U P, Cambridge, 1992).
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In the 1970s, in connection with efforts to construct
detectors for gravitational waves, it became necessary to
invent methods for measuring macroscopic observables
at levels of precision approaching and exceeding the stan-
dard quantum limits However, theoretical analyses of typ-
ical, traditional schemes of measurement showed that
their precisions can never exceed the quantum limit, even
in principle. The solution to this dilemma, it was rec-
ognized, was to use a nontraditional class of measure-
ment schemes, carefully crafted to overcome the standard
quantum limits. For these schemes was coined the term
‘quantum non-demolition [QND] measurements.’

Their panacea is to take “long enough for the measurements [so]
one can obtain any desired sensitivity.” For instance, the minimum
error in the measurement of energy is of the order h̄/τ . All that is
necessary is to let time τ → ∞. This then defines a vacuous steady
state in which the energy can bemeasuredwith unlimited precision
but absolutely nothing can be said about the time needed to per-
form the measurement. And all types of unintentional interactions
have certainly occurred within that time period.

They then go one to illustrate how such a QND measurement can
be performed. Radiation pressure is considered in which it is nec-
essary to consider an extremely small pressure, even at optical fre-
quencies. To obtain such weak pressures it is necessary to “register
the pressure produced by a few quanta.”
However, the fluctuations will be so great that one cannot measure
such a radiation pressure. Try measuring the ”pressure” attributed
to a single particle in a box! It is a well-known thermodynamic
consequence that below a certain level, usually taken as as the va-
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lidity of Stirling‘s approximation, that macroscopic measurements
cannot be performed on such systems. 69

69B H Lavenda, Statistical Physics: A Probabilistic Approach (Dover, New York 2015).
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Epilogue

If anything, the discovery of GWs should be more alarming than
reassuring. It is a clear case where the outcome was determined
before the experiment was done! Yet, GR is certainly not the first
theory to have predicted them.

Maxwell gave up trying to extend his field theory of EM to grav-
itation. For where do you find a situation where, when matter is
widely separated, the forces are the least while the potential en-
ergy is greatest, whereas when the potential energy is least when
the forces are greatest? This meant to Maxwell that he was dealing
with a field with negative energy − something he found so repug-
nant that he gave the matter up entirely. But that did not carry
over to his protégé, Oliver Heaviside.

Though his disciple, Oliver Heaviside, 70 did not, and went ahead
to derive a theory of gravitation that was based on the non-
instantaneous propagation of the gravitational force. At the end
of his expose he admitted that it

does not enlighten us in the least about the ultimate
nature of gravitational energy. It serves, in fact to further
illustrate the mystery. For it must be confessed that the
exhaustion of potential energy from a universal medium
is a very unintelligible and mysterious matter.

Heaviside modelled the gravitational acceleration g⃗, after an elec-
tric field. If it is the gradient of a scalar potential there is no further
70O Heaviside, “A gravitational and electromagnetic analogy,” in Electromagnetic Theory Vol. I (The Electrician, Lon-

don, 1898) pp 455-466.
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ado. But, citing Newton‘s letter to Bentley, he said that “it is as
incredible now as it was in Newton’s time that gravitative influ-
ence can be exerted without a medium,” and that in that medium
it propagates at a finite speed, v.

Heaviside considers g⃗ = −∇ϕ as the condition that “the gravita-
tional force is exactly dependent on the configuration of thematter.”
This he takes equivalent to ∇ ∧ g⃗ = 0. So when this is not so the
last relation must be invalid. And if it is invalidated, it should be
replaced by:

cv2∇ ∧ g⃗ = ˙⃗
h, (5.49)

which introduces an auxiliary field, h⃗, where c is a constant.

If the auxiliary field, g⃗, is divergence free, its curl must be non-zero,

∇ ∧ h⃗ = −cġ, (5.50)

whose source term Heaviside modeled after Maxwell‘s displace-
ment current, −c ˙⃗g. Then taking the curl of (5.49), and the time
derivative (5.50), the auxiliary field can be eliminated to obtain:

−v2∇ ∧ (∇ ∧ g⃗) = ¨⃗g. (5.51)

which is Heaviside‘s transverse wave equation since:

∇2 = ∇div − curl2. (5.52)

The vector identity (5.52) implies ∇ · g⃗ = 0. This motivates con-
sidering the analogy with EM where g⃗ would be analogous to an
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electric field:

g⃗ = −∇ϕ− ∂A⃗

∂t
, (5.53)

which represents an ”oscillating gravitational radiation field.71 It
should also

be transverse to the wave propagation direction and to
have an amplitude that falls off as 1/r, the usual space
dependence for the amplitude of [EM!] waves far from
their sources.

Consequently, only the second term in (5.53) subsists so that “the
gravitational radiation field g⃗ depends only on the components of
the vector potential A⃗ that are transverse to the observation direc-
tion:

g⃗ = −∂A⃗
∂t
. (5.54)

So that if ∇ · g⃗, so, too, will ∇ · A⃗ = 0, which is referred to as the
Coulomb gauge.

Is the analogy with EM waves relevant? EM waves are the only
known waves that do not need a material medium to propagate in.
Some media can support both transverse and longitudinal waves,
such as ocean waves. Now if GWs aremechanical transverse waves
they need a material medium, and propagate by means of vibra-
tions that are perpendicular to the direction of propagation: the
so-called ‘ripples’ of spacetime. This is like some sort of jello which
robs the vacuum of its vacuous state. We have come full circuit
by re-introducing the ether that Einstein say fit in 1905, but later

71R C Hilbron, ”Gravitational waves from rotating binaries without general relativity” a tutorial, 09/2017.
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repented having done so in 1920.

It is the auxiliary field, h⃗, that allows EMwaves to propagate in ”vac-
uum”, and this has been borrowed by GR, and named the gravito-
magnetic field. If it exists then the ripples on spacetime are com-
pletely superfluous so that GWs can propagate throughout the uni-
verse just like EM waves, and since they travel at the same speed,
this would be the more logical choice. The two orthogonal vector
fields ride piggy-back, and this is what allows the EM waves to
propagate in a vacuum. The presence of a material medium tends
to slow down their propagation by offering resistance to their prop-
agation.

However, if they do need a material medium to propagate in, the
polarizations of GWs must be characteristic of that medium rather
than an intrinsic property of the waves themselves. And because
they are considered as undulations in spacetime, they must show
optical diffraction phenomena and aberration. Heaviside, too, was
perplexed:

The remarks of the Editor and of Prof Lodge on gravi-
tational aberration, lead me to point out now some of the
consequences of the modified law when we assume that
the ether is the working agent in gravitational effects, and
that it propagates at speed v.

Heaviside considers how the gravitational force between the Sun
and the Earth, f , is modified “when the Sun is in motion at speed
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u through the ether. The modified force law,

F = f × 1 − β2

(1 − β2 sin2 θ)3/2 , (5.55)

where β = u/v is the relative velocity and θ is the angle between
the line of motion and the radius vector between the Sun and the
Earth. Except for the error that the term in the numerator 1 − β2

of (5.55) should be squared, the expression is identical to the result
found by Ibison et. al. 72 found in §4.6, and pre-dates the latter by
more than a century

Moreover, like IPL and Carlip, 73 Heaviside can’t answer the objec-
tions of Lodge because (5.55) is a radial, and not a tangential, force.

What more can GR add? Eddington 74 addressed the problem, re-
ferring to two earlier papers by Einstein who investigated the prop-
agation of GWs with the speed of light “due to changes in the dis-
tribution of matter,” not mentioning that only accelerating masses
are able create “the altered curvature of space-time,” that resulted
from gravitational radiation

Since the theory is tensorial, it admits three types of GWs:
longitudinal-longitudinal, longitudinal-transverse, and transverse-
transverse. 75 Eddington shows that only the latter “are propa-
gated with the speed of light in all systems of co-ordinates.” Einstein
found that the first two categories of waves “convey no energy.”
This seems a little strange since GR cannot localize energy, and it

72M Ibison, H E Puthoff & S R Little, “The speed of gravity revisited.”
73S Carlip, “Aberration and the speed of gravity,” arXiv:gr-qc/9909087v2.
74A S Eddington, “The propagation of gravitational waves,” Proc Roy Soc London Series A (1922) 268-282.
75HWeyl, Space Time Matter (Dover, New York, 1952) p 252.
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explains why Einstein performed instead a classical calculation of a
spinning rod losing energy by the emission of GWs that made use
of the Poynting vector, which we discussed in §5.5.2. This explic-
itly involves the existence of an auxiliary field, h⃗, since Poynting‘s
vector is:

S⃗ = v

4π
(g⃗ ∧ h⃗).

The facts that “plane waves are a very special, and artificial case of
gravitational wave propagation,” lead Eddington to consider diver-
gent waves. And

although the equations of the theory are the same as
those occurring in the propagation of sound waves, there
is no propagation of gravitational waves uniformly in all
directions like a spherical sound wave.

However, we should not expect soundwaves to be uniformally prop-
agated in all directions since they are longitudinal with material
motion in the direction of propagation.

To consider this possibility further, suppose that the gravitational
field is the negative gradient of the velocity potential, ϕ, i.e.,

g⃗ = −∇ϕ.

Let P = ϕ̇ be the power loss due to the emission of GWs, where
the rate of power loss is given by:

Ṗ + v2∇ · g⃗ = 0.

Replacing P and g⃗ by their definitions in terms of the velocity po-
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tential, ϕ, leads immediately to the scalar wave equation,

ϕ̈− v2∇2ϕ = 0.

These are longitudinal waves that propagate at a finite speed v,
whatever that may turn out to be. The bad news is that they are
non-polarized, but this is more than compensated by the fact that
you do not have to explain gravitational aberration, and have the
possibility of impacting matter just like pressure waves. Albeit, this
is skirting entirely the basic question of what is causing the polar-
izing of the GWs.

Each model has its own attributes, and short-comings. The anal-
ogy with EM waves necessarily attribute to GWs the phenomena
of diffraction and aberration. EM waves can be shielded whereas
GWs cannot. Rather, if GWs are mechanical transverse waves, they
need a material medium, and propagate by means of vibrations of
the medium normal to the direction of propagation. The type of
polarization would then be characteristic of the material medium,
whereas for EM waves, the polarizations are given by the Grass-
mann force, and are equal and opposite in directions normal to the
motion.

Yet, none of these models would explain the lack of shielding of
gravity, and what we are left with is a compromise: The optical
properties of gravity.
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Gravitational Optics in Curved 
Spacetimes: Contrasting Newtonian 
and Relativistic Perspectives

Bernard Lavenda

This book offers a critical appraisal of where we stand on a formulation of a 
theory of gravitation. Newtonian theory is reformulated in the general form of 
conics and their relation to aberrancy. Conics are to planetary orbits what 
Cassini ovals are to binaries. The transition from a Bernoulli lemniscate to 
Cassini ovals is discussed in terms the instability criteria of Roche lobes, and 
their �ssion. When the second derivative of the curve is no longer constant, the 
Newton inverse law does not apply and new central forces appear which can be 
derived from the radius of aberrancy, just as the inverse-square law follows from 
the radius of curvature. The logarithmic spiral becomes periodic in velocity 
space, and a new Hubble law appears between acceleration and velocity. This 
has the effect of decreasing the decay rate of accelerations so that they can 
explain the �at rotational curvatures oberserved in spiral galaxies. Numerical 
relativity has reduced its conception of general relativity to a Le Sage- type 
theory thereby making it refutable.
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