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Chapter 8: Applying data engineering 

principles to build distributed, scalable, 

and fault-tolerant data systems 

8.1. Introduction  

Over the past two decades, we have seen the rapid adoption of distributed data 

management systems in industry, with many early adopters leading the way. Preferences 

are shifting from smaller, local, centralized, monolithic systems towards larger, 

distributed, concurrent, global systems that are scalable, fault-tolerant, and can provide 

diverse functionalities over a wider range of data types. Organizations are building next-

generation data services using many innovations in distributed systems and information 

management technology: peer-to-peer and web services architectures, industrial-

strength clustering and fault-tolerance technologies, large scale reliable storage systems, 

and efficient indexing and retrieval methods for unstructured data (Armbrust et al., 2010; 

Bass et al., 2012; Gollapudi, 2021). 

At the same time, research efforts in data systems are focusing increasingly on the 

development of distributed, scalable, and fault-tolerant techniques that can support 

services such as web-search, information-sensors, click-stream analysis, peer-to-peer 

storage and publish/subscribe services. There have been interesting ideas, especially in 

the areas of scalable data access and retrieval services, reliable storage, and high-

performance data dissemination services. Today, large amounts of data are being 

generated and collected by organizations. Simultaneously, businesses are realizing that 

enormous improvement in profitability can be achieved by employing new tools and 

approaches for data analysis: mining for knowledge; learning predictive models; 

performing trend analysis over historical data; performing on-line, real-time analysis and 

filtering of current data. 

Many of these organizations are beginning to analyze transaction data from their 

business processes in conjunction with traditional data-analysis techniques. By 
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employing technology to analyze and filter the data, businesses can make intelligent 

decisions about managing customer relationships. With increasingly complete data 

repositories, businesses are increasingly looking to drive customer relationships by 

collecting explicit data from customers and analyzing their behavior. A strong tool-set 

for large scale data analysis will allow organizations to automatically enhance their 

intelligence infrastructure. As these organizations have entered into the hype cycle for 

such analysis tools, they expect an understanding ecosystem (Krishnan, 2013; 

Kleppmann, 2017). 

 

Fig 8.1: Applying Data Engineering Principles to Build Distributed, Scalable, and 

Fault-Tolerant Data Systems 

8.1.1. Background and Significance 

Real-world applications, especially in areas such as e-commerce and finance, need to 

process a colossal quantity of transactional data. The existing redistributive data 

processing architectures achieve scalability by distributing workloads over a large 

cluster and using a disk-based strategy to maintain fault-tolerance. Traditional disk-

centered database management software has proved to be effective for transactional 

workloads, thus forming a foundation technology for enterprise data processing and 
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management. However, the rapid growth of available system memory has shifted this 

perspective, as more applications may now run completely in RAM. 

Such memory-centered solutions achieve very high throughput and low latency, and are 

easy to manage and use. However, when considering the need for high availability and 

support for large data stores, the issues of distributing, scaling up to clusters, and 

tolerating node failures become complicated. Current solutions achieve one aspect while 

failing at others: redistributive systems provide scalability and fault-tolerance while 

sacrificing performance; hyper-table and similar systems provide single-node 

transactional performance while failing on support for very large data sets; other 

systems, such as Bigtable, scaling support at the expense of transactions; use of shared 

memory and DRAM buffers provides performance but fail on scale for very large data 

sets. 

8.2. Fundamentals of Data Engineering 

Data engineering applies to that aspect of the process, eventually realized in code, that 

deals with the physical manipulation of data. This manipulation can be considered to 

exist on a hierarchy of levels, from low-level programmer assignment of numerical 

values to computer memory to high-level configuration of distributed databases. The 

levels of data engineering most relevant to this book are proper to historical data 

management and can be subsumed under two somewhat overlapping constructs. The 

first and more mundane is data management – that aspect of computer use that affects 

the physical storage of data and its retrieval for viewing and updating; that is, the data 

store and the associated software routines to be invoked when necessary. The second is 

data management design – that aspect of the design of a computer system that 

specifically deals with storage, retrieval, and updating of data through the establishment 

of data models, domain dictionaries, database management system specifications, file 

organization techniques, and so on. 

Why even at this late date has so much data pedantry remained in the world? There are 

really two answers, one of which has always been there early in near the end of the Data 

Processing Era. During that time, which lasted at least 25 years, computers were 

regarded as boxes and what went on inside them was regarded as a black box using a 

language of integers, floating-point, and magnetic core. Surfacing early in the Data 

Processing Era, and still enduring in the Information Systems Era, was the data models-

like record and file organization techniques, and the associated never-ending disputes 

over how many data elements to have in an address record and what should happen to 

them when one gets a message from the marketing department concerning a change in 

the product line. 
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8.2.1. Definition and Scope 

Data engineering is the discipline and field of study concerned with the systems, 

processes, and structures that enable acquisition, storage, and analysis of data at scale. 

Data engineering encompasses data integration and preparation, storage, architecture, 

orchestration, ETL and ELT, and interoperability. It also addresses governance and 

security issues around data. Data engineering does not discuss statistical, mathematical, 

or model building issues with data. Nor does it discuss application-level use or 

exploitation of data. For example, program-level techniques for biological sequence 

searching, image classification, or natural language understanding are not within the 

scope of data engineering. Facilitating business intelligence and operational analytics 

applications is a primary goal of many data engineering systems. Data engineering also 

plays a key role in enabling other forms of data analysis like scientific discovery and 

machine learning-based prediction. It underpins applications in business, government, 

and science in the areas of health, safety, transportation, energy, manufacturing, and 

many others. Data engineering is a collaborative discipline. For successful execution, 

data engineering projects require the participation of software, reliability, and 

deployment engineers as well as domain experts, software developers, and end users of 

the deployed systems. 

8.2.2. Importance in Modern Applications 

As our applications process increasing amounts of data, the skeleton of distributed, 

scalable, and fault-tolerant data systems is becoming a critical shared resource. Unlike 

application code, which can (and often should, for innovation) be specific to a single 

application, these data systems must be generic; they must provide a variety of 

capabilities that allow a diverse set of applications to extract utility from data. 

Domain-specific applications demand available and low-latency services. Search and 

recommendation are classic examples of applications that deliver value by processing 

high volumes of queries. In the last decade, new application domains like machine 

learning have become critical for the Internet. ML today is a complex combination of 

modeling decisions and large data processing jobs that require distributed systems for 

gradient computation. The rapid innovation in flows like AutoML and Federated 

Learning is built on these foundations. Clearly, we cannot afford to delay the execution 

of gaze prediction in an augmented reality application because federated learning is 

building a model in the cloud. The model is stored in a distributed, scalable, and fault-

tolerant data system. For other application domains, like computer vision, the ML system 

for prediction is also the data system. These systems can thus accelerate processing even 

more, using shared resources for shared work. These transient demands require transient 
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data systems, elastic data systems which can automatically expand and contract their 

resources based on the demand. 

8.3. Distributed Systems Overview 

coordinated manner on multiple computer systems. These systems can consist of rack 

servers in the same data center, computers over a wide area network, or any combination 

thereof. Distributed systems solve multiple redundant copies of data and queries, 

distributing their execution across multiple computer systems. By also allowing 

replication of data, the processing workload for individual data queries may be reduced, 

allowing for increasing throughput. 

 

Fig 8.2: Distributed Systems Overview of Applying Data Engineering 

The main two advantages of distributed systems driving their deployment are reliability 

and performance. Reliability is achieved through both data replication and failure 

isolation. The data is replicated across multiple nodes such that a failure of one node 

does not render any data unavailable. Failure isolation is the idea that not all data has a 

single point of failure. This is critically important for units of work that modify stateful 



104 
 

data and rely on a sequence of operations being done in a specific order. If two operations 

on the same stateful data are executed on two different nodes, the system has no way of 

guaranteeing that they will be executed in the correct order. Some operations may 

conflict with each other and lead to system inconsistency by violating invariants. 

While performance improvement is one of the driving pushes towards adopting 

distributed data systems, it is also one of the foremost challenges associated with them. 

To understand the challenges and limitations in optimizing performance in distributed 

systems, it is important to understand what factors contribute to performance in such 

systems. For a single machine executing a process, the relevant characteristics are clock 

cycle speed, the number of cores, throughput of main memory and cache, and 

performance of the storage medium. These factors are relevant in achieving performance 

speedups and improvements in efficiency of work done per computational resource. 

8.3.1. Characteristics of Distributed Systems 

In this section, we briefly discuss the characteristics of distributed systems and highlight 

the key differences that define distributed data processing. There are a lot of definitions 

on what a distributed system is. The broadest definition is as follows: 

A distributed system is a system that consists of multiple autonomous components 

communicating via a computer network. 

While this definition is broad enough to capture any sort of networked system, there are 

some aspects of distributed systems and applications that differentiate them from 

systems that communicate via a computer network in a microkernel architecture. Some 

of these characteristics are as follows: 

Transparency: The users perceive the distributed system as a whole and not as a 

combination of different components. The clients of a web application see it as a whole 

entity regardless of how many components run on how many servers. The designers of 

the system will have to understand the complexities introduced by distribution, such as 

result synchronization and communication failure, among others, and use those to 

provide a uniform interface. The operating mechanism behind a distributed database is 

usually different from that of a centralized database, but the end users see both as the 

same. 

Scalability: A distributed system is often composed of multiple servers and each of these 

servers has capabilities that are limited by the underlying hardware. A distributed 

database or computation has to be designed to effectively utilize the resources available 

on all servers such as CPU, memory, and network bandwidth to provide liveness, 

availability, and performance. 
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Autonomous components: Each of the components in a distributed system is, or can be, 

an autonomous unit. In the context of a distributed data system, each of the component 

databases can operate independently and, within certain limits, tolerate failures of other 

component databases. 

8.3.2. Challenges in Distributed Data Processing 

Distributed file systems, cluster schedulers, and bulk data processing systems represent 

contemporary implementations of several decades of research into file system, task 

scheduling, and programming model design. This overwhelming body of work indicates 

decades of practical experience in building and using these systems. This experience 

makes understanding the underlying design choices essential for developing the next 

generation of computing infrastructure. Before diving into the details of several 

distributed data processing systems, it is necessary to understand the main challenges—

and possible engineering tradeoffs—perceived over the years. 

Despite their shared goal of providing a scaled-up computation platform, the above-

mentioned systems address different problems, implement different interfaces, and 

expose different tradeoffs. The main difference in these approaches is in the specific data 

movement operations that they optimize for. This data movement task—the actual data 

transfers for obtaining the inputs and returning the outputs for a task execution—

accumulates very fast in modern services processing large volumes of data. Depending 

on the nature of the tasks deployed at the cluster, the data movement may actually 

account for an overwhelming portion of the overall processing, overshadowing the 

computation logic, specifically in adversarial situations where different user jobs 

compete for shared resources. Hence, systems that merely aim to offer as much 

computation power as possible fail to consider this important factor and are of limited 

use. Other systems that do offer a variety of optimized data movement operations, expose 

the underlying complexity and do not automate the high-level data movement design 

choice boilerplate, making it completely impractical for the majority of domain 

developers to actually use those. 

8.4. Scalability in Data Systems 

One of the most important considerations in any system that stores data is its power to 

scale. If there are 100 stored data objects, throughput will be a function of object size, 

but if there are a billion objects, it will also depend on the number of storage nodes and 

how they are organized. As web-based applications for social interaction, shareware 

distribution, and instant messaging grow in popularity, the data systems used in these 

and other applications are frequently subject to demands that would cripple a traditional 
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system. Millions of users interact simultaneously, creating data objects for themselves 

and their friends — and perhaps later deleting them — at rates of 1000 per minute. Data 

about user interactions is logged for analysis of user behavior and for behavioral 

advertising. If only a fraction of the appropriate subset of data can be mined for these 

last two functions, response times become too long, degrading user experience. 

Data storage and management systems that can meet these demands must be designed 

and constructed so that they can be scaled economically as the enormous volume of 

similar data grows. They must be distributed so that the job of managing all of the data 

is efficiently handled by a large number of computers rather than by a single machine. 

High system throughput is of little use if it can only be achieved by a supercomputer. By 

these criteria, almost all of the data storage and management systems being used to 

handle big data today are housed on clusters of commodity computer nodes connected 

by a Local Area Network and running a Linux-based operating system.  

8.4.1. Vertical vs. Horizontal Scaling 

Before we delve into the various scaling techniques available in modern data systems, 

we should distinguish between two different classes of scaling. A system can be scaled 

in one of two directions—vertically or horizontally. The most typical form of scaling, 

what is called vertical scaling, is one in which a single node is made larger (usually by 

adding more and faster core processors, more memory, and more I/O bandwidth and 

capacity). The main virtue of vertical scaling lies in its simplicity. Entities that have 

outgrown a small system, such as a single workstation, are able to move to a larger but 

still small system without having to change any programming or data management 

paradigms (the same is true when a department or laboratory entity moves to a larger 

mid-range system). 

But although vertical scaling is simple, it is fraught with potential problems. The 

foremost one is physical limitation—there can be only so much packaging space, power, 

and dissipated heat from large numbers of chips. When I was doing research in the area 

of multiprocessor performance more than twenty years ago, I would have been foolish 

to bet that anything larger than a two-processor symmetric multiprocessor was ever 

going to be commercially viable, given the limitations of power and heat dissipation, 

interprocessor bandwidth, and reduced per-chip performance scalability. I am now very 

grateful for my stupidity. Although it took a long time, multi-piece chips or very large 

chips are now available, and allow performance scaling for traditional workloads. And 

for some highly parallel workloads, larger chips have been built, and multi-chip 

processors are available that support viable performance scaling. 
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8.4.2. Techniques for Achieving Scalability 

When faced with a scalability need, one of the first design considerations is how to 

increase capacity without compromising original design decisions. For example, it is 

possible to serve many more requests with the same number of machines if the machine 

servers are fast enough. However, dependably and cheaply increasing capacity by 

merely scaling-up vertically is often not a design choice. Likewise, other original design 

decisions may constrain future response time. Scaling out horizontally using clusters of 

commodity components typically leads to design modifications to support distribution, 

including creating better defined and simpler abstractions, designing around failure, and 

using replication and partitioning. 

Once the software has made the necessary architectural adaptations for scale-out design 

and has implemented coarse-grained abstractions and away from failure, provisioning 

and monitoring concerns become paramount. Machines need to be added or removed 

from the cluster, and requests routed appropriately. Often there is a third-party service 

that handles this task; when this or a comparable service is not available, we need to 

build Reserved Kick-Ass Data Systems to automate scale-out.  

8.5. Conclusion 

Throughout this book we have analyzed various design patterns, methodologies, and 

technologies to implement scalable and resilient data systems, stressing that these 

systems are enablers of technical innovativeness in many different areas in the economy. 

You have acquired the knowledge needed to plan, build, or operate such systems, and 

built some of your own by following case studies and doing the exercises at the end of 

most chapters. When thinking back to what challenges motivated this book, we see at 

least three kinds. First, there is still much to learn about the specific ways of 

implementing storage, processing, or streaming systems. These are exciting challenges 

in areas such as system architecture, resource allocation, storage mechanisms, or 

programming models. The second challenge is related to making data systems better 

collaborators: how do we enable data scientists, data engineers, and the domain users to 

interact more effectively to achieve the goal of efficient machine learning systems? The 

last challenge is the interaction of data systems with other areas in computer systems. 

Recent years have seen amazing developments in the area of AI and machine learning. 

The question remains whether these developments will affect how we build data 

systems. Adaptive systems could be able to make more intelligent decisions about 

storage, I/O, or compute allocation decisions. There have also been recent claims that 

the great advantage of deep learning will come as much from the development of 

effective pre-trained models as from building better systems. Will this reduce some of 

the traditional strengths in the area of systems? 
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Fig : Data Engineering Principles to Build Distributed 

8.5.1. Future Trends 

Chapter 8 has outlined a veritable zoo of data systems that a modern software architect 

may have to deal with during the construction of large-scale applications. As related to 

the discussion in Chapter 1, it seems evident that data systems have evolved in response 

to nine identifiable problem threads. So how might these threads grow and mutate in the 

future? What trends do data systems architects need to keep an eye on as they evaluate 

new systems and techniques? 

A long-standing desire in the database community has been to invent mechanisms to 

automate all or part of the work of a database administrator. With the exception of auto-

tuning SQL query optimizers for fairly restricted queries, this desire has not been 

realized in practice. A more recent trend is to build self-managing data systems. This is 

an idea that is gaining traction with the recent emergence of self-managing capabilities 

in data systems, where additional servers are automatically provisioned to share the load 

when certain load thresholds are reached, or which takes advantage of community 

sharing to load balance essentially interactively as demand for concurrent query 

execution on a single cluster of hardware fluctuates. But these are relatively modest 

steps. How the all-the-way-to-self-managing data systems can be automated remains an 

open research question. 
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Another area of continuous growth is support for Big Data workloads in traditional data 

systems. Deployed data processing systems originally built to support operational 

workloads have taken on some analytics workloads as users have learned that many 

queries are amenable to being expressed as SQL-92 queries. Similarly, analytics data 

systems designed for large batch workloads are continuously extending beyond their 

traditional workload domains to support all more modes of operation. 
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