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Chapter 5: Designing data engineering pipelines for 

real-time agricultural insights   

5.1. Introduction 

Advanced data engineering techniques have now shown considerable potential in 

realizing the precision agriculture practice in crop production cycle, helping farmers take 

prompt and timely decisions using real-time farm data, relate it to their years of hands-

on experience and monitoring, to forecast their yield and the quality of the produce. Data 

has also become one of the most valuable resources today in realizing realistic decision-

making protocols for agriculture that draw insight from historical agricultural data, in-

turn enhancing the domain knowledge with adequate modeling and analysis. All-in-all 

it is now possible to compute and store historical data from all seasons of a crop 

production life-cycle, in both on-cloud storage as well as local edge or IoT database, 

through advanced sensors technologies and decision-making pipelines. Further, 

leveraging the power of Artificial Intelligence for predictive analysis, big data tools can 

analyze both on-cloud and local data efficiently for providing insights into upcoming 

harvests (Kamilaris & Prenafeta-Boldú, 2018; Jha et al., 2019; Tsouros et al., 2019). 

Several data analysis frameworks also combine domain knowledge with Artificial 

Intelligence based models to ascertain towards improving not only the predictive yield 

based decisions, but also the day-to-day remedial measures to keep the yield in check. 

This has been further emphasized and evidenced by improvements in the farming eco-

system that followed after the adaptation and understanding of the significance of data 

in the recent years, and the advantages that proper decisions based on right data can 

achieve in farming. Having adopted this approach, it is now imperative that data 

acquisition from modern and timely decision-making pipelines leading into accurate 

yields and quality of harvest, remains key to effective food production and agriculture-

based research. In particular, the importance of adopting the significance of big data and 

data science in dealing with agricultural problems (Wolfert et al., 2017; Zhang et al., 

2021). 
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5.1.1. Significance of Data in Agricultural Practices 

Data in the context of agriculture refers to quantitative and qualitative information 

specific for the agricultural markets of nations, the functions of production, and the 

process of distribution and exchange of outputs. Since a large population of the world 

relies directly on agriculture and its products, the decisions taken on the agricultural 

markets are of wider interest for the society as a whole. Moreover, the increasing opening 

and globalization of different agricultural markets makes almost impossible the analysis 

of a single agricultural market without referring to international levels, as more and more 

actions taken by domestic subjects are influenced by the performance of other countries. 

Comprehensive, accurate, good quality and timely data are essential to inform sound 

agricultural investment and policy decisions.  

 

Fig 5 . 1 : The Agri-Data Ecosystem 

The significance of the agricultural statistics arises not only from the social and 

economic implications proper to the agricultural sector but also from the specificity of 

its primary function. Farmers are responsible for producing the goods that are essential 

for human life and the agricultural output must satisfy some requirements in terms of 

availability, selection and prices. Both, the failure of the agricultural sector and the 

incorrect management of its investment decisions can produce serious consequences for 

the population. The preoccupation with the agricultural statistics motives a considerable 

body of research investigating the efficacy of these data and filing guidelines for their 

preparation. Moreover, the documents and recommendations prepared by international 

institutions in charge of formulating important decisions regarding economical and 

financial aspects advocate improvement in the domain of the agricultural statistics, in 

the terms of documentation adequacy and coordination of statistics. 
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5.2. The Importance of Data in Agriculture 

Without farmers to provide us food, humanity would not exist. The importance of 

agriculture has been recognized and praised since the Time of Ancient Greece. In 

modern times, however, the world has seen an explosion in demand for food. Global 

population growth combined with a transition from subsistence to market-driven 

agriculture in the developing world and dietary changes in the developed world mean 

agriculture faces growing challenges for the coming century. Yet in part because of its 

early transition to modernity, labor is quickly leaving the agricultural sector in 

industrialized economies. A 1% annual increase in total factor productivity currently 

seems insufficient to meet food demand for the coming century. This has necessitated 

pushing the frontier of knowledge further outward to allow agriculture to meet the 

coming demand. 

Farmers in emerging markets are increasingly turning to their own data to make the best 

decisions on how to develop their industry, stimulating the growth of the data-driven 

agriculture market, also known as precision agriculture. Using data, farmers can 

minimize their inefficiencies, reduce their use of fertilizers and pesticides, maximize 

their yield, and as a result, earn more money at less expense. In the developed world, 

meanwhile, the agricultural sector has matured; products and services are designed to 

facilitate the farmer’s work. The use of data has become a habit; farmers rely on their 

data to drive informed decisions, and optimizing data operations has become a priority. 

Data is only as good as what is done with it, though; in general, the more accurate and 

relevant the data, the better insight it can provide. For farmers, the implications of poor 

decisions based on faulty data can be disastrous; whole seasons can be lost by suboptimal 

planting, failure to treat pests, or harvesting too soon or too late. In addition, for farmers 

to equip themselves with data-driven agriculture, precision technologies and systems 

need to be applied across the diversity of non-traditional farming landscapes. This is 

particularly necessary for developing countries, which face rising world commodity 

prices yet have minimal support for their subsistence farmers. 

5.2.1. The Critical Role of Data in Enhancing Agricultural Outcomes 

Agriculture is undeniably a multi-observable system, consisting of both above-ground 

and below-ground resources. These light-exposed crops or trees consist of physical 

organisms that can be further classified as biological systems comprising 

microorganisms, living bushes or trees. These are viewed as valuable resources for 

sustainable agriculture. The below-ground systems are comprised of organic compounds 

consisting of carbon, hydrogen, and some oxygen. These compounds undergo 

continuous interaction in the nitrogen, carbon, phosphorus, silica, and sulphur cycles 
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throughout the environment. Additionally, above-ground agriculture must contend with 

weather conditions such as radiation, temperature, precipitation, air pressure, and 

humidity. Thus, massive fluctuations in annual yields are attributed to the evolution of 

climate change. The extraordinary increase in the population in the twentieth century, up 

to today, has resulted in extensive advances in agricultural and livestock production. 

Advanced technologies in the field almost doubled agricultural production in several 

countries by stimulating the use of synthetic fertilizers, agrochemicals, modified seeds, 

and irrigation systems. The global demand and food security challenge, on the one hand, 

and the issues with sustainable development and environmental impacts, on the other 

hand, are the two pillars of the current and future convergence of science and technology 

in fields related to food, nutrition, health, and agriculture. 

In that regard, data and knowledge are envisaged as the essential milestones by which 

agricultural development policy and research become substituted by a conscious control 

mechanism. Education is at the center of the transition to a knowledge-based economy, 

and the ICT potential must be completely utilized to sustain the adaptation process of 

agriculture and rural areas in a knowledge-based economy. However, the economists are 

forbidden from classifying agriculture in the ordinary market economy. The results of 

economically evaluating these investments in knowledge are reflected in the tension 

between present and future possible rewards. 

5.3. Overview of Data Engineering 

Data engineering is a critical foundation of data-centered organizational structures across 

a variety of technologies and industries. Data drives the decisions made in all aspects of 

business operations - deciding which new products to introduce to which markets based 

on customer sentiment analysis, understanding how climate change affects agricultural 

output, using global weather data to manage disaster and famine relief budgets, 

deploying ad revenue based on audience views. Data engineering is a set of processes 

and systems used to acquire, store, and prepare data for downstream analytics, machine 

learning, and reporting tasks. The primary goal of data engineering is to create 

performant, maintained, reliable data systems and pipelines. Data engineering is itself a 

very large space, as the term data engineering refers to quite a few tasks. The typical 

tasks that data engineers use time to work on include building and maintaining data 

pipelines that move data from one or more sources into storage, orchestrating the 

movement of data from one storage system to another, and preparing and cleaning data 

in storage to create datasets for other people to use. More formally, data engineering 

broadly refers to the data movement, transformation, and storage systems required to 

build a data model of the world. Businesses ingest data through various methods from a 

variety of sources and combine these data sources and prepare them for modeling and 
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analysis based on their needs. Steps for working with data at a high-level begin with 

extracting data from various sources, confirming the correctness of the data, 

transforming the data so that it is in the proper format, configuration, and codes for 

downstream use cases, storing data into appropriate warehouses or storage systems, and 

then performing analyses on that data system using dashboards, reports, or other data-

driven systems that use machine learning. 

5.3.1. The Role of Data Engineering in Modern Agriculture 

Agriculture generates enormous amounts of data each year. The agricultural data value 

chain is currently in a phase of maturity in which more and more integrated technologies 

make it possible to extract more value from this data. Formerly, companies simply sold 

sensors and variables from which relevant measures could be deduced: humidity, 

temperature, etc. to estimate the efficiency of a given crop. Lately, and in many sectors, 

the response has developed to a different level of data granularity: from a varietal point 

of view, genomics data is provided to provide a genotype-level resolution. Data on 

molecular markers are also developed for precision agriculture to guide farmers in their 

decision-making. These data are complemented with additional data from 

complementary biochemical tests within intelligent and interconnected platforms. These 

tools are integrating in addition to irrigation systems with a reservoir of moisture and 

water needs at root level synchronized with climate data, drone monitoring do provide 

with RGB, multispectral, and hyperspectral images highlighting areas of stress and 

progressive monitoring of pollen drift during flowering to detect blows of pollen by the 

identification of pollen farm markers. 

Additionally, recent research proposes various statistical approaches to minimize the 

errors in the estimation of crop parameters and models and the importance of developing 

private-public partnerships is discussed to optimize the generation of climatic and 

satellite remote sensing services that are useful for the prediction of pest outbreaks in 

one region. Emerging technologies are expected to cover the critical aspects of pest 

monitoring, such as real-time pest detection and classification or weather monitoring at 

low costs. Unmanned aerial vehicle systems carrying multispectral cameras are now 

insuring costs and flexibility in pest monitoring. 

5.4. Real-Time Data Processing 

Real-time data processing refers to the continuous input and processing of a never-

ending stream of data, which shows the state of the world at any given point in time and 

has to be processed with minimal latency. This is different from traditional data 

processing, which acts on a batch of data to generate results, whose latency can be high. 
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For example, if a final yield estimation is done based on the harvest data, that might be 

performed after months of the crop growing season, with the latency to produce that 

yield estimate based on data actions spanning that amount of time. Real-time processing 

generally uses a stream processing framework to capture the continuous stream of events 

and perform computations on the events as they flow through the different stages of the 

pipeline. The traditional processes in the field of data engineering have focused on 

enabling processing after collection of the data, preparing a storage or data lake layer, 

and batch processing using high-performance computing hardware to produce useful 

insights. However, for the use cases in the area of precision agriculture, developing a 

real-time data pipeline is important to produce timely and actionable insights. The 

variation across different locations and sensors adds to the volume and variety of the 

data being generated while the nature of the events being sent and the high stakes 

involved require a low latency and high availability of the pipeline, which are classical 

challenges in the development of real-time data engineering pipelines. There is existing 

work in building scalable stream data pipelines for different event types, including 

example use cases in healthcare and social network analysis. 

5.4.1. Definition and Importance 

Real-time data processing refers to the need to process input data and produce the 

intended output in a very short time window. The exact time window will vary depending 

on the application and use case. For example, in a stock trading application, several 

milliseconds may be far too long. In other applications, such as critical alerts on an 

intelligent transport system, a minute may be within an acceptable range. In the context 

of the current topic, which is more realtime focused, we adopt a definition of real time 

as a matter of seconds. The reason for needing real-time data processing in some 

applications is due to new incoming data providing new insights that can lead to better 

optimization, demand, ordering, and allocation. In addition, providing urgent alerts will 

prevent resource wastage, population discontent, and prevent accidents leading to loss 

of human life or assets. 

Emerging intelligent systems around the globe across various domains are producing 

trillions of data points regularly in a variety of formats. In the transportation domain, for 

example, sensors provide hidden relationships between vehicle speed, weather 

conditions, and pollution levels across a city. This clustering of information exposes the 

demand for real-time insights necessary in order to enable quicker turnarounds. Several 

factors, including vehicle connectivity, social media support, low-cost sensors, 

increasing user expertise, and sensor incentive schemes, have led to an explosion in the 

volume of generated data. This data is also growing in variety and has also seen changes 

toward the veracity of existing data coming across other identified systems, given that 
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large amounts of it originate from low-cost, volatile sensors. Some of these support being 

physically located or available on mobile devices used to connect to wireless networks. 

5.4.2. Challenges in Real-Time Processing 

The need for timely results is the main obstacle in real-time data processing. Solutions 

differ on how they address the need, mainly by accepting small latencies, or complex 

live query management with the danger of losing freshness, correctness, or data integrity 

at query time. Real-time processing enables the generation of decisions based on actual 

and relevant ground truth. In this context, the main problems addressed are latency, 

correctness, data throughput, and resource management efficiency. 

The notion of low-latency computing is variously quantified from systems offering one 

switching delay to several hours up to one day of end-to-end delay. The integration of 

batch and stream processing provides convenient frameworks for solving data-intensive 

problems with large training sets and strict prediction time limits. Adding low-latency 

and real-time batch-and-stream pipeline is the only way to enable data-driven predictive 

analytics. 

However, not all data is equal – something that stream practitioners have learned over a 

decade of production system usage. The first thing to remember is that facts and events 

of interest in streams are, at best, semi-structured. Traditionally, fixed-format binary 

encoding has been avoided because bytes are difficult to debug, rely on formats that may 

not change often, and may prevent high-performance processing. Further, the variety of 

sources and speed of change suggest a schema-less solution. Although strings are easier 

to debug because they are text, generic parsers for flat files, CSV, or XML, JSON in 

streams don’t scale well to high data and service rates. Finally, the absence of metadata-

based event descriptions doesn’t allow for efficient polling of only a few of the file data 

elements. The one success of semi-structured “data” has been web crawling, where the 

metadata is the URL. 

5.5. Data Sources in Agriculture 

While there are several data sources to be explored, some are more common than the 

others because of their operating and other advantages. In this section, we will introduce 

the data sources that we believe have applications in precision agriculture. Since we are 

focusing primarily on the APM model, to bias our annotations, we will focus more on 

the data and its availability as compared to the machine learning models. 
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Fig 5 . 2 : Precision Ag Data Streams 

1. IoT Sensors 

Internet of Things (IoT) technology refers to instruments and sensors that are used for 

measuring and predicting various agronomic variables. IoT has become an integral part 

of agriculture partly due to the decreased costs of implementing IoT and Wireless Sensor 

Networks. IoT sensors are capable of collecting several use case-specific features at a 

high spatio-temporal resolution. For instance, some remote sensors can be installed on 

farming equipment/vehicles for tracking movement patterns. Using IoT for precision 

agriculture has gained momentum due to the advantages it offers, as false data can be 

detected, and actual events can be processed, which allow farmers to avoid crop loss at 

the harvest stage. However, a limitation to the use of IoT sensors is also that they often 

have a limited scope (only a single weather condition, or soil nitrogen indication). 

2. Satellite Imagery 

To assist in tasking and transitioning of crops, large satellite constellations can be tasked 

to assist in determining what crops are grown and at what maturity level. By focusing 

on the features extracted from data obtained from satellite constellations, researchers 

have showcased the capability of effectively determining and monitoring crop growth 

stages, as such methodologies are capable of covering large areas and are accurate. 

Multispectral satellite imagery can also help improve crop health for agricultural land. 

However, unlike IoT, the satellite images face high costs, longer data acquiring 

processes, and segmentation issues. 

3. Weather Data 
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Weather is one of the most important features for a large number of agricultural tasks. 

They impact the modeling performance. Weather data can either be live feeds or can be 

obtained from data repositories. These repositories also allow researchers to create 

different models to test or restructure them according to their requirements. The 

limitations to weather data are that they often cannot cover at a high granularity using 

satellite data. 

5.5.1. IoT Sensors 

Data-driven Agriculture 4.0 is being considered a game-changer in developing 

sustainable agriculture practices, given the extensive data collection capability of 

emerging technologies such as Internet of Things, robotics, and artificial intelligence. 

However, these data sources need to be comprehensively understood in order to 

implement data-driven practices in agricultural supply chains. Sensor networks are 

among the direct sensors that collect a plethora of data, capturing different aspects of the 

agriculture supply chains. While sensors have been used extensively at the field and 

farm-monitoring levels, the techno-economic viability for deploying such systems in 

post-harvest supply chains is still not entirely clear. This chapter explores the different 

aspects related to the use of sensors for the food-supply chain. 

IoT devices connected through Wireless Sensor Networks consist of a high density of 

sensor nodes monitoring a certain environment. Low cost, low power consumption, low 

weight, small size, precise detection ability, and easy deployment make Wireless Sensor 

Networks a valuable solution in many applications. Wireless Sensor Networks have been 

used in sensing applications, including battlefield surveillance, natural disaster 

management, and environment monitoring. Wireless Sensor Networks have seen an 

applications boom in agricultural data collection, including crop monitoring, soil 

monitoring, water management, livestock monitoring, and precision horticulture. 

Sensors deploy Wireless Sensor Networks designed specifically for agriculture are 

capable of capturing soil moisture, soil macro- and micro-nutrients, solar radiation, 

humidity, ambient, foliage and leaf temperatures, crop height, and other relevant 

information for automation and decision-making in agriculture. 

Many researchers have integrated Wireless Sensor Networks with decision-making 

algorithms to develop smart sector-specific applications in agriculture. Large-scale 

sensor networks have gained importance in Smart Agriculture 4.0, which is considered 

the fourth evolution stage of smart agriculture. Smart Agriculture 4.0 aims to achieve 

optimization while meeting the economic, environmental, and social sustainability goals 

through paradigm shifts with respect to the widgets employed, production techniques 

used, and dimensioning of food systems. Such techniques can improve water, land, and 

capital efficiency; reduce greenhouse gas emissions; enhance product quality and safety; 
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increase net economic returns; improve the welfare of farmers, workers, and consumers; 

protect biodiversity, landscapes, and cultural heritage; and ensure food security and 

safety. 

5.5.2. Satellite Imagery 

Unmanned Aerial Vehicles (UAV) and IoT sensors are increasingly becoming a 

common source of data to supplement, corroborate, and enhance satellite imagery data. 

The data collected in combination with the Earth Observation data is private, often has 

more capability for addressing the hard problems of tissue testing detection prior to 

harvest but is much more costly if the task has to be repeated over time and space. The 

specialized sensors used only take measurements during the flowering and pod fill 

periods which are the dates of interest and need to match with satellite images. For oil 

palm detection to be used, timeliness is one of the key concerns for both the remote 

sensing and the onsite methods used. UAV data is a good alternative and is affordable 

for a particular site area. Satellite imagery is one of the best sources of Earth observation 

data for providing continuous and uniformed spatial-temporal data and has been 

available for long historical time periods at a global scale. The optical image quality is 

sufficiently high to be able to distinguish between oil palms from the traditional forms 

of agriculture. Satellite data provides information on a variety of different agricultural 

features over a period of time. Satellite imagery has particular advantages and 

disadvantages when comparing to UAVs and in situ sensors. Satellite imagery is 

restricted from cloud cover but does have some edge processing and cloud detection and 

masking capabilities available, especially in the commercial satellite area. 

5.5.3. Weather Data 

Weather data plays a significant role in agricultural operations, such as planting, 

irrigation, and harvesting. Farmers make millions of decisions each season that could be 

based on the weather data. Phenomena such as frost can lead to huge losses for farmers, 

while heaving rain, hail, and winds can create crop damage and losses during crucial 

crop stages of production, which can lead to those crops being rejected at the market 

point. Precise weather data can help farmers improve the timing of cotton and wheat 

planting, as well as peanut irrigation. It has also been documented that potato yield can 

be positively influenced by capturing the historical temperature information during the 

main growth season using weather data. Farmers are increasingly resorting to the use of 

weather and climate information in making decisions, which have resulted in higher crop 

yields. 
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Several studies have shown a positive relationship between agriculture production and 

weather patterns and have explored the impact of extreme weather on agricultural 

production. The links between agriculture production and weather data have typically 

been identified using micro-level data merged with large numbers of weather 

observations. Using this more detailed merged data, micro-level econometric models can 

be applied to estimate the crop growing season. For each observation, weather data at 

each grid cell for the time period of interest can be downloaded, defined, and 

summarized. At a roughly hemispherical scale, similar but less detailed weather data for 

agricultural production can be generated using meteorological models. Weather 

information is most often needed at a fine time scale, specifically during the vegetative 

and other specialized growth stages. Hence, using historical weather data can improve 

agricultural production by quickly predicting and delivering real-time warnings for 

disasters and natural hazards at critical times. However, farmers have trouble accessing 

real-time weather data for their specific locations. 

5.6. Data Pipeline Architecture 

While the previous chapter elaborated on the steps needed to ingest data for real-time 

agricultural insights, a core question remains: how should data pipeline architecture be 

designed? This chapter presents the data pipeline architecture and discusses the trade-

offs considered to optimize it to power the use cases in the previous chapter. Based on 

the type of pipeline, the data pipeline architecture makes different assumptions on 

latency as well as consistency and fault-tolerance guarantees. 

Data ingestion pipelines are usually designed for either batch or streaming processing. 

Batch processing is designed around reducing operating costs by combining work into 

larger batches. With batch systems, data at rest is periodically processed in large batches 

while at times there may be little or no access to processed data. In contrast, streaming 

processing is designed around making data available for processing as soon as it arrives. 

In practice, streaming systems take actions on new data as it arrives, in smaller batches, 

but much closer in time to when data enters the system. With the low cost of operating 

servers, batch jobs are also increasingly being scheduled to run every few minutes 

instead of hours or days. 

The integrated approach followed is to weaken the consistency guarantee of stream 

processing. Many systems rely on idempotent operations and making some writes to 

fault-tolerant caches in order to support popular techniques such as delayed job 

triggering while achieving high levels of parallelism. Alternatively, streaming ingestions 

can publish coarse, aggregate events that batch consumers receive and process at a 

deterministically predictable trigger interval. In addition to being less resource-intensive, 
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these workflows often produce cleaner results because both batch and stream operations 

in the system are designed to run with much more similar workloads. 

5.6.1. Batch vs. Stream Processing 

When designing a data processing pipeline, the first architectural design decision is 

whether to use batch or stream processing. Batch processing relies on the ingested data 

being collected into batches before being processed. Therefore, batch processing cannot 

provide fast near real-time data insights. Stream processing processes the incoming data 

serially and typically provides low latency, microsecond-level intermediate, and final 

insights. Stream processing is a better design decision when the data insights need to be 

cataloged in final form as quickly as possible, typically in the seconds to minutes time 

range after arrival. Many data processing systems need to take advantage of both batch 

and stream processing, since very often people want final answers but also want those 

answers as quickly as possible. 

One way to think of batch and stream processing is that batch processing might answer 

the question of whether any crops were affected by an observed early spring frost. The 

final batch insights would come out days to weeks later after the damage from the frost 

is assessed. Stream processing could provide an answer to the question of whether any 

crops were affected by an observed early spring frost, that would be delivered minutes 

to hours after the frost occurred using nearest neighbor search on satellite images to 

assess the newly visible leafy tops of each crop. Closely timing the query with the 

satellite overpass and only thinking about crops nearby the thermometer monitoring the 

frost event would allow if not an accurate answer, at least a low-latency one. 

5.6.2. Microservices Architecture 

A microservices-based architecture provides us with a modular data engineering pipeline 

where we can orchestrate services for specific tasks in a sequence or in parallel. 

Choosing the right architecture is essential; a modular architecture reduces friction in 

model development and enables us to scale independently based on demand. The 

components in our data pipeline are fairly independent of each other but have clear inputs 

and outputs. For the current problem, we develop several microservices to ingest data 

from IoT sensors, store the data in a staging area, process the data for raw insights, and 

finally, develop automated models that can classify the tasks that are to be run on the 

field. 

We have built these data services using a serverless computing service that allows code 

to be deployed as functions, triggered by an event, without worry among developers 
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about the environments, scaling, or failover. A wide variety of services can trigger a 

function, such as an event in a storage service, a change in a database, an event in a 

queue, a cron job, or an event-driven by an external API call. With no maintenance, 

simple resource-based policies for security, and a charge-per-execution billing model, 

the service is particularly suitable for agile environments and start-ups. The functions 

are stateless, and scaling is instantaneous; multiple functions are executed in parallel on 

different servers. Multiple triggers through different events can be defined for the same 

function, and the functions can be composed in a simple linear work-chain (in case of 

file processing) or complex workflows with possible parallel execution. Our architecture 

is modular so that we can decouple billing based on class of event and independently 

charge for these. 

5.7. Data Ingestion Techniques 

Data ingestion is the operation that allows us to collect and import data into a pipeline, 

system, or database. Before being analyzed, data should be ingested into a specific 

platform. These operations can be carried out either in a batch mode or in a streaming 

mode. Batch operations correspond to extract-transform-load methods in data 

engineering paradigms. The data is collected and stored in the data origin, periodically 

loaded into the pipeline, and transformed before consumption. ETL processes are the 

most common and historical method. Streaming operations correspond to continuous 

processing of data feeds, where sources generate and publish events that are 

automatically consumed and analyzed by the system. Stream-based architectures are 

core components used for real-time processing in modern data engineering paradigms. 

As mentioned above, ETL processes are responsible for data extraction and preparation 

processes in a data pipeline. Extraction is the process of retrieving, collecting, and 

writing data from a source to a destination. In a data processing framework, it represents 

loading raw data into distributed file storage or databases. Data is extracted from 

traditional sources and structured data in tables. Preparation is responsible for cleaning 

and transforming the data in a data processing pipeline. The output is either raw or 

processed data used in later consumption tasks, such as machine learning inference and 

visualization. ETL operations are predominantly used in classical data engineering 

frameworks, but are still important tools for new data-centric pipelines. Modern data 

engineering pipelines also manage data betting, a new class of processes used to 

continuously refine data that consumes greater computational resources than the actual 

analysis tasks. 
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5.7.1. ETL Processes 

Data Engineering (DE) pipelines become more complex the more disparate the sources 

of data become. They become even more complex if processing must be done in real-

time. Thus, we turn to another widely used DE technique, the ETL processes, which we 

will explore in this section and which allows us to mitigate the pressure of burdening 

real-time processing for some of the data we want to integrate and which flows closest 

to an analytic procedures for agricultural monitoring and intervention. In our case, an 

ETL process is used to ingest external weather data to train agricultural models. 

Although the philosophy of ETL processes has been around for many years now, 

probably equal to the origin of the concept of Business Intelligence, which ETL 

processes aim to support by collating and preprocessing data from disparate sources, 

ETL tools and frameworks have become vastly popular recently. They have gained 

implementational maturity in the last decade, and many platforms providing this 

functionality have appeared. Popular tools include various data integration solutions. 

Salient characteristics of these frameworks are usually: 

1. Prepackaged functionality: ETL tools are basically function libraries that help you 

with reading from disparate data sources and writing to disparate targets, transforming 

the data along the way. 

2. Low-code or no-code approaches: Most popular ETL products of all types offer user-

friendly graphical drag-and-drop interfaces that make it easy to create and deploy 

complex data workflows. This saves time compared to hand-coding these applications 

using a general-purpose programming language. 

5.7.2. Real-Time Data Streams 

Designing reusable and extensible ETL processes requires embedding data processing 

logic within specific function calls that have well-defined configurable parameters, and 

pushing data from disparate sources into a queue-like system. While traditional ETL 

processes are heavily time-bounded, allowing periodic execution, increasing amounts of 

event data being collected have necessitated a shift to real-time data streams as one of 

the primary ingestion mechanisms. Batch ingestion results in data latency since data is 

not immediately available for insight generation. For example, if there are 100,000 

telemetry messages coming every minute from the sensors deployed on a farm, a batch 

ingestion may have an input time window of 5–10 minutes and result in an early dataset 

with 500,000 records. While this sample dataset may be used to develop a model to 

estimate the stigma flower number and understand the correlation of environmental 

factors towards pollination at the sample time, it cannot be used to predict the stigma 
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flower number at the 1000-hour minute mark, which might contribute to a significant 

proportion of the yield logistic equation. 

However, an increasing number of cloud IoT services enable more dynamic data capture. 

These services allow components to subscribe to a given stream of incoming data based 

on a set of criteria that collaborates directly with the sensor deployment. This allows for 

data-driven direct triggers on microservices deployed on the cloud and functions that 

call insight generation models for a specific region directly. Since there is a logic in the 

cloud that can be invoked, the data that is triggered is pushed efficiently at real time at 

the point of time when the event occurs. The pulled data can be used to monitor the 

operations and check for any numeric anomalies. Data latencies might still be an issue, 

depending on the actual services deployed. 

 

                      Fig 5 . 3 : ETL Approach Latency Comparison 

 

5.8. Conclusion 

This paper presented an approach to automate the collection of, and access to, 

agricultural and environmental data for real-time monitoring and decision support. In 

developing our work, we draw insights from the socio-technical systems perspective. 

Designing and deploying a cloud-based data engineering pipeline for agriculture 

necessitates consideration of on-the-ground realities of local and regional agricultural 

systems. The study explores the opportunities and details around sourcing agricultural 

and environmental data from diverse and creative sources, design and development 



  

100 
 

considerations for data pipelines in the cloud, and the trade-offs around data ownership 

and sharing. 

The paper contributes to data-centric development by proposing a pipeline for data 

interoperability. How agricultural and other natural systems are observed and understood 

is increasingly reliant on data. New opportunities to create high-dimensional datasets 

grow in both size and social significance as computer-, satellite-, and sensor-based 

observations of the world gather speed and geolocation precision, and new methods for 

modeling systems and classifying the unstructured elements within them are 

disseminated widely. Yet translating this flood of data into durable and readily sharable 

codebooks and ontologies is a task frequently hindered by the same challenges that 

plague data science itself. It is this challenge of sharing data and understanding the 

meaning of the data, especially the hidden context around utilizing particular types of 

data in understanding systems accurately, which forms the motivation around 

developing a simple and minimally technical solution for addressing the challenge of 

data interoperability in discipline-specific domains. In conclusion, we believe that the 

application of large amounts of data will be the future of agriculture. 

5.8.1. Final Thoughts on the Impact of Data in Agriculture 

Data is revolutionizing the field of agriculture. It has been a challenge to predict crop 

yield and how climatic as well as non-climatic variables affect agriculture growth across 

various regions. Achieving data-driven decisions for agricultural management could not 

only help in increasing crop yield but could also help in deciding the cycle of crop 

cultivation and help with precision irrigation resources in areas of scarcity or drought-

like weather. Using data it is also possible to predict soil moisture and monitor water 

resources cycle that could greatly help in agricultural management practices. Sensors for 

soil and environment, satellite and aerial coverage have been strategically deployed to 

capture relevant information such as weather, soil type, moisture levels, temperature. 

With the present research that shows the impact of climate on crop yield, across multiple 

crops, because of these studies being temporal in nature as more and more data is 

collected what is today science can become a practice for society tomorrow. 

All said and done, the socio-economic and cultural impact of agriculture is huge in our 

societies just like in every other society across the globe. With the population forecast 

to cross about 10 billion by 2050, in countries like India, China, Brazil and Japan for 

example such practices can help enhance sustainable development practices apart from 

increasing crop yields. Ensuring food security and eliminating poverty is of utmost 

importance. The central question we leave the readers with is that do we want to wait for 

science to validate the decisions or allow the developments in technology to take 

centerpiece and possibly become the core of data-driven decision-making practices 
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across agriculture. This question is likely to have different answers across the globe but 

as technologies advance and pave the way to become more integrated and 

technologically agnostic this could likely become a reality soon. 
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