

20

Chapter 2: SQL query design and

optimization: A study of joins, window

functions, and recursive constructs

Mohanraju Muppala

1. Introduction to Advanced SQL

SQL is a widely accepted language for interacting with databases. When

databases become complex and the workload on the database becomes more,

simple commands will not help [1-2]. Hence, there are numerous advance

concepts in order to perform the SQL operation on complex projects. The

concepts of SQL include Complex Join, Subqueries, Window functions,

Common table expressions, Recursive queries, Error handling in SQL,

Transactions in SQL, Isolation levels, Dynamic SQL, Stored procedures, etc.

For topics such as Complex Join, Subqueries, Window Functions, CTE, and

Recursive Queries, performance and optimization impact of these concepts are

discussed together [2-4]. Topics related to Error handling in SQL, Transactions

in SQL, Isolation levels, Dynamic SQL, and Stored procedures are also

analyzed.

2. Complex Joins in SQL

Joins are one of the most important operations in a relational database

management system and one of the major reasons to use a relational database.

The join operation merges two tuple sets into one single table based on some

common column (attribute) present in the two tuple sets. SQL joins are

Deep Science Publishing, 2025

https://doi.org/10.70593/978-93-7185-191-6_2

21

classified on the basis of how they operate and what tuples they include in the

result [5-6]. They are: inner join, outer join, self join, natural join, and cross

join.

 Fig1. Advanced SQL programming

In an inner join, only a common subset from two or more relations is displayed.

Outer joins include tuples not appearing in the join condition bases. A self-join

is used to select tuples from the same relation for comparison. A Natural Join

bases its join on attributes of the same name that share any overlapping

domain(s). Cross Joins display the Cartesian product of the tuples in two or

more relations.

2.1. Types of Joins

A join is a logical operator that allows data of multiple tables to be combined

into a result table based on query join conditions. To do this, a join merges

columns of at least two tables into a single row, which for a query involving

three or more tables may therefore contain values from all those tables. The

ordering of the columns in the result table depends on the join implementation.

Different types of semantic joins exist:

22

- Cartesian product joins multiply each row of the first table with each row of

the second. The smallest tables on the inner part of the join minimise

complexity and avoid a huge intermediate table. - Theta-joins return the field

combination of the first table with the second table when the "joinCondition"

holds true. - Equi-joins are Theta joins using equal conditions. - Non-equ-joins

use operators other than equal operators. - Self-joins can be equi-joins or non-

equ-joins but operate on only one table and use table aliasing to filter out

columns. - Outer joins return the field combination of the first table with the

second table when the "joinCondition" holds true and fill with missing values

for the corresponding side if the condition is false. - Natural joins eliminate

duplicate columns on already equi-joined columns. An equi-join generates a

combined column automatically.

2.2. Performance Considerations

Optimizing SQL code demands intimate knowledge of its internal workings

within the database engine [7,8]. Deep diving into the optimization techniques

employed by the underlying RDBMS enables one to write improved SQL

statements. The optimization process transforms a SQL statement into an

efficient execution plan. To enhance implementation and maintenance, SQL

optimizers can be integrated within a database application development

environment. They then perform checks, evaluations, and rewrites of

developing code.

Writing optimal SQL code implies knowing which internal database

mechanisms affect performance, and thus determining which SQL constructs

might degrade it. Understanding the internal workings of SQL statements is key

to achieving this. Optimization translates SQL statements into execution plans.

Embedding SQL optimizers into the development environment allows SQL

code to be checked and evaluated as it is being developed, thereby enhancing

overall application performance.

3. Subqueries Explained

A subquery is a query nested inside another query that evaluates to a result set

(a table, a row or a scalar). Since a subquery is a query, it can be arbitrarily

complex. A subquery can be used in the select-list or from-clause of an

enclosing query, but the most common subquery usage is in the where-clause

(using operators such as IN, EXISTS, ANY and ALL).

23

An operation that uses a list of constants can be reformulated using a subquery

that references a table, a view or another query, which is often clearer and

easier to maintain. An operation that compares a single value to a set of values

can be reformulated using a subquery. Similarly operations that compare strings

to other strings or strings to patterns can also be reformulated using a subquery.

3.1. Types of Subqueries

Subqueries, which are also called inner or nested queries, can be classified

logically by the way they interact with the outer main query [9-12]. In a

correlated subquery, the inner SELECT depends on the outer SELECT for its

values. In other words, it references a column from a table or view in the outer

statement. The result row from the outer statement is fed into the inner query as

a column value rather than as a value up front. The inner query is then

reexecuted, and the results are returned as a part of the inner statement. Then,

these rows are reintegrated into the outer statement to finish the execution.

Correlated outer subqueries nest a subquery within the FROM clause of a main

query and differ from other types of correlated subqueries because the inner

statement is evaluated first before being joined to the outer query.

A noncorrelated subquery executes independently and does not refer to a table

or view of the outer statement. All required arguments are sent up front to the

inner query and the results returned immediately. Once the subquery runs, the

inner statement returns the rows to the outer query, which uses the values to

complete its execution. The subquery can be nested in a SELECT, UPDATE,

DELETE, or INSERT statement or another subquery clause. This type of

subquery is categorized as an inner statement, and this key concept will be

highlighted in subsequent discussions. The main query that nests the inner

query is often deemed the "outer query."

3.2. Best Practices for Subqueries

Effective use of subqueries can result in compact and elegant SQL code.

Subqueries are executed independently and are often more readable than

equivalent table joins. Unlike joins, subqueries evaluate in isolation; this is why

the correlated option requires frequent evaluation of the inner table for

individual rows in the outer query. Null values and three-valued logic can

complicate predicates, especially when the subquery contains nulls. In such

cases, the predicate should employ NOT IN (subquery) rather than <> ALL

(subquery).

24

Contemporary optimizers tend to produce similar execution plans for both

correlated and uncorrelated subqueries. Nevertheless, some database engines

handle correlated subqueries inefficiently.

Standard SQL forbids existing columns in the outer scope from being

referenced in the inner subquery's WHERE clause. This restriction is lifted in

correlated subqueries, which are evaluated once for every row procured from

the outer table. Although such a predicate uses a subquery, it cannot be treated

like the previous examples due to the test column's correlation to the inner

table.

4. Window Functions

Window functions perform calculations across sets of rows related to the

current query row. They vary in scope by defining a window of rows over

which a function operates. Often, such functions help in ranking query results.

Another useful category allows the analysis of data from a previous row to

decide whether the current row matches the query filters. Window functions

rely on an OVER() clause that defines their behavior. This clause consists of

optional instructions that specify the sorting of rows and, in some cases, the

boundaries of the window for the ranked function. For mutually ranked rows,

the window boundary definition can be omitted.

Window functions are executed after the previous clauses are fully processed.

Hence, window functions do not influence any other clause." Ranking Rows".

When ranking a window of rows, it is necessary to ensure the returned query

rows are sorted according to the ranking columns. Three frequently used

window-ranking functions are RANK(), DENSE_RANK(), and

ROW_NUMBER(). The RANK() function ranks the rows related to the row in

question in ascending or descending order. Because of its ranking behavior,

ROW_NUMBER() cannot be omitted from the ORDER BY clause, which

arranges the query results according to the positions returned by

ROW_NUMBER(). Unlike RANK(), which assigns the same rank number to

multiple rows with the same value, ROW_NUMBER() assigns a unique row

number to each entry. This means RANK()’s return values might not always be

sequential, whereas ROW_NUMBER() returns consecutive numbers lacking

such gaps.

25

4.1. Introduction to Window Functions

Since their introduction in SQL Server 2005, window functions need little

excuse for their study. They form a distinctive category of functions that allows

calculations across groups of rows and return a value for every row in the set.

They solve many problems that otherwise required complex queries with self

joins and nested SELECTs [7,13-15]. Three enthusiasts of window functions

discuss their implementation and use in SQL Server 2012.

Window functions solve many problems that otherwise required complex

queries with self-joins and nested SELECT queries. They have been known

under the same name since the introduction of the SQL:2003 standard and are

often called OLAP or Analytic Functions (both reflecting a business analysis

background). Some analytic databases, like Oracle or DB2, supported such

functions even before their standardisation.

4.2. Common Use Cases

Some of the many operations performed on a long string defined as a CLOB are

listed here:

A specific portion of data is extracted from the CLOB, using the

DBMS_LOB.SUBSTR function. This function takes as argument the starting

position and length of the string portion to be extracted.

Some or all data from one LOB is copied to another LOB, using the

DBMS_LOB.COPY procedure.

5. Common Table Expressions (CTEs)

A Common Table Expression (CTE) is a temporary named sub-result set

introduced within the execution scope of a single SQL data manipulation

command. In accessing systems modeled after SQL, such as Query by

Example, a table expression is a valid subpart of a query that can stand in for a

base relation or an output relation. It is bounded by parentheses. Most data-

driven websites use CTEs to facilitate search functionality or place-search

functionality. An example is the "/jobs/" page of LinkedIn, which supports the

current page's search text and the nearby geographic location specified. Areas

near the world location specified by the user can be toggled on and off.

The following example demonstrates a CTE implementation. The Common

Table Expression "CurrentLocation" returns the base job search URL:

26

WITH CurrentLocation("href") AS (SELECT '/jobs/'::TEXT)

The Common Table Expression "BaseURL" returns the BaseURL with an

additional active parameter specifying the current job selection:

BaseURL("href") AS (SELECT

'/jobs/?locationGeoId=103644278&geoRadius=0'::TEXT)

The CTE "NearByLocations" returns an array of areas near the current search

area:

NearByLocations("href") AS (SELECT ARRAY[

'/jobs/?geoId=2004&geoRadius=25', '/jobs/?geoId=2056042&geoRadius=25',

'/jobs/?geoId=103644278&geoRadius=25',

'/jobs/?geoId=102571732&geoRadius=25']::TEXT[])

Finally, a SELECT statement fetches the data:

SELECT * FROM CurrentLocation, BaseURL, NearByLocations >;

5.1. Defining CTEs

A common Table Expression may be used in a bunch of interesting ways. It

may be viewed as giving a temporary name to a subquery, allowing the

subquery to be expressed as a separate item rather than being lumped into the

main query [9,16-18]. This ability to name a subquery often makes the resulting

code easier to read and understand—if only a code comment were needed when

viewing the previous example! However, the power of CTEs doesn’t end there.

The next example uses the CTE to express the relationship between employees

and contracts that they have worked on. The main query then iterates over the

CTE results, skipping a couple of rows each time via the ROW_NUMBER().

The employment periods for each employee contract instance are then sorted by

start date, and a gap in each employee’s employment periods within the

company is identified.

5.2. Using CTEs for Better Readability

You want to make your queries more readable. Using Common Table Expres­

sions—CTE’s—can help. For example, say you want to find the parent of each

employee in Employees. It’s not so easy using a simple SELECT statement. An

inner join works, but it’s not so pretty:

SELECT e1.NAME "Employee", e2.NAME "Parent" FROM EMPLOYEES e1

JOIN EMPLOYEES e2 ON e1.PARENTID = e2.ID;

Using a CTE creates a more readable query:

27

WITH EmployeeParents AS (SELECT e1.ID, e1.NAME "Employee" ,

e2.NAME "Parent" FROM EMPLOYEES e1 JOIN EMPLOYEES e2 ON

e1.PARENTID = e2.ID) SELECT * FROM EmployeeParents;

6. Recursive Queries

Recursive queries lie at the frontier of boolean logic and the comprehension of

recursion. Although their practical utility remains doubtful—the

implementation of recursive functions is often more straightforward—recursive

queries exemplify the power of SQL. They can, for instance, assist in

improving the display of objects' creation dates by including contemporary

historical events, or be applied in the processing of bill-of-materials, by

representing assemblies and parts, and all their subassemblies and component

parts, as parts can themselves be assemblies.

The SQL2 standard proposed the WITH extension to conjunctions and

disjunctions, which was subsequently adopted in the OLAP extension and

certain DBMSs such as DB2 or Oracle. This extension enables the definition of

local views within a query, and these views may be recursively defined. The

syntax allows a list of local views to be declared before a query, with the

designation of which views are recursive. A recursive view is a union of two

queries (the first forming the base case and the second the recursive case), with

the additional constraint that the recursive term can only refer to previously

defined local views—that is, the recursive term cannot include the recursive

view itself but only the other local views.

6.1. Understanding Recursive CTEs

Common Table Expressions (CTE) are often used to organize complex

SELECT queries, simplify maintenance and enhance readability with code

folding and syntax highlighting enabled by most available editors, and also

enable query functionality that cannot be achieved using derived tables.

Another major advantage of CTEs is that CTEs recursive in nature can be

developed. Recursive CTEs help locate data patterns that are hierarchical in

nature, such as a company hierarchy or a folder structure, or relationships based

on recursion, such as friendships in social media.

A Recursive CTE contains an anchor member and a recursive member. The

anchor member is a non-recursive CTE, and the recursive member consists of

the query that references the recursive CTE. An additional recursive query

28

between the anchor and recursive member provides the correct output. The

Recursive CTE's final output consists of the recursive query's UNION operation

between the anchor and recursive members. The Recursive query's recursion

depth is indirectly raised by adding a UNION ALL clause in SQL.

6.2. Applications of Recursive Queries

Recursive queries have many practical applications. The directory hierarchy

model created in the previous section applied recursive queries to a simple tree

structure [2,19-20]. The next examples examine the model’s agility for other

applications. In the pathfinder example, the recursive query explores nodes

along many paths and a more complex query predicate governs the search

order.

Another context of the hierarchy example describes organizations by their

departments, employees, and the tree of employee managers. This example

maintains three models and discovers that the tree overlay is just as good as the

hierarchy of a department.

7. Error Handling in SQL

The intricate process of creating and executing stored procedures not only

involves their logical design but also demands meticulous error handling

strategies. Erroneous input can lead to service disruptions, making it imperative

to capture and manage exceptions effectively. It is essential for variable

declarations to precede procedural statements to maintain syntactic and

semantic consistency.

SQL, recognized as a sequence-based and condition-based language, operates

through a sequential execution of commands split via semicolons, with a

"WHERE" clause as its primary conditional filter. Procedural languages like

PL/pgSQL introduce explicit control flow through structures such as "IF" and

"WHILE." The procedural nature of stored procedures allows them to function

akin to independent programs, obviating the need for explicit connections

during runtime. This autonomy, however, necessitates safeguards like

conditional triggers or exception handlers to avert unregulated execution that

might disrupt overarching campaigns.

7.1. Error Types

Sophisticated SQL programming cannot avoid dealing with errors. Despite the

best intentions, mistakes creep in, whether typographical, logical or semantic.

29

Errors in a program are normally classified as syntax, semantic or logical.

Syntax errors violate the language rules and include such errors as misspellings.

Logical and semantic errors are much more subtle. Logical errors are errors in

design and may give incorrect results or cause other errors. Semantic errors are

incorrect operations at different stages in program execution.

3GL programs include input validation code to lessen semantic errors.

Nevertheless, these errors do happen. Consider, for example, the calculation of

a customer ID using the following statement: EXEC SQL SELECT nvilsid

INTO :cust FROM nvils . ccust WHERE cclient = :client AND nc_id = :id;.

7.2. Using TRY...CATCH

A BEGIN TRY...END TRY;—BEGIN CATCH...END CATCH construct—a

block of statements designed for handling run-time errors—is also supported.

When an error occurs in the BEGIN TRY...END TRY block, control is passed

to the BEGIN CATCH...END CATCH construct rather than to the statement

after the END TRY keyword.

An error is assumed to have occurred if the program reaches the END TRY

keyword with an error raised or an unhandled return code generated. The code

within the BEGIN CATCH block acts similarly to a process that traps

exceptions. If no error occurs within the TRY block, the CATCH block is

bypassed.

8. Transactions in SQL

By allowing the execution of several commands as a block and the backing out

of the changes done by one of these commands in case a problem occurs,

transactions were a logical extension of the atomic operations of earlier SQL

implementations. The concept made it easier to maintain data integrity when

several operations had to be applied to the database, for instance when a

balance transfer was performed.

Providing transactions also enabled the use of SQL in interactive environments

such as the client/server model and remote terminal access to the database

server. Whereas SQL commands in the command-line environment

immediately changed the database, clients in a distributed environment needed

to be able to buffer the changes locally until all operations were completed, and

then apply all changes atomically on the server. Until transactions were

30

supported by the server, the client had to perform manual rollback, issuing

commands to compensate for previous calls.

Among a number of other details, transactions affected the level of autocommit

behavior, the visibility of data changes done by one client to both itself and

other clients, and the resolution of deadlocks. All SQL implementations provide

a degree of transaction support that covers autocommit and visibility, including

the most basic COMMIT and ROLLBACK statements. The extent of deadlock

resolution varies, and is sometimes beyond the direct control of the user.

8.1. Understanding Transactions

A transaction is basically a connection to the engine, with two properties. First,

every change to the content of the database made inside a transaction is

"temporary" until the transaction is concluded [9,21-23]. Second, a transaction

is an atomic operation: either all changes to the database are refused, and the

database content is left as if the transaction had never started; or all changes are

accepted and committed and pushed to the database engine. A COMMIT

operation sets the transaction to the second stage, while a ROLLBACK sets it to

the first one.The main properties ensured by the transaction mechanism are:

Atomicity, Consistency, Isolation, Durability, usually abbreviated as ACID.

The start of a transaction can be expressed with the statement BEGIN

[TRANSACTION], although you’ll very probably want to use the AutoCommit

property of the Connection object instead.

In fact, Microsoft Jet (and other drivers) is always in autocommit, so every

statement affecting the content of the database is committed when execution

ends. Each time you put that property to False, you start a new transaction. It

will last until you re-enable AutoCommit or close the connection.

8.2. Transaction Control Commands

The SQL Language includes the following commands for transaction control.

COMMIT ACTION Proceeds with the execution of the task being performed,

and confirms the results of the statements up to COMMIT ACTION in the task,

regardless of whether the conditions for normal termination of the task have

been satisfied. A ROLLBACK ROLLBACK A ROLLBACK ACTION

executes ROLLBACK WORK. ROLLBACK ROLLBACK Cancels the

execution of the particular task with ROLLBACK WORK, which erases the

changes made to the data by the statements in the task. SAVEPOINT a name of

a previously created SAVEPOINT ROLLBACK ROLLBACK Combines the

processing of ROLLBACK WORK and a ROLLBACK to a designated name

31

from SAVE- POINT, and cancels the data changes. Panel-In-Panel-Update

Consider Indexing for Table-3 Using the data inserted into the database, the

indexing will now be done.

9. Isolation Levels

The transaction isolation level determines the degree to which the data within

one transaction is isolated from modifications made by other transactions at the

same time [24-26]. Too loose an implementation results in anomalies such as

“dirty” reads. Too strict an implementation prevents simultaneous updates to

the same data, effectively turning all concurrent transactions into a serialized,

sequential process.

The isolation level controls when the effects of one transaction become visible

to other transactions, and what kinds of changes other transactions can make to

that data while the original transaction is in progress. Several standard,

ANSI/ISO SQL levels are defined: READ UNCOMMITTED, READ

COMMITTED, REPEATABLE READ, and SERIALIZABLE. Many vendors

offer custom variations.

9.1. Overview of Isolation Levels

Isolation levels restrict the degree to which concurrently executing transactions

must be isolated from each other, in terms of visibility of intermediate changes

made by other transactions. By default, in most DBMSs, no explicit isolation

level is specified so the DBMS uses the highest possible level that conforms to

the SQL dialect. Keeping data operations isolated from each other is important,

as otherwise, unexpected, inconsistent, or unpredictable effects may occur.

However, enforcing a high isolation level limits concurrency because it delays

data read/write operations until other transactions are completed. This can

eventually result in a performance bottleneck for the overall database system.

Table 9.6 lists the available ANSI SQL:92 isolation levels, their degrees of

possible data access imitrogeny, and the corresponding READ/write locks used

to implement them. Some DBMSs also support the SERIALIZABLE

SERIALIZABLE_2 isolation level, which is conceptually even more strict than

SERIALIZABLE. The intent of this isolation level is to avoid phantoms by

implementing range locks so all SELECT queries must lock all data in a range

before they read it, not just the rows they actually select.

32

9.2. Choosing the Right Isolation Level
Once the locks have been set, the transaction essentially locks the resources at

that lock level and operates on them accordingly. The next important step is to

choose the isolation level. After all, the very reason one needs locking and

isolation is because of concurrency.

Isolation levels deal with the locks during the transaction. Note that choosing a

sufficient level of isolation generally locks more and locks for a longer time,

but it avoids exposure to potential transaction anomalies. In the complete

isolation scenario, every transaction sees a consistent snapshot of the database,

and any changes made during the transaction are invisible to other transactions

until the first one completes.

10. Dynamic SQL

Static SQL statements in ProgSQL source code reflect program logic and

accessed database structures at compile time. Their clearly defined syntax

facilitates syntactical and semantical checking during compilation [8,27-30].

Yet, some applications demand greater runtime flexibility, especially when

operation parameters or involved tables and columns aren't known until then.

Consequently, ProgSQL provides the EXECUTE IMMEDIATE statement to

dynamically execute a statement-string.

When the statement-string defines a query statement, the execution result is

assigned to the target variables, specified after the INTO keyword. For other

statement types, the statement-string is simply executed. The operation type—

selecting, inserting, updating, or deleting—depends solely on the statement-

string.

Several dynamic SQL programming elements emerge. First, constructing the

statement-string must respect SQL syntax and consider ProgSQL variable

contents, formatted to the corresponding SQL literal format. Second, special

attention is necessary when the statement-string contains static text enclosed in

single or double quotation marks. Third, the target list following INTO must

precisely match the query-list computed by the statement-string; any

mismatching in number, order, or data types of elements leads to execution

errors.

33

10.1. Creating Dynamic SQL Statements

Dynamic SQL statements are created differently from static statements. Static

SQL statements are prepared during compilation, whereas dynamic SQL

statements can be constructed as part of program execution; they are built by

combining program text with input and other data. Dynamic statement

capabilities are provided by the EXECUTE IMMEDIATE statement and the

DBMS_SQL package.

The EXECUTE IMMEDIATE statement—introduced in Oracle7 Server—can

then be used to execute dynamic statements, either because the statement is not

known until run-time or because it may change during program execution. It

can execute a string at run-time, assign values to host variables, or return values

from a query. With dynamic SQL, embedding SQL statements can be

constructed within the program during execution and executed subsequently—

although the names of tables, views, and number of rows cannot be dynamic. If

a program requires include files for each table, this method is preferable,

assuming the tables have similar layouts and data; such an approach may not be

feasible with a large amount of data in thousands of tables.

10.2. Security Considerations

Privacy protection programmes implemented in many countries set strict

security requirements for commercial database programmes that are suitable for

conducting business on the Internet. In database management, the main

confidentiality aspect involves ensuring that commerce details for all customers

are kept private from other customers. Other customers wishing to view their

own information, of course, must be allowed to do so quickly and easily, and

without the encumbrance of additional security procedures.

By contrast, the support for concurrency and multi-user update within the

transactions system of the database management programme is typically a

negligible part of the overall security aspect for an Internet application, because

transactions usually come from a large variety of clients who access different

portions of the database and update the database independently. Because of the

Internet's open nature, customers and potential customers can try to enter as

many conflicting transactions as possible, but eventually the transactions

system will serialize them in some order and update without damage to

consistencies.

34

11. Stored Procedures

Stored Procedures are stored in executable form inside the database. In addition

to SQL statements, they embed procedural elements such as loops, conditionals,

handling of variables and parameters, and they do not return virtual tables.

Instead, they accept input parameters and return output results as either indexed

output parameters or cursors.

Stored Procedures are executed in two steps: first. the CREATE PROCEDURE

command creates and stores the procedure inside the database, just as a table is

defined once and stored inside the database; second, the EXECUTE command

runs a stored procedure, accepting the actual parameters. When a stored

procedure runs, it can collect information from the database by issuing queries,

perform calculations, and return values to the client.

11.1. Defining Stored Procedures

A stored procedure is a group of procedural and data manipulation language

statements stored together as a unit and executed when invoked by a program.

In a stored procedure, parameters can be defined [9,31-33]. Procedures allow

the definition and execution of various actions in the database: they can contain

logic that modifies data, test and control execution flow with conditions and

loops, perform calculations, and even return a result in the form of a result set

or by means of output parameters.

The SQL procedure language permits the embedding of full SQL data

manipulation statements within SQL PL source. In addition to embedding SQL

statements, SQL PL supports standard control flow statements; declaration and

use of indicators, host variables, cursors, and conditions; and declarations to

control transaction analysis as well as the use of dynamic and nested compound

statements.

11.2. Advantages of Using Stored Procedures

SQL supports the writing of stored procedures, which are SQL statements

stored on the server. Stored procedures are compiled, cached, and stored in the

database for repeated use. They accept parameters and can be called from other

SQL statements. Because the server processes the statements, performance can

be significantly better than sending SQL statements one by one from a client

application via the network.

Stored procedures also help maintain consistency, since they live on the server

and are processed once. Several applications can call the same set of

35

procedures, ensuring consistent results. Furthermore, stored procedures allow

separation of the logical database design from its physical implementation (data

access). If there’s any change to access, such as a change in the physical layout

of the database, it can be reflected in the stored procedures without altering the

application code that calls them.

12. Best Practices for Advanced SQL

Programming

A number of standards, guidelines, and rules apply to advanced SQL

programming. The degree to which these should be followed varies from one

environment to another. The "rules" that are most important in a given

environment — in particular, the rules for coding style — take precedence over

more general rules, guidelines, and standards: what is right in one environment

might be wrong in another. A few general rules for SQL programming include

the following:

Every piece of meaningful content should be in the database only once (a rule

of both database design and SQL programming). Naming conventions should

be well established and strictly followed. Join conditions should always be

spelled out explicitly [34-35]. The use of undisclosed/hidden conditions should

be avoided at all times. Transient data should never be stored. Group By does

not belong in Karnaugh maps, but in SQL.

SQL is a powerful and sophisticated language that should be used only for

"things that are supposed to be done in SQL." The establishment of a definite

prohibition on the use of Group By in Karnaugh maps of any kind is a good

example of such a rule for SQL advanced.

12.1. Performance Optimization Techniques

The preceding chapters describe SQL features and techniques. These enable

developers to build and maintain effective applications but do not guarantee

that the SQL will perform well when executed against real production data.

Two useful techniques that can increase performance are described here:

tablespaces and query optimisation.

Creating tablespaces is a method of physically distributing the data of a

database on to different places on the hard disks. When records are inserted into

tables in the database, the records are stored physically in the tablespaces.

36

When the SQL engine requires data for execution, it searches the tablespaces

for the data. Therefore, is can be faster to access the data because the search is

distributed across different places on the disk.

12.2. Maintainability and Readability

Readability and maintainability are important aspects of database programming.

In fact, they are among the primary intentions of stored procedure support in

SQL, as described in the introduction. SQL contains several features aimed at

improving readability. These include: automatic indentation of source code,

formatting source code for automatic line breaks, activating or deactivating

keyword case, keyword coloring, and enabling or disabling recursive source

code listings. For instance, source code can be displayed with all keywords in

uppercase and source code comments highlighted in a specific color.

Additionally, any procedural SQL editor can automatically indent source SQL

statements. For example, in the sample procedure in Chap. 10, the SQL inside

the BEGIN-END block is indented relative to the block itself, while the cursor

is positioned after the semi-colon indicates the start of the main SQL statement

of the procedure.

Most database vendors also provide third-party products in the form of add-ons

to existing products that can perform functions that improve the readability and

maintainability of database code. Typically, for stored procedures, these third-

party add-ons include functionalities such as formatting the source code and

creating documentation about the code. In addition to the inherent features that

enhance readability, database systems also use cost-based optimization engines

that perform run-time tuning, assisting anyone who attempts to maintain and

tune the system.

13. Case Studies

Advanced SQL Programming Techniques

The following case studies illustrate the considerable potential of SQL's various

elements when combined. The ongoing availability of a large data set on SQL

Sounds has been instrumental in demonstrating the thoroughness with which

SQL can be pursued insofar as those elements are concerned.

The first study highlights the various easings that can be implemented, together

with the special easings with integral deltas. In each case, the elements

displayed in the key connections matrix are used, as are the functions oxidize

37

(to represent a rising edge—relative change), diodize (to represent differentials)

and equalize (to represent a felony). Fundamental SQL, as demonstrated in the

Groupings and Period & Dates sections, plays an equally important role. The

harmonized scales have been set at an E min., standard tone length at quaver

and standard tonality at maj.

13.1. Real-World Applications

Using subprograms to explain complex SQL statements helps students program

more easily. It requires much practice and experience to create good

subprograms; at first, a programmer cannot realize that. Programming since the

fifth grade, a programmer can feel easily the importance of subprograms in

advanced SQL programming. A clarified SQL statement developed by the

teacher can be shared by the whole class. It helps students recall the knowledge

taught in the class later.

In addition to using subprograms, an Enterprise Resource Planning system can

be used for practice and innovation of subprograms. An ERPS of an institute

can supply a real-campus environment for developing SQL statements of

practice and project. Using a concise English description for the statement built

in the ERPS increases productivity. In a real environment, the end user can

realize the needs for subprograms. An innovative English description can help

programmers understand quickly and successfully decide the function of a

subprogram. It also helps stadium users select the purpose of a call in a stadium.

The introduction of subprograms is listed in innovative advanced SQL training.

13.2. Lessons Learned

A thorough testing of SQL procedures with the routine call mechanism

implemented in the package DBMS_SQLDBA led to several interesting

observations:

Use with caution. In most situations, it is recommended to use SQL and

PL/SQL statements in the procedure code instead of the routine call

mechanism. This approach minimizes context switches between the PL/SQL

and SQL engines and allows Oracle to cache and share statement execution

plans. Only those statements that cannot be executed directly in PL/SQL or

SQL—such as DDL commands, DCL commands, and TRUNCATE TABLE—

should be coded with the routine call mechanism.

Don’t use unbound VARCHAR2 variables. Bound VARCHAR2 variables

should be avoided as well. Both bound and unbound VARCHAR2 variables

code compile-time constant values only; their content cannot be changed during

38

execution of the SQL statement. Although it is not officially documented yet, it

seems that when a bounded VARCHAR2 variable is used, Oracle executes the

statement outside of a transaction, which explains the failure of certain

statements such as CREATE TABLE, DROP TABLE, and so forth.

14. Future Trends in SQL Programming

As part of the Future Trends in SQL Programming, new SQL extensions are

planned for several major database management systems. These extensions

recognize the growing importance of XML and object–relational databases,

introduce recursive queries to simplify the processing of hierarchical data

structures (e.g., bill of materials, threaded message boards, and directory

listings), and support updates to views. For example, the delay of evaluation

facility presently implemented in Sybase Adaptive Server allows updates to be

performed on views (supersets) on the source tables that support those views.

The increasing importance of data warehousing and decision support databases

is also recognized: IBM has added multiple indexes to a single table,

interleaved indexing, bitmap indexes, table parallelism, support for DUAL

aggregate function, and cost-based optimizer hints to the DB2 V2 product.

Furthermore, Oracle provides a Partitioning option for the Oracle V7 product

that allows tables and indexes to be split into partitions based on range of

values.

15. Conclusion

With advanced SQL programming, you can manipulate data in numerous ways.

You can control the data that your program generates; you can express simple

queries or complex business rules that reflect all possible outcome scenarios,

thus gaining insights into your business or organization. SQL is essential for

displaying and updating data correctly. When you have no control over the data

you generate, you are susceptible to the smallest changes that can derail your

queries or calculations. Therefore, as a programmer, you aspire to design and

write code that is surf-tastically flexible. In conclusion, SQL is highly effective

for handling large amounts of data. Extensive testing can prevent boredom

during debugging.

39

Advanced SQL programming provides tools for working with data that simple

queries cannot handle. SQL Visual, which integrates SQL with Visual Basic for

Applications (VBA), gives you complete control over data, presentation, and

updates. You can create any kind of program imaginable due to the depth of the

SQL language. Effectively managing large volumes of data becomes

manageable, and thorough testing ensures that the development process remains

engaging.

References:

[1] Ojuri S, Han TA, Chiong R, Di Stefano A. Optimizing text-to-SQL conversion techniques

through the integration of intelligent agents and large language models. Information

Processing & Management. 2025 Sep 1;62(5):104136.

[2] Chen X, Zhu R, Ding B, Wang S, Zhou J. Lero: applying learning-to-rank in query

optimizer. The VLDB Journal. 2024 Sep;33(5):1307-31.

[3] Thalji N, Raza A, Islam MS, Samee NA, Jamjoom MM. Ae-net: Novel autoencoder-based

deep features for sql injection attack detection. IEEE access. 2023 Nov 28;11:135507-16.

[4] Chakraborty S, Paul S, Hasan KA. Performance comparison for data retrieval from nosql

and sql databases: a case study for covid-19 genome sequence dataset. In2021 2nd

International Conference on Robotics, electrical and signal processing techniques

(ICREST) 2021 Jan 5 (pp. 324-328). IEEE.

[5] Crespo-Martínez IS, Campazas-Vega A, Guerrero-Higueras ÁM, Riego-DelCastillo V,

Álvarez-Aparicio C, Fernández-Llamas C. SQL injection attack detection in network flow

data. Computers & Security. 2023 Apr 1;127:103093.

[6] Antas J, Rocha Silva R, Bernardino J. Assessment of SQL and NoSQL systems to store

and mine COVID-19 data. Computers. 2022 Feb 21;11(2):29.

[7] Shivadekar S, Kataria DB, Hundekar S, Wanjale K, Balpande VP, Suryawanshi R. Deep

learning based image classification of lungs radiography for detecting covid-19 using a

deep cnn and resnet 50. International Journal of Intelligent Systems and Applications in

Engineering. 2023;11:241-50.

[8] Ashlam AA, Badii A, Stahl F. Multi-phase algorithmic framework to prevent SQL

injection attacks using improved machine learning and deep learning to enhance database

security in real-time. In2022 15th International Conference on Security of Information and

Networks (SIN) 2022 Nov 11 (pp. 01-04). IEEE.

[9] Tanimura C. SQL for Data Analysis: Advanced Techniques for Transforming Data Into

Insights. " O'Reilly Media, Inc."; 2021 Sep 9.

[10] Brunner U, Stockinger K. Valuenet: A natural language-to-sql system that learns from

database information. In2021 IEEE 37th International Conference on Data Engineering

(ICDE) 2021 Apr 19 (pp. 2177-2182). IEEE.

[11] Panda SP. Relational, NoSQL, and Artificial Intelligence-Integrated Database

Architectures: Foundations, Cloud Platforms, and Regulatory-Compliant Systems. Deep

Science Publishing; 2025 Jun 22.

40

[12] Lawson JG, Street DA. Detecting dirty data using SQL: Rigorous house insurance case.

Journal of Accounting Education. 2021 Jun 1;55:100714.

[13] Zhang B, Ren R, Liu J, Jiang M, Ren J, Li J. SQLPsdem: A proxy-based mechanism

towards detecting, locating and preventing second-order SQL injections. IEEE

Transactions on Software Engineering. 2024 May 14;50(7):1807-26.

[14] Panda SP. Artificial Intelligence Across Borders: Transforming Industries Through

Intelligent Innovation. Deep Science Publishing; 2025 Jun 6.

[15] Gandhi N, Patel J, Sisodiya R, Doshi N, Mishra S. A CNN-BiLSTM based approach for

detection of SQL injection attacks. In2021 International conference on computational

intelligence and knowledge economy (ICCIKE) 2021 Mar 17 (pp. 378-383). IEEE.

[16] Dhanaraj RK, Ramakrishnan V, Poongodi M, Krishnasamy L, Hamdi M, Kotecha K,

Vijayakumar V. Random forest bagging and x‐means clustered antipattern detection from

SQL query log for accessing secure mobile data. Wireless communications and mobile

computing. 2021;2021(1):2730246.

[17] Panda SP, Muppala M, Koneti SB. The Contribution of AI in Climate Modeling and

Sustainable Decision-Making. Available at SSRN 5283619. 2025 Jun 1.

[18] Shivadekar S. Artificial Intelligence for Cognitive Systems: Deep Learning, Neuro-

symbolic Integration, and Human-Centric Intelligence. Deep Science Publishing; 2025 Jun

30.

[19] Davidson L. Pro SQL Server Relational Database Design and Implementation: Best

Practices for Scalability and Performance. Apress; 2021.

[20] Zhang W, Li Y, Li X, Shao M, Mi Y, Zhang H, Zhi G. Deep Neural Network‐Based SQL

Injection Detection Method. Security and Communication Networks.

2022;2022(1):4836289.

[21] Roy P, Kumar R, Rani P. SQL injection attack detection by machine learning classifier.

In2022 International conference on applied artificial intelligence and computing (ICAAIC)

2022 May 9 (pp. 394-400). IEEE.

[22] Katsogiannis-Meimarakis G, Koutrika G. A survey on deep learning approaches for text-

to-SQL. The VLDB Journal. 2023 Jul;32(4):905-36.

[23] Khan W, Kumar T, Zhang C, Raj K, Roy AM, Luo B. SQL and NoSQL database software

architecture performance analysis and assessments—a systematic literature review. Big

Data and Cognitive Computing. 2023 May 12;7(2):97.

[24] Hong Z, Yuan Z, Zhang Q, Chen H, Dong J, Huang F, Huang X. Next-generation database

interfaces: A survey of llm-based text-to-sql. arXiv preprint arXiv:2406.08426. 2024 Jun

12.

[25] Islam S. Future trends in SQL databases and big data analytics: Impact of machine

learning and artificial intelligence. Available at SSRN 5064781. 2024 Aug 6.

[26] de Oliveira VF, Pessoa MA, Junqueira F, Miyagi PE. SQL and NoSQL Databases in the

Context of Industry 4.0. Machines. 2021 Dec 27;10(1):20.

[27] Rockoff L. The language of SQL. Addison-Wesley Professional; 2021 Nov 4.

[28] Shivadekar S, Halem M, Yeah Y, Vibhute S. Edge AI cosmos blockchain distributed

network for precise ablh detection. Multimedia tools and applications. 2024

Aug;83(27):69083-109.

41

[29] Fotache M, Munteanu A, Strîmbei C, Hrubaru I. Framework for the assessment of data

masking performance penalties in SQL database servers. Case Study: Oracle. IEEE

Access. 2023 Feb 22;11:18520-41.

[30] Panda SP. Augmented and Virtual Reality in Intelligent Systems. Available at SSRN.

2021 Apr 16.

[31] Karwin B. SQL Antipatterns, Volume 1: Avoiding the Pitfalls of Database Programming.

The Pragmatic Programmers LLC; 2022 Oct 24.

[32] Nasereddin M, ALKhamaiseh A, Qasaimeh M, Al-Qassas R. A systematic review of

detection and prevention techniques of SQL injection attacks. Information Security

Journal: A Global Perspective. 2023 Jul 4;32(4):252-65.

[33] Chakraborty S, Aithal PS. CRUD Operation on WordPress Database Using C# SQL

Client. International Journal of Case Studies in Business, IT, and Education (IJCSBE).

2023 Nov 28;7(4):138-49.

[34] Panda SP. The Evolution and Defense Against Social Engineering and Phishing Attacks.

International Journal of Science and Research (IJSR). 2025 Jan 1.

[35] Choi H, Lee S, Jeong D. Forensic recovery of SQL server database: Practical approach.

IEEE Access. 2021 Jan 18;9:14564-75.

	Chapter 2: SQL query design and optimization: A study of joins, window functions, and recursive constructs
	1. Introduction to Advanced SQL
	2. Complex Joins in SQL
	2.1. Types of Joins
	2.2. Performance Considerations

	3. Subqueries Explained
	3.1. Types of Subqueries
	3.2. Best Practices for Subqueries

	4. Window Functions
	4.1. Introduction to Window Functions
	4.2. Common Use Cases

	5. Common Table Expressions (CTEs)
	5.1. Defining CTEs
	5.2. Using CTEs for Better Readability

	6. Recursive Queries
	6.1. Understanding Recursive CTEs
	6.2. Applications of Recursive Queries

	7. Error Handling in SQL
	7.1. Error Types
	7.2. Using TRY...CATCH

	8. Transactions in SQL
	8.1. Understanding Transactions
	8.2. Transaction Control Commands

	9. Isolation Levels
	9.1. Overview of Isolation Levels
	9.2. Choosing the Right Isolation Level

	10. Dynamic SQL
	10.1. Creating Dynamic SQL Statements
	10.2. Security Considerations

	11. Stored Procedures
	11.1. Defining Stored Procedures
	11.2. Advantages of Using Stored Procedures

	12. Best Practices for Advanced SQL Programming
	12.1. Performance Optimization Techniques
	12.2. Maintainability and Readability

	13. Case Studies
	13.1. Real-World Applications
	13.2. Lessons Learned

	14. Future Trends in SQL Programming
	15. Conclusion

