

42

Chapter 3: Performance tuning in SQL

server environments: Execution plans, index

strategies, and resource cost estimation

Mohanraju Muppala

1. Introduction to Performance Optimization

Performance Optimization in SQL Server relies on the Query Optimizer

looking at an execution plan, the Parallelism Costs, and the memory grant that

the query request says it needs [1-2]. The optimize for ad hoc workload setting

looks to flag a query in the caching plan on whether this is a one time execution

or will be re-used. If it is set then when a query is first executed only a

lightweight plan is cached and does not have the full plan details of execution

costs, memory grants, associated indexes and operations. It is a distinct cache

plan from the full plan and greatly reduces the memory requirements for large

queries that will not be re-run. As the Query Optimizer looks for the execution

plan to minimize Resource Costs, Memory for the execution of the Query,

overall execution time of the query, and potentially other factors that impact the

cost of the plan, HVAC works on the time taken and resource requirements.

The overall execution time of the query includes factors such as the Cost of

CPU Time taken to execute the query, the IO Cost of the queries use of disk

and memory, the Cost of Network, Security grants and other factors that

contribute to the query execution [3-5]. The HVAC algorithm adjusts the

estimates for the execution plan based on the elapsed time so far and resource

load being observed whilst the query is in execution. It then examines the

degree of expected parallelism for the query and compares these estimates

against the SQL Server System Resource Governor’s settings for MaxDOP,

Deep Science Publishing, 2025

https://doi.org/10.70593/978-93-7185-191-6_3

43

Memory Limits for MAX, and the setting configured for MAX Cost, abort

threshold. The Compatibility Level is looked at to flag for SQL Server 2019

batch mode adaptive joins that are capable of reducing overall query execution

time. The HVAC algorithm provides a mechanism for the overall execution

plan for the query to be dynamically adapted based on the query’s progress in

the execution plan, and the system resources that it is consuming, such as

Degree.of Parallelism and Memory Grants, where the expected time to

complete exceeds the threshold set in the System Resource Governor's

Delegation Threshold setting.

Fig 1. Performance optimization

2. Execution Plans and Query Tuning Techniques

Execution plans provide a wealth of information relating to SQL Server query

execution. They reveal the actual path chosen by the optimizer, including the

physical operators used; the estimated or actual number of rows flowing from

one operator to another; the CPU cost for each operator; and the indexes used,

alongside estimated or actual I/O costs associated with those indexes.

Understanding execution plans is essential for analyzing slow-running queries

and identifying performance hotspots. The Resource Monitor tool within SQL

44

Server Management Studio facilitates this analysis by displaying the query plan

and highlighting costly operators along with their associated CPU and logical

reads.

Having pinpointed the potential cause of suboptimal performance, the database

administrator has several avenues for query optimization. One of the simplest

methods is the selection of a different retrieval strategy. Other more involved

techniques include rewriting the query to employ temporary tables as

intermediate containers, using grouping and aggregation functions, leveraging

CTEs instead of subqueries, and creating additional indexes, possibly with

included columns. Remembering the adage “poor index, poor performance”

underscores the significance of indexing strategies for query tuning and

performance—topics that are more deeply explored in the following section.

2.1. Understanding Execution Plans

Determining how a query is executed provides insight into why it runs slowly

and enables proper tuning [6-8]. SQL Server generates an exploration path for

the query, and examining this path—known as an Execution Plan—greatly

assists in tuning. Execution plans are graphical or textual representations of the

data retrieval methods chosen by the SQL Server Database Engine Optimaizer.

An execution plan shows the methods SQL Server will use, or has used, for

data retrieval, covering aspects such as which tables or indexes are accessed,

the join order, and the size of the result set.

Execution plans can be displayed before executing the query to predict the

execution method, or after executing to view what was actually used. Often, the

plan chosen by the optimizer changes significantly after execution because the

optimizer is sensitive to the statistics associated with the underlying table(s) and

index(es). Obtaining an execution plan before executing the query is therefore

usually not advised, as it provides only an estimated path lacking actual

cardinality information. The optimizer will usually choose a better path after

execution, informed by real-time statistics. The underlying indexing strategy—

which is crucial to performance—is discussed separately in Section 3.

2.2. Analyzing Query Performance

The efficiency of a query is measurable only through an execution plan because

the information provided by a query or stored procedure body is insufficient for

judging performance. An execution plan is a graphical or textual visualization

produced by an optimizer that describes the data access methods and join

algorithms selected for a particular query or procedure. The execution plan used

45

by the SQL Server engine determines execution speed and efficiency of

resource usage.

Analyzing query execution plans—particularly for poorly performing queries—

guides the tuning process. Important factors for adjusting queries include the

selection of indexes, join algorithms, join sequence, and row filters. If the actual

execution plan differs significantly from the expected plan, a forced plan may

be considered. For more information on indexing, consult section 2.3.4.

Indexing for High Performance.

2.3. Common Query Tuning Techniques

Execution plans can be used to identify the execution path chosen by the SQL

optimizer for a query. When a query runs slower than expected, analysing it

often resolves performance issues. In extreme cases, it might be necessary to

completely rewrite a query. The performance of a query is heavily influenced

by the structure and load on the database. Query tuning is a complex discipline

and not every aspect is discussed here.

T-SQL tuning seeks to improve the query execution plan and minimize logical

I/O. Reducing logical I/O does not guarantee faster performance, especially if a

query reads few blocks; in such cases, improving the physical location of the

rows in the database file might have a greater effect. Standardised naming

conventions, meaningful aliasing in the FROM clause, and indentation improve

query readability, facilitating better understanding and maintenance.

3. Indexing Strategies for High Performance

Proper indexing allows the database engine to find the data quickly without

having to perform dimension scans. It is significantly more time-consuming for

the engine to scan through the table to select the correct data than to search

through an index and then find the location of the data on the table. Tables can

have primary indexes, unique indexes, and non-unique indexes.

SQL Server 7 has three types of indexes. Clustered indexes have their data in

order and at the leaf of the index is the table data. Non-clustered indexes have

more abstract mappings and use pointers back to the data in the table. Primary

indexes cannot be dropped. Subscripts to the primary index on the table can be

created or dropped. The first index created on a table—to which the primary

key was applied or an index manually created as clustered—is the primary

clustered index. Consider a copy of the base table that is indexed. SQL Server 6

46

clustered, SQL Server 7 primary indexes, and a clustered index all contain a

physical copy of the data. Subscripts to the primary index are a logical copy of

the data.

Indexes do add overhead to database modifications. Whenever the data

changes, the indexes need to be maintained and changed. Creating more

indexes has a direct impact on the response time of database modifications.

Whenever data changes, the database needs to provide access to these changes

in the index. This situation requires more processing power and disk activity

than the database without indexes.

3.1. Types of Indexes

SQL Server indexes are the database's equivalent of table of contents to a book

making data retrieval efficient and fast. They help create the data structure with

database pages and database pointers [7,9-10]. These pages are known as index

nodes or index levels. Index nodes are located at various level between last

level and first level of index structure. These nodes consist of a row for every

database page and a pointer to the page.

An index typically includes a key part. This consists of the key values from the

index keys. The key value for each first index key is selected to provide a

multilevel hierarchy. The key values for all other index keys are copied directly

from the base data structures. There is also a non-key part. This holds the row

locator data value that is used to locate the original data row. In a clustered

index, the non-key columns of the index are included in the key part. Clustering

determines the storage pattern of the remaining non-key columns for the index

key in the table. In clustered-indexed tables, data rows are stored sorted by

clustering. Therefore, clustered indexes will be called tables or clustered

indexes.

3.2. Creating and Maintaining Indexes

Indexes are objects in the database that improve the efficiency of data retrieval

operations. They do so by providing direct pointers to the data and reducing the

number of data blocks that need to be read during a search operation. It is

important to note that SQL statements that output large volumes of data, such as

SELECT *, cannot effectively utilize any indexes created on the tables.

Furthermore, the presence of indexes on a table necessitates extra processing

during an update operation, as the index entries must also be updated.

Consequently, it is recommended to create indexes primarily for tables that

serve as the source for data retrieval operations and are not heavily involved in

update operations [1,11-14].

47

SQL Server supports the creation of clustered and nonclustered indexes on

tables. Although tables with no clustered index are referred to as heaps in the

SQL books, the term heap is not used in the course’s PowerPoint slides. For the

CREATE INDEX statement, the Microsoft SQL Server Books Online specify

that, if created as NONCLUSTERED, the index is created in ascending key

order by default. In contrast, a clustered index is created in ascending key order

by default, if created as CLUSTERED. Primary key and unique key constraints

create a clustered index unless a clustered index already exists on the table, in

which case the nonclustered index is created.

3.3. Index Usage and Performance Impact
Indexes are an important part in optimizing SQL Server performance. They

help to speed up reads and search operations. Indexes can be single column or

composite; they can also be unique indexes, which do not allow duplicates.

There are two types of indexes: the traditional nonclustered ones, where the

data itself is stored in the data pages and index key columns are stored in B-tree

structure only, and clustered indexes, which store both the clustered key column

and the data in the B-tree structure. Every table can have only one clustered

index, as the data pages are sorted physically according to the clustered index

key.

When a table is regularly being updated, updated, or deleted, indexes can have a

huge negative impact on its performance. Maintenance of indexes during every

modification query can delay the operation. It can also have a negative impact

on memory utilization, as more read/write is done on the main memory for

index structures. Hence choosing the right indexes, limiting the number of

nonclustered indexes, and creating the right query can improve performance

significantly.

4. Partitioning and Sharding Best Practices

Partitioning and sharding in SQL Server constitute complementary techniques

that improve application responsiveness and optimize DBMS throughput under

heavy workloads. Both approaches allow the DBMS to scan a smaller subset of

the data, reducing response times and boosting concurrency.

Range partitioning is a natural modeling choice for temporal data. Large tables

representing the recent past partitions are queried frequently and updated

sporadically, while older partitions are accessed by occasional large-scale

48

analytics. PARTITION functions declare the partitioning strategy, while

PARTITION SCHEME references the FILEGROUPs housing the underlying

data files. Historical data can be archived to cheaper storage tiers or

decommissioned, depending on maintenance policies. Query optimizer

performance is directly affected by, for example, the absence of partition-

aligned indexes—a suboptimal indexing strategy where the granularity of the

indexes on a partitioned table is coarser than the partitions.

4.1. Overview of Partitioning

Partitioning is a technique for splitting individual database “objects”

horizontally into smaller “pieces” enabling certain queries or data-management

operations to access or affect only some of those pieces [13,15-17]. The two

types of objects partitioned are tables and indexes, which have the same

structure but somewhat different functions. Tables store the base data, and

indexes help with searches and sorts. Partitioning tables or indexes can help

improve query performance, backup and restore performance, index

maintenance performance, and data-management operations such as switching.

Partitioned tables and indexes has been around since SQL Server 2005.

Partitioning requires a partition function, a partition scheme, a partitioning

column in the table or in the index, and a partition-aligned clustered index to

take advantage of all the performance features that partitioning provides. The

partition function specifies how the data will be mapped to a number of

partitions by defining the partitioning column and the number of partitions. A

set of range values allocates the rows in the partitioning column to the

partitions. The partition scheme allocates these partitions to a number of

filegroups, so that certain partitions can be placed in specific filegroups.

4.2. Implementing Partitioning in SQL Server

Table and Index Partitioning in SQL Server Table and index partitioning

facilitates the management, maintenance, and access to large tables and indexes.

For example, a partitioned table can be split between multiple filegroups and

windows of data pruned during a query, thereby limiting the amount of data

accessed through partition elimination [18-20]. When working with very large

tables, consider using the following tasks to improve your overall performance

in querying and maintaining the data: Historical data, which is rarely updated

but is growing, can be partitioned into its own filegroups [19,21-22]. These

filegroups can then be moved to slower, cheaper storage. Current data, where

daily processing occurs, can also be partitioned and maintained independently

from historical data. The entire table can be queryable so that areas of the table

49

can be zipped (compressed) and restored independently. Partitioning also plays

a great role in the maintenance window. For example, when index or statistics

maintenance occurs on a large table, or even when a data warehouse table is

being bulk loaded, the maintenance window can be reduced.

4.3. Sharding Strategies for Scalability

Any application that needs to scale horizontally will implement some sharding

strategy. The default Microsoft Azure SQL database shard map provides the

basis for a sharding strategy, but customers of all sizes prefer a sharding

strategy that matches their application's scalability requirements and natural

distribution of their data. Understanding common sharding strategies for Azure

SQL Database helps in making effective decisions about how the data should be

distributed.

Choice of shard keys is critical for the performance and scalability of any

application that uses a sharding strategy. For example, if TenantId is selected as

the shard key, then all data of every tenant can be located in a single shard. This

configuration allows the application to read and write the tenant data by issuing

operations to only one shard. The selection of TenantId impacts how well the

overall sharding strategy supports large large tenant scenarios. If the sharding

strategy's tenant selection is such that the system cannot accommodate large

tenants, then the tenant shard key does not optimally support the data

distribution.

5. Managing TempDB for Optimal Performance

TempDB is the workspace all SQL Server instances must share. All use

TempDB, but when a few sessions or users are hogging its capacity, all others

get hammered. Some users or sessions need it more than others, so the best

solution to TempDB contention might be to enroll in a club or use a different

feature. One of TempDB’s greater ironies is that it’s a singleton shell.

TempDB needs to be shrinkable so that it can be used by other organizations.

TempDB needs to be easy to administer and use, which is why many DBAs

prefer to disable the service feature altogether. TempDB needs to be easy to

code and manage, which are two reasons many developers turn to the collection

class instead.

50

5.1. Understanding TempDB Usage

In SQL Server, the tempDB database provides temporary storage by creating

free pages on data files or allocating request pages as needed [11,23-25].

Tempobjects are data objects created on the SQL Server TempDB database and

are respectively divided into local and global. Temporary tables and indexes

used in the execution of the request work this way. Internally created work

tables on tempDB or on-disk work tables with low transaction isolation levels

are also part of tempobjects. Allocation structures such as of allocation maps

(GAM, SGAM, and IAM) are updated when new worktables are created on

tempDB. Furthermore, SQL Server manages the LOB allocation maps for

updateable LOB data types.

poptable occurs when tempDB allocation structures are repeatedly updated and

then accessed by concurrent sessions, creating a bottleneck. The update pages

used for tracking allocations are also placed on tempDB, and contention might

occur on these pages during concurrent allocation requests. This specific form

of internal contention within tempDB is mainly created at the allocation level of

the allocation pages (GAM, SGAM, IAM) or the allocation pages of the LOB

data types. High multiples of such allocation calls within a short amount of time

might therefore lead to contention and the following result:

5.2. Configuring TempDB for Performance

Because of the use of temporary database objects in the TempDB database,

configuring TempDB becomes very important for efficient record selection

from logical pages. You can achieve impressive performance improvements

when these configurations are applied.

Although the version of SQL Server is not indicated explicitly in the SQL

Server error log, you can use the following feature to identify it: CREATE

DATABASE tempdb ON

— Primary Data File (NAME = tempdev, FILENAME =

'E:\MSSQL12.MSSQLSERVER\MSSQL\DATA\tempdb.mdf', SIZE = 128MB,

MAXSIZE = 2048GB, FILEGROWTH = 256MB), — Additional TempDB

Files (NAME = tempdb2, FILENAME =

'E:\MSSQL12.MSSQLSERVER\MSSQL\DATA\tempdb2.ndf', SIZE = 64MB,

MAXSIZE = 2048GB, FILEGROWTH = 64MB), (NAME = tempdb3,

FILENAME = 'E:\MSSQL12.MSSQLSERVER\MSSQL\DATA\tempdb3.ndf',

SIZE = 64MB, MAXSIZE = 2048GB, FILEGROWTH = 64MB), — Log File

LOG ON (NAME = templog, FILENAME =

51

'E:\MSSQL12.MSSQLSERVER\MSSQL\DATA\templog.ldf', SIZE = 128MB,

MAXSIZE = 2048GB, FILEGROWTH = 256MB);

5.3. Best Practices for TempDB Management
SQL Server uses TempDB as a system database for temporary tables, stored

procedures, triggers, cursors, table variables, and for sorting large data sets,

among other sources. During these operations, SQL Server creates and writes to

file structures in TempDB. Proper TempDB performance is essential for

optimum performance of SQL Server only queries. Many TempDB activities

are shared by all SQL Server processes, including OLMs: the database snapshot

bitmap, row versioning data for online operations and online index rebuilds, the

harmful IRL used by all active transactions and used by every query with a

serializable or Repeatable Read Isolation level, the active portion of the Temp

Table Garbage Collection cycle, and so on. Under-provisioning TempDB can

severely impact the overall server performance.

Allocation contention in TempDB can occur when the system cannot find pages

for certain types of allocation, so threads have to wait for allocation bitmaps to

be freed. SQL Server generates TempDB alerts when contention on allocation

structures causes a thread wait more than 5 seconds.

6. Identifying and Resolving I/O Bottlenecks

An examination of SQL Server's performance metrics reveals that, whenever

I/O stalls approach 10 ms or more, the bottleneck resides at the SQL Server

level [29-32]. For instance, a read stall of 100 ms indicates that SQL Server had

to wait an unusually long time for an I/O operation to complete. Conversely, a

1-ms read stall is generally considered acceptable in the context of SQL

Server's workload.

When SQL Server I/O stalls exceed 10 ms, it is worthwhile to explore options

for storage subsystem enhancement. The deductions presented here derive from

analysis of aggregate read stalls, but the same reasoning applies to read, write,

or other types of I/O at the system, file, or even database level.

6.1. Understanding I/O Performance

Understanding I/O performance is crucial when tuning SQL Server. SQL

Server reads and writes ARM64 pages, with each page having a size of 8 KB.

When it encounters a page needed for query execution that is not in the buffer

cache, it must be read from disk [26-28]. Additionally, when a new row is

52

added to a page in the buffer, the page needs to be written back to disk for

persistence. However, the question arises: are these reading and writing

operations random or sequential? Does the pattern depend on the load pattern or

the query? Can the random or sequential nature of these operations change

depending on the type of RAID implemented on the disk? This section attempts

to answer all those questions.

For cache misses, SQL Server issues read commands to disk to bring the pages

into the buffer cache. Depending on whether the read operation is sequential or

random, one or more pages will be read. Some of the internals of SQL Server

are explained here to differentiate between sequential and random-read

operations. Besides the buffer cache, SQL Server also has a separate cache

called the procedure cache, not to be confused with the plan cache and

execution cache that are part of the procedure cache. The plan cache is used to

cache ad-hoc queries, whereas execution objects are cached when a stored

procedure plan is compiled. For instance, upon execution, a stored procedure

compiles into a plan that is added to the cache. Execution objects can be related

to a procedure, function, trigger, and so on. Execution objects usually consume

the bulk of the memory.

6.2. Tools for Monitoring I/O Bottlenecks

Several tools in SQL Server assist during performance tuning to calculate the

I/O cost for a query. During query optimization, the cost of various plans for

executing the query is calculated and the one with the lowest cost is chosen.

However, the cost sometimes doesn’t correlate with actual query execution

time. When this happens, the suggested tools can help find bottlenecks that may

indicate an I/O problem.

The query execution plan shown in the previous example is quite useful as it

displays the type of joins, the sequence in which the tables are joined, the

physical operators used, and the join predicates used. The plan also shows the

estimated I/O cost, CPU cost, and the combined cost for each operator and for

the entire query. To spell out the details of the procedure, query trace options is

another option. The query trace output contains the same details as the query

execution plan along with the statistics on the number of pages of data read

from the data file, number of pages for which lock was acquired, memory

allocated for the query, and the number of buffers read from the buffer cache.

6.3. Strategies for I/O Optimization

Since SQL Server performs table and index scans during query execution, it is

wise to put the most commonly used tables and clustered index s on their own

53

physical disk or disk array so that the operating system does not need to read

reads from multiple tables and indexes on the same physical disk or disk array.

SQL Server is able to use all of the columns in a covering index to answer

query side and index-side joins [31,33-35]. Because of this, it may be useful to

create covering indexes with the most frequently retrieved columns—even if it

means including only nonclustered columns—and to use INCLUDE for

columns that are never part of the search conditions. Put the nonclustered

indexes on their own disks or disk arrays as well. The data files and log can be

put together on a fast disk or disk array.

7. Memory Tuning Techniques

SQL Server uses its Memory Manager to allocate and deallocate memory based

on its needs during query execution. It allocates and deallocates buffers for

cache or execution work areas, manages conditions when memory request can’t

be met, and controls the amount of caching for other resources such as

connections and locks.

There are many configuration options to control memory usage, but these

should be set only on systems where multiple applications are competing for

available memory resources. Memory configuration should be left at their

defaults on other systems since SQL Server can determine the amount of

memory it needs more effectively than the DBA. One exception is when SQL

Server is the sole application on the computer and the amount of RAM exceeds

approximately 1GB. Without setting the maximum memory option, SQL Server

will grow its memory usage until it fills all available RAM on the computer.

7.1. Understanding SQL Server Memory Architecture

SQL Server Memory Architecture

Examining the architecture of SQL Server memory provides insight into the

factors that affect buffer pool usage, CPU utilization, and overall memory

consumption. This understanding guides the allocation of the correct amount of

RAM to the server and its database instances. SQL Server memory comprises

the Procedure Cache, Buffer Pool, and Other Memory allocations.

The Procedure Cache allocates memory pages for optimizing query execution

by SQL Server. The Buffer Pool contains Data Cache and Log Cache. The Data

Cache holds frequently accessed data pages, enabling faster retrieval, while the

54

Log Cache stores information about transactions and system transactions that

utilize the logging mechanism. Other Memory consists of allocations for

external links, extended procedures, linked servers, Replication, Service

Broker, and various other features—for example, memory space for the Service

Broker is allocated here, and some of it can be freed when Smart Scan is

enabled.

7.2. Configuring Memory Settings

In Chapter 7, Memory, look beyond the typical causes of poor server

performance and learn how to control and monitor SQL Server’s use of

memory. The maximum amount of memory that SQL Server can use should be

set in most cases. The default of 2147483647 MByte is basically unlimited—

SQL Server can take as much RAM as the operating system allows. This means

that SQL Server can consume all the available RAM and leave none for the

operating system.

The consequences of this will only become evident once the system is under

excessive memory pressure and start to swap excessively. Validator even

recommends setting both the minimum and maximum memory to the same

value. This is what the configuration script provided does, but setting the

minimum memory can be controversial. For more information, review the

discussion related to the MDASQLMemory script.

Caution The maximum memory value should never be set by an application or

part of an automated SQL Server install process because it varies per server. It’s

bad practice for an application or installation procedure to set it.

7.3. Monitoring Memory Usage

Why Monitor Memory Usage? SQL Server is a data-intensive product and, as

such, it loves to use memory. Caching data in memory allows for quicker data

retrieval and hence better overall performance. However, be aware that the

operating system also requires memory in order to perform its functions, so

SQL Server must give some memory back to the operating system. If SQL

Server occupies all available memory, the operating system becomes slower. If

SQL Server does not store enough data in memory, performance degrades due

to excessive trips to disk.

When running SQL Server on a dedicated server, it is recommended to set the

MAX SERVER MEMORY to the largest value possible while still leaving

enough memory for the operating system and other applications. Memory

tuning is the management of a balance between having enough memory for

55

SQL Server in execution and having enough free memory in the operating

system to operate without swapping memory to disk. There are two key

indicators of memory optimization, Cache Hit Ratio and Page Life Expectancy.

Cache Hit Ratio The primary goal in memory tuning is to reduce disk I/O.

Cache Hits indicate queries retrieving data from memory, while cache misses

indicate queries going to disk to retrieve data. This counter will help determine

if more memory needs to be supplied to SQL Server. Cache Hits are generally

expressed as a Cache Hit Ratio. Too many Cache Misses indicate that the buffer

cache size is too small. However, it is possible that the data page was simply

not in the cache because it had not been accessed before, rather than as a result

of buffer cache size. In this case, an excessively high Cache Hit Ratio does not

necessarily indicate a large cache size.

8. Best Practices for Performance Monitoring

Anyone who uses SQL Server on a daily basis, whether it be a system

administrator, developer, or business analyst, has, at some point, encountered

slow-running queries or waited on a dataset to be gathered. These experiences

allow typical complaints to be heard throughout corporate America, such as

“Why is this report delayed?” or “Where is that sales analysis?” To curtail the

negative effects of such queries, developers and DBAs have a variety of tools at

their disposal to find the appropriate combinations of execution plans, update

statistics, and index tuning. When used properly, however, the tools for tuning

SQL Server can prevent slow-performing queries from ever reaching

production.

There are many ways to monitor the health and status of a SQL Server instance,

but the Holy Grail of performance tuning is the timely detection of a slow SQL

query. A SQL Server server-side tracing tool, such as Profiler, will allow you to

monitor what is taking longer than expected. Profiler can also identify long-

running queries and the users executing these queries. The best-case scenario is

running Profiler during a slow time period identified by the WARN function

8.1. Key Performance Indicators (KPIs)

One of the essential skills that a DBA needs is the ability to monitor, tune, and

improve the performance of a database regardless of the platform in use.

Database performance involves many components and considerations; it's

important to start by monitoring key performance indicators (KPIs) to ensure

56

the system meets its service-level agreement (SLA). KPIs not only help to keep

track of the current system state but can also pinpoint potential future or

imminent problems.

Performance-related KPIs fall under the broad categories of availability and

scalability. If the system isn't operational, it can't provide service, and the KPIs

should trigger alerts of this state. Checkpoints to keep track of system

operational status are known as health checks and should include disk space,

memory allocation, processor usage, database size, and backup jobs. The next

area that impacts scalability is response-time. Checkpoints to monitor response-

time include read and write performance; lookups into system metadata; and

lookups into user databases. The final area that affects scalability is throughput.

Like response-time, throughput is measured in terms of read and write activity

and the number of users connected to the system.

8.2. Tools for Performance Monitoring

The chapter examines the tools available for monitoring SQL Server

performance. After acquiring essential knowledge in SQL Server performance

tuning, it is natural to desire real-time performance analysis. Currently, three

tools facilitate this process: SQL Trace, Performance Monitor, and System

Monitor.

Performance Monitor, also known as Sysmon, differs from SQL Trace by

allowing performance analysis without the need to define specific traces before

execution. Although monitoring can occur in real time, results must be saved in

a file or database for thorough examination. While using a file is acceptable,

storing results in a SQL Server database demands considerable space for later

analysis. Performance Monitor thus serves as a native Windows tool for OS-

level performance monitoring.

SQL Server 7.0 offers convenient collection sets within Performance Monitor,

accompanied by detailed explanations that simplify their use.

8.3. Regular Maintenance and Performance Reviews

Sensible, regular maintenance and periodic and thorough performance reviews

are vital. Properly written database maintenance code can drastically reduce the

number of interruptions while improving reliability and scalability. Carefully

performed, because incorrect intervals or improper scheduling can actually hurt

performance, these activities maintain a healthy, well performing database that

is ready to operate in an LOB environment.

57

It is best to review and ensure that each of the database tables is indexed

accordingly and that those indexes are current and used frequently. Index

fragmentation can make even the best indexes almost useless. Ensure that

statistics are updated regularly and thoughtfully. Locking can cause a system to

hang, so it is important to ensure that statistics can still be updated without

negatively impacting reporting reasons [36-38]. A regularly scheduled statistics

maintenance job will be able to perform the updates quickly during working

hours without any problems or systems hung in a pending state awaiting an

update. Updating statistics can truly be a high-impact operation. Properly

updating statistics can ensure the system remains performing at a high level, but

allowing statistics to be updated haphazardly can also negatively impact

business. Statistics should be updated at least every time index rebuilds occur.

Fragmentation can be one of the biggest contributors to lower system

performance. It causes the system to work harder to fulfill the same request,

thus making the system respond slower and slower and, in some cases,

apparently hang, when in reality, it just lags behind. Although performance

enhancement is a reasonable reason to rebuild indexes, the primary reason to

rebuild indexes is a regular maintenance plan that uses the degree of

fragmentation as a ratio for deciding what to rebuild and what to reorganize.

Most maintenance plans use reorganization for indexes with fragmentation

levels between 10 and 40 percent and rebuilds for indexes with fragmentation

levels over 40 percent. Segment reorganization is a light, almost instant,

activity; index rebuilds are a much heavier operation and should be scheduled

accordingly.

9. Case Studies and Real-World Applications

Performance optimization of SQL Server functioning in the financial

management branch of a commercial bank in the northwest region of China is

studied. The internal structure of SQL Server is analyzed, and optimization

methods for the structure of SQL Server components, dynamic link library files,

and configuration parameters of the database are proposed. After the optimized

method is applied on SQL Server, the internal structure, DLLs, and parameters

of the SQL Server database are reconfigured. The optimized database structure

lowers the memory usage of operating SQL Server, the optimized DLLs reduce

the dependence on hardware, and the optimized parameters of SQL Server

improve the execution efficiency. Concluding, the performance of SQL Server

in financial management is notably improved.

58

Operational databases in a variety of industries continuously sustain their export

and usage over time. Accordingly, the coupling of the operational database with

other systems also increases. This trend results in high operational database

utilization, which leads to performance declines in export or sharing of

operational data. Job control requires a steady stream of data export to maintain

a consistent state, whereas data sharing generates operational database query

requests. As more requests arrive, the operational database experiences

performance issues with updates, inserts, and other operations. Therefore, the

optimal utilization of operational databases plays an important role in business

or external export processes. In these pursuit, the operational database is

typically offloaded to a secondary database.

9.1. Case Study 1: Query Optimization

One of the biggest Customer Service Issues is being able to execute stored

procedures quickly. There are also many other common reasons to keep

execution time to a minimum. No one wants to have to wait for a query to run,

especially when there are other customers waiting in line for service at the same

time. Ideally, you would like to spend as little time waiting for the query to run

as possible. In addition, you can improve response time to all users in the

system just by reducing the execution time of each command. Processing time

on the database server often tends to be only part of the story. In many cases the

network between the client application and the database server can also

determine how long it takes to get data to the user. No matter which one is the

bottleneck, the best way to reduce wait time is to write or tune your queries so

that SQL Server spends less time processing the query and your computer

network processes less data.

Included with this chapter are solutions to a few queries that could use a little

fine-tuning. As you sift through the examples, keep in mind that this process of

query optimization contains a lot of possibilities. The goal of these particular

examples is to show you how to make queries run faster by putting a little

intelligence into query writing and index design. Optimizing query performance

also involves a thorough understanding of the business purpose of queries. Call

Center Managers, other managers, and system support personnel all need to let

Database Administrators know when a query that “hogs” the CPU or network is

an accepted fact of life—at least until someone can schedule the time needed to

create a more efficient solution.

59

9.2. Case Study 2: Indexing Strategies

In addition to the expense data presented above, actual elapsed time will be

used to demonstrate the validity of these results. Since the expense data already

reflects the elapsed time required to perform the queries shown, the actual

elapsed query times were gathered and compared with the estimated query costs

as well. The conclusions and resulting recommendations will therefore be based

on a compilation of both sets of statistics.

Figure 9-3 displays the query costs versus the actual elapsed time for two of the

more costly queries, both with and without the missing index. After comparing

the two, the possible correlation between the estimated query cost and the

actual query time becomes apparent. Such a link is particularly useful when the

actual query times are not available or there are insufficient queries being

captured in the execution plan cache.

9.3. Case Study 3: I/O Bottleneck Resolution

Here is a case study on the resolution of an I/O bottleneck in a production

system. Data was acquired with the topsql utility (previously discussed in

Chapter 2). The most demanding query identified returns numerous rows, with

each row requiring T-SQL code to be executed. Consequently, the query funds

90% of the batch text time, and specifically, the T-SQL code execution

accounts for 99% of the query time. OFF CPU time corresponds to waiting for

the accumulator cursor from SQL Server to return a few result sets. The

statement is repeatedly executed against distinct parameters. The following

chart illustrates the TOP SQL Batch Texts.

The query responsible exhibits the following characteristics:

- Requesting large amounts of data (over 2 million rows) - Taking

approximately 13 minutes to transfer data from the database engine to the client

application

Given that the client application (formerly known as "Data Browser" and

currently referred to as the legacy application) was recently redesigned, it was

decided to optimize the query internally and load only the very limited number

of rows required in the legacy application. The redesigned application, known

here as "DataStudio," is prepared to handle large amounts of data.

60

10. Conclusion

Everything related to SQL Server performance tuning and optimization is

covered in this book. As previously discussed, SQL Server performance tuning

requires a substantial amount of time and commitment. The methods used to

find the root cause problem are also very difficult. However, the information

available here can make it easier to identify where to look for the problem and

how to solve it. Implementation of performance-tuning and optimization can

significantly improve performance and save time and money. It is important to

note that the solution to tune and optimize SQL Server may change over time.

Therefore, it is essential to update the knowledge gained from this book and use

it on the live server during performance and optimization.

Performance tuning is the practice of enhancing the response time or

throughput of the Server. Keeping performance optimal is a continuous task.

Make sure to use the correct data types, employ user-defined functions

appropriately, and create indexes where necessary. Configuring CPU affinity

and understanding how CPU and memory function are also beneficial. It is also

advisable to find an optimal fill factor and defragment indexes. Many settings

can be configured in SQL Server; however, decisions regarding enabling or

disabling these settings should be based on throughput or performance. In SQL

Server, there are multiple server configuration options. Use them with

discipline and monitor the system after enabling or disabling them; otherwise,

the server will exhibit very slow response times.

References:

[1] Nguyen XB, Phan XH, Piccardi M. Fine-tuning text-to-SQL models with reinforcement-

learning training objectives. Natural Language Processing Journal. 2025 Mar 1;10:100135.

[2] Li J, Ye J, Mao Y, Gao Y, Chen L. LOFTune: A Low-Overhead and Flexible Approach

for Spark SQL Configuration Tuning. IEEE Transactions on Knowledge and Data

Engineering. 2025 Mar 18.

[3] Chopra A, Azam R. Enhancing natural language query to SQL query generation through

Classification-Based table selection. InInternational Conference on Engineering

Applications of Neural Networks 2024 Jun 22 (pp. 152-165). Cham: Springer Nature

Switzerland.

[4] Ling X, Liu J, Liu J, Wu J, Liu J. Finetuning LLMs for Text-to-SQL with Two-Stage

Progressive Learning. InCCF International Conference on Natural Language Processing

and Chinese Computing 2024 Nov 1 (pp. 449-461). Singapore: Springer Nature

Singapore.

61

[5] Shivadekar S, Kataria DB, Hundekar S, Wanjale K, Balpande VP, Suryawanshi R. Deep

learning based image classification of lungs radiography for detecting covid-19 using a

deep cnn and resnet 50. International Journal of Intelligent Systems and Applications in

Engineering. 2023;11:241-50.

[6] Ashlam AA, Badii A, Stahl F. Multi-phase algorithmic framework to prevent SQL

injection attacks using improved machine learning and deep learning to enhance database

security in real-time. In2022 15th International Conference on Security of Information and

Networks (SIN) 2022 Nov 11 (pp. 01-04). IEEE.

[7] Tanimura C. SQL for Data Analysis: Advanced Techniques for Transforming Data Into

Insights. " O'Reilly Media, Inc."; 2021 Sep 9.

[8] Brunner U, Stockinger K. Valuenet: A natural language-to-sql system that learns from

database information. In2021 IEEE 37th International Conference on Data Engineering

(ICDE) 2021 Apr 19 (pp. 2177-2182). IEEE.

[9] Panda SP. Relational, NoSQL, and Artificial Intelligence-Integrated Database

Architectures: Foundations, Cloud Platforms, and Regulatory-Compliant Systems. Deep

Science Publishing; 2025 Jun 22.

[10] Lawson JG, Street DA. Detecting dirty data using SQL: Rigorous house insurance case.

Journal of Accounting Education. 2021 Jun 1;55:100714.

[11] Zhang B, Ren R, Liu J, Jiang M, Ren J, Li J. SQLPsdem: A proxy-based mechanism

towards detecting, locating and preventing second-order SQL injections. IEEE

Transactions on Software Engineering. 2024 May 14;50(7):1807-26.

[12] Panda SP. Artificial Intelligence Across Borders: Transforming Industries Through

Intelligent Innovation. Deep Science Publishing; 2025 Jun 6.

[13] Gandhi N, Patel J, Sisodiya R, Doshi N, Mishra S. A CNN-BiLSTM based approach for

detection of SQL injection attacks. In2021 International conference on computational

intelligence and knowledge economy (ICCIKE) 2021 Mar 17 (pp. 378-383). IEEE.

[14] Dhanaraj RK, Ramakrishnan V, Poongodi M, Krishnasamy L, Hamdi M, Kotecha K,

Vijayakumar V. Random forest bagging and x‐means clustered antipattern detection from

SQL query log for accessing secure mobile data. Wireless communications and mobile

computing. 2021;2021(1):2730246.

[15] Panda SP, Muppala M, Koneti SB. The Contribution of AI in Climate Modeling and

Sustainable Decision-Making. Available at SSRN 5283619. 2025 Jun 1.

[16] Shivadekar S. Artificial Intelligence for Cognitive Systems: Deep Learning, Neuro-

symbolic Integration, and Human-Centric Intelligence. Deep Science Publishing; 2025 Jun

30.

[17] Davidson L. Pro SQL Server Relational Database Design and Implementation: Best

Practices for Scalability and Performance. Apress; 2021.

[18] Zhang W, Li Y, Li X, Shao M, Mi Y, Zhang H, Zhi G. Deep Neural Network‐Based SQL

Injection Detection Method. Security and Communication Networks.

2022;2022(1):4836289.

[19] Roy P, Kumar R, Rani P. SQL injection attack detection by machine learning classifier.

In2022 International conference on applied artificial intelligence and computing (ICAAIC)

2022 May 9 (pp. 394-400). IEEE.

62

[20] Katsogiannis-Meimarakis G, Koutrika G. A survey on deep learning approaches for text-

to-SQL. The VLDB Journal. 2023 Jul;32(4):905-36.

[21] Khan W, Kumar T, Zhang C, Raj K, Roy AM, Luo B. SQL and NoSQL database software

architecture performance analysis and assessments—a systematic literature review. Big

Data and Cognitive Computing. 2023 May 12;7(2):97.

[22] Hong Z, Yuan Z, Zhang Q, Chen H, Dong J, Huang F, Huang X. Next-generation database

interfaces: A survey of llm-based text-to-sql. arXiv preprint arXiv:2406.08426. 2024 Jun

12.

[23] Islam S. Future trends in SQL databases and big data analytics: Impact of machine

learning and artificial intelligence. Available at SSRN 5064781. 2024 Aug 6.

[24] de Oliveira VF, Pessoa MA, Junqueira F, Miyagi PE. SQL and NoSQL Databases in the

Context of Industry 4.0. Machines. 2021 Dec 27;10(1):20.

[25] Rockoff L. The language of SQL. Addison-Wesley Professional; 2021 Nov 4.

[26] Shivadekar S, Halem M, Yeah Y, Vibhute S. Edge AI cosmos blockchain distributed

network for precise ablh detection. Multimedia tools and applications. 2024

Aug;83(27):69083-109.

[27] Fotache M, Munteanu A, Strîmbei C, Hrubaru I. Framework for the assessment of data

masking performance penalties in SQL database servers. Case Study: Oracle. IEEE

Access. 2023 Feb 22;11:18520-41.

[28] Panda SP. Augmented and Virtual Reality in Intelligent Systems. Available at SSRN.

2021 Apr 16.

[29] Karwin B. SQL Antipatterns, Volume 1: Avoiding the Pitfalls of Database Programming.

The Pragmatic Programmers LLC; 2022 Oct 24.

[30] Nasereddin M, ALKhamaiseh A, Qasaimeh M, Al-Qassas R. A systematic review of

detection and prevention techniques of SQL injection attacks. Information Security

Journal: A Global Perspective. 2023 Jul 4;32(4):252-65.

[31] Chakraborty S, Aithal PS. CRUD Operation on WordPress Database Using C# SQL

Client. International Journal of Case Studies in Business, IT, and Education (IJCSBE).

2023 Nov 28;7(4):138-49.

[32] Panda SP. The Evolution and Defense Against Social Engineering and Phishing Attacks.

International Journal of Science and Research (IJSR). 2025 Jan 1.

[33] Choi H, Lee S, Jeong D. Forensic recovery of SQL server database: Practical approach.

IEEE Access. 2021 Jan 18;9:14564-75.

[34] Thalji N, Raza A, Islam MS, Samee NA, Jamjoom MM. Ae-net: Novel autoencoder-based

deep features for sql injection attack detection. IEEE access. 2023 Nov 28;11:135507-16.

[35] Chakraborty S, Paul S, Hasan KA. Performance comparison for data retrieval from nosql

and sql databases: a case study for covid-19 genome sequence dataset. In2021 2nd

International Conference on Robotics, electrical and signal processing techniques

(ICREST) 2021 Jan 5 (pp. 324-328). IEEE.

[36] Crespo-Martínez IS, Campazas-Vega A, Guerrero-Higueras ÁM, Riego-DelCastillo V,

Álvarez-Aparicio C, Fernández-Llamas C. SQL injection attack detection in network flow

data. Computers & Security. 2023 Apr 1;127:103093.

[37] Antas J, Rocha Silva R, Bernardino J. Assessment of SQL and NoSQL systems to store

and mine COVID-19 data. Computers. 2022 Feb 21;11(2):29.

	Chapter 3: Performance tuning in SQL server environments: Execution plans, index strategies, and resource cost estimation
	1. Introduction to Performance Optimization
	2. Execution Plans and Query Tuning Techniques
	2.1. Understanding Execution Plans
	2.2. Analyzing Query Performance
	2.3. Common Query Tuning Techniques

	3. Indexing Strategies for High Performance
	3.1. Types of Indexes
	3.2. Creating and Maintaining Indexes
	3.3. Index Usage and Performance Impact

	4. Partitioning and Sharding Best Practices
	4.1. Overview of Partitioning
	4.2. Implementing Partitioning in SQL Server
	4.3. Sharding Strategies for Scalability

	5. Managing TempDB for Optimal Performance
	5.1. Understanding TempDB Usage
	5.2. Configuring TempDB for Performance
	5.3. Best Practices for TempDB Management

	6. Identifying and Resolving I/O Bottlenecks
	6.1. Understanding I/O Performance
	6.2. Tools for Monitoring I/O Bottlenecks
	6.3. Strategies for I/O Optimization

	7. Memory Tuning Techniques
	7.1. Understanding SQL Server Memory Architecture
	7.2. Configuring Memory Settings
	7.3. Monitoring Memory Usage

	8. Best Practices for Performance Monitoring
	8.1. Key Performance Indicators (KPIs)
	8.2. Tools for Performance Monitoring
	8.3. Regular Maintenance and Performance Reviews

	9. Case Studies and Real-World Applications
	9.1. Case Study 1: Query Optimization
	9.2. Case Study 2: Indexing Strategies
	9.3. Case Study 3: I/O Bottleneck Resolution

	10. Conclusion

