
  

84 
 

 

Chapter 5: ETL pipelines and SQL database 

management 

Mohanraju Muppala 

 

 

1. Introduction to ETL Pipelines 

An ETL pipeline comprises a centralized SQL database in which data is 

consolidated and continuously processed. The database is configured to 

authenticate visitors and display their data within a frontend framework. In 

contemporary digital platforms, the role of the frontend is indispensable [1,2]. It 

serves as the immediate environment for visitor interaction and ensures that 

data is presented in a manner tailored to different user types. Moreover, it is 

responsible for elucidating the dynamic conditions of page storage for each 

visitor. 

2. Real-World Use Cases of ETL 

ETL serves the connections between applications and the data needed to 

perform their tasks by providing appropriate access to all data. It is the 

technology for the applications and tools that are not capable of directly 

connecting to databases [3-5]. The Extract step involves extracting data from 

the requested source. In the Transform step, the incoming data is converted into 

the requested format to ensure seamless integration with the target system. 

Finally, in the Load step, the data is transferred to the requesting application.In 

addition to facilitating data transfer between applications, ETL can also be used 

for basic data duplication between storage systems. A typical scenario involves 

Deep Science Publishing, 2025  

https://doi.org/10.70593/978-93-7185-191-6_5 



  

85 
 

duplicating operational data into an OLAP system to suit a specific application 

need. Table 2-1 presents the SQL query that operates on the OLTP system to 

request its data. 

 

Fig1. Real world use cases 

2.1. Case Study: E-Commerce Data Integration 

ETL (Extract-Transform-Load) pipelines are critical for transferring data from 

the operational world into a database suited for analytics. This use case 

approaches the problem of transferring data from source files into a SQL 

database. The source files are taken from an e-commerce company, contained in 

an S3 bucket as CSV files, showing items, inventory availability, discounts and 

sales. The destination database contains four tables designed to hold the items' 

information, prices, sales and stock levels. The built pipeline can be invoked 

from the command line to perform an initial creation and population of the 

database, followed by daily updates to keep the data up-to-date. 

The operational files containing the data are CSVs obtained from an S3 bucket 

on Amazon Web Services. The source files contain the historic record of sales, 

prices and availability for each item of the e-commerce company [6,7]. Four 

tables have been set-up in a SQL database to contain this information: an items 

table, a prices table, a sales table and a stock levels table. The first one stores 

information such as item_id, item_name and item_brand, without time 



  

86 
 

dependency. The other three contain a timestamp to allow for the recording of 

each of the particular information mentioned. Sales contains the volume and 

value of the sales, prices the price and discount level for each entry and 

stock_levels the units available in the warehouses. 

2.2. Case Study: Financial Data Aggregation 

EPAM ETL Plaorm is an internal tool lately being used by fi- nancial systems. 

It implements several fundamental features: routing data by time, deduplication, 

parsing data, configuration of the pipeline us- ing Oracle DB, deploying to the 

EC2 infrastructure with AWS Code- Pipeline & CloudWildlife, and alerting. As 

a case study, a deployme- nt of such an internal system to aggregate the balance 

of the dcBalan- ce internal system is described. The goal is to take financial 

data from the jobs and transfer it to the master schema. The problem is how to 

turn unstructured data into a structured format, while also keeping the 

information so that it can be used in the future. 

One solution is an ETL pipeline to parse those balances and trans- form them 

into the Oracle database with the other monetary records. There are many 

different services that parse and put information di- rectly into the database, so 

the new service should deploy on the EC2 infra. A new Oracle table is needed 

to configure the jobs, and YAML ci-files must be updated to be able to create 

them. This service processes information from the job and merges all the 

balances into one record. 

2.3. Case Study: Healthcare Data Management 
Raw healthcare data undergoes a well-planned cascading process. The 

preparation of a patient health record is considered as a cinematic storyline with 

fourfold: dramatic composition; process steps that include data extraction, 

transformation, loading, validation, and verification; life cycle; and design of 

the data lake and file storage path. 

For the extraction, the patient data arrives in JSON format. An Apache Spark 

job parses the data to ensure that the nested part of the JSON can be handled by 

the SQL Database. After investigation, the doctor, hospital, and prescription 

information is extracted to further flatten the nested JSON and enable round-

tripping for the patient health record data. 



  

87 
 

3. Building a Reporting Warehouse 

The clarification begins with the data flow, starting from the source files held in 

a cloud object store such as Amazon S3. These are in a raw, unprocessed form 

and must be cleaned and transformed before analysis. Once the source data files 

have been cleaned and transformed, they are copied into the various subjects of 

the data model. Each subject contains tables that can be combined to find 

insights related to the subject, such as examining a customer's account history. 

An extract, transform, and load (ETL) pipeline is created to perform these steps. 

It begins by configuring a connection to the cloud object store. 

Next, the source data files are copied into a "staging" area within an SQL 

database. This staging area reflects the structure of the original source tables, 

making it easy to re-run the initial processing when new data becomes 

available. The records in the staging area are in a raw and unprocessed state, 

possibly containing missing, redundant, or inconsistent data. 

These pieces are now in place. The next step is to implement the transformation 

that prepares the data for permanent storage in each of the subject tables. 

Within each subject table there are query patterns to make it easier to retrieve 

data from the warehouse, such as creating summary tables for quicker analysis. 

3.1. Overview of Reporting Warehouses 

The initial repository for raw data in the business context is often a reporting or 

operational data warehouse [2,8-10]. As operational data changes, updates are 

scheduled at suitable intervals, implemented efficiently through SQL MERGE 

statements. These statements integrate data of the same granularity by updating 

matching rows and inserting non-matching ones. Following the staging in the 

reporting warehouse, data flows into downstream operational warehouses that 

support core business functions such as order birth or traffic forecasting. 

While SQL MERGE commands offer a convenient update mechanism, they are 

not immune to isolation anomalies. Therefore, incorporating logic to verify data 

congruence before issuing update commands can be prudent. 

3.2. Designing Views for Data Reporting 

In the SAS system, views simplify reporting because one is never required to 

look behind the scenes. Writing a SELECT statement requires specifying a list 

of column names for the SELECT clause. Omitting a column name also leaves 

it out of the report thereby, reducing the size and enhancing readability. Views 

allow the developer to restrict access to certain columns, which helps to 



  

88 
 

maintain data security and privacy. They enable each user to view bond data 

according to an individual code-of-conduct and share the bond-acquisition bond 

sale cost only with those permitted to see it. 

A view for report generation needs to be designed and created in such a way 

that the columns selected can be easily replaced with columns from a table 

created in the SAS ETL process. SQL scripts can then be rerun, producing the 

same report with fresh data. The SELECT statement can be saved within the 

view itself. Creating a report for each bond requires writing a SQL script with 

the bond name and replacing columns previously selected in the source view. 

The columns replaced must be the ones generated from SAS, and the data 

selected from the SAS ETL load table. The initial cost and sale of the bond are 

excluded from this process. Costs and sales of each bond can be protected by 

storing prices in the SAS table and omitting these columns when creating the 

source view. 

3.3. Implementing Materialized Views 

Materialized views can optimize ETL pipelines where only the delta values in a 

large table need to be read out at every refresh. In this kind of pipeline, a base 

relation already exists whose tuples need to be updated from an input relation. 

Typical SQL code reads out the delta values in the input and updates the base 

relation using the DELETE and INSERT constructs. However, when many 

tuples are removed and inserted, the DELETE phase may need to read out a 

large chunk of the relation, thus making the DELETE phase a performance 

bottleneck. The ULDB methodology thus concentrates the entire update activity 

inside the DELETE phase, while the INSERT phase remains empty. This is 

achieved by writing an appropriate expression for the DELETE phase. The 

criteria that the DELETE expression should satisfy is that any tuple u in the 

base relation that will not appear in the new database state must appear in the 

answer of the DELETE expression (so that it can be removed from the base 

relation). 

ETL pipelines typically have local market-specific stores and central revenue 

accounting store. Understanding the distribution and roll-up of data is 

important: Extraction happens from local market store; Transform happens at 

the central store; Load also happens at the central store. The local store can 

extract only raw transactions, because the extraction often happens on the fly, in 

real time. However, the central store requires other summary transaction types 

for its operations, so that it can roll-up information from local sources. Rather 

than performing a local roll-up, the transformation happens in the central store. 



  

89 
 

The information is rolled-up into the specific summary transaction types for 

Drugs and Gaming. 

4. SQL in Microservices Architecture 

Data flow in a single microservice follows a defined order. Each step in the 

ETL pipeline relies on the successful processing of the previous step. Despite 

this, a failed step does not necessarily stop the entire pipeline; it quickly moves 

on to the next entry, allowing for later backfilling if necessary [1,11-12]. 

MySQL, a relational database management system, offers robust support and 

ensures stable database management. It stores user data such as the last 

comment date, the number of repositories, and the number of organizations. 

The data is automatically updated through the use of cron jobs. 

4.1. Integration of SQL Databases in Microservices 

Microservices require data management that is transparent to business logic, 

accomplished through RESTful APIs that expose the internal business logic. 

Similarly, integration with a specific data source can be made transparent to the 

application, encapsulating all data management in an ETL module that exposes 

a REST API [13-15]. An extractor module interacts with source APIs, 

requesting the data needed for business logic operation. The retrieved data then 

feeds into the microservice's business logic, which can process it either in real 

time or in batch. 

A generic extractor can dynamically build extract requests by reading 

configuration parameters. Once data resides in the processing memory, the 

transformer and loader modules proceed [16,17]. The transformer applies 

necessary data transformations, while the loader manages the loading and 

integration of multiple data sources within the storage phase. A generic loader 

exploits database management services through a REST API, encapsulating 

SQL injections and operations such as TRUNCATE, DELETE, INSERT, 

UPDATE, and MERGE, in accordance with the selected source-table 

interaction modus operandi. 

4.2. Best Practices for SQL APIs 

A well designed database API provide a well defined and consistent interface 

between one component of a software application and another, or between the 

application and a database management system. A database API typically 

supports the full range of SQL commands, including those for creating and 



  

90 
 

removing databases and database tables, as well as administrative commands 

for managing user access. It generally supports selecting and manipulating data, 

text search and advanced matching operations, querying metadata, creating 

tablespaces, and bulk loading of data to tables. 

While these operations provide a foundation, they alone do not guarantee a 

straightforward or pleasant development experience. The functions and 

methods of any database API not only need to be defined correctly, but they 

should also be designed to be useful, consistent, and expressive. For example, 

when data is fetched from a table, the returned tuples should be simple to 

navigate through in order to retrieve the intended values, avoiding the use of 

numeric indexes or database column names. The environment in which the SQL 

commands are used should allow developers to write proper SQL statements in 

a natural way, which implies integration with the programming language and 

the support provided for operations such as string/number/list formatting or 

SQL statement composition. Lastly, it is important to protect the user from 

errors—whether they are common errors or mistakes could be harmful to data 

integrity—providing properly designed error checking and exceptions. 

5. Monitoring SQL Databases 

Any SQL database needs to be monitored. PostgreSQL is frequently used, and 

tools like pgAdmin4 allows inspecting the current state of a database. Querying 

the pg_stat_activity view shows currently running queries and their respective 

start times. The list includes other information such as the executing username, 

source IP address, application name, process ID, transaction ID, query state, 

and the timestamp of the state. Terminating unnecessary long-running queries 

can be performed via a SQL command. 

PostgreSQL also tracks statistics for each table — including inserts, updates, 

reads, and deletes — which can be inspected with SQL. Executing the 

ANALYZE SQL command at regular intervals updates table statistics and 

indexes. Queries against the workload statistics catalog provide information 

about the number of rows read, conflicts, modification origins, locks, and table 

sizes. Monitoring tools like pg_stat_monitor extend these capabilities by 

tracking detailed executed query information, accessible through SQL. 



  

91 
 

5.1. Importance of Monitoring 

Many electrical engineers view electrical circuit theory as one of the first 

lessons in their training. Regardless of an educational background, when 

starting a new role many engineer tasks remain similar; there is a requirement 

to analyse signals and associated data, usually in an electrical domain [12,18-

20]. As the field of data science progresses, engineers can borrow standard 

techniques to process large volumes of time-series data; ETL pipelines (extract-

transform-load) are ideal for these applications. 

Many go unchanged for long periods; only one modification is required with 

the introduction of new KPI variables. Each table can be defined to retain a 

specific metric with a timestamp and the row date. The table retains 

modifications until personnel discover unexpected behaviour or clear new 

faults. The pipeline is then stopped and restarted once the necessary changes are 

applied. As KPIs continue to develop, this process becomes tedious: every 

change requires program modification, testing, and re-deployment. Writing a 

complex SQL query with hundreds of KPI variables is unwieldy. Furthermore, 

such a design generates a similar set of input tables over long operational 

periods, whereas staff would prefer to gain an indication of the pipeline's 

performance during execution, rather than after the data is written to permanent 

storage. 

5.2. Key Metrics to Monitor 

The goal of maintaining an up-to-date SQL database dictates the key metrics to 

monitor when building ETL pipelines [21-23]. The most common signals of 

failure can be broken down into Time and Row Count, namely: staleness, 

volume absence, volume shortage, volume surfeit, and timestamp mismatches. 

Considering staleness first, a database can be classified as “up to date” or 

“stale” depending on the time elapsed since its last successful update. A 

warning or critical condition is triggered respectively when the time elapsed 

exceeds one or two expected update intervals. On the other hand, the warning 

and critical conditions for the Row Count metrics arise when the number of 

rows in the current update is either excessively small or large. A volume 

absence warning or critical condition is raised when the current update returns 

zero rows—a fact that simultaneously corresponds to a volume shortage. 



  

92 
 

6. Alerting Mechanisms for SQL Databases 

Table store and query complexity metrics provide insight into SQL 

performance and aid in diagnosing performance issues. Other metrics reveal 

table growth rate or complexity (e.g., number of columns) and help determine 

whether alert conditions may result from poor modeling or escalating growth. 

The following questions can help define and evaluate plausibility alerts. 

What Should Be Alerted 

What constitutes unusual behavior? Is a particular level of growth atypical or an 

implementation pattern that will eventually impact performance? The answer 

depends on the data being collected and the risk profile. Common indicators of 

problematic growth include very rapid growth, the creation of many very wide 

tables, and the creation of a large number of tables. 

When Should an Alert Be Raised 

Determining when tables must be classified as too large or wide to continue 

normal operation requires definitions of temporal context. Without historical 

data, the approach is limited to summary statistics and hard thresholds; 

historical data enable smoothing and the assessment of temporal trends. The 

key question is whether the table would remain within plausible limits if the 

current growth rate persisted. 

The table can be normalized by the number of business processes supported by 

the database. 

6.1. Setting Up Alerts 

Selecting Failure mode: from the Failure dropdown list, choose either Alert if 

source data isn’t imported or Alert if data warehouse table is empty. Selecting 

“Alert if source data isn’t imported” causes alerts to be generated on source 

load failures. Selecting “Alert if data warehouse table is empty” causes alerts to 

be generated on empty warehouse table conditions. 

Setting Notification Recipients: specify who gets notified by the alert by filling 

in the Send notification email(s) to input. Enter the email addresses of the alert 

recipients. Separate multiple email addresses with commas, semicolons, spaces, 

carriage returns, or line feeds. Alert email notifications are sent:. The SMTP 

server used is specified in the WD Loader.sws.config file. If you set the Failure 

mode to Alert if source data isn’t imported, alerts will be generated on source 



  

93 
 

load failures. If you set the Failure mode to Alert if data warehouse table is 

empty, alerts will be generated on empty warehouse table conditions. 

6.2. Best Practices for Alert Management 
ETL pipelines can be complex entities. They might consist of multiple jobs at 

once that get executed based on particular dependencies. Furthermore, even 

individual ETL jobs can be complex: they run for long durations and retrieve, 

transform, and load enormous volumes of data. Moreover, when ETL jobs have 

been reused and built upon by various teams over the years, their complexity 

increases accordingly. When an error occurs in an ETL pipeline, it is crucial to 

be promptly notified in order to resolve the issue. Proper alert management can 

thus . 

During the lifecycle of ETL pipelines, it is imperative that the developer is 

notified about errors, final success, and job execution metrics. As the lifetime of 

such a pipeline stretches to months and years, notifications become important to 

ascertain whether the pipeline is performing as expected or not. Putting together 

an alert management strategy, based on the requirements described above, helps 

keep track of ETL jobs in a unified fashion. Managing SQL databases is also a 

significant concern when it comes to monitoring and bookkeeping of ETL 

pipelines [24,25]. Although it is possible to monitor individual jobs by sending 

alerts in case of success or failure, it is even better to keep track of the details in 

a central location so that the developer can check the job status or performance 

metrics at any time of the day, beyond just looking at the status on email during 

the periods when the jobs get triggered. 

7. Logging Techniques for SQL Databases 

During routine updates to SQL database tables, error hooks readily record SQL 

update errors. By contrast, table creation and dropping scripts for logging at the 

end of a run only capture errors during the start of an ETL run. A two-level 

logging mechanism ensures comprehensive error detection at both stages. 

Firstly, SQL scripts trigger standard error logging routines at the beginning of 

each ETL run, filtering out runs that have already been logged. Secondly, 

execution control sheets enable or disable SQL error logging for updates to 

each table during normal operations. 

Combining words and numbers within the WHERE clause of a single SQL 

statement requires proper syntax and formatting to render the values that the 



  

94 
 

statement compares. When a SQL statement without a parameter marker is 

prepared, the related object binds any literal value present in the SQL text. 

Prepared SQL statements can thus compare a field with both character and 

numeric values. However, if a SQL statement with a parameter marker within 

quotation marks is prepared, the generated object attempts to bind it to the 

column type. For instance, for a SQL statement such as SELECT_city_ 

FROM_pub_locale WHERE _pub_id = '_?,' the code specifies that the 

parameter marker has a type VARCHAR(1) and has a value of “11”. 

7.1. Types of Logging 

Logging plays an important role in the daily operations of an enterprise. It 

enables us to track operational activities, to understand what a particular system 

is doing or has done, and to help with reconstructing or diagnosing problems. 

Since logging records operations over time, it collects very useful data that can 

be used also for understanding general past trends, identifying future patterns 

and demands, and partner or customer analytical activities. From a systems 

aspect, logging data can assist with auditing, perhaps even certification. 

A very easy and convenient form of logging is to copy operational data to a file. 

Such files are easy to examine, and the file contents can be queried. This 

facility is also inexpensive to maintain since logging is part of the main system. 

As a drawback, the logging process can overload the main system. In the 

private sector, the entire unit may be physically co-located. This can be the 

case, for example, when the work performed by one or more departments is 

supported by an internal call center that is responsible for answering queries. 

7.2. Implementing Effective Logging Strategies 

The implementation of logging within an ETL pipeline allows for the tracking 

of important events that occur during its operation and the generation of metrics 

about what it's processing. The logging pipeline type is suitable for recording 

events that don't transform or represent the data structure loaded into the 

destination — typically, tables detailing the loading process per entity are 

loaded into distinct schemas within the target SQL database. 

Logging during the construction of an ETL pipeline facilitates monitoring and 

tracking of crucial events as the pipeline processes data. It also enables the 

creation of metrics summarizing the operational aspects of the pipeline. For 

instance, logging stages like parsing, validating, or transforming can capture 

whether records adhere to expected data types or meet particular constraints. 

Similarly, logging during the loading phase can indicate the success status of 

database operations [26-28]. Stages in an ETL pipeline that do not transform 



  

95 
 

data and do not provide a geometric representation often employ this type of 

logging for structuring the information. Typical use cases include generating 

audit records that detail how many records are processed in each stage, at what 

times, and identify those that were successfully loaded versus those that failed. 

8. Challenges in ETL Processes 

Extract, transform, and load (ETL) processes have been widely used for 

decades; however, the growth of informational needs, together with the increase 

in data volumes from heterogeneous sources, makes the use of traditional 

methodologies difficult. Furthermore, traditional solutions optimized for 

individual steps do not consider other phases of the process, hindering the 

construction of complete efficient processes that fit the transforming data flows 

in output. Several open-source tools have attempted to address these challenges. 

ETL systems are traditionally divided into four parts: extracting data, 

transforming data, loading data into a repository, and scheduling jobs. 

The increasing volumes of data extracted from multiple sources and the need 

for more frequent extractions expose the characteristic fragility of scheduling 

systems, which do not consider dependency relationships between tables [29-

31]. This lack of dependency management generates delays in executing jobs 

and increases the extraction time of information from databases. Moreover, the 

exponential expansion of database sizes complicates the refreshing process 

once data have been loaded into the required repository. As a result, cycle times 

extend, impeding the use of information in accordance with its timeliness. 

When SQL is used, the transformation step—considered the most important in 

the ETL process—is highly restricted due to the language’s limitations. Finally, 

scheduling is a delicate aspect of ETL processes because it controls the 

frequency of data extraction, transformation, and loading; however, many 

existing schedulers are expensive and lack insight into how jobs affect each 

other. 

8.1. Data Quality Issues 

Data Quality Issues 

The ETL process that populates the SQL database includes numerous 

transformations designed to correct data quality issues. The available online 

data are continually changing, and at any point in time the available data may 



  

96 
 

be incomplete. Missing data cause the SQL table to be incomplete because a 

complete record needs all OR-AND-ZIP columns to be populated. 

For some county/ZIP code combinations, Federal Reserve Economic Data 

(FRED) does not supply information for all requested fields. This causes the 

These treatment-status folders to be temporarily empty, just as when a folder 

has been created in anticipation of completing staging for a new month. Several 

CSV files contain only dashes or periods representing unavailable data, which 

causes some of the associated table cells to be empty. NBER use codes C15 and 

C16 are not fully populated with outbound summary reports, and their C-rates 

are filled with dashes. 

8.2. Performance Bottlenecks 

For the past few years, it has been possible to detect bottlenecks and optimize 

the performance of web applications [3,32,33]. This development is due to the 

broad implementation of professional tools that allow the recording of 

Important Application Specific Events—for example, event tracking in Google 

Analytics in order to know the user steps on a web page or recording calls of 

web services in order to see the bottlenecks on a web application's back-end. 

Since nearly all distributed systems and especially big data systems are based 

on reliable distributed file systems, these files open a visibility window into the 

functioning of the system. A professional—mainly developer or system 

administrator—can analyze the processed application-specific events with the 

help of simple SQL commands in a tool like Apache Hive, then detect 

performance bottlenecks and formulate solutions for the big data systems. 

Provided that a user recognizer detects the user rights correctly, the user can 

realize the visibility and change the system behavior in order to increase the 

speed and reduce their costs 

The ELK stack is a state-of-the-art tool that allows users to transform, 

aggregate, and analyze different data types in an efficient way. Similar to 

Apache Hadoop, it can be used for big data issues, but it offers a lower cost of 

entry and a faster learning curve. Furthermore, the combination of powerful 

components such as Elasticsearch, Logstash, and Kibana allows for the 

collection, processing, storage, and visualization of data and can thus be used in 

many fields of business and administration. 



  

97 
 

9. Future Trends in SQL Database Management 

Looking ahead, many of the processes and workflows that have long been 

commonplace in SQL database management and daily operations are likely to 

evolve or disappear over time, replaced by new database and engine 

architectures, abstractions, and AI-enabled business analysts. While it’s 

possible to imagine a future in which AI knows just as much about your 

business domain as you do—from hiring to budgeting and financial 

forecasting—there are still many gaps in AI data intelligence that it is working 

hard to close. 

The basic tasks include extracting, transforming, and loading data into a data 

warehouse or a transaction processing SQL database, then managing operations 

business as usual: writing SQL queries for auditing and controls, querying 

tables for real-time analytics, adding new domain tables and columns, 

optimizing for performance, and so on. 

AI-assisted tools can now generate extract, transform, and load routines, 

including in-line judging and validation, query transactional or warehouse data 

tables, create advanced analytics intelligence, and perform enterprise business-

as-usual for SQL engines. 

9.1. Emerging Technologies 

Data management in higher education must move beyond traditional storage 

and maintenance of academic and financial information. Emerging technologies 

and new infrastructure are necessary to support higher education research, 

teaching and learning, and decision-making [4,34-35]. 

The Automated Learning Informatics Network, an initiative of the Sloan 

Consortium’s Information Technology in Education Special Interest Group, 

assesses and compares institutional-level learning data. LAK16 organizations 

also address evidence-based practices, decision-making, business intelligence, 

learning analytics and educational data mining research, project funding, and 

funding sources. Resources include from higher education business intelligence, 

international organizations, web portals, and professional organizations. 

Proposed ETL pipelines address the curation and standardization of Open Data, 

assisting the in-depth analysis of datasets for surprising or counterintuitive 

correlations and comparisons by international media and analysts. Using 

commonplace pictograms and color-coding, analysts and media can reveal 



  

98 
 

education achievement versus the expenditure in order to raise awareness 

among citizens and politicians. 

9.2. The Role of AI and Machine Learning 

Several examples of ETL tools capable of employing AI and machine learning 

could be named, but the following are two of the most interesting ones. One is 

Fivetran, a platform of data integration tools that offers automated pipelines 

based on machine learning, capable of adapting to changes in source systems 

and ensuring reliable replication in the destination. The second is IBM 

InfoSphere Information Server, which includes AI-powered metadata 

management features to enhance its data integration capabilities and simplify 

their management. The use of AI in ETL systems is evolving rapidly and 

continues to draw much attention. 

After extracting and transforming the data and loading it into a database, the 

data is ready for use. Typically, a series of SQL requests against the database is 

performed to generate meaningful information in the form of reports or graphs. 

Data analysts generate series of requests to satisfy reporting requirements but 

experience limitations due to the potential complexity and large volume of the 

database. Users require an interface that allows them to pose questions in 

natural language and receive meaningful answers expressible as a series of 

simple SQL requests, as detailed in an example discussed in Section 7.3. 

10. Conclusion 

Extract-transform-load (ETL) pipelines are essential for consolidating data from 

multiple sources—from web and app platforms to third-party integrations–into 

a single data warehouse. Once in the warehouse, a series of views convert this 

data into business methods and properties crafted to address the precise 

questions answered by a business intelligence dashboard. These views 

transform the data from its raw, often complex form into easy-to-read tables 

and graphs. Their architecture supports additional materialized views that can 

be queried directly for real-time decision-making. 

During the past five years, the SQL database has emerged as the lynchpin of the 

microservices architecture model. Providing all the services with a highly 

granular API enables every operation to proceed asynchronously, delivering 

results promptly while circumventing bottlenecks. No one entity can limit the 

database’s efficiency. The four dimensions of SQL database state— 



  

99 
 

monitoring, alerting, logging, and troubleshooting—are detailed here. 

Executing real-world ETL projects reveals a new set of problems that warrant a 

fresh perspective on these state aspects. As artificial intelligence and SQL 

databases converge, daily operations are primed to become smarter, faster, and 

less demanding. 

 

References: 

[1] Walha A, Ghozzi F, Gargouri F. Data integration from traditional to big data: main 

features and comparisons of ETL approaches. The Journal of Supercomputing. 2024 

Dec;80(19):26687-725. 

[2] Dhummad S, Patel T. Advanced SQL Techniques for Efficient Data Migration: Strategies 

for Seamless Integration across Heterogeneous Systems. International Journal of 

Computer Trends and Technology.;72(12):38-50. 

[3] Tanimura C. SQL for Data Analysis: Advanced Techniques for Transforming Data Into 

Insights. " O'Reilly Media, Inc."; 2021 Sep 9. 

[4] Brunner U, Stockinger K. Valuenet: A natural language-to-sql system that learns from 

database information. In2021 IEEE 37th International Conference on Data Engineering 

(ICDE) 2021 Apr 19 (pp. 2177-2182). IEEE. 

[5] Panda SP. Relational, NoSQL, and Artificial Intelligence-Integrated Database 

Architectures: Foundations, Cloud Platforms, and Regulatory-Compliant Systems. Deep 

Science Publishing; 2025 Jun 22. 

[6] Lawson JG, Street DA. Detecting dirty data using SQL: Rigorous house insurance case. 

Journal of Accounting Education. 2021 Jun 1;55:100714. 

[7] Zhang B, Ren R, Liu J, Jiang M, Ren J, Li J. SQLPsdem: A proxy-based mechanism 

towards detecting, locating and preventing second-order SQL injections. IEEE 

Transactions on Software Engineering. 2024 May 14;50(7):1807-26. 

[8] Panda SP. Artificial Intelligence Across Borders: Transforming Industries Through 

Intelligent Innovation. Deep Science Publishing; 2025 Jun 6. 

[9] Gandhi N, Patel J, Sisodiya R, Doshi N, Mishra S. A CNN-BiLSTM based approach for 

detection of SQL injection attacks. In2021 International conference on computational 

intelligence and knowledge economy (ICCIKE) 2021 Mar 17 (pp. 378-383). IEEE. 

[10] Dhanaraj RK, Ramakrishnan V, Poongodi M, Krishnasamy L, Hamdi M, Kotecha K, 

Vijayakumar V. Random forest bagging and x‐means clustered antipattern detection from 

SQL query log for accessing secure mobile data. Wireless communications and mobile 

computing. 2021;2021(1):2730246. 

[11] Panda SP, Muppala M, Koneti SB. The Contribution of AI in Climate Modeling and 

Sustainable Decision-Making. Available at SSRN 5283619. 2025 Jun 1. 

[12] Shivadekar S. Artificial Intelligence for Cognitive Systems: Deep Learning, Neuro-

symbolic Integration, and Human-Centric Intelligence. Deep Science Publishing; 2025 Jun 

30. 

[13] Davidson L. Pro SQL Server Relational Database Design and Implementation: Best 

Practices for Scalability and Performance. Apress; 2021. 



  

100 
 

[14] Zhang W, Li Y, Li X, Shao M, Mi Y, Zhang H, Zhi G. Deep Neural Network‐Based SQL 

Injection Detection Method. Security and Communication Networks. 

2022;2022(1):4836289. 

[15] Roy P, Kumar R, Rani P. SQL injection attack detection by machine learning classifier. 

In2022 International conference on applied artificial intelligence and computing (ICAAIC) 

2022 May 9 (pp. 394-400). IEEE. 

[16] Katsogiannis-Meimarakis G, Koutrika G. A survey on deep learning approaches for text-

to-SQL. The VLDB Journal. 2023 Jul;32(4):905-36. 

[17] Khan W, Kumar T, Zhang C, Raj K, Roy AM, Luo B. SQL and NoSQL database software 

architecture performance analysis and assessments—a systematic literature review. Big 

Data and Cognitive Computing. 2023 May 12;7(2):97. 

[18] Hong Z, Yuan Z, Zhang Q, Chen H, Dong J, Huang F, Huang X. Next-generation database 

interfaces: A survey of llm-based text-to-sql. arXiv preprint arXiv:2406.08426. 2024 Jun 

12. 

[19] Islam S. Future trends in SQL databases and big data analytics: Impact of machine 

learning and artificial intelligence. Available at SSRN 5064781. 2024 Aug 6. 

[20] de Oliveira VF, Pessoa MA, Junqueira F, Miyagi PE. SQL and NoSQL Databases in the 

Context of Industry 4.0. Machines. 2021 Dec 27;10(1):20. 

[21] Rockoff L. The language of SQL. Addison-Wesley Professional; 2021 Nov 4. 

[22] Shivadekar S, Halem M, Yeah Y, Vibhute S. Edge AI cosmos blockchain distributed 

network for precise ablh detection. Multimedia tools and applications. 2024 

Aug;83(27):69083-109. 

[23] Fotache M, Munteanu A, Strîmbei C, Hrubaru I. Framework for the assessment of data 

masking performance penalties in SQL database servers. Case Study: Oracle. IEEE 

Access. 2023 Feb 22;11:18520-41. 

[24] Panda SP. Augmented and Virtual Reality in Intelligent Systems. Available at SSRN. 

2021 Apr 16. 

[25] Karwin B. SQL Antipatterns, Volume 1: Avoiding the Pitfalls of Database Programming. 

The Pragmatic Programmers LLC; 2022 Oct 24. 

[26] Nasereddin M, ALKhamaiseh A, Qasaimeh M, Al-Qassas R. A systematic review of 

detection and prevention techniques of SQL injection attacks. Information Security 

Journal: A Global Perspective. 2023 Jul 4;32(4):252-65. 

[27] Chakraborty S, Aithal PS. CRUD Operation on WordPress Database Using C# SQL 

Client. International Journal of Case Studies in Business, IT, and Education (IJCSBE). 

2023 Nov 28;7(4):138-49. 

[28] Panda SP. The Evolution and Defense Against Social Engineering and Phishing Attacks. 

International Journal of Science and Research (IJSR). 2025 Jan 1. 

[29] Choi H, Lee S, Jeong D. Forensic recovery of SQL server database: Practical approach. 

IEEE Access. 2021 Jan 18;9:14564-75. 

[30] Thalji N, Raza A, Islam MS, Samee NA, Jamjoom MM. Ae-net: Novel autoencoder-based 

deep features for sql injection attack detection. IEEE access. 2023 Nov 28;11:135507-16. 

[31] Chakraborty S, Paul S, Hasan KA. Performance comparison for data retrieval from nosql 

and sql databases: a case study for covid-19 genome sequence dataset. In2021 2nd 

International Conference on Robotics, electrical and signal processing techniques 

(ICREST) 2021 Jan 5 (pp. 324-328). IEEE. 



  

101 
 

[32] Crespo-Martínez IS, Campazas-Vega A, Guerrero-Higueras ÁM, Riego-DelCastillo V, 

Álvarez-Aparicio C, Fernández-Llamas C. SQL injection attack detection in network flow 

data. Computers & Security. 2023 Apr 1;127:103093. 

[33] Antas J, Rocha Silva R, Bernardino J. Assessment of SQL and NoSQL systems to store 

and mine COVID-19 data. Computers. 2022 Feb 21;11(2):29. 

[34] Shivadekar S, Kataria DB, Hundekar S, Wanjale K, Balpande VP, Suryawanshi R. Deep 

learning based image classification of lungs radiography for detecting covid-19 using a 

deep cnn and resnet 50. International Journal of Intelligent Systems and Applications in 

Engineering. 2023;11:241-50. 

[35] Ashlam AA, Badii A, Stahl F. Multi-phase algorithmic framework to prevent SQL 

injection attacks using improved machine learning and deep learning to enhance database 

security in real-time. In2022 15th International Conference on Security of Information and 

Networks (SIN) 2022 Nov 11 (pp. 01-04). IEEE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Chapter 5: ETL pipelines and SQL database management
	1. Introduction to ETL Pipelines
	2. Real-World Use Cases of ETL
	2.1. Case Study: E-Commerce Data Integration
	2.2. Case Study: Financial Data Aggregation
	2.3. Case Study: Healthcare Data Management

	3. Building a Reporting Warehouse
	3.1. Overview of Reporting Warehouses
	3.2. Designing Views for Data Reporting
	3.3. Implementing Materialized Views

	4. SQL in Microservices Architecture
	4.1. Integration of SQL Databases in Microservices
	4.2. Best Practices for SQL APIs

	5. Monitoring SQL Databases
	5.1. Importance of Monitoring
	5.2. Key Metrics to Monitor

	6. Alerting Mechanisms for SQL Databases
	6.1. Setting Up Alerts
	6.2. Best Practices for Alert Management

	7. Logging Techniques for SQL Databases
	7.1. Types of Logging
	7.2. Implementing Effective Logging Strategies

	8. Challenges in ETL Processes
	8.1. Data Quality Issues
	8.2. Performance Bottlenecks

	9. Future Trends in SQL Database Management
	9.1. Emerging Technologies
	9.2. The Role of AI and Machine Learning

	10. Conclusion


