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1. Introduction 

Artificial Intelligence (AI) and Machine Learning (ML) have matured over the 

past two decades as decision-making technologies for systems and processes in 

varied domains [1-3]. AI and ML solutions are increasingly being moved from 

on-premises deployments to the Cloud, for multiple logical and practical reasons 

related to business agility, economical operations, performance at scale, 

availability, and security [2,4]. With the advent of the Internet of Things (IoT) 

and the increasing use of embedded or device-level intelligence for real-time 

decision-making and information filtering, there is a recent movement to define 

solutions that blend the Cloud with Edge devices. The goal is to leverage the 

benefits of both Cloud and Edge in a Hybrid architecture to solve specific 

business problems. From a research and education perspective, there are key 

questions that await answers: what is Cloud-Native AI Architectures? What is 

Cloud + Edge - AI Architectures? What are Hybrid Models? How do we design, 

code, test, deploy, and manage lifecycle for Cloud-native, Edge-AI, and Hybrid 

Models? What types of business problems are best solved using one of these 

architectures, and how do I know? What AI models work best in these 

environments? How do I put in Cloud, Edge, and Hybrid deployment best 

practices? To operationalize and automate these questions, what tools, 

techniques, and platforms do we need? This book attempts to answer these 

questions in its humble way, while remaining technology-agnostic wherever 

possible. The book takes the position that we will never be able to automate 
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everything into a no-code AI solution [5-8]. We remain cognizant of the fact that 

building, deploying, and managing scalable AI solutions in Production is a 

challenging task that requires teamwork from multiple shared, but cross-skilled 

resources in Solution design, coding, testing, deployment, and management as 

part of a SLDC process involving tools and techniques from Software 

Engineering, DevSecOps, and MLOps. 

 

2. Overview of AI Architectures 

AI platforms typically use a digital infrastructure consisting of hardware such as 

chips, storage and data centres, combined with connectivity technologies such as 

the Internet, 5G and private networks, data and AI developer services such as 

MLOps, and application platforms specific to an industry or a region, such as 

robotics or language services [6,9]. Various features of this infrastructure define 

various cloud-native, edge AI, and hybrid models of AI. A focus on one or 

another model has an impact on the volumes, the types, or the speed of various 

AI services. In what follows, we consider the foundations of the various types of 

infrastructure, the features that define the major types of infrastructure, and then 

explore in more detail the cloud-native, edge-based, and hybrid types of AI. The 
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specific infrastructure and service location options explored in this section, 

coupled with varying demand from customers, leads to the various types of 

cloud-native, edge AI, and hybrid models of AI discussed in the next three 

chapters. 

The unique digital physics of AI leads to major differences between AI work and 

traditional applications like those driving big data [10-12]. Model and data 

parallelism, data-driven training, the availability of model pretraining and fine-

tuning, and other features lead to phases of constant scale efficiency that permit 

cost-effective at-axis scaling of data and compute resources. When coupled with 

application-sensing infrastructure such as data services that help developers 

identify useful datasets, data marketplaces, MLOps and other AI cloud tools, the 

underlying infrastructure choices lead to unique design patterns in AI. Indeed, 

these design patterns differentiate AI architectures from those traditionally used 

for other types of business applications while also illustrating how AI patterns 

are derivatives of the traditional design archetypes. 

3. Cloud-Native AI Architectures 

The term "cloud native" has become synonymous with modern, scalable 

application development and deployment. Many well-known Internet services 

have adopted cloud-native architectures based on containers and microservices, 

and machine learning-based applications such as chatbots and search engines are 

inherently suited for cloud-native implementations [7,13-16]. Cloud-native refers 

to platforms that are purely built and run on the cloud without needing to rely on 

ground infrastructures in the form of data centers for hosting. Furthermore, cloud-

native applications are designed, implemented, and deployed to take advantage 

of the specific characteristics of cloud services and solutions, such as big data 

processing, massively parallel computing or on-demand scalable computing 

resources. Cloud-native AI models are thus breaking away from traditional 

designs and constraints, and embrace and pursue all types of deployment on the 

cloud and with the cloud services. 

The move to cloud-native AI is yielding significant benefits regardless of which 

type of cloud service and model are being used [2,17-19]. For example, the cloud 

enables AI developers to provision compute nodes with any specialized hardware 

such as graphic processing units or tensor processing units without needing to 
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maintain these resources in-house. Furthermore, cloud providers offer several 

dedicated AI development toolkits, libraries, and frameworks that support the 

cloud environment and can significantly improve the productivity of AI 

development. Last but not least, resources provisioning in the cloud can be 

elastic, meaning that the provisioning can scale up or scale down seamlessly 

based on demand [3,20-23]. For organizations developing and deploying AI 

systems internally, the ability to provision a large number of compute nodes for 

a period of time, but relying on limited on-premise resources the rest of the time 

can lead to massive over-provisioning and thus savings in both capital and 

operational expenditures. 

3.1. Definition and Characteristics 

Cloud-Native architectures have emerged as a choice model for hosting and 

scaled-out services ever since the advent of fast Internet and the evolution of 

cloud computing as a model for hardware resource allocation of services. Such 

an implementation abstracts away the infrastructural overhead of hardware 

provisioning, deployment, and management, allowing service developers to 

focus on the service logic, while introducing several key features for automatic 

resource elasticity, service reliability, and availability. Vital to the model are 

Cloud APIs, available from Public Cloud service providers and various Private 

Cloud implementations that package not just Infrastructure as a Service, but also 

Platforms and various Software as Services to enable rapid Cloud-Native service 

deployment. 

Cloud-Native services are implemented as microservices, using pre-packaged 

optimized functions, often Model Inference Compliance Libraries that accelerate 

the deployment of optimized complex mathematics on scalable Cloud hardware, 

and take advantage of automated orchestration and development tools that are 

designed to automate key aspects of the Deployment including load balancing, 

fail-over, scaling, reliability, and service optimization. Hardware support is 

provided through GPGPU/FPGA/TPU accelerated computing hardware, the 

high-bandwidth memory pooling/integrated architecture between CPU/GPU, 

high-bandwidth memory integration architecture, and other vendors, the use of 

Cache, Fusion and Body-Back Fusing Bandwidth techniques. 

3.2. Benefits of Cloud-Native Models 

Cloud-native AI architectures are built on a microservice-based design pattern 

that exploits the distributed, flexible, elastic, and on-demand computing, 
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communication, and storage capabilities of modern cloud infrastructures while 

enabling a high level of parallelism and dynamic reconfiguration [9,24-26]. As 

highly domain-agnostic general-purpose deep neural network models, cloud-

native AI models are scalable and efficient. 

Despite successfully demonstrating superhuman performance and capabilities in 

sophisticated cognitive tasks for text, speech, vision, reinforcement learning, and 

multimodal domains, cloud-native AI models are yet to be adapted to new 

application contexts [27-29]. They are trained exponentiation faster and lead to a 

higher level of accuracy, performance, quality, and diversity when compared to 

small-customized, domain-specific, specialized AI models that are often 

optimized and finetuned for specific applications. For neural machine translation, 

the use of domain-specific, smaller customized models is known to deliver 

improvements compared to cloud-native models. However, it is costly and 

laborious to train a small-customized domain-specific model that needs to be 

regularly updated for newer domain data. As a result, organizations and 

businesses need to spend resources and costs to maintain multiple customized 

models that need to be relabeled and regularly retrained. For both financial 

documents and shortening the updating time of the model, the use of large cloud-

native models is more efficient, requiring less time for retraining compared to the 

financial-domain custom models. Hence, considering the maintenance and 

retraining costs, using a cloud-native model is considerably cheaper than 

maintaining multiple customized ones. 

3.3. Challenges in Implementation 

Building AI systems that are entirely cloud native is not trivial, some questions 

remain open about the trade-offs that can be made with such a concentrated 

strategy. First, the cloud-native character of such systems may also reveal some 

serious weaknesses. The concept of cloud-native imposes high levels of 

distribution, fault tolerance, continuous evolution, disaggregation, and 

efficiency, but often neglects low latency and privacy. There are specific 

applications that need to be very low on latency or cannot afford to share their 

data with third-party infrastructure companies in order to train better analytics. 

Such concerns are especially strong in areas like the health sector, where sharing 

data is either limited by law or, in less strict countries, frowned upon. 

Other features that we take for granted in non-AI systems, such as 

personalization, are also hard to conceive. Some personalization methods that 
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work in non-AI systems like caching or content in databases can hardly work in 

AI systems. For example, performing a sequence-to-sequence AI constant 

transfer transformer on vast batches to group information flows for a specific user 

may not seem wise economically [30-32]. On the other hand, AI systems that are 

clothing personalized could be cloud deploying architecture with little to no 

specificity of the cloud-native paradigm, the cache, and the usual personal 

context data valid for such a specific user. But by the same token again, the 

requirement of a cloud AI learning system that finely tunes all the time is likely 

to be another economic fault with the deployment. 

3.4. Case Studies 

Although the world has many cloud-native products, few are recognized as 

cloud-native AI systems. Here, we look at some industry leaders. 

Google Search has become a dominant means of finding and organizing 

information. Its proprietary algorithm is a cornerstone of the company’s cloud-

native AI system, making web-document ranking initially possible, and 

ultimately scalable. It famously ranks hundreds of billions of web pages. In 

addition to this algorithm, Google has incorporated many machine-learning 

components for personalization, formalization, high-quality content recognition, 

and monetization. The personal assistant, Google Assistant; the automatic 

captioning of videos; the app, which recognizes faces; the app, which translates 

text; and the service, which recommends routes, are also core features of the 

company’s AI architecture, and their quality has been constantly improved as 

their respective neural backbones have evolved to more accurate, robust, and 

efficient architectures. 

Facebook is known for its cloud-native social interaction platform. It is also 

known for its highly sophisticated AI system that recommends groups, finds 

friends’ photos, and serves as an advertising engine. Facebook has developed AI 

technologies that leverage AI so that the company can scan through every 

produced content, including images, improve search, and make better 

personalization and monetization decisions. Facebook’s AI Research lab is also 

a main contributor to a widely used deep-learning framework. 
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4. Edge-AI Architectures 

We show that widening processing centrality or decentralizing execution to cost-

effective managed edge devices for data analytical web services provides various 

compute performance, security, privacy and latency QA perks that AI needs. 

Although all computing can in principle go to the cloud or big data centers, any 

web-scale data analytic that generates high traffic volume in either direction, such 

as search, recommendation or user data learning from surveillance video, will 

benefit by distributing the process to the edge [9,33-35]. This is even greater 

when the analytic has a high service-rate request load but the server has limited 

compute acceleration boost, offering the edge model without as many latency 

penalties from slow transfer speed for small requests. 

Edge-AI Models such as Cloudlet or fog computing work by also adding more 

microdata centers to the network. These are usually much smaller than big data 

centers, sometimes running on commercial load balancer clusters or simple, cost-

effective appliances plugged into a wall outlet. These microdata centers are 

usually provisioned additionally to powerful edge networking devices like WiFi 

access points and 5G RANs [36-38]. These can pipeline any process with clear 

parallelism or batching across edge clusters, sending parts of the request, or 

dividing the request internally to use the edge device today, returning partial 

results or doing transmission to centralize the response. Models demanding high 

throughput but suffering delays due to back and forth transfer to the central cloud 

are ideal candidates to favor edge distribution. Sensors now powered by batteries 

and harvesting energy can make persistent Internet connectivity wirelessly free 

while running autonomously for unattended operations. 

We also argue for minor data sharding or what we call micro-micro data centers 

at the third edge, embedded directly in the sensor performing the data collection 

or the other powerful device it may frequently transfer to [3,39-41]. Although 

requiring special hardware, research prototypes are feasible even for embedding 

at moore's law scale in silicon chip sensor cameras inspired by mobile device 

system on chip accelerators. Confined devices with very small computing 

resources connectable persistently wirelessly can perform dedicated, efficient 

pipelines for specialized ML workloads or micro-analytical processes that need 

to run on sensor devices for power conservation or immediate response are ideal 

candidates for tiny Edge Designs. 
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4.1. Definition and Characteristics 

The explosive growth of interconnected smart devices is giving rise to 

unprecedented amounts of data that must be processed. Centralized cloud 

solutions are inefficient in processing the overwhelming amount of data involved. 

Hence, it has increasingly become the norm to deploy Artificial Intelligence 

models that partially offload computation on End Devices close to the User 

[36,42-44]. Edge Artificial Intelligence Models reside along the continuum from 

the Cloud, through Gateway Devices, down to the End Devices leveraging the 

amount of computation they can share and the resources they have. Edge-AI 

Models are increasingly considering the Bandwidth limitations and Latency 

requirements of different applications, deploying different model components at 

different locations to achieve a more Scalable Solution. Hardware Resources on 

Edge Devices are increasingly becoming more capable, Specialized Accelerators 

are deployed, and Hybrid Intelligence is being considered. Latency-sensitive 

applications need Data processed Close to the End-users, with Cloud or Nearby 

Gateway Solvers assisting in processing high-dimensional data. Latency-tolerant 

applications are suitable for partially processed data collaborating over 

Bandwidth-efficient Descriptive Statistics. 

Edge AI Models potentially reduce the amount of Data that must be sent to the 

Cloud for Processing. Data from the End Device may be analyzed, summarized, 

or transformed using private or public models deployed on the Device, 

eliminating the need to transfer large amounts of Data to the Cloud for Processing 

[40,45]. The resulting light-weight Communication at Intermittent Intervals can 

greatly alleviate the Data Communication Bottleneck allowing for more 

Generative/Collaborative Model Components deployed on Cloud or Nearby 

Gateway Devices completing the Processing. Edge AI Models also increase the 

Levels of Data Privacy by keeping more of the Flow of Private Data localized. 

Even if Public Models are used to transform the Data on the End Devices, Details 

regarding the Input are not transferred to Cloud. 

4.2. Benefits of Edge-AI Models 

As shown in previous sections, there are many advantages in executing AI 

models at the edge by exploiting local computation power or at least hybrid 

schemes where computing is locally augmented by assistance from far more 

powerful computers residing in the cloud. Several edge-device characteristics 

need to be addressed by these models, including low latency, intermittent 

connectivity, data sovereignty/privacy, limited power, constrained bandwidth, 
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resource-constrained devices, contextualization, and high scalability and 

automation. So far, typical edge-driven tasks are video/image analytics and 

speech recognition applications, mostly from the computer vision domain. 

The increase in demand for smart, high-traffic user-heavy applications, guided 

by the current wave of AI generative models, calls for fast, cost-efficient models 

and applications. Yet today’s cloud-centric services based on large-scale cloud 

infrastructure powering heavyweight models are struggling to keep up with that 

demand. We believe that a correct balance between these paradigms can solve 

this problem, further increasing model accessibility and decreasing 

ingress/egress costs. Moreover, the success of AI applications relies heavily on 

the ability to adapt to different scenarios, making application and training/serving 

costs prohibitive. Edge-AI models can alleviate some of these bottlenecks, such 

as the requirement of critical latency performance, since they operate locally and 

augment results with user data and other hints that compute-augmented cloud 

assistants provide. In other words, Edge-AI responding to local triggers can 

increase the overall responsiveness performance while offloading resource-

intensive stages to the cloud. Moreover, by involving sensitive and personalized 

data, edge-centric operations can optimize access and computation on data 

locally generated and govern the sanitization of the information made available 

to potent but less responsive cloud services. 

4.3. Challenges in Implementation 

Despite the numerous advantages associated with self-sufficient system 

architectures and the accelerated development cycles they afford, there are still 

significant challenges to full adoption of Edge-AI approaches. Inherently 

minimal system specifications call for collaboration with suppliers to verify and 

document thermal, stability, and safety characteristics for hardware components 

under edge operating conditions. Factors such as minimizing the number of 

subsystems and physical packaging volume lead to tighter tolerance errors on 

electrical parameters than would be expected for a PC or workstation class 

system. Special consideration on the possible impedance and voltage gain 

deviations in circuits must be evaluated since these circuits are highly sensitive 

to temperature variations and can reflect highly nonlinear behaviors. Shortened 

product life cycles at the edge extend the challenge of increased reliability. 

Unlike components envisioned to reliably operate for years, edge devices 

operating in battery-powered mobiles or exposed to different user activities might 

experience far more stress cycles during their useful lives. Building Edge-AI 
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designs that are power efficient yet remain within the average lifespan of 

consumer usage for battery powered devices is further exacerbated through 

considerations on battery memory effects. 

Additional considerations complicating Edge-AI system designs arise from the 

continuing growth of heterogeneity in silicon capabilities to execute different 

components of the hybrid model. This gradual expansion of chip features makes 

dynamic execution flow management for real-time applications increasingly 

complicated. Achieving a higher level of model accuracy to best utilize the 

selection of heterogeneous platforms for lessons processed at the edge requires 

both faster converging algorithms capable of performing in transient states and 

improved confidence measures that can truly rate the inferential performance of 

the components involved. 

4.4. Case Studies 

Leveraging the entrepreneurial spirit of the business community and the 

availability of funding, the research center has built prototypes of intelligent 

video services based on different Edge-AI models with partners from different 

domains. Some of these prototypes have evolved into commercial video analytics 

products. By implementing these prototypes, various implementation challenges 

for different types of Edge-AI models were identified and insights were gathered 

into how to attain an optimal architecture for a particular application domain. 

The first approach to Edge-AI implementation is to build a custom model based 

on a small Edge-AI platform and off-the-shelf hardware. As illustrated by the 

prototype called Air-Insightboard, which requires no prior training, a custom 

model could be applied when the supervised training data are too few to finetune 

a generic model. Air-Insightboard, a low-cost, custom model-based system 

prototype, was built in collaboration with a partner. Another custom model, 

called Jalebi Vision, was implemented at another partner in a different domain. 

Jalebi Vision, which required no prior training, sensed the dark web traffic of 

Jalebi, a popular Indian food item throughout the year, and was used to support 

the Jalebi client by estimating the demand during the upcoming week to enable 

suppliers (small local businesses) to plan the logistics accordingly, using 

corrected demand. 

A second approach to implementing Edge-AI is deploying a model on a product 

platform, whereby the model performs a few but critical operations, while the 

model execution is offloaded via a wireless backhaul on higher capacity, more 
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robust GPU-platforms located on the ground, near the operations with better 

internet connectivity. 

5. Hybrid AI Architectures 

The rapid evolution of Artificial Intelligence (AI) ushers in the era of Hybrid AI 

(HAI), characterized by and utilizing the interaction of different artificial 

components of intelligence at different time scales, as well as the interaction of 

those components with cognitive human intelligence, at multiple levels of 

abstraction in both the physical world and the digital world. We live in a Cyber-

Physical Society (CPS), where humans and AI are co-creators and co-inhabitants 

of our common landscape, characterized by the fusion of relationships and 

connections within and between the physical world and the digital world. Such 

relations are already experienced at different levels of comfort, and increasingly 

will be experienced thanks to the scalable AI systems and solutions powered by 

Hybrid AIs. In the coming years, these systems will be enriched and augmented 

by more advanced expert-driven HAI systems, today termed Large Language 

Model (LLMs) with specializations, which will increasingly work seamlessly and 

cooperatively with our cooperative-oriented cognitive human abilities and our 

specialized expert knowledge. Cooperation and interaction between HAIs and 

humans is at the core of realizing the potential of a Hybrid Society (HS), 

empowered by trustworthy, explainable, human-aligned, cooperative-oriented 

Hybrid AIs. An HS is the virtual and physical use case in our daily activities and 

within all the dimensions of our communities, such as transport, education, social 

interactions, that are at the core of our civilization. 

Our AI architectures should fuse Digital AI (DAI) models and solutions trained 

on natural, message-colored, logical, abstract, symbolic, structured, 

representation languages, fused with Specialized Raw Data Trained AI (DRT-

AI) solutions trained on raw data models using pattern recognition and deep 

learning, that are at the core of today’s rapidly evolving AI products and systems, 

fueled by today’s Digital Gold Rush - Data! Such Hybrid Architectures (HAs) 

represent the logical further evolution of Modular, Coordinated, Architectures 

(MCAs). These proposed HAs will exploit the complementary advantages of 

DAI-Language approaches with the DRT-AI Neural Network approaches, at the 

core of today’s most advanced AI-powered enterprise systems and products. 
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5.1. Definition and Characteristics 

Hybrid artificial intelligence (AI) architectures employ synergetic combinations 

of two or more AI base components or methodologies, heterogeneous or 

homogeneous ones, to realize added value in accomplishing intricate tasks 

beyond the performance of any specialized model. In the recent AI growth wave, 

hybrid architectures have taken prominence by judiciously tying advanced deep 

learning neural networks with conventional symbolic AI, knowledge graphs or 

knowledge bases, traditional machine learning classifiers, expert systems, and 

probabilistic graphical models including Bayesian networks, Kalman filters, or 

Hidden Markov models. The flexibility of designing hybrid architectures stems 

from the unique capabilities of each base model to tackle diverse, intricate tasks, 

confirmable also thanks to their historical maturation. 

For instance, symbolic AI and neural networks are distinctive in their behavior; 

the former reason and explain well and prove generality, but require substantial 

human labor to codify their logical rules and knowledge explicitly. The latter 

learn solely from data, in a bottom-up fashion, focusing on recognition, 

recommendation, and regression for directly observable variables and states, and 

via tedious backpropagation and adjustment of millions of parameters 

centralizing the learning task. Nonetheless, they perform weakly in 

generalization and explainability. Moreover, a compelling challenge is the data-

hungry nature of neural networks that need thousands of labelled data samples 

while some AI tasks lack sufficient reliable data. Thus, to solve intricate 

application problems, a natural option is to increment the strength and 

capabilities of the classical AI models in natural language processing, computer 

vision, and all areas of inference and classification by forming hybrid 

architectures; heuristically, to couple the cogitative logic symbolic structures and 

the real world statistics modeled with neural networks to leverage all the 

distinctive merits. 

5.2. Benefits of Hybrid Models 

Despite scalability being one of the most important benefits of cloud-native 

architectures, recent applications demonstrate that there are many cases where a 

hybrid model can offer significant advantages. For example, in the area of 

personal assistance, what could appear to be exclusively cloud-based applications 

have gone hybrid: even when most of the processing such as natural language 

comprehension or multi-modal understanding occur in the cloud, the timely 

delivery of outputs heavily depends on completing the process flow on the 
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device. Consider a personal assistant device such as Google Nest, HomePod or 

Amazon Echo. These devices wake up via a voice trigger, process the incoming 

request, and then submit it to the cloud for natural language understanding. 

There is a full advantage of doing these operations in the cloud, where data from 

a large set of users is used to create the word-spotting model. But the hybrid 

approach should be implemented as the smart device must also be able to 

complete the request elicited by users. For example, upon hearing the word 

trigger and after asking a question such as “What’s the weather like in San 

Francisco?” the device should immediately follow with “According to weather, 

it is foggy at 60 degrees”, just as a person would when completing that request. 

This requires an appropriate model to load on the device to ask and produce the 

output quickly, conservatively and with edge-AI engineering. 

5.3. Challenges in Implementation 

Hybrid AI models and architectures address the complementing limitations of 

cloud-native and edge-native AI approaches by merging the cloud and edge 

capabilities, resources, and services. Hybrid AI systems will however achieve 

their goal if they manage to overcome the challenges posed by the complexity 

and heterogeneity of the cloud and edge resources, and service layers. Among 

the challenges that both industry and research face when dealing with hybrid AI 

models we can enumerate: (1) Wide spectrum definition: A seamless integration 

of cloud-native and edge-native AI services may need to handle highly 

heterogeneous models. But what kind of models should integrate to achieve a 

mutually beneficial collaboration, and how? Should we add small, lower-impact 

edge parts of bigger impactful models, in a modular fashion, to cloud-native 

services instead of building smaller, distributed models for different edge tasks? 

(2) Open challenges and problems for partitioning models and architectures: 

After answering the prior question, what techniques can be leveraged to partition 

models and designs at the architectural level to enable distributed inference with 

major gains? Nowadays, partitioning distributed ML models such as NLP 

transformers and large Vision models is a real challenge, as partitioning 

procedures need to account for a plethora of design considerations when it comes 

to constraints to be put to the edge inference scenario. These design 

considerations include security, privacy, availability, fault tolerance, 

responsiveness, real-time requirements, and cost considerations either for 

deployment or inference on the heterogeneous edge infrastructure. What kind of 
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architectural-level knowledge can we integrate, either at the application or 

network level, to achieve hybrid AI partitioning solutions? 

5.4. Case Studies 

Although some may think that hybrid models are a recent development, they are 

rather common in practice. Publications and literature mostly address either the 

cloud-nativeness or the local AI capabilities. Very few papers address hybrid 

capabilities from an architectural solution perspective. This section presents 

some real practical AI implementations, which integrate both cloud-native 

components along with edge-AI capabilities. 

Many robotic systems perform AI tasks that rely on both cloud-based resources 

and onboard resources. The cloud is normally used for data storage, training, 

model initialization, and sync; while, the edge-based modules are used for 

inference and action commands. A commercial example of such hybrid approach 

is demonstrated by the scale of operation of cloud and onboard AI resources in 

the development of more than 3000 autonomous robotic arms. 

The AI capabilities of such robotic arms make it suitable not just for industrial 

applications but also for general-purpose applications as well. It can be trained 

or programmed for such essential but intellectual-heavy tasks as robotic-assisted 

finance for business and account summaries or reports, warehouse operations, 3-

D scanning design and manufacturing operations or prep, automobile service 

repairs or design patterns, security reasoning for tourists and customer service, 

hotel management service during seasons; etc. All such tasks can be implemented 

using a cloud-based architecture, with the inefficient and high-bandwidth usage 

state stage being implemented by local edge-AI modules. 

6. Comparative Analysis of AI Architectures 

The various AI architecture models have been facilitated and optimized for 

different use cases. In this section, we will conduct a comparative analysis of the 

various AI architecture models, focusing on the performance of the architecture 

models, as well as their operating cost and scalability. The performance will 

include inference delay, throughput, memory usage, and model size. The cost 

analysis will investigate both the economics of training the AI models on the 

central cloud as well as the cost of performing the inference on the AI 
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deployment. We consider three aspects of costs, namely the monetary cost, the 

resource cost, and the environmental cost. Scalability is one of the main design 

criteria for AI models and algorithms, addressing the capabilities of handling 

larger data, more complex models, or meeting more stringent requirements on 

model performance. In this section, we investigate the implications of the design 

and deployment architecture on the scalability of the AI models and algorithms. 

The comparative analysis will provide a systematic review of the AI architecture 

and highlight the design tradeoffs for AI practitioners to consider when selecting 

the appropriate architecture for their application. In addition, it can help AI 

architecture researchers discover architectural improvements that address the 

gaps in this exploration, for example performance versus cost, or single model 

versus ensemble of models. The end goal is to provide AI researchers and 

practitioners with the knowledge to make informed decisions on their choice of 

infrastructure and architectures, and to systematically close the performance, cost 

and scalability gaps for their real-world AI applications via conscious investment 

in talent or solutions. 

6.1. Performance Metrics 

When designing and deploying AI applications, it is critical to assess the 

performance of these applications as a function of the platform used. 

Performance benchmarks are necessary to measure the end-to-end latency and 

throughput to help system architects make the right design choices. Ideally, 

benchmarks that capture the real workload of an AI service should be used to 

obtain the most accurate performance. However, due to several factors, such 

benchmarks are not always available. The model used, the timing mechanism 

used in the benchmarks, the controllers used in the AI service, the workload being 

executed, and the resources allocated for the inference execution affect the 

latencies reported by an AI service. Comparing inference latencies reported by 

different benchmarks. Long type AI workloads have latencies measured in tens 

of seconds, while mid-type AI workloads have latencies measured in hundreds 

of milliseconds, and short type AI workloads have latencies measured in seconds. 

The most common AI benchmark selects AI workloads as the most impactful 

representative workloads. Inference latency for workloads such as image 

classification and object detection for computer vision, language translation, 

language modeling, document ranking for natural language processing, speech-

to-text recognition for automatic speech recognition, recommendation engines 

for recommendation systems, and audio-visual recognition for multimodal AI are 
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measured. Latency comparison of datacenter AI platforms. The workloads are 

classified into long, mid, and short latencies depending on the complexity of the 

AI inference. The workloads with shorter latencies are intended for execution in 

the datacenters while the workloads with longer latencies are intended for edge 

or backend execution. For the short and mid-type AI workloads and less, it is 

important for the latency of the workload to approach the performance target to 

meet AI goals. 

6.2. Cost Analysis 

The price of deploying hardware and software systems in the cloud is one of the 

major issues faced by organizations transitioning to cloud solutions. Given the 

variety of substantial initial financial and additional operational efforts needed to 

set up the service in a cloud environment, the goal for a successful service is to 

have a lower operational cost on such configurations, compared to on-premise 

ones. Therefore we will estimate what portion of the service is implemented at 

the various locations, how much the tariffs are for such components and what 

usage is expected over time. 

The sampling frequency determines how many requests per second are expected, 

while there is a small delay for how long the model expects to work on a request. 

Then, based on the pricing of the active components of the hybrid FaaS, we can 

estimate the overall cost and, subsequently, the difference for the other offered 

solutions in terms of opportunities. The process can be repeated for the residential 

task, knowing that there the edge-device must be active continuously to be 

always-on. Also for portfolio applications, we have similar assumptions to the 

one applied for the local environment. Here we could consider that bigger 

requests are only processed in the cloud environment, with the other locations 

active for less time and processing various daily activities for each smart home. 

We summarize here the components that impact the final cost. How much of the 

functional architecture of the solution is hosted in the cloud and mobile part, and 

what is the downtime in such locations can also vary significantly from party to 

party, imposing both management for setup and control at the local level. 

In such cases, we either need to inspect them periodically or verify from time to 

time the local component in action over a long time. We need to check the edge-

device and how long it is on, but also know when it is active specifically 

processing a request. For such components we can obtain general behavior for 

the model, measure how long something is done and predicting how much other 
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tasks expect otherwise do some checking. Such a periodic approach can be 

performed also while checking the cloud environment's request processing. 

6.3. Scalability Considerations 

All business-oriented software and systems must be designed considering their 

expected growth. AI systems have normal growth patterns of backend systems, 

but they also have an additional dimension, the data size and complexity, which 

is proportional to the expected growth in this domain. As the company's strategy 

matures in relation to AI, not only are solutions created to solve specific business 

needs, but also the amount of data that need to be processed to extract patterns 

and perform predictions becomes larger. This increase of data could rest on the 

specific solution for a company, or generally be based on a domain; for example, 

within a corporation there could be different sales, production, marketing, and 

finance systems, and all these systems as they expand, connect to external 

companies or entities for more consolidated analyses, they need to rely on bigger 

query processing, data management and AI model validations and predictions. In 

the case of a specific domain in the industry, the historical data in relation to all 

companies in this specific domain, while it does not grow as fast, a company 

collecting and analyzing its own amount of data becomes complex enough that 

the data expansion has effects on AI solutions. 

There are basically two types of scaling techniques: scale up and scale out. Scale 

up is based on vertical scaling, these techniques rely on large servers that are able 

to process and store data close to AI solutions. Scale out is horizontal scaling, 

these techniques rely on several smaller servers that can be distributed 

geographically where the data resides. This local data processing allows the data 

to scale considering the company as well as domain type, and it basically does 

the same as the edge processing, only in a more centralized solution. However, 

cache storage is often needed to minimize the data exchange between local 

servers and central servers that execute the actual models. 

7. Security and Privacy in AI Architectures 

AI systems pose unprecedented challenges to privacy and security for technology 

innovators, corporations, and governments. AI systems rely on huge troves of 

proprietary, sensitive, and user-generated data, such as interactions with chatbots, 

visual inputs, and social media interactions, to act as intelligent proxies on behalf 
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of users. A single AI model can be a trojan horse, containing security and privacy 

vulnerabilities for an entire class of systems. Various recent attacks on natural 

language processing systems have shown that adversaries are able to extract 

sensitive private information, such as user passwords, addresses, credit card 

numbers, and encryption keys, that have been disclosed by users in conversations 

with chatbots. Models trained using data from several user sessions also face a 

threat of backdoor attacks, where the attacker infects the model to secretly 

disclose sensitive information when the model sees a certain trigger string, while 

appearing to produce normal behavior otherwise. 

Both cloud-native and edge-AI architectures face unique security and privacy 

challenges. The cloud needs to collect and query data from many users, and to be 

able to train systems, such that no sensitive user information is disclosed in 

training. Edge devices must maintain the user’s privacy, without access to the 

global training datasets. Solutions must be pragmatic. AI is based on large 

datasets, and effective solutions must recognize that when in use by a user, the 

AI system is a reflection of that user. Mitigation approaches also must ensure that 

model performance is not severely reduced by privacy protections. For sensitive 

applications such as chatbots, mitigations could include employing the 

architecture such that the user acts as a human-in-the-loop, and uses shared 

control on the interaction protocol with the AI system. This could entail 

predefining keywords at the start of the session. Users must periodically review 

and update the keywords to prevent the model from disclosing sensitive 

information. 

7.1. Threats and Vulnerabilities 

To date, secure deployment is hardly contemplated in the AI development 

process, ranging from data collection, labeling, and model optimization to 

inference evaluation. In the particular area of cloud-native applications, robust 

and secure deployments are relevant not only for ML operators, but also ML 

developers and other stakeholders. Developmentwise, replicability and trust 

come into play, pointing at the need for tools ensuring secure experimentation of 

ML frameworks. The need for trust and secure experimentation raises questions 

of adversaries being present during the development, validation, and training 

stages of ML. An example of a potential attack vector at the data manipulation 

level is openly accessible data-labeling services, which can be exploited to 

introduce erroneous labels. To counter-act erroneous datasets, detecting poison 
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data during validation or curating data-point prioritization for better and more 

reliable model performance are strategies suggested. 

In addition to data and its handling, exploiting vulnerable frameworks used to 

build, validate, train, and optimize ML models also represent a real threat. More 

general weaknesses of software supply chains further raise the stakes, as building 

blocks are likely to rely on shared, publicly available underlying libraries or 

resources. To provide developers with insight into potential attacks at the model 

optimization stage, while improving model validation and training, a survey 

analyzing adversarial ML highlighted recognized model threats and generic 

defenses regarding the respective threats. Also at the model level, hidden threats 

when dealing with federated learning, which allows different clients to train 

models collaboratively without sharing sensitive data, were uncovered. 

7.2. Mitigation Strategies 

Due to the presence of deep learning frameworks, model access APIs, and 

hardware software optimization packages, the level of effort required in 

executing model and data poisoning attacks is minimal and the required skills set 

is not significant. Thus, it is necessary to invest in the construction of devices, 

models, and AI systems that are resistant to attacks. Model poisoning can be 

mitigated by hardening the training process using ensemble learning and secure 

training frameworks. Distributed learning allows incorporating diverse and 

independent datasets that can reduce the likelihood of manipulation by 

adversaries. Model/data inspection can also be used at certain training 

checkpoints to clean up the models and restore to earlier temporal states. By using 

cryptographic primitives during training or inference phases, the risk of bias 

poisoning is made negligible. These cryptographic primitives can also be 

generalized to advanced homomorphic encryption systems. 

Most of the AI inference tools and pipelines applying ML/DL models are still 

static mappings from input to output. The predictions are usually binary-decided 

or for the likelihood of certain standard classes in CV, NLP, and ML. No 

uncertainty assessments are provided and such assessments are essential for 

sensible automated-decisions during the deployment of AI systems. A possible 

route of research in making AI systems resilient to data sampling vulnerabilities 

and adversarial-attacks is to augment the present deterministic model-outputs 

with uncertainty, over-distribution variance, and confidence quantification in the 
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output-space. This will allow making risk-aware decisions by the downstream AI 

application services and business owners when deploying for real decision tasks. 

8. Future Trends in AI Architectures 

In this chapter, we consider which opportunities in AI technologies may awaken 

in the near future, and what sweat will be spent on implementation of the 

transition of AI for companies to cloud-native, edge and hybrid architectures. We 

will philosophize a little about what dilemmas AI software closing provides for 

software developers, and what bottlenecks await the pioneer of the transition to 

distributed types of AI architecture. We will brainstorm a bit about what needs 

to be done now in applied AI architecture engineering to create the necessary 

conditions for a successful software deployment. 

We note right away that in this discussion, we are more likely to adhere to 

supporter rather than critic positions towards such mass use of AI technologies 

for various businesses. This predisposition arises from the fact that over the past 

years, switching to cloud-native architectures has created a number of complex, 

intricate and low-obvious problems. A number of companies developing systems 

and software for special task types have opportunistically switched to simplifying 

such transition to cloud-native architectures by offering tools for so-called 

cloudification. AI-tasks have a number of events similar to IT-tasks but have a 

number of differences. Thus, some companies have made enough investments 

and these problems are stabilized or successfully solved. However, many other 

companies face bottlenecks waiting for the needed AI-solutions to find their AI-

driver and pioneer the AI-software project toward successful solution. 

8.1. Emerging Technologies 

As AI is transitioning from research to the mainstream, we are seeing massive 

investments in building supportive infrastructure and service stacks. There is also 

a sub-set of infrastructure technology innovation that will deliver the next-

generation AI capabilities addressing the following critical deficiencies in the 

current stack: accessible, capable, and secure infrastructure geared into managing 

large data sets and transferring them for training; tools to simplify large data set 

engineering and cleaning; AI models with enhanced reasoning capabilities that 

can utilize external knowledge; efficient training and inference on custom-

designed hardware; runtime and monitoring tools to track complex large-model 
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jobs; and reasoning trusted AI stacks capable of integrating modular ontology 

and other logical reasoning stacks. 

The primary emerging technology directions we see include: native support 

within the cloud-native IaaS offering focused on stateful, secure infrastructure 

support, addressing large storage and data transfer needs and built-in support for 

alternative compute units; cloud service products for simplifying large dataset 

engineering, such as versioned scraping, sampling, augmenting, and key-

structure-enhancing; crowd services for annotating and explaining datasets; 

modular reasoning stacks for probabilistic logic combination; custom-designed, 

multi-architecture hardware built around AI reasoning workloads; edge platforms 

and devices capable of localized training and fine-tuning for support of on-device 

reasoning; and modular AI tools for comprehensive monitoring and management 

of complex AI model pipelines. 

8.2. Predictions for Development 

Various models and architectures will dominate at different scopes/timelines in 

the future; we make the following predictions for which models will be used 

when. 

• At a very small scale (single-device AI, L × W pixels), classic models will still 

be the state of the art for the next 15 years. These classic models are efficient and 

fast, have small memory footprint, and can be fine-tuned to current hardware 

ecosystems. We also need to develop better and better models over time for such 

small scales due to various reasons. Hence, we predict such classic models exist 

for the next 15 years, especially for using edge devices in small models. More 

advanced models will still be too heavy and consume too much resources. 

• For small scale (medium-device AI, L × W pixels), we will see transformer 

models as the state of the art in the next 15 years. However, at this scale, such 

models are mostly used for text/image generation and face recognition-type 

applications. Concerning similar questions for such models, classic models will 

still exist for similar reasons as we stated in the previous point. For this case, such 

models can also be optimized for speed/memory limitation since fine-tuning is 

relatively efficient and common. 

• For medium scale (medium-device and distributed-device AI, L × W pixels), 

computer vision transformers will be predominant patterns for video 
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classification/action detection, etc. Similar to other small/micro models, classic 

models will still be around for why we discussed in other areas. 

9. Conclusion 

Cloud-native AI, edge AI, and hybrid cloud-edge AI will accelerate the adoption 

of AI, making it faster and cheaper to build and deploy machine learning and 

deep learning applications. Cloud-native AI models will democratize AI use to 

everyday developers without needing PhDs in machine learning or deep learning 

to build models in a matter of hours, instead of weeks or months. The use of pre-

trained cloud-native models and APIs can enable the embedding of NLP and 

image processing capabilities on cloud-enabled applications without the need to 

build and train special purpose models. Hybrid cloud-edge AI models deploy 

more sophisticated workloads where they can take advantage of the cloud 

environment. Combining cloud-based computing cycles with smaller amounts of 

local-edge computing cycles can accelerate the time to available AI results 

compared to exclusive cloud-based or edge-based AI workloads. 

AI is an incredibly powerful tool expected to transform industries across the 

globe, from Finance to Healthcare, to Logistics, Supply Chain, and Shipping. But 

there are challenges associated with this tremendous transformative tool. Any 

successful business doing business at scale cannot afford to have downtime, and 

expects near 100% reliability, performance, and predictable results. Most prebuilt 

AI models are black boxes; it's difficult for users to anticipate how the model will 

respond to edge cases, and it has proven difficult for users to debug models that 

return unexpected or inappropriate results. Models tend to work well on training 

and test datasets that match or approximate modeled scenarios or cases, but 

humans (and systems) are clever, and edge cases can result in unexpected or 

inappropriate results. Innovators pursuing this massive opportunity must be 

enabled to speak the language of required AI product use, without getting buried 

in the complexities of lower level model architecture and engineering. 
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