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1. Introduction to AI in Mission-Critical Domains 

The historical development of Artificial Intelligence (AI) has been an 

incremental one, where cascades of many breakthroughs in technology have led 

to advances in intelligence for all-parallel, all-digital simulators for systems with 

pre-defined rules sets [1-2]. Notable exceptions exist which display truly general 

native intelligence, and which do not require nearly infinite compute resources, 

but none have yet been able to successfully navigate in physical environments to 

create lasting organizations, replicate themselves, and achieve self-sustainability 

quality, as these forms of life do [3-5]. In mimicking the intelligence of these 

complex naturally evolved Living Systems, AI systems have become general 

production-quality, affordable tools for high-volume data and signal processing 

tasks, and semi-autonomous decision-support systems for moderately larger 

artifice processes in many mission-critical domains undertaken by humans and 

human-centered organizations, supported by their technical systems. 

AI has also been embedded within, and enabled dramatic advances in traditional 

systems of automation like speech processing, natural language processing, 

intelligent data and sensor fusion, decision making and intelligence analysis, and 

swarm robotics [6-8]. There are frameworks that have defined Digital Evolution 

principles for accelerating systems of man and machine within evermore 

autonomous cognitive, mission-critical systems, which provide society many of 

its current defense and governance missions, and created the crisis of trust in AI 
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systems. Yet, these same frameworks warn that relied-upon, human-centered 

organizations are failing within dynamic global transformation, and therefore 

caution as to what extent; and so raises questions around how and when to place 

AI in control of tasks in the mission-space of essence without being backed-up 

by bounding strategic parameter bounding decision rules inherently incorporated 

with self-interest and mutual trust into these same organizations. 

 

2. Overview of Key Mission-Critical Domains 

In this section, we provide details for four focused mission-critical domains 

where AI applications currently have a strong presence and importance. In 

particular, we explore healthcare diagnostics, fraud detection in finance, security 

in cybersecurity, and optimization in Supply Chain Management. These four 

domains were selected because of the strong potential for innovation in those 

application areas and also because of the specific technology directions that were 

mentioned above. 

2.1. Healthcare Diagnostics 

AI applications in the healthcare domain have become a major research topic 

during the past decade as the world has seen major advances in AI technologies 
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that match or exceed human capabilities in areas like visual diagnosis, writing, 

and planning [7,9-10]. Healthcare data is typically full of sensitive information 

about the patients, and hence, AI technologies can only be applied after concept 

validation. However, once they are validated, the applications can significantly 

reduce the time of diagnosis and treatment for the patient as well as the cost for 

the healthcare providers. Recent years have seen the outbreak of a new disease 

caused by a deadly virus, which has made the importance of valid and efficient 

healthcare technologies urgently needed [1,11-14]. The urgent need for testing 

has also redirected the focus of many countries toward AI-based testing 

mechanisms. The need for healthcare diagnostics has been a subject of interest 

since time immemorial. In recent years, the testing technologies have also 

become largely technology-driven rather than operator-driven by using core 

sensor technologies. As a result, AI-based innovations specifically involving 

deep learning, computer vision, and natural language processing have seen 

increased popularity such as the use of computer vision algorithms in the analysis 

of pathology slides and sputum thermography. 

In the area of healthcare diagnostics, we have also seen a massive investment by 

leading technology companies around the world as healthcare has been compared 

with the digital industry of the 1990s. Medical diagnostics is a core enabler of the 

larger healthcare ecosystem consisting of the hospital care, retail, home, and IT-

enabled support [13,15-17]. These larger segments for which the impact of AI 

applications could be felt largely contain redundant operational overheads that 

could potentially benefit from the continuous monitoring and optimization 

capabilities offered by AI. In this chapter, we will elaborate on the many such AI 

applications in these segments. We will start with an elaborate discussion on 

healthcare diagnostics and follow with an extensive overview of other application 

domains in this larger ecosystem. 

2.2. Financial Fraud Detection 

Fraudulent behavior can take many different forms in financial transactions, 

typically driven by the motive of negative gain at the expense of a larger 

audience. It can be perpetrated by individuals or organizations, intentionally or 

unintentionally, remotely or physically [18-20]. The arena of financial 

transactions can include a myriad of services such as payments, loans, deposits, 

mortgages, credit and insurance, pensions, or security and commodity trading. 

The phenomenal growth of the Internet, especially with the ubiquitous 

connectivity offered through smart devices, has opened the floodgates of online 
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financial transactions, resulting in the accompanying surge of financial crime. 

Financial crimes are continually evolving as criminals and con artists become 

tech-savvy, increasingly developing more sophisticated and complex schemes 

and techniques to exploit weaknesses in financial systems. This entails a 

formidable challenge of keeping one jump ahead of the fraudsters who are 

employing new and cleverer techniques. Although the techniques they use may 

be sophisticated, the actual motivation for their fraudulent behavior - deceit and 

theft - remains unchanged. 

Financial crimes entail the loss of millions of dollars every year to financial 

institutions and businesses [19,21-22]. Actual estimates vary, but the costs of 

financial fraud are some of the highest in the economy, often impossible to 

quantify accurately. Given the vast size and scale of financial transactions being 

undertaken digitally today, it is not surprising that the phenomenon has attracted 

the attention of data scientists and machine learning researchers for developing 

intelligent solutions for fraud detection. AI-enabled solutions are capable of 

rapidly sifting through massive volumes of digital transactions, looking for 

indications and patterns of potential fraud on a real-time basis. They deploy 

intelligent algorithms capable of learning normal transactional behaviors for 

every account and are also able to flag potentially fraudulent transactions for 

further investigation by fraud analysts without creating a large volume of false 

positives or negatives. 

2.3. Cybersecurity and Threat Intelligence 

Artificial intelligence (AI) has found substantial success in mission-critical 

domains, particularly over the past decade [11,23-25]. In threat intelligence and 

cybersecurity, AI is applied to synthesize security intelligence from diverse 

datasets, and alerts are raised for threat actors with malicious intentions against 

the enterprise. These alerts often lead to further investigation by security 

operations center (SOC) personnel to decide if any actual action needs to be taken 

for the possible threat to become real. Generally, SOC experts derive the threat 

intelligence from different modalities of data such as records of network traffic, 

logs from various security applications, and telemetry from endpoint agents. This 

problem of assembling disparate datasets for intelligence, and specifically 

security alerts, is referred to as triage. The major success factors for AI 

application in threat intelligence and cybersecurity are a massive amount of 

unlabeled points and high label accuracy for supervised or semi-supervised 
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usage. This high label accuracy often comes about through the involvement of 

myriad domain experts during the human operations for triage. 

The generation of actionable insights essentially drives AI models in many other 

domains, including cybersecurity [26-28]. The different focus is, however, on the 

asset aspect of people and their behavior and intent. Therefore, the processes 

implementing the action or decisions are different from many other domains. In 

contrast to other domains with defined input–output mapping, cybersecurity AI 

essentially divides the inputs into those that require actions and executions to 

follow and those that do not require inputs for actionable outputs. The need for 

investments in this mission-critical domain and prudent executive decisions is 

very high, as the intention or the very word “intent” is front and center at different 

levels. 

2.4. Supply Chain Management 

Supply chains have become globally interlinked over recent decades due to the 

increased outsourcing of product components to regions of low labor cost, such 

as Southeast Asia [29-32]. This geographical separation between supply and 

demand has generated increasing risks of product supply disruption, which is 

typically referred to as “the bullwhip effect.” In particular, recent events have 

exacerbated supply chain risks and demonstrated the critical importance of 

supply chain resilience. The increasing demand volatility for key products, such 

as biopharmaceuticals, semiconductors, and food products, has further 

demonstrated the potential for balance sheet exposure to catastrophic loss from 

inefficient or fragile supply chains. In this context, the application of AI in 

various aspects of supply chain practice has gained increasing interest across both 

academia and industry. 

Supply chain management (SCM) encompasses the operational and strategic 

planning of within- and cross-organizational management, decision-making, and 

coordination functions with the aim of designing, developing, integrating, and 

controlling supply and distribution networks to achieve specified goals, such as 

minimizing cycle time, total delivered cost, or inventory levels, and maximizing 

quality and customer service level. In addition to being a critical operating cost, 

efficient supply chains increasingly serve as a value-adding source of 

differentiation from competitors through addressing critical end-customer 

requirements, which often include product features, availability, flexibility, lead 

time, and risk mitigation. Recent advances in information and communication 
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technologies have enabled companies to achieve worldwide integration and 

coordination of processes across the complete supply/demand chain associated 

with products or services. 

3. AI Techniques Used in Diagnostics 

While Artificial Intelligence (AI) serves various roles in a diagnostic solution, 

from information processing and analysis to task automation or computerized 

support, it is the individual AI techniques, such as Machine Learning (ML), 

Natural Language Processing (NLP), Knowledge Representation (KR), and 

Cognitive Architectures, which form the building blocks used by AI toolkits for 

providing unique diagnostic services [31,33-35]. The following sections outline 

the major AI technologies used in diagnostic tools, with a focus on their mission-

critical domain applications. 

ML is the process of using algorithms and statistical models to analyze and 

synthesize patterns from complex data inputs and generate generalizations, 

predictions, and recommendations. Patient evaluations vary significantly and 

generate large amounts of data; therefore, ML techniques are well suited to 

extract latent inaccurate correlations in the data and utilize them as proxies for 

the actual underlying cause. The key advantage of ML over traditional 

diagnostics is the avoidance of the need to create and maintain complex causal 

models to explain and evaluate various maladies. While unsupervised learning 

can be used to diagnose cases with previously unknown maladies, the more 

common application of ML in diagnostics is through supervised classification of 

patients into different diagnostics and supervised regression for obtaining 

severity measures of existing diagnostics. Non-linear functions generated 

through deep learning applied to raw data are showing remarkable improvement 

in classification accuracy and explainability. While initially applied mainly to 

winning cognitive tasks like facial emotion recognition, its ability to replace ML 

with simpler supervised classifiers has made deep learning the primary ML 

technique deployed in diagnostics. 

Conversational Agents have grown significantly in their role of initial virtual 

clinical assistants and pre-evaluation filters through client-facing Natural 

Language Processing systems [36-38]. NLP is a subfield of AI that plays a major 

role in diagnostic solutions because of the utilization of unstructured free-form 
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textual data. NLP enables the automation of all major steps involved in naturally 

communicating with a patient, from language understanding to language 

generation to user intent recognition to named entity recognition to relationship 

extraction. These steps are effectively the textual inputs and outputs of a typical 

diagnostic tool. As analytical and prediction functions using machine learning, 

deep learning, and Bayesian network techniques for diagnosing, recommending, 

and generating analysis reports are integrated into these conversational agents, 

AI-powered chatbots will transform into true virtual clinical assistants. 

3.1. Machine Learning Algorithms 

Machine learning emphasizes the learning component, which may be considered 

a statistical problem. Probabilistic models like Bayesian and maximum entropy 

models are ubiquitous in ML. The core of machine learning has always been 

supervised learning. This is due to the robustness of supervised learning methods, 

whose practical success has meant that it has largely marginalized or 

overshadowed the other ML topics like unsupervised or active learning. These 

methods have roots in Bayesian decision theory, statistical estimation theory, 

information theory, and optimum experimental design. 

ML has a more practical focus than the traditional areas of statistics. A statistical 

analysis normally has three stages. The model is selected from a collection of 

candidates and fit to the data. Lastly, inferences like confidence intervals are 

made from the fitted model. In contrast, ML methodology is focused on the 

second aspect of statistical analysis, model fitting. ML uses model fitting to 

address challenges with data, such as large volume, high dimension, and missing 

values [1,39-41]. Again, compared with statistics, ML emphasizes a different 

criterion – predictive accuracy, as compared to likelihood or posterior sampling. 

The checkpoints of ML predictions are accuracy or error rate on test data, and 

therefore, evaluate the predictive performance via a test sample has also been 

integrated into the fitting methods via resampling, such as cross-validation or 

bootstrapping. In particular, choosing a better predictive model among several 

candidates has become such a common practice that it also has its own name, 

Model Selection. 

Somewhat more formally, model selection is the key point of model selection, 

which is the fundamental models in supervised learning. All of these models 

comprise the fundamental toolbox of supervised learning, offering different 

theoretical properties, practical advantages, and pitfalls. Besides algorithm 
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selection, careful tuning of the model parameters that go beyond the statistical 

sampling stage is essential to attain good prediction accuracy. These parameters 

typically control the size and complexity of the estimated model. 

3.2. Natural Language Processing 

Terms of definition characterizing a range of mental health fields suggest that 

apart from description, NLP can support therapy [42-44]. The open questions 

arise whether we could build intelligent agents that are able to conduct a 

meaningful communication with a user dealing with depression or substance 

abuse. Chatbots negotiating with a user with potential psychological problems 

are one of the approaches to answer validation whether we are able to code the 

human knowledge and interactions to the level that we are able to outsource and 

automate parts of these activities. The two colonial regions with the basic 

underlying goals and background motivation can be distinguished in the 

interdisciplinary research topics bridging informal areas of linguistics and 

psychiatry. 

The first colonizers — the psychiatrists use chatbots to assess the user’s features. 

The examples of psycholinguistic features commonly employed in user profiling 

involved in the assessments of psychopathology include toxic words counts, 

negative or positive emotion words counts, speech dismemberment. The second 

colonizers — the linguists exploit the psychological knowledge to enhance the 

functionality and improve the underlying algorithms used by the chatbots. The 

actions performed in all the cases use the curated sets of transcripts representing 

selected population assessments sharing the same psychological disorder, type-

affected area, or user’s profile and representing the underlying properties of 

interest and considered features. 

3.3. Image Recognition Technologies 

Image recognition technologies allow identifying objects in a user-provided 

photo or video stream. Algorithms trained on a large number of example images 

and video clips use a substantial amount of computational resources to classify 

video or photo images as one or more objects. Initially developed for 

circumventing the security risk involved in face recognition passwords for 

phones and user login, further enhancements were completed by tech giants to 

support object recognition. 

The main weaknesses of these technologies, or deep learning algorithms, are their 

need for an extremely large number of example photos to train the algorithm and 
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inability to handle unseen object types unless retrained [45-46]. Used in a prudent 

way, image recognizers—a sub-area of machine intelligence—can be extremely 

useful in particular cases. For instance, recently researchers matched the words 

in medical records with clinical-motor and audio-visual data. Then they 

successfully used these deep false recognition networks to discover symptoms of 

autism spectrum disorder from non-labeled videos that were previously deemed 

unfeasible. AI systems based on deep learning algorithms were successfully 

applied to multiple domains: analyzing the type of skin conditions in order to 

assist doctors in diagnosis; classifying medical images, such as the detection of 

diabetic retinopathy in retinal fundus images; detecting pneumonia from chest X-

ray images; identifying breast cancer in mammography images. 

4. AI in Fraud Detection 

Fraud can be defined as the manipulation or distortion of data for the purpose of 

financial gain. In general, therefore, fraud is a gray-area concept that can be 

defined and detected with greater or lesser success only if a normative framework 

is defined. A legal system sets certain bounds within which transactions should 

take place. When the limits are transgressed, a criminal act is committed, and law 

enforcement agencies can take corrective action. Thus the application of AI to 

fraud detection, just like to other areas where human decision making plays an 

important role, such as legal practice or psychology, allows for higher accuracy 

in predictions and quicker and more effective recommendations for action to be 

taken. Fraud can be found in many spheres of human life. Fraud syndicates 

manipulate immigrant visas to the detriment of nation-states, terrorists destroy 

commercial property in order to extract ransom, and fingerprints and other data 

can be copied and falsified, causing great harm to the rightful owners of the 

credentials. Fraud at the corporate level can be in the form of underinsured assets 

or concealed liabilities, or the inactive corporate sponsor indemnifying the parent 

corporation for litigation costs relating to the operation of the indirectly held 

subsidiary’s business. 

The nexus of AI and fraud detection is strongest in the domain of predictive 

analytics using supervised learning. A number of statistical techniques have, for 

years now, been trained on large lags of historical data from credit card 

transactions to identify whether any current transaction is likely to be fraudulent. 

AI-enabled predictive analytics thus inform those conducting the transaction, 
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those issuing the credit card, and the transaction networks. In addition to anomaly 

detection techniques and predictive analytics, organizations have used AI for 

behavioral analysis of employees in the context of internal fraud detection. 

Organizations are constantly being subject to review and reassessment and are 

expected to explore advanced technologies to further increase compliance with 

mandates set forth by regulatory oversight. By leveraging AI, companies can 

close the gap in those risks while significantly reducing the time and resources it 

currently takes to accomplish or achieve compliance. 

4.1. Anomaly Detection Techniques 

The field of cybersecurity is faced with an increasing number of threats as we use 

the Internet for more and more different domains [18,47-50]. In particular, 

malware instances are increasing in numbers, and becoming more and more 

sophisticated thanks to AI applications that help their malware-related tasks and 

goals, such as automated malware creation and distribution, ransom-cracking, 

and the use of steganography. The use of the Internet for critical domains, in 

particular, begs for efficient cybersecurity solutions, pushing these areas to the 

forefront of traditional AI research. 

4.1. Anomaly Detection Techniques. AI applications for anomaly detection in 

various data objects is a long-term goal of AI research. Traditionally, anomaly 

detection techniques are typically centered on monitoring logical system 

operations and detecting anomalies based on the possibility of or the 

impossibility of certain system events, either by using domain specific 

knowledge or utilizing logic-based heuristics. More formally, anomaly detection 

is often characterized in the following manner. 

Let D denote a certain amount of traditional prior domain knowledge about the 

space of possible system states given by the various parameters of the system. 

Let a variable N be the total number of possible admissible scenarios of the 

monitored system based on the prior domain knowledge D. Let a variable T 

denote the total number of actually executed scenarios and let a E be the number 

of actually executed scenarios not contained in D, which are marked as alerting 

scenarios. Then anomaly detection attempts to find N, T, and a E such that N is 

maximized, T is minimized, and a E is minimized. Deviation of the monitored 

scenarios from the prior domain knowledge D is an indicator of potential 

malicious operation. The main principle is that machine learning attempts to 
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define allowed and disallowed scenarios for the monitored system, both being 

based on prior domain knowledge. 

4.2. Predictive Analytics 

Predictive analytics reveals the future with certain probabilities for specific 

events. It allows businesses to factor in explanations for prediction errors. The 

essential building blocks for predictions depend on business knowledge and 

experience, existing workflows and operations, and mathematical models and 

advanced statistical techniques to combine information from forecasts, attributes, 

and other signals. Predictive analytics answers questions such as: Do existing 

sales pipelines flags, tools, and models for risk questions allow sales executives 

to accurately anticipate failures and provide savings for clients who are coming 

late? Do certain client behaviors that have been identified allow telecom 

companies to target and engage the right clients with campaigns that will retain 

them for the future? Are certain organizations within the insurance value chain 

leveraging loss models that guide pricing based on risk attributes? Do predictive 

models, tracking model performance for specific customer segments, deal sizes, 

product types, various customers, help companies overcome statistics, recognize 

warning signals, and continuously improve their modeling efforts? 

The intent of predictive modeling is not to match all characteristics once and for 

all, but to obtain realistic grades for individuals for a very large number of 

purposes. The predictive model for a person answering such questions will 

normally be based not only on the current input information for that individual, 

but also on databases containing aggregated information derived from current 

and historical data from similar individuals. Only a small number of individuals 

can be observed through constant monitoring, and the most appropriate time to 

intervene is often key to success in an action, such as introducing an offset pack 

for a latent complaint or an attractive price environment for value reinforcement. 

In many organizations, the only monitoring process available is prospect list 

testing, combatting complaints for a special generation period and assessing the 

results. 

4.3. Behavioral Analysis 

Behavioral analysis, particularly of online movement and activity, provides 

businesses with detection processes and playbooks that limit losses and deter 

fraudsters [18-20]. For example, on receiving a log-in or account recovery 

request, a rules-based playbook checks the existence of the user within a specific 
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geolocation, the timing and travel speed of the current log-in attempt, the current 

device being used to initiate the log-in attempt, if the request is made via an 

anonymous VPN, the denial of multiple login attempts, pattern instability of login 

attempts or access histories, and so on. If check passes, verification is requested 

and granted. If it fails, risk-based online verification options for user verification 

and multiple flexible alternative paths are examined. 

In addition to its uses as a standalone capability, behavioral analysis is an 

important building block for other aspects of predictive analytics, employed as a 

signal for items such as transaction and account risk assessments. Instead of 

basing verification request and transaction permission decision-making on static 

account age restrictions and business classifications only, a risk score based on 

real-time measurement of such behavior analysis signals helps refine decision 

quality. The capability to enlarge the volume of “silent stop” hard log-out fraud 

and its related account risk assessments and acquire signals of money laundering 

or failed account takeover attempts is what potential users should envisage as 

future available behavioral risk scoring analytics upon sharply increased use of a 

much-enhanced account sign-up verification and log-in multi-layer automated 

verification solution. 

5. Threat Intelligence and AI 

Threat intelligence is a hands-on cybersecurity process that helps organizations 

at different levels of maturity implement and scale. This section reviews several 

key areas of the threat intelligence workflows that can benefit from the help of 

AI, and explores a range of existing and future AI roles in threat intelligence 

operations. Organizations today collect massive amounts of threat intelligence 

data, from open sources to paid-for commercial feeds, to internal telemetry feeds 

from their own systems and networks to track potential attacks. To make sense 

of this data, analysts must curate it, extract and catalog the data, identify which 

alerts deserve further action, get context on the organizations that are allegedly 

attacking them, and distill down to a summary of the information that is useful 

for teams within the organization. All these steps are well-suited for being made 

more efficient, if not fully automated, by AI. 

AI is already being used with success for several of these operations, from curated 

collection to enrichment, and will likely enable full automation of many other 
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steps in the coming years. Humans are still a critical part of the process due to 

the need to ensure that intelligence is derived and acted upon at sufficient quality 

levels, but AI can greatly augment their efforts. More frequent updates about the 

threat landscape, timely notifications, and richer, more contextualized interaction 

are other areas where AI can improve these processes. These solutions can help 

reduce time to prepare for, respond to, and recover from attacks. 

5.1. Data Collection and Analysis 

Data collection and analysis is a crucial part of cyber threat intelligence 

gathering. Their goal is to match possible digital patterns of criminal or hostile 

cyber activity to geospatial, physical, or online locations or entities involved in 

such activity. In other words, they are used to make intelligence predictions about 

risk scenarios. Many times organizations use open information from several 

different types of sources about the attackers as the basis for prediction. The most 

important open source information for threat intelligence is social media, 

domains, cyber criminal forums, hacktivist groups, malware leak blogs, and the 

dark web. In addition, local information from law enforcement agencies is also 

widely used. 

The meta-trend of information gathering in physical threat intelligence is the 

advent of social media activity monitoring [19,21,22]. Social media are being 

increasingly used not only by political entities, but also by many other kinds of 

organizations, interest groups, or individuals engaged in nefarious activity. Some 

public or private firms specialize in collecting, processing, and analyzing social 

media data to match local or temporal spikes in social media activity with risk 

scenarios around the world. Such agreement helps threat prediction about 

physical places that may become targets of hostile actions, such as armed attacks, 

demonstrations, violent protests, kidnappings, or hijacking of individuals or 

dynamics of civil wars and insurrections that may evolve into armed conflict. 

The recent introduction of generative large language models plus the datasets of 

knowledge digitization and organization about the world have made the 

information and digital pattern recognition process more efficient and reliable. 

Trained large language models, acting as mechanized threat analysts, can be used 

to make sense of social media, forums, chats, and blogs conversation and 

messaging by detecting discourse or discussions about risky behaviors and 

scenarios. In particular, large language models can analyze current and past 

information content for early signs and signals of increased interest or emerging 
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trends in the physical or cyber-social space about events of significance and this 

effect can be linked to adverse physical or cyber social activity or events, either 

planned or ongoing. 

5.2. Automated Threat Detection 

Detection plays a critical role in threat intelligence. The speed with which a 

situation is detected can have a major impact on the necessary response time of 

response teams, while monitoring of an area can yield essential information and 

intelligence. Continuous monitoring of the cyberspace for potential malicious 

infiltration by external and internal actors, for the potential compromise of 

critical infrastructure and networks, and detection of anomalous behavior 

pointing to an existing compromise are all functions that lend themselves well to 

the application of AI. 

AI algorithms excel at analyzing large data sets for indicating patterns and 

signatures of actors, either good or bad [6-8]. This capability can assist in the 

detection of intrusions into critical networks and services, as well as indications 

of compromise and anomalous behavior during or after a compromise. For 

industry sectors with a large attack surface, such as those associated networked 

control systems or the industrial control system implementation of Industry 4.0. 

Furthermore, large public datasets have been developed for these tasks, which 

are comprised of large training sets of flow files with factual labeling. More 

recently, the use of technology has been proposed for the protection of Industrial 

Internet of Things in the context of Industry 4.0 from cyber attacks. The method 

is described for using physical data from the IIoT to detect deviations from 

established patterns, which can be exploited by actors for intrusion and 

compromise. 

5.3. Incident Response Automation 

AI can also be applied to the incident handling phase of the incident response 

lifecycle. In this phase the response team works to contain and remediate the 

malicious attack. The incident response team is motivated to eliminate the 

immediate threat, but also to fully understand what happened, and how to prevent 

recurrence. The need to identify the specific attack used, the specific malware 

used, and the specific vulnerabilities exploited drives this deeper analysis. It is 

during this deeper phase of incident response that expert knowledge of specific 

malware families, and the expertise of those with experience in analyzing those 

malware families is required. Knowledge of the tactics, techniques, and 
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procedures of specific APT actors is often critical in incident response. Many 

times, the ultimate goal of an adversary is not simply an incident, but instead is 

information needed to loot or attack further. So, collecting, analyzing, 

visualizing, and sharing knowledge is an important aspect of APT domain 

multitasking. And as in all domains of collaboration, achieving synergy in these 

actions is paramount, both within your own team, and between partner teams in 

the APT community. 

There has been historical reluctance to wholly rely on AI in the domain of 

incident response activity, and repair decisions. This area also should have AI-

enhanced tools, and approaches to optimize the value and speed of those incident 

response actions, while still including humans to ensure best fidelity in the final 

outcomes. Automating incident and communication of incident causes also can 

support dynamic decision-making processes to classify, escalate, and respond 

during a crisis while managing the risk. For example, machine-generated alerts 

and messages regarding network anomalous behavior are also of concern: if there 

is no explicit validation process, the environment can become saturated with 

alerts, making it difficult for human operators to take action, monitor critical 

systems, and respond to actual incidents. 

6. Challenges in Implementing AI 

Implementing AI in mission-critical applications has become increasingly 

feasible due to the growing availability of data resources, computing power, and 

algorithmic advancements. Despite these advantages, many organizations remain 

skeptical about adopting AI for these applications. Such concerns stem from the 

potential loss of control over important business processes and the reservations 

regarding the quantity and quality of data required in addition to validation and 

performance guarantees. Moreover, such efforts require a level of collaboration 

and integration across functional boundaries that extends beyond adopting other 

IT products and services. 

As an example of these challenges, we refer to a few well-known incidents in the 

early development of AI, such as data poison incidents that resulted from the use 

of AI in the context of autonomous vehicles. Such events resulted from the 

training of AI systems on data collected from the real world and revealed the 

unsafe deployment of mission-critical systems trained on big data. Further 
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emphasizing the importance of safety in AI, researchers and leaders made 

statements that deep learning has an intrinsic responsibility problem and that deep 

learning for vision is driving AI in the wrong direction. It is crucial that AI 

systems be rigorously validated in their deployment for mission-critical domains, 

and there exists an urgent need to impose stringent safety requirements in 

collaboration with the relevant stakeholders in such applications. System 

qualities, beyond measurement and validation of unidimensional criteria such as 

accuracy or bias, are of utmost importance across all stakeholders in these 

applications. 

Most problems at this population level are multifactorial, and no single factor is 

responsible for failure. In addition to convergence and overfitting issues 

associated with large training data in deep learning, other serious issues include 

data biases, inappropriate selection of training data, the curse of dimensionality, 

adversarial training, and generation, attention mechanisms, and others. The 

selection of these parameters and their necessary tuning is not a simple 

engineering problem but a key aspect of the researcher and developer of neural 

network models. Efforts are ongoing to automate such choices, but a better 

understanding of these efforts is necessary for mission-critical applications. 

6.1. Data Privacy Concerns 

AI solutions are being rapidly put forward in a variety of applications, especially 

to augment or assist the human in the loop. However, there are some serious 

concerns associated with adopting AI for workplace applications, especially in 

mission-critical domains. Some of these concerns are unique for specific 

domains, whereas others are more generalized. In this chapter, we provide a brief 

overview of some of these more generalized concerns, in the following manner. 

We will first describe the issues, and then elaborate by looking at specific 

examples from AI in mission-critical domains, especially related to healthcare 

and best practices to address these concerns. Specifically, in the following 

sections, we delve into data privacy, data bias, integration of solutions into 

existing workflows. 

First, data privacy for robust, trustworthy, and accurate AI models is required. 

Healthcare institutions get a lot of funds to hold on to the data privacy of their 

clients. Such data privacy laws demand that any non-compliant data disclosures 

that lead to compromise of patient privacy attract heavy penalties. As a result, 

not only is it difficult to obtain real verified labels for the images used to train AI 



  

74 
 

models based on medical data, but the real data itself may not be available for 

model training. For example, a patient undergoing an MRI has his/her data stored 

at the healthcare institution. This healthcare institution in turn needs to remember 

the identity of the patient, and de-identify the data in order to share the data with 

researchers to develop AI models to assist in some MRI-related tasks. 

6.2. Bias and Fairness in AI Models 

The biased distribution of input datasets can lead AI to make broken decisions, 

and such bias can arise at any point in the pipeline of the AI project. For example, 

an aspect of the input data can be biased due to past social influence or historical 

mistrust, the biased sampling of the input data might occur while collecting the 

input data, the feature engineering approach may favor some group attributes, or 

the performance evaluation methodology may be flawed. 

A major dilemma with AI model fairness is that a fair algorithm on one specified 

fairness criterion can be unfair on another specified fairness criterion, and that 

the fairness score changes with population attributes. Moreover, fairness is 

context-specific and attribute-specific. The current fairness notions attribute 

either too much power to the modeler or do not take population configurations 

into account. AI practitioners need to take every angle into account to create a 

fair AI model while doing bias mitigation based on a reasonable assumption. 

Specific bias-mitigation recommendations utilize bias detectors, balanced 

datasets, adversarial unlearning during training to ensure nondiscrimination, and 

unbiasing techniques using model post-supervision to change predictions in a 

minimal manner after training or bias-removing techniques to process the input 

data or post-process the AI model in a fair way. AI experts propose changing the 

AI strategy more generally to take decision impact into account and incorporate 

fairness into the reward structure of algorithms. Besides the popular definition of 

privacy as confidentiality data protection, an AI bias-management strategy 

should include a specific privacy-preserving procedure. 

6.3. Integration with Existing Systems 

One of the most common challenges faced by organizations adopting AI is 

integrating it with existing systems. Companies have been investing vast amounts 

of money for years on legacy systems. These systems may not be updated 

frequently, but they hold substantial personal and institutional knowledge. They 

house mission-critical data, and any downtime they incur when AI is integrated 

with them must be counted in hours. This is especially true of systems such as 
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payroll, which also process a substantial number of transactions daily. Integrating 

these systems with new AI systems is currently expensive. Almost every use case 

for AI requires a data pipeline, and building a new AI system from scratch for 

every pipeline is not only going to be expensive from a financial standpoint but 

will also take AI consultants many months to complete. 

Once a company chooses a vendor’s AI platform, they are generally locked into 

that vendor’s technology ecosystem. While these vendors do offer access to the 

features of their products, they are limited in functionality compared to the core 

product. Due to the diverse and fragmented landscape of AI, a company may 

need to rely on different vendors for different features. Payment and advertising 

may be managed by one vendor while the others use different vendors for the 

rest, leading to inefficiencies that can be addressed to some extent with AI-

specific design patterns. These design patterns also highlight a company’s efforts 

to expose AI’s weaknesses in the back-end systems that can be addressed in early 

phases of the AI project to deliver efficiency and reliability gain. 

7. Case Studies in Healthcare Diagnostics 

Healthcare is a high-stakes sector, which makes it a strong candidate for 

incorporating artificial intelligence (AI), especially in safety-critical applications, 

such as medical diagnostics, therapy assignment, and drug discovery. Patients’ 

health and lives are of utmost importance, leading to rigorous standards for safety 

and effectiveness in the products and services used in the healthcare field. The 

likelihood of using medical device AI for improving the accuracy and time 

efficiency of healthcare providers for a well-defined and frequently used task 

when an answer will be seen by a second radiologist before it results in a protocol 

used on a patient has led to the acceleration of the clinical adoption of computer 

vision-inspired deep learning models for image analysis in radiology. 

Radiologists produce interpretable reports based on the images that they view 

and analyze. Predictive monitoring is also common in hospital settings, 

particularly for patients in critical care. Often with so many patients to observe, 

nurses rely on computerized alerts to signal them when a monitoring device 

detects potential patient deterioration. Alert fatigue, however, is a common 

problem induced by the overwhelming daily dissemination of alerts. Studies 

show that as few as 15-20% of these alerts are due to real events. Thus, patient 

decline detection is a fitting area for the adoption of machine learning models. 
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Mortality alerts that leverage a patient cohort’s large amount of medical history 

data as they are receiving treatment at a healthcare facility would also contribute 

to the accuracy of the time to event estimation. Deferring just some of the patient 

mortality to allow clinical validation post-annotation may improve patient care 

and engagement. 

7.1. AI in Radiology 

Medical imaging stands at the forefront of Artificial Intelligence (AI) 

applications in medicine, and radiology is arguably the most mature translation 

of AI development in health care to date. Already, AI is deployed in clinical 

practice as decision-support tools for radiologists. With the ever-increasing 

incident volume of imaging studies, many academic radiology departments and 

commercial radiology practices are struggling to meet the needs of referring 

clinicians and patients. AI tools promise an assistive role on the horizon, with 

research efforts aimed at replacing or augmenting the diagnostic accuracy of 

radiologists. Some of the earliest commercial AI products in medicine were 

radiology-focused, including imaging-based tools for osteoporotic fracture 

prediction, colon polyp detection, skin cancer risk assessment, and others. 

The applications for AI in radiology have been exhaustively reviewed and 

summarized. The specific indications and conditions include, but are not limited 

to: breast cancer detection and characterization in mammography, breast 

ultrasound, and breast magnetic resonance imaging; lung cancer detection and 

characterization in computed tomography of the chest; other thoracic / pulmonary 

applications in CT; cardiac assessment in non-invasive imaging arteries using 

electron-beam CT; enhancement in MRI of prostate and brain; colorectal disease 

detection and assessment in colonography and CT; musculoskeletal imaging in 

plain film and MRI; and neurological imaging in CT and MRI. The production 

and deployment of clinical AI tools require significant collaboration among 

industry, physicians from all medical specialties and disciplines, governing 

bodies, and regulatory institutions, who must balance the quest for expedient 

development and distribution of effective tools with the safeguarding of patient 

safety and wellbeing. 

7.2. AI for Predictive Patient Monitoring 

Predictive patient monitoring based on bio-signals like ECG, pulse-oximetry, 

respiration rate, inter-beat intervals, and pupil dilation can identify the 

physiological trajectory of patients during both home-based and hospital-based 
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care. Such potentially actionable predictions include pre-symptomatic detection 

of adverse effects from surgery, trauma, and toxicology; evolution of long-term 

chronic diseases; the onset of episodic conditions; and life-threatening 

emergencies like cardiac arrest, stroke, and sepsis. These predictions are a critical 

step in the clinical workflow. They can aid clinical staff in their patient care and 

intervention planning. Timely alerts about patient degeneration can guide 

triaging during hazmat contaminations, mass-casualty events, and other 

emergencies involving hundreds of simultaneous patient presentations. A critical 

dimension of intelligent patient monitoring is long-term, ambulatory predictive 

monitors. Compared to static monocular closed-loop feedback, ambulatory 

health monitoring systems capture real-time temporal dynamics of involuntary 

biophysiological phenomena over extended periods of time. Intelligent assistive 

technologies are being developed for long-term and high-fidelity detection of 

monitor-measurable behaviors using various modalities like video, depth, radar, 

audio, and inertial sensors. Although some technologies are targeted towards the 

cognitively impaired, the primary applicability of such monitors lies in the 

elderly, and those with chronic co-morbidities like heart disease and diabetes. 

With an ageing population, hospitals have become critically understaffed and 

overburdened. Consequently, there are often long wait times for senior patients 

presenting with health issues. There is also a need for real-time differentiability 

between healthy non-patients and diseased patients, both before they enter the 

clinical system, and long after they’ve exited the system. 

8. Case Studies in Fraud Detection 

The financial, insurance, and retail industries, as well as public administration 

and local authorities, invest substantial resources in identifying fraudulent 

actions. Fraud involving credit cards, written checks, or tax returns affects all of 

us. More than twenty billion dollars a year is lost to fraud in the credit card 

industry alone, with banks, merchants, and credit issuers picking up a large share 

of these losses. The insurance industry also suffers billions of dollars in fraud 

losses annually. It is estimated that these losses equal between 10% and 25% of 

all claims. Tax fraud, especially refund fraud, is also a growing problem. 

Still, how would we know which one of our neighbors is committing tax fraud? 

Almost by definition, fraud is a rare event in comparison to non-fraud commits. 

If the taxpayer base of a country were 250 million, a reasonable estimate of 
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fraudulent behavior would be 1% (250,000). As even a fraction of that number is 

enough to generate academic interest, we must emphasize that our concern must 

be with screening but not executing the process. Making some mistakes is not a 

big issue as long as the model-specific adjustment of costs is not too high using 

a normalized confusion matrix. Payment systems, such as credit card issuers, and 

multi-institution tax systems can be used to design better support systems that 

adjust the model error costs. 

In this work, we present two different implementations of models for fraud 

detection. The methodologies vary due to different internal and external 

constraints; however, they share the common goal of providing some degree of 

real-world operational capability. The first case concerns the detection of fraud 

in credit card transactions. The second, the detection of fraud in the automobile 

insurance industry. Though many aspects of these two applications differ, some 

important issues unify them. 

8.1. AI in Credit Card Fraud Prevention 

Plastic money or credit cards have become indispensable in our consumer and 

purchasing lives. Banks, financial and credit card companies, organizations, and 

merchants approve large amounts of electronic transactions every day for the 

purchase of products and services. While this cashless transaction mode has 

several advantages—such as ease of carrying, guaranteed payments, guaranteed 

purchase, and others—credit card transactions are prone to fraud and cyber-

crimes. Theft of credit card information often leads to significant financial losses 

to banks and financial institutions. It is estimated that credit card fraud results in 

losses of around USD 27 billion each year. With the rapid growth of e-commerce, 

online purchases have also increased tremendously and fraudulent transactions 

have also increased significantly. This has led to an increased frequency of credit 

card fraud detection to protect against credit card fraud. 

Credit card fraud is defined as unauthorized use of a credit card, where 

information, such as that regarding the card number, cardholder name, card 

validity period, card verification number, etc., itself, or while making a purchase 

of products and services online. Predicting fraudulent transactions is an 

extremely difficult exercise, as the majority of all the electronic card transactions 

are valid and accepted. This imbalance between valid transactions and invalid 

transactions leads to a high level of difficulty for credit card companies in 

spotting the fraudulent transactions and taking remedial actions in real-time for 
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reducing losses. Though credit card frauds use various methods to dupe banks 

and customers, machine learning methods have proven vastly successful in 

predicting credit card fraud. 

8.2. Insurance Fraud Detection Using AI 

The insurance sector is at the forefront of adopting novel technologies for 

optimizing their business processes. A critical operation in the insurance industry 

that has recently seen a growing interest in using AI techniques is the detection 

of fraudulent claims. This activity has captured the attention of both academics 

and practitioners because of the importance of reducing the annual costs due to 

fraud. However, the volume of data involved and the intrinsic difficulties to 

detect low probability events such as fraud create opportunities for researchers 

and practitioners to develop advanced techniques to assist their analytical 

capabilities. For example, because of the low frequency of fraudulent claims, 

traditional supervised learning methods face huge difficulties in learning 

classification rules capable of generalizing beyond the historical data. 

Two different ways have been proposed to handle the class imbalance problem: 

one involves the modification of the learning algorithms by experimenting with 

different types of cost-sensitive learning that assigns different costs to the two 

types of errors and the other one is the data balancing approach which modifies 

the training set given to the algorithm in different ways, by either oversampling 

the minority class or undersampling the majority class, in order to provide a more 

balanced data distribution. Despite many proposed techniques to address the class 

imbalance issue, the performance in practical cases did not always improve. One 

of the issues is that it is unclear how best to modify the original training data 

distribution to facilitate better performance of learning algorithms. In this 

context, a clear recommendation is to combine the data balancing approaches 

with the cost-sensitive algorithms. This requires a careful tuning process that, 

unfortunately, is often resource-consuming. 

9. Case Studies in Cybersecurity 

Cybersecurity is an area where AI in general, and machine learning (ML) in 

particular, have been deployed in multiple domains. Some of them include 

malware detection, phishing detection, intrusion detection/prevention, and 

vulnerability management. Cybersecurity stands out from other mission-critical 
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domains because the application of AI was more based on economics than 

necessity, as most cybersecurity applications do not rely on AI for their 

effectiveness. Yet, AI is being sanctioned to play an important role in making 

cybersecurity applications better in regard to their accuracy, speed, or ability to 

deal with scale and complexity. These applications consist of security detection, 

response, and defense; and security operations, management, and compliance. 

While a few organizations have initiated the AI-in-cybersecurity effort, it is still 

early days in the usage and deployment of AI solutions that are effective in the 

real world. This chapter reviews the known history of AI in cybersecurity, and 

presents case studies based on past and present experiences in phishing detection, 

and malware detection and prevention. AI contains the potential for improving 

the work of cybersecurity professionals, as well as augment the practice of overall 

cybersecurity for everyday Internet citizens. The future is promising – 

organizations in all domains need to begin the journey of deploying AI 

capabilities into their cybersecurity arsenal. We believe that this need is 

paramount and compelling enough that compliance with this journey move from 

stretching the three pillars of data science – leadership, effectuation, and wait 

time – to enabling these three pillars to propel the security ecosystem into a new 

age. Without AI, however, this success may not be possible and is becoming 

increasingly hard to achieve. 

9.1. AI-Driven Phishing Detection 

In recent years, phishing attacks remained a major information security threat due 

to their effectiveness in harvesting sensitive information. As a result, phishing 

research has received considerable attention in the information security 

community. Historically an early warning system in a simplistic way, existing 

methods could lead to high false positive rates. For example, if a new URL was 

observed, then it would be suspected as being a phishing URL until being 

confirmed as legitimate in the near future. More common characteristics used in 

detection algorithms include keyword spotting, URL obfuscation, and IP 

blacklisting. Phishing detection from the perspective of a knowledge graph, 

however, does not seek to predict phishing URLs. Instead, it seeks to proactively 

warn users of phishing hazards associated with observed phishing URLs. The 

warnings are issued in real-time and predict user actions that may subsequently 

lead to a phishing incident, straining the relationship between phishing 

prevention and detection. In other words, an improved method for creating real-
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time, causal security warnings requires the application of artificial intelligence 

techniques. 

Smartphone users, especially those of the younger generation, fill their devices 

with applications related to social engineering. Phishing attacks take advantage 

of the public's constant demand for easy access to friends and information. 

Attackers exploit user desires by creating counterfeit websites for popular social 

and news sites. Phishing apps target groups involved in hijacking sessions to 

intercept sensitive information between users and real service providers. Online 

social network applications encourage sharing information. Attackers rely on 

posting stolen information to lure organizations into unnecessary despair. 

Organizations must be constantly scanning for harm caused by their employees' 

naïve behavior. By injecting phishing emails into the business workflow, the 

company can detect how many emails were opened and how many attempts were 

made to click the links. 

9.2. Malware Detection and Prevention 

Malware is a class of software that is designed to disrupt computer functioning 

and to attack or exploit computers or networks. Despite years of trying to make 

systems less vulnerable to malware, including building higher security 

components into operating systems, implementing automated update reminders, 

blocking untrusted communications, and recognizing viruses through heuristic 

detection patterns, malware development has grown to unprecedented numbers. 

Malware detection and prevention absorb most of the resources allocated to 

cybersecurity research. AI and machine learning have been long-time 

contributors to malware mitigation, with research verified by deployment in 

production detection systems. 

Machine learning has a strong foundation as a useful tool for some types of 

cybersecurity work, especially anomaly detection. Cybersecurity is observing a 

change in the traditional role of machine learning — starting in the early days as 

a supplementary approach to traditional detection and prevention techniques, 

with signatures and rules based on explicit conditions. Now, malware 

environment landscapes are too dynamic for traditional techniques. AI is applied 

in multiple stages of malicious programs' life cycle, including: Creation 

predicting, Propagation predicting and estimating damages, Detection 

monitoring activity on the local system or network model, Response blocking the 

activity, and Forensics detecting overlooked present and past artifacts or victim 
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responses. Malware has the capability of penetrating intrusion detection systems, 

although these systems are essential for stopping those types of threats. In the 

future, we expect a substantial collaboration between AI and machine learning 

and cybersecurity. 

10. Future Trends in AI for Mission-Critical 

Domains 

With an increasing demand for improved performance, reliability, efficiency, and 

availability of mission-critical AI applications, users expect more from their AI 

systems. On the technical side, the potential list for nearly mature AI capabilities 

includes creditable explainable AI; more efficient, incremental continual 

learning; unsupervised and self-supervised learning as cost-effective alternatives 

to expensive human annotation; pervasive trustworthy AI powered by domain-

aligned and reliable reasoning and simulation; autonomous netted and swarmed 

AI; and next-gen mixed-reality interfaces that break the human-user barrier. On 

the user side, growing ROI motivation from transforming organizational mission-

critical functions into a closed-loop continuous autonomous processes driven by 

AI agents is a specific role model for the next maturity level of AI technology. 

Further, AI democratization at multi-levels, from national to industrial to 

institutional level, asks for and encourages parties interested in improving 

efficiency and effectiveness of public services to collaborate and cooperate with 

these governments for an AI service infrastructure. 

However, the increasing AI autonomy, capabilities, and pervasiveness, 

augmented by the accompanying algorithmic biases, highlight AI risk 

management and insurance as the next hot global topics. AI ethics, equity, and 

fairness in system design, capabilities, application, and impact; trustworthy, 

controllable, transparent; and responsible, social-aware, and human supportive 

integrated concepts and integrated services will fill the growing demand for AI 

governance. AI regulation has been set on multidisciplinary multi-actor, multi-

instrument national, international, and global agendas. New-generation 

permutable, dynamic, coalition-oriented, service-oriented group market 

mechanisms and infrastructures will be considered. Alternatively, with their 

federated learning, decentralized, cross-domain capabilities, AI may become a 



  

83 
 

Trojan horse for enabling such a journey toward an AI-enabled governance 

ecosystem. 

10.1. Advancements in AI Technologies 

Mission-critical domains are unfortunate early and frequent adopters and 

increasingly depend on AI in a full-stack, homogeneous stack. They have 

bettering investments in future-proofing their underlying foundations and 

systems to allow for continual innovation and future advancements in AI 

technologies. Moving forward, most of the largest boosts in AI capabilities will 

happen in these foundational technologies. These advancements will be 

increasingly generalizable and potent, allowing for more effective solutions and 

easier integration to diverse domain problems. 

We anticipate rapid advancements particularly in three areas of underlying 

technological capabilities: scaling of foundation models using sparsity in 

standard AI, greater alignment and trustworthiness of AI systems by specializing 

foundation models with better dataset and methodology, and innovative new 

capabilities from efficient operators on AI systems using model-driven 

approaches through provable AI or breakthrough developments in software or 

hardware systems. These factors, coupled with improved interfaces and 

development economies such as annotation tooling, will open up large new 

domains of problems for AI-assisted solutions. As a direct implication, mission-

critical systems and foundations will need to become rapidly adaptable to ever 

faster-moving models and capabilities on the reference task of AI-enhanced AI. 

In addition, we will increasingly rely on a partnership approach to integration 

between human experts and AI assistants to ensure that domain experts can take 

internal ownership of machine assistance pipelines. Such a partnership can use 

increased investments in semi-supervised methods and first-tech proper 

generalization of domain-specific tasks based on few clarification queries. 

10.2. Regulatory and Ethical Considerations 

As the use of AI technologies grows, crucial questions increasingly arise related 

to regulatory compliance or ethical alignment. Important work is required to 

understand how to ensure that AI models and tools are in alignment with legal 

regulations, such as data privacy laws, which are becoming increasingly 

prevalent and that require careful attention. Beyond regulatory considerations, 

important guidelines also exist for the ethical use of AI in mission-critical 

domains so that they can serve their intended purpose without inflicting harm on 
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the people or communities they purport to help. Ethical considerations are not 

just about how the systems are used or how their outputs are applied; they also 

include the question of how trusted and fair the models and tools themselves are 

in their design and fair evaluation. For example, there have been calls for the 

responsible use of face recognition systems, stating that face recognition is not 

infallible. Human reviews are essential before any law enforcement action is 

taken based on the results of a face recognition scan. This is a recognition of the 

fact that face recognition systems, as built and trained today, are well known to 

have disparate performance across demographic groups. 

The ethical considerations expand even further for categories of AI applications, 

such as emotion recognition, that could be considered highly intrusive. Such AI 

applications have little real benefit while posing great costs to societal trust in the 

technology as well as personal concerns regarding how the data is being used, 

who it is being shared with, and how it is being protected. These concerns have 

led to organizations discontinuing their offerings or entire lines of products based 

on emotion recognition technology. The reasons for their withdrawal vary, with 

some companies discontinuing products due to a lack of accuracy to the standard 

that the companies hold themselves to, while others note the ethical concerns of 

the technology, specifically the use of the technology without user knowledge. 

11. Conclusion 

Using artificial intelligence (AI) systems that automatically interpret sensory 

input to produce actions at least as good as the best human actors or counselors 

is attractive for mission-critical applications. This chapter outlines key functions 

of such systems as: reliable reasoning from minimal knowledge; continual self-

improvement through skipping minor consequences of decisions based on 

reasoning; collaborating with other actors, including human, to increase payoffs; 

ensuring security through correct predictions of key properties of the world to 

avoid malicious agents; and minimizing exposure to risk through insurance 

against worst-case results of important decisions and selecting risks appropriate 

for their specialties. The concept of intelligent agents is briefly summarized for 

readers unfamiliar with this field, followed by examples of intelligent agents in 

action. Constraints on optimal actions are categorized; the role of AI in mission-

critical applications is discussed; and the prospects of AI technical capability and 
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technological conversion, as well as the risks posed by intelligent agent 

superpowers, are addressed. 

In summary, only intelligent agents producing actions within boundaries set by 

human values have the prospect of potentially achieving better performance than 

other and human actors on mission-critical applications. Computer scientists and 

engineers are potentially in a good position to contribute significantly to a 

solution of AI risk by advancing trustworthiness technology that enables on-

demand robotic or advisory agents available to augment and support good action 

selection by their users. In this scenario, intelligent agents assisting humans with 

decision-making at the highest levels are, at best, analogs of advanced missiles 

and troops guided by national desire and religious and cultural values. Some have 

speculated that values are too varied for there to be any guarantee of such 

congruence among nations for AI-capable actors. Continued emphasis on the 

production of trustworthy assistants, of whatever level of sophistication, may 

lessen that likelihood and should also support research into AI systems capable 

of collaborating effectively with sufficient levels of human optimization 

expertise. 
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