

89

Chapter 4: MLOps and Lifecycle

Management

Swarup Panda

SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India

1. Introduction to MLOps

Companies today use increasingly more machine learning in their products and

services. From recommendation engines to computer vision to natural language

processing, the usage of machine learning is exploding. But while the adoption

of machine learning continues to grow, deploying and maintaining machine

learning systems in production remains painfully challenging [1-3]. Respondents

to industry surveys report that deploying machine learning is harder than any

other part of the software development lifecycle. The gap between niche research

and core business functions threatens to hollow out investment in new ideas: a

significant amount is spent on machine learning annually, but a large percentage

is not delivering any value [2,4,5]. Firms are spending huge sums on machine

learning, but the vast majority of projects are failing. Organizations that

successfully implement strong systems to support the MLOps function should be

rewarded with vectors of highly leveraged development teams, and a reliable

return on their investment in large scale machine learning studies.

The challenges lie on the operations side of the equation. Operationalizing

machine learning is different from operationalizing regular software in several

profound ways. A machine learning model will need retraining based on

changing data distributions — a problem exacerbated by the pace of change of

many of the world’s most data-dependent businesses, such as finance, retail, and

travel. Machine learning is often user-facing, which introduces concerns from

design and performance perspectives that require continuous commitment from

Deep Science Publishing, 2025

https://doi.org/10.70593/978-93-7185-753-6_4

90

the engineering organization. Manufacturing and deploying a piece of machine

learning code is not simply an engineering task. Doing this well requires

collaboration with data science, engineering, and design — in particular,

mobilizing data scientists to work on real products while still allowing them the

autonomy they need to find new models and techniques. Why use one framework

over another?

2. Understanding Machine Learning Lifecycle

New technology is constantly being developed to offer automatic assistance for

machine learning model development. The Evergreen tool allows enabling or

managing different stages of the machine learning lifecycle. It’s important to

clarify what stages these are and what needs to be done to manage machine

learning workloads effectively. There’s no such data science project which passes

through all proposed stages and approaches, and certainly not with the same

importance [6-8]. Some workflows pass through the phases lightly and some

workflows delegate the majority of work to specific tools. The goal is not to have

a general guide detailing the best possible design for all projects, but to discuss

machine learning lifecycle management in the hope of designing better tools.

91

One of the first points to elaborate on in ML system management concerns the

organization of project data. Several machine learning tools manage projects by

an explicit data organization based on file system structure or database record

links. Other tools have no explicit project structure, managing different types of

external files in the same workspace. Tools defining a project structure organize

physically or virtually the data but doing little to additional restrictive modeling

or resource control. Projects can be folders which only allow a specific data

structure and types for files or database collections which have obligations or

additional access and control features [9,10]. Data organization affects how users

retrieve and understand the underlying machine learning process. It also

facilitates or makes more difficult the application of data science best practices,

increasing or decreasing the risk of unpleasant surprises.

3. Continuous Integration and Continuous

Deployment (CI/CD) for ML

3. Continuous Integration and Continuous Deployment (CI/CD) for ML

3.1. Overview of CI/CD in Machine Learning

Continuous Integration and Continuous Deployment (CI/CD) pipelines have

become essential for the success of Machine Learning (ML) systems. By

automating not only testing but the risky process of deployment, well-designed

CI/CD pipelines allow companies to publish AI products in a controlled and

systematic manner while keeping the risk associated with executing a ML model

under constraints [11-13]. This is the case, for example, when the trained model

makes use of an online learning system, re-training every time some new data

becomes available or at specified periods. Ideally, CI/CD pipelines reduce the

time interval between when a model is trained and when it makes decisions and

infers on users.

However, ML is a special kind of software being that the software consists of a

model that makes predictions on a dataset. The inherent variability present in AI

models complicates significantly the design and implementation of CI/CD

pipelines for ML. Indeed, datasets form probability distributions capturing the

underlying generative process of the data. These distributions are changed

naturally over time, in coordination and reaction to economic, social, and

92

informational events [2,14-17]. Frequent changes in the underlying distribution

cause the variable behavior of AI products and services. Models that work well

on the training dataset may become obsolete and perform poorly on the

deployment dataset, also referred to as drift and, in practice, deteriorate the

predictions made to users or clients. These events, however, are unpredictable.

As a result, keeping the underlying distributions in check is an important and

difficult aspect of operating successful AI deployments.

3.1. Overview of CI/CD in Machine Learning

Continuous integration (CI) and continuous deployment (CD) are common

practices in modern software engineering that enable more rapid delivery of

features and fixes, while reducing errors in production software [9,18-21]. A

CI/CD pipeline automates the process of deploying updates to code, as well as

any necessary actions associated with those changes. CI/CD works very well for

many common software use cases, but the basic principles of these tools, and the

experience and confidence they give developers about the quality and

performance of new code changes, means that it’s natural to try to extend these

principles into the lifecycle management of other types of code-intensive

systems. In particular, the rapid innovation and experimental research direction

inherent in machine learning makes it attractive to see if CI/CD can apply to ML.

However, current ML systems can be more complex, with a larger variety of

interhandled processing steps communicated for diverse heterogeneous data

types, and a broader class of model evaluation metrics used to judge and monitor

the outcome of the various steps. Early attempts to directly adopt CI/CD for ML

have resulted in tears.

The disparate, heterogeneous nature of ML systems means that implementing

and using a CI/CD pipeline requires experience, understanding, and effort

[22,23]. There is no single standard for building a CI/CD system for ML; there

are many choices, and the core CI/CD system must be customized for each target

ML application. Thus, the system is specific to an organization, and the people

in the organization building and deploying the ML application. So, while the

principles of CI/CD still apply to ML, it is both more complex to do a CI/CD

rollout for ML than for standard software, and the results of the effort have a

larger payback, with reduced deployment times along with increased application

accuracy and reliability.

93

3.2. Setting Up CI/CD Pipelines

Creating CI/CD pipelines for ML requires some specific considerations. We will

illustrate a simple example where a few steps are outlined [24-26]. First, version

the base environment for your ML project: languages and packages, as well as

configuration files, datasets, and code are the typical artifacts that change. By

using these artifacts, you’ll be able to replay any experiment later. Use your ML

code repositories with ML code incorporated in them. Next, containerize your

ML environment: images that combine the base environment, configuration files,

and installation scripts for datasets and external libraries should be defined. These

images should be tagged to reflect their version for any particular experiment.

Then host your containers: publish these images to your internal enterprise

repository to improve security. Finally, trigger the model training: machine

controllers, event-based triggers, orchestrators are often used for that. Automated

tests should validate data, environment, code, hyperparameters, and model

quality.

These components allow you to schedule training workflows to execute these

training and testing phases during your project lifecycle. You might have to tune

the completion criteria for these jobs to accurately reflect the model training and

testing costs. Centralizing your computation resources is an important cost

reduction practice. This area is evolving rapidly.

3.3. Tools and Technologies for CI/CD

Many of the MLOps frameworks and tools that are being adopted already were

implemented for CI/CD of software in general. The main difference is the unique

requirements of machine learning systems and their lifecycle. These specialized

tools encapsulate best practices for CI/CD of ML. The following sections briefly

summarize the key tools and capabilities related to CI/CD.

Continuous integration (CI) automates the processes of testing changes and

ensuring that a new model meets both functional and non-functional

requirements. CI enhances testing infrastructure as well as its capabilities. Non-

functional testing of models and data has received less attention than functional

testing in CI for ML, although it is addressed to some extent by various tools.

However, tools for non-functional testing of ML models in production are less

mature and tested than the vast software industry experience of functional testing

CI tools.

94

Continuous Delivery (CD) automates the creation of ML deployment artifacts.

Specialized workflows manage these pipelines and allow for configuration of

multiple target environments [27,28]. CD provides iterative and versioned

deployment of ML. These capabilities are embodied in various tools. These

aspects are also addressed by general-purpose pipeline frameworks. The

workflow orchestration capabilities have evolved from general-purpose

workflow orchestration frameworks to serve machine learning users' specific

needs. These services derive their capabilities from previous work on dedicated

frameworks.

3.4. Challenges in CI/CD for ML

The CI/CD practices in MLOps go beyond just creating a continuous integration

or delivery pipeline. While it is relatively simple to trigger a build and a set of

tests to run on each commit, this doesn’t mean the code is ready for production

usage. In ML, a model provides useful predictions only if it is trained correctly

and used to make inference on data which is similar in distribution to data the

model was trained on. Therefore, well-defined interfaces are needed between

various components for an ML pipeline. This ensures that all teams involved in

building an ML solution have a mutual understanding of how to interact with

each other’s collectively built artifacts. Additionally, it’s important to version

ML models and training surroundings and keep track of data distributions while

iterating on model improvements. While all these requirements are met in non-

ML software development via various processes and policies defined within

organizations, the same policies often do not get translated to MLOps CI/CD

pipelines [19,29-31].

Besides, MLOps and ML CI/CD pipelines still do not have a universal set of tools

widely used and accepted by the community for solving pitfalls uniquely present

in ML development. As a result, experiments in different organizations are

different due to the diversity of domain, resources, and use cases. Custom tools

and policies therefore still need to play a part in operations pipelines, but

preferring an open-source model that encourages collaboration between

organizations may be a better approach. Moreover, the constant exploration-

exploitation trade-off present in ML can lead to unpredictability in performance

if enough safeguards are not used judiciously [32,33]. Non-ML pipelines also

struggle with certain facets of software maintenance. In particular, these are

managing code quality, technical debt, and testing that fraudulently steals user

feedback or is dangerous to engage with actors when the software is predicting.

95

4. Versioning in Machine Learning

Versioning in machine learning is a vital aspect of the MLOps lifecycle that

ensures the audibility, availability and an easy rollback to the previous state of a

model. Versioning here does not only mean versioning a model artifact, but also

other model-related assets such as the data, commands and the environment

needed to reproduce the trained model [34-36]. In a machine learning project, a

model is considered the source of truth as it is supposed to increase the

trustworthiness of the overall ML system. A model’s utility changes with time

and space, i.e., the input domain and the environment that the ML pipeline

operates under changes. For all these cases, versioning is a vital aspect of the

MLOps lifecycle.

Versioning a model is important considering the various stages of the Model

Lifecycle Management, such as Data Management, Model Development, Model

Evaluation, Model Serving, and Model Deployment. Each stage requires

artifacts, models, and configurations to be tracked. While solutions exist for

tracking these other aspects, the model itself simply gets dropped on a centralized

file store with a name reflecting the date and time of when it was produced. This

practice is dangerous as the unscripted model is a black box and it is necessary

to know how to interrogate it to find additional information. Keeping this process

manual is completely against the basic premise of MLOps, which suggests

automation to make it CI/CD enabled.

Some existing Model Version Control implementations allow the user to create

a model and upload it to a versioning system. These systems then keep track of a

user’s interactions on the model – whether a model has been replaced, deployed

in a production environment, and so on. Model version control allows

organizations to more rapidly develop ML solutions, track the evolution of

models, and deploy models that are more explainable. Version control and source

code management systems have similar functions – script, parameterized and

versioned model training [37-40]. However, version control serves a different

purpose for ML engineers and teams. While source code management serves as

a standard library of model development, version control seeks to maintain

interactions with a model such as deployment status for explainability. Both

version control paradigms integrate easily with CI/CD pipelines.

96

4.1. Importance of Versioning Models

Understanding data versioning helps contextualize model versioning's

requirements; specifically, the peculiarities of machine learning as an

infrastructure that requires exotic digital assets as input – models are static files

and are digital assets. Models learn from data and thus are supposed to be

improving over time [41-43]. In practice, however, many reasons can warrant

model versioning: from self-serving necessity of promotional aspect of creating

better models; to collaboration in teams of practitioners, either to serve the same

use case or techniques like ensembling; to considerations of attribution and

oversight: such as regulatory obligations from financial services or medical

domains; forensic investigations on malicious uses; or any scenario demanding

explanation of outputs based on model behavior.

In addition to flattening diversity and complexity of models into specific files,

model versioning has to tackle some extra challenges. First, these digital assets

are very different from static data files or other software files. They are outputs

of proprietary procedures unique to machine learning, typically leveraging third

party frameworks or libraries with varying quality and transparency; they require

tuning flexible hyper-parameters with hard-to-model effects; and they learn not

immediately, but once during production. This makes practitioners reliant on

third-parties, with unknown use cases or horizons: particularly with respect to

transfer learning tasks, supplying models that serve as starting point for other use

cases.

4.2. Techniques for Versioning

Given their vast variety and differences, there are different types of models and

ways to create them, which results in many kinds of model versioning

approaches. We categorize these ways into two groups: backward-compatible

versioning and non-backward-compatible versioning. The first category is

basically the same as how software applications are versioned, where every

version released is backward-compatible. The second category depends on model

types and usage at deployment time. Some models require special usage

considerations to ensure that different versions of that model can be called at the

same time.

Versioning can be applied at different levels in a pipeline. At the core of a model,

it is usually a custom operation that embeds how to create predictions. This is the

concept known as the “predictor.” This predictor can be called in many ways in

97

a pipeline, be it handmade code in a micro-service architecture or hidden inside

commercial products. Developers spend effort creating special software libraries

to guarantee that any code calling functions from this library can run prediction

without knowing how to interact with the actual code implementing this

predictor. Since any change in that implementation can generate different micro-

level predictions, it is expected that any change to the model would trigger a

library change and possibly a new key.

4.3. Best Practices for Model Version Control

Below, I outline several best practices for model version control to help make it

easier and simpler for development teams to manage machine learning model

development and deployment pipelines. Most of these best practices come

directly from industry experience managing machine learning models in

production.

1. Track the Metadata that Matters: Maintain proper metadata when versioning

models. At a minimum, you should consider storing the following artifacts in

association with the model: the model code details, hyperparameter settings, the

version of the libraries with which the model was built and trained, the training

dataset, the evaluation metrics, and model performance against those metrics

along with a minimum threshold that the model must pass to successfully be

validated, and the person that trained the model. Otherwise, operations teams will

be at risk of not "knowing what they don't know," and a mysterious model could

easily slip into production without any proper auditing, ethical, or legal

guidelines being followed.

2. Model Metadata as Code: If possible, place all model metadata in code. This

way, it can be tracked, versioned, and managed the same way any other codefile

in the project is managed.

3. Track the Journey of a Model: There are different types of model versioning -

each version can be anything from a modification in a single hyperparameter to

an entirely differently designed model; a model can even have no code changes

but simply a re-training on a different dataset and, thus, the model architecture

may not change much. The key point here is to understand the journey of a model

at all stages in its life cycle.

4. Use a Centralized Repository for your Models: Model versioning must occur

in a centralized location accessible to all engineering teams responsible for

98

particular models. It should be part of a larger tooling ecosystem that supports

other aspects of model lifecycle management as well as tooling for the

development and deployment pipelines. This is also a guideline for practice as it

mandates automated workflows such as policy-based auto archiving, access

control, comparison, and lineage visualization for models and their artifacts in

addition to simpler storage and tracking capabilities that are important.

5. Monitoring Machine Learning Models

In traditional software development lifecycle, production systems are closely

monitored for any performance degradation. Typical monitoring workflow

detects anomalies in the execution, logs, and results, and triggers alerts that can

go to the application team to fix any possible issue. Since Machine Learning

based applications are different and introduce a black box model instead of rule-

based software logic, the need for monitoring is even higher for ML based

applications due to the following reasons:

Data Drift: Streaming data into Model inference can change the distribution of

input and output data. The Model predictions are as good as the data fed to the

Model. Hence, data drift can lead to bad model performance over time.

Concept Drift: Changing relationships between input and output data can lead to

concept drift. For example, in fraud detection, increase in fraud for a payment

mode can lead to relationship where the Fraud = Payment Mode. If an

organization introduces more payment modes, then the relationship is different,

and concept drift occurs.

Different Failure Mode: A traditional software application may fail with

exception scenarios. Machine Learning Models have different types of failure

modes, wherein the Model is not throwing errors or exceptions, however it is

acting on unverified inputs or predicting outputs that are not realistic. For

example, a customer churn Model predicting previously loyal customers to be

frauds would be a cause for concern.

Monitoring Machine learning Models is not straightforward and involves

different type of metrics based on the Business domain, Model usage patterns

and Infrastructure. Let's discuss the different types of metrics in more detail.

99

5.1. Need for Monitoring in ML

Monitoring is an important part of any machine learning life cycle. You cannot

simply deploy a model and forget about it. If you want your deployed model to

run optimally, you need to continuously monitor its drift. Why is monitoring

important? A model may be highly accurate at deployment and guarantee good

performance. However, over time, the underlying distribution of data can change,

which can impact model performance. This type of degradation is commonly

referred to as drift.

Why does drift happen? The data used to train the model is a snapshot of data

taken at a single point in time. An assumption of the modeling process is that that

snapshot is representative of the real world over time. For high-stakes use cases

such as fraud detection and clinical diagnosis, this assumption does not hold

beyond a short time and models typically do not perform well over time. In high-

stakes use cases, data changes constantly, and predictions degrade. Therefore,

monitoring the model as data drifts is crucial. But drift can occur in multiple

ways. A change in the data over time is termed as data drift or covariate shift. A

change in the relationship between covariates and outcomes is termed as concept

drift. This can happen even if there is no data shift.

5.2. Key Metrics for Model Performance

After going through the need for monitoring ML models, the next important

question is about the metrics that can be used to monitor the models. Although

several ML lifecycle management tools offer default alerts and checks, it is left

to the data scientists and ML ops engineers to select the specific features and

thresholds that need to be checked for monitoring. These are model specific and

will depend on the model architecture being used in addition to the business

problem at hand. There are several factors affecting the ML performance: the

intended usage of the model, available external checks, degree of dependency

needed with input data, and distribution of its output values. Below we describe

some of the most common metrics that should be checked.

Model Accuracy. Usually, measuring the model accuracy is the most used

method for comparing model predictions with actual results or labels. It can be

defined for the case of regression as 1 – MAE or 1 – MSE, where MAE or MSE

compares the predicted values with actual values. Since this similarity

computation is usually made for the entire test set, it can be compared to input

data at a later point in time to check for thresholds for drift detection. A note of

100

caution here is to ensure the timing of the prediction and actual label assignment

is matched perfectly to avoid data leakage, as prediction labels can usually be

stringently held via derivation rules over the dependent variable.

Data Drift Detection. Model performance drift or prediction error drift is an

indicator of the performance of a model exposed to real-world data. Model

monitoring should track the data stream over time to understand the underlying

pattern and distribution of the data to capture the expected underlying pattern.

Data drift is an indicator for ML practitioners, where prediction quality

monitoring should be the most focus. The performance of traditional ML or

statistical models can be monitored with their intended purpose, but modern

supervised ML driven by neural networks have little model interpretability or

explainability. An increasing prediction error drift information should lead to

conducting correlation tests to understand the relationship between input data and

performance drift. In case their correlation be significant, then the ML model

should be retrained, repurposed, or revisited to achieve explainability.

5.3. Tools for Monitoring ML Models

We have discussed the importance of monitoring the performance of the ML

models and how to measure their performance. Now, we will touch upon the tools

that are available for monitoring the ML models. These tools are used for

different types of monitoring, including data, model performance, data and model

observability. Data Observability tools monitor the data pipelines, detect the

anomalies and help alert in case of any issues in the data, including missing data,

change in distribution of input features or target variable etc. The Model

Performance Monitoring tools help check the performance metrics of a deployed

ML model against the business defined thresholds and alert in case of any

performance degradation. The Data and Model Observability tools are a

combination of the above two capabilities. They provide a single view to monitor

the data pipelines and deployed models.

Here are some of the data observability tools that are available: Dagshub,

Datakin, Databand, Datafold, Datastreams, GitHub, InfluxDB, Monte Carlo,

PipeRite, PipelineWise, Puffin, Soda, Unpuzzle, etlworks, etleap, futureX,

FiveTran, Grouparoo, Hevo Data, Keboola, Keen.io, Merge, Matillion. Some of

the tools that help monitor model performance are: Albacore, Aporia, App

Insight, Arize, Bespoke Metrics, Evidently, Fiddler, Giskard, Great Expectations,

Human Loop, Mistral, NannyML, Neurala, MLflow, Npml, Onto, Pymetrics,

101

Shadow Mode, Superwise, Tecton, Verta, Weights and Biases, and ClearML.

Here are some of the Data and Model observability tools that can be used: Arize,

Clips Analytics, Datadog, DoiT, Explorium, Immuta, Metaplane, Observability,

Ponder Policy, Sisu, Sumo Logic, and StatisticalML.

5.4. Handling Model Drift

In high-stakes environments, drift detection is necessary to ensure that models

maintain their desired level of performance. Drift mitigation methods can be

applied when drift is detected or can be added into the pipeline before a drift is

detected, such as training based on labeled data streams or retraining periodic

batch processing. In urgent situations, a fully retrained model may need to be

tapped immediately, but for the majority of non-real-time predictions, drift

correction via retraining on the most relevant data is warranted. Several solutions

are available to build and monitor such adaptive frameworks to help mitigate

model drift and data integrity problems.

The first choice to handle model drift and data integrity issues is to create a fully

automated retraining pipeline where models are retrained incrementally, or

periodically as data becomes available without human intervention. In real-time

systems, the models can be updated incrementally. In such solutions, solutions

based on online learning are the preferred approach to updating existing models

via an additional small optimal incremental update.

Adaptive semi-supervised models that incrementally retrain library models in

case modeling performance is below a drift detection threshold have been

proposed. Decision trees and hierarchical relevance tree models have also been

proposed for incrementally learning and adapting for different classes without

retraining on previously seen data or the need for a re-initialization effort. The

periodic retraining setup is more common in periodic batch processing pipelines.

In the majority of these solutions, the monitored models are retrained on partial

input data that fall within a recency threshold of the current time.

6. Integration of MLOps with DevOps

MLOps can be seen as extending the principles of DevOps into the realm of

machine learning and AI development. Specifically, the integration of MLOps

with DevOps can be understood as a natural progression of a collaborative culture

102

where developers and IT operations teams continuously work together

interleaving multiple steps involved in the continuous delivery of applications.

In this regard, this section seeks to first elaborate on the similarities and

differences between MLOps and DevOps and then present the advantages of

integrating both.

MLOps extends the DevOps principles of agile, collaboration, automation,

monitoring, and continuous improving, into the realms of ML development and

deployment. MLOps provides a set of AI lifecycle management capabilities to

address the additional complexity and challenges of moving ML systems into

production and relying upon them for supporting business operations and

decisions. An initial important difference between MLOps and DevOps is that in

DevOps application releases are discrete and require code level changes, while

in MLOps, all models need to be continuously monitored across a number of

evaluation metrics, in order to determine drift or model degradation performance

thresholds for automated retraining or redevelopment execution in any form of

cycle and frequency.

On the other hand, both worlds also look to use common technologies. In

particular, in the first step of the CI pipeline, MLOps aims to integrate model

training, testing, and validation, at the code and model level into the CI process.

AutoML capabilities such as hyperparameter scaling, and bias and fairness

checking can further promote and facilitate this integration. Furthermore,

integration pipelines can then be spawned for the CD step executions using

containers or with artifact storage enabling monitoring observability and

auditability controls.

6.1. Comparing MLOps and DevOps

Probably the first question regarding MLOps is why do we need this concept

instead of using our already established DevOps processes? Or better, what is the

difference between MLOps and DevOps? To answer this question we need to go

once more to the conceptual basis that defines MLOps. The main goal of both

concepts is to automate the development pipeline of the products: for DevOps

the products are primarily software, while for MLOps the products are ML

models, but also the services or products that use these models. There are many

differences that change the way how we can provision tools and techniques for

production and post-implementation of products, which lead us to understand that

103

MLOps cannot yet be totally addressed within the notion of DevOps in the same

way that we understand it for software projects.

To be more precise, these two activities focus on the same inputs and business

objectives: having delivers continuously done is necessary for both tasks. But in

the case of MLOps the inputs are models and not just code. Before being put into

production, ML models go through pre-production activities such as data pipeline

design, data collection, exploitation, and exploratory analysis, feature

engineering, hyper-parameters optimization, and analysis, selection, and training

of the model itself. Through these activities, a model can go through numerous

versions, which are selected based on statistical and business metrics, in order to

be deployed in the production environment. And in the production phase, MLOps

activities are not just confined to ensuring that ML code is continually supplied

for updated. In fact, the ML models are not static entities while in the production

environment. They demand a ceaseless cycle of evaluation against data defined

metrics in order to understand when the model’s concept in production has

drifted, indicating the need for a model update.

6.2. Benefits of Integration

Although both DevOps and MLOps are intended to enhance productivity,

minimize time to market, and increase system reliability, to date integration has

only occurred at the technological level, not at the organizational level. In other

words, a company may have IT and AI teams that both use compatible tools for

CI/CD, but are still independently managed. A cultural or leadership agreement

or bond between the departments is not yet visible in most organizations. If this

gap were bridged, the benefits of technological integration could be amplified.

Businesses must learn that the problems DevOps teams face in delivering AI

assets and adapting them to production environments differ from those that the

teams involved in ML share. For one thing, the frequency of changes is different

– IT applications are regularly modified, whereas, in ML applications, collation

is much rarer. AI team efforts are more disparate than software team

responsibilities, even if the teams work within the same framework. AI systems

are called on to solve more complex tasks and support a larger range of use cases

than other technological tools. IT microservices are more interconnected. What

is more, while the only major system failure that may occur with DevOps is that

the service is not working, AI systems can create irrevocable damage if, for

instance, they recommend giving an overdose of fentanyl for a patient in need of

morphine to relieve pain for terminal illness.

104

7. Case Studies in MLOps Implementation

In the previous sections of this paper, we have outlined the need for ML teams to

take a software engineering approach and implement a cycle of continuous

monitoring, experimentation, and learning while serving ML systems in

production. In this section, we provide more detail about these processes through

a set of case studies gathered from multiple domains and teams at multiple levels

of maturity. Sharing the stories of others helps your MLOps team both to share

the benefits you hope to provide, as well as the challenges other companies have

faced on their MLOps journeys. While brief, these case studies describe many

different MLOps systems and processes, including:

- How various teams have adopted best practices of DevOps, DataOps, and

ModelOps and rolled those practices into their daily workflow. - The importance

of human collaboration and communication when deploying ML into production.

- Examples of successful MLOps deployments and ended failures along the way.

- Various levels of MLOps expertise, including those teams who build complete

frameworks and MLOps services utilized by other teams, as well as those who

are just beginning their MLOps journey and offering MLOps related support to

other teams in their organization.

Collectively, we hope these case studies give you a taste of what other teams have

dealt with successfully, and the benefits and lessons they have gleaned from those

journeys. The efforts outlined are reflections of what we have seen worked at

scale and want to help teams beginning the MLOps journey avoid the pitfalls

along the way.

7.1. Successful MLOps Deployments

MLOps is actually just a natural extension of decades’ worth of software

development and services work, and most of the internals are built on top of the

decades’ worth of learning and investing done in enterprise-grade software. The

lifecycle management aspects of machine learning may be new in some ways,

but the code-centric DevOps and SRE automation patterns are very mature. Even

the AI-specific parts of MLOps are derivative of existing work in DevOps, Chaos

Engineering, safety, security, and the other aspects of code-centric tech.

At least for production systems in the world today, much of what many

companies think of as “MLOps” are capabilities already deployed in the real

world at scale, thanks to the ongoing work on the part of both developers as well

105

as tooling developers. Core tenets of MLOps, such as the automation of model

evaluation, validation, verification and monitoring for performance and

degradation is the main focus of software in production today, often

supplemented with tried and true code-centric production practices. We already

have feedback loops.

This is not to say that MLOps doesn’t need more work. Absolutely – as any

developer in this space will attest to, there’s far more space for capabilities that

aren’t fully fleshed out, or at least have not been productized and made accessible

for enterprise use. True cost, performance and quality, especially in high

stake/cost industries, are nascent right now, especially with capabilities such as

drift detection and monitoring that tie natural variance detection approaches to

active governance models of machine learning pipelines.

7.2. Lessons Learned from Failures

Both Kwan and MLOps.org focus on the lessons learned from predictive

analytics projects which had failed to provide value due to the lack of formal

operationalization. They stimulate projects in which value creation data products

have been deployed but are not adequately managed in production. The lessons

learned are reported as guidelines which are considered necessary to make

analytics deployments more efficient and effective in practice. These guidelines

are widely echoed within current literature as important factors to avoid failure

in CS 2. By illustrating the history of common projects in which an algorithm

was deployed for internal stakeholders in the company, the guidelines describe

principles of operation and product thinking to be followed closely.

The lessons highly relate to best practices for professional software products,

oriented to internal users. The PO values from the product owner perspective,

strategic alignment with the organizational business goals from the

organizational development perspective, the PO and POA from the product

strategy perspective, the PDP from the stakeholder perspective, and the DMP and

EDP from the decision model perspective. The importance of the POC, or

prototype opportunity cycle, is to highlight that development periodicity should

be tempered with learning orientation. Additionally, exercises and examples are

used from software practice. Using these practice and theory combinations,

operational principles are introduced, specifically for decision products, to

improve practice.

106

Learning is very important in business decision making. However, it also

introduces complexities in the lesson learning. The partners may use different

words, or even language, for operations, tactics, and strategical issues. The

recommendation structure is also different. In MLOps, the company is solely

responsible. In the data engineering decision model triplet, the company is

ridiculed if the systems fail. For practitioner-oriented decision products focused

on adding value to an organization, the product is never considered finished. The

ownership of a product is important until it erupts as business as usual, triggering

more formal production management.

8. Future Trends in MLOps and Lifecycle

Management

Machine Learning is thriving. Tasks that were considered prohibitive a few years

ago, or that were not yet feasible, have now been solved. Emerging technologies

such as large language models, diffusion models, foundation models, and

autonomy have shown what is possible with Machine Learning. As these

technologies grow into new disciplines, such as AI for Drug Discovery, they will

proliferate and grow in sophistication, and new use cases and business models

will emerge in the next decade. MLOps software will need to evolve and grow

up with them. As the MLOps toolchain matures, it takes more of its responsibility

for the ML team, which becomes smaller. At the same time, MLOps tools must

align with the business strategy, thereby enabling organizations to accomplish

their broader AI objectives. Yet, while the MLOps journey can accelerate an

organization's AI strategy execution, it cannot replace the capabilities of human

ingenuity and expertise.

Success in MLOps requires a plan. Defining the right strategy at the outset can

eliminate many headaches down the road and can mean the difference between

becoming an AI winner or a laggard. In the next decade, an increasing number of

organizations will find themselves in the AI "winners" group, out-competing

their peers, internalizing a cycle of continuous improvement through investment

in AI and MLOps infrastructure and a larger AI talent pool through the expansion

of educational infrastructures. MLOps will become embedded in investment

banking, transportation, logistics, or manufacturing, to name just a few sectors,

107

and function as drivers of the return on investment from their AI-related

expenditures.

Strategically, MLOps represents a major milestone. The boundaries of MLOps

are the boundaries of the business strategy. What happens outside of these

boundaries can have a huge influence on what happens inside the boundaries, but

is outside of the influence of the MLOps function per se. Thus, MLOps will have

fewer dependencies on other functions in the organization, as the latter

increasingly pick up the activities that are required for responsible AI and AI

governance and hence provide impetus for the development of the associated

solutions.

8.1. Emerging Technologies

In this chapter, we present what we consider the most important aspects for future

MLOps and Lifecycle Management (LCM) trends among many open

technologies and current hot topics in industry and academia [28,44-47]. This is,

of course, a subjective view that will necessarily miss important considerations,

but it can serve as a starting point for various companies and research institutions

that plan to work in the MLOps and LCM areas. Some of these considerations

previously appeared in a conference.

Machine Learning Operations, or MLOps for short, is the new DevOps. It makes

sense to take the DevOps concept as a metaphor because it shares many principles

that were successfully applied to software development companies, and should

work for ML and AI. That being said, AI is not just another software product;

there are important other dimensions to be considered [6,48]. Basically, there are

internal and external changes that companies and researchers should take into

consideration. We point out some of these dimensions.

The world is constantly changing. The same old strategy of collecting a set of

data, building a model around this set of data, and deploying it to prediction for

months or years is still successful to many verticals -- but it is becoming

increasingly risky. In some situations, businessmen are even wiser to build a

monitor or an analyzer of prediction problems to verify the actual behavior of

data and models used to product predictions. If the actual predictions go to a

certain “too predictable” area – or say, similar to hazard prediction, the

understandable best strategy is to remove it from the deployed model, and from

the deployed service.

108

8.2. Predictions for the Next Decade

Machine learning is now a central part of much of tech innovation. Today’s

LLMs are vehicles for science and technology, not just an amusement or a

passable product. The next decade will see machine learning increasingly

embedded within both existing and new products and services, with a focus on

new advanced capabilities. It will be informing decisions across every industry

and every company. It will, of course, help create the new software that runs on

our phones and computers. It will help us with the hard parts of writing —

inspiration, structure, and clarity — even as we write less directionally and leave

much of the work to the model. At first, tools will augment writers. Over a

decade, we will write less text while communicating more, better, refined by

near-constant model assistance. In addition to helping us work, machine learning

will also help us move. Our cars will be constantly telling us where someone is

doing an ad-hoc test drive or how much people are willing to pay. For other tasks,

we’ll be corrected actively by the models in our smartphones and watches.

The LLMs of the near future will help us process text at rates unimaginable today.

The fun text games of today will be on the outer edge of what they can do, much

as simple adders are on the edge of usefulness — by a long shot — of a silicon

chip, or how routing an aircraft is on the edge of what, in the late 1940s, you

could expect from vacuum tubes. The LLMs of the next decade will have much-

improved inner products, and will be accompanied by a wave of technology

designed to shrink them as much as possible. They will be ubiquitous,

overwhelming in performance, and eventually easy to use, with technology

designed to help ordinary people choose the right words to express what they

want to say.

9. Conclusion

Organizations are eager to leverage state-of-the-art ML and Advanced Analytics

technologies to enhance decision-making, enable innovation and increase

business value. However, productionizing and scaling ML is still hindered by

many challenges on the way from prototype to large-scale business impact,

including technology infrastructure and orchestration, operationalization process,

ecosystem capabilities and roles, as well as governance, monitoring and

sustenance mechanisms. There is a need for consulting frameworks to help

109

organizations assess the current state, challenges and opportunities to enhance

the MLOps and lifecycle management process.

Through a MLOps Lifecycle Management framework that emphasizes on 6 key

pillars, namely Development, Data, Governance, Model Lifecycle Management,

Operations and Teaming alongside core activities, such as Build, Monitor,

Governance and Automate, we discuss key activities and processes that

organizations would need to consider from a consulting standpoint to effectively

innovate leveraging ML. To boost time-to-value of ML, organizations need to

invest in MLOps core capabilities, such as technology infrastructure and tooling,

organizational capabilities and roles, ML solutions packaging, development

process and governance, ML strategy and innovation agenda, as well as model

health monitoring and sustenance, along with associated processes and practices.

References

[1] Liang P, Song B, Zhan X, Chen Z, Yuan J. Automating the training and deployment of

models in MLOps by integrating systems with machine learning. arXiv preprint

arXiv:2405.09819. 2024 May 16.

[2] Kreuzberger D, Kühl N, Hirschl S. Machine learning operations (mlops): Overview,

definition, and architecture. IEEE access. 2023 Mar 27;11:31866-79.

[3] Liang P, Song B, Zhan X, Chen Z, Yuan J. Automating the training and deployment of

models in MLOps by integrating systems with machine learning. arXiv preprint

arXiv:2405.09819. 2024 May 16.

[4] Bano S, Tonellotto N, Cassarà P, Gotta A. Artificial intelligence of things at the edge:

Scalable and efficient distributed learning for massive scenarios. Computer

Communications. 2023 May 1;205:45-57.

[5] Mishra A. Scalable AI and Design Patterns: Design, Develop, and Deploy Scalable AI

Solutions. Springer Nature; 2024 Mar 11.

[6] Panda SP. Augmented and Virtual Reality in Intelligent Systems. Available at SSRN. 2021

Apr 16.

[7] Abisoye A, Akerele JI. A scalable and impactful model for harnessing artificial intelligence

and cybersecurity to revolutionize workforce development and empower marginalized

youth. International Journal of Multidisciplinary Research and Growth Evaluation. 2022

Jan;3(1):714-9.

[8] Raman R, Buddhi D, Lakhera G, Gupta Z, Joshi A, Saini D. An investigation on the role of

artificial intelligence in scalable visual data analytics. In2023 International Conference on

Artificial Intelligence and Smart Communication (AISC) 2023 Jan 27 (pp. 666-670). IEEE.

[9] Panda SP. The Evolution and Defense Against Social Engineering and Phishing Attacks.

International Journal of Science and Research (IJSR). 2025 Jan 1.

110

[10] Newton C, Singleton J, Copland C, Kitchen S, Hudack J. Scalability in modeling and

simulation systems for multi-agent, AI, and machine learning applications. InArtificial

Intelligence and Machine Learning for Multi-Domain Operations Applications III 2021 Apr

12 (Vol. 11746, pp. 534-552). SPIE.

[11] Bestelmeyer BT, Marcillo G, McCord SE, Mirsky S, Moglen G, Neven LG, Peters D,

Sohoulande C, Wakie T. Scaling up agricultural research with artificial intelligence. IT

Professional. 2020 May 21;22(3):33-8.

[12] Meir Y, Sardi S, Hodassman S, Kisos K, Ben-Noam I, Goldental A, Kanter I. Power-law

scaling to assist with key challenges in artificial intelligence. Scientific reports. 2020 Nov

12;10(1):19628.

[13] Shivadekar S, Kataria DB, Hundekar S, Wanjale K, Balpande VP, Suryawanshi R. Deep

learning based image classification of lungs radiography for detecting covid-19 using a deep

cnn and resnet 50. International Journal of Intelligent Systems and Applications in

Engineering. 2023;11:241-50.

[14] Panda SP. Relational, NoSQL, and Artificial Intelligence-Integrated Database

Architectures: Foundations, Cloud Platforms, and Regulatory-Compliant Systems. Deep

Science Publishing; 2025 Jun 22.

[15] Shlezinger N, Ma M, Lavi O, Nguyen NT, Eldar YC, Juntti M. Artificial intelligence-

empowered hybrid multiple-input/multiple-output beamforming: Learning to optimize for

high-throughput scalable MIMO. IEEE Vehicular Technology Magazine. 2024 May

20;19(3):58-67.

[16] Samuel O, Javaid N, Alghamdi TA, Kumar N. Towards sustainable smart cities: A secure

and scalable trading system for residential homes using blockchain and artificial

intelligence. Sustainable Cities and Society. 2022 Jan 1;76:103371.

[17] Villegas-Ch W, Govea J, Gurierrez R, Mera-Navarrete A. Optimizing security in IoT

ecosystems using hybrid artificial intelligence and blockchain models: a scalable and

efficient approach for threat detection. IEEE Access. 2025 Jan 22.

[18] Mungoli N. Scalable, distributed AI frameworks: leveraging cloud computing for enhanced

deep learning performance and efficiency. arXiv preprint arXiv:2304.13738. 2023 Apr 26.

[19] Panda SP. Artificial Intelligence Across Borders: Transforming Industries Through

Intelligent Innovation. Deep Science Publishing; 2025 Jun 6.

[20] Cheetham AK, Seshadri R. Artificial intelligence driving materials discovery? perspective

on the article: Scaling deep learning for materials discovery. Chemistry of Materials. 2024

Apr 8;36(8):3490-5.

[21] Panda SP, Muppala M, Koneti SB. The Contribution of AI in Climate Modeling and

Sustainable Decision-Making. Available at SSRN 5283619. 2025 Jun 1.

[22] Shivadekar S. Artificial Intelligence for Cognitive Systems: Deep Learning, Neuro-

symbolic Integration, and Human-Centric Intelligence. Deep Science Publishing; 2025 Jun

30.

[23] DeCost BL, Hattrick-Simpers JR, Trautt Z, Kusne AG, Campo E, Green ML. Scientific AI

in materials science: a path to a sustainable and scalable paradigm. Machine learning:

science and technology. 2020 Jul 14;1(3):033001.

[24] Klamma R, de Lange P, Neumann AT, Hensen B, Kravcik M, Wang X, Kuzilek J. Scaling

mentoring support with distributed artificial intelligence. InInternational Conference on

111

Intelligent Tutoring Systems 2020 Jun 3 (pp. 38-44). Cham: Springer International

Publishing.

[25] Otaigbe I. Scaling up artificial intelligence to curb infectious diseases in Africa. Frontiers

in Digital Health. 2022 Oct 21;4:1030427.

[26] Dasawat SS, Sharma S. Cyber security integration with smart new age sustainable startup

business, risk management, automation and scaling system for entrepreneurs: An artificial

intelligence approach. In2023 7th international conference on intelligent computing and

control systems (ICICCS) 2023 May 17 (pp. 1357-1363). IEEE.

[27] Peteiro-Barral D, Guijarro-Berdiñas B. A study on the scalability of artificial neural

networks training algorithms using multiple-criteria decision-making methods.

InInternational Conference on Artificial Intelligence and Soft Computing 2013 Jun 9 (pp.

162-173). Berlin, Heidelberg: Springer Berlin Heidelberg.

[28] Kuguoglu BK, van der Voort H, Janssen M. The giant leap for smart cities: Scaling up smart

city artificial intelligence of things (AIoT) initiatives. Sustainability. 2021 Nov

7;13(21):12295.

[29] Gowda D, Chaithra SM, Gujar SS, Shaikh SF, Ingole BS, Reddy NS. Scalable ai solutions

for iot-based healthcare systems using cloud platforms. In2024 8th International Conference

on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) 2024 Oct 3 (pp. 156-

162). IEEE.

[30] Awan MZ, Jadoon KK, Masood A. Scalable and effective artificial intelligence for

multivariate radar environment. Engineering Applications of Artificial Intelligence. 2023

Oct 1;125:106680.

[31] Landin M. Artificial intelligence tools for scaling up of high shear wet granulation process.

Journal of Pharmaceutical Sciences. 2017 Jan 1;106(1):273-7.

[32] Panda SP. Securing 5G Critical Interfaces: A Zero Trust Approach for Next-Generation

Network Resilience. In2025 12th International Conference on Information Technology

(ICIT) 2025 May 27 (pp. 141-146). IEEE.

[33] Mocanu DC, Mocanu E, Stone P, Nguyen PH, Gibescu M, Liotta A. Scalable training of

artificial neural networks with adaptive sparse connectivity inspired by network science.

Nature communications. 2018 Jun 19;9(1):2383.

[34] Blanco L, Kukliński S, Zeydan E, Rezazadeh F, Chawla A, Zanzi L, Devoti F, Kolakowski

R, Vlahodimitropoulou V, Chochliouros I, Bosneag AM. Ai-driven framework for scalable

management of network slices. IEEE Communications Magazine. 2023 Nov 23;61(11):216-

22.

[35] Sadek AH, Mostafa MK. Preparation of nano zero-valent aluminum for one-step removal

of methylene blue from aqueous solutions: cost analysis for scaling-up and artificial

intelligence. Applied Water Science. 2023 Feb;13(2):34.

[36] Cohen RY, Kovacheva VP. A methodology for a scalable, collaborative, and resource-

efficient platform, MERLIN, to facilitate healthcare AI research. IEEE journal of

biomedical and health informatics. 2023 Mar 20;27(6):3014-25.

[37] Adelodun AB, Ogundokun RO, Yekini AO, Awotunde JB, Timothy CC. Explainable

artificial intelligence with scaling techniques to classify breast cancer images. InExplainable

Machine Learning for Multimedia Based Healthcare Applications 2023 Sep 9 (pp. 99-137).

Cham: Springer International Publishing.

112

[38] Sanz JL, Zhu Y. Toward scalable artificial intelligence in finance. In2021 IEEE

International Conference on Services Computing (SCC) 2021 Sep 5 (pp. 460-469). IEEE.

[39] Haefner N, Parida V, Gassmann O, Wincent J. Implementing and scaling artificial

intelligence: A review, framework, and research agenda. Technological Forecasting and

Social Change. 2023 Dec 1;197:122878.

[40] Sai S, Chamola V, Choo KK, Sikdar B, Rodrigues JJ. Confluence of blockchain and

artificial intelligence technologies for secure and scalable healthcare solutions: A review.

IEEE Internet of Things Journal. 2022 Dec 29;10(7):5873-97.

[41] Moro-Visconti R. Artificial Intelligence-Driven Digital Scalability and Growth Options.

InArtificial Intelligence Valuation: The Impact on Automation, BioTech, ChatBots,

FinTech, B2B2C, and Other Industries 2024 Jun 2 (pp. 131-204). Cham: Springer Nature

Switzerland.

[42] Oikonomou EK, Khera R. Designing medical artificial intelligence systems for global use:

focus on interoperability, scalability, and accessibility. Hellenic Journal of Cardiology. 2025

Jan 1;81:9-17.

[43] Sayed-Mouchaweh M, Sayed-Mouchaweh, James. Artificial Intelligence Techniques for a

Scalable Energy Transition. Springer International Publishing; 2020.

[44] Govea J, Ocampo Edye E, Revelo-Tapia S, Villegas-Ch W. Optimization and scalability of

educational platforms: Integration of artificial intelligence and cloud computing.

Computers. 2023 Nov 1;12(11):223.

[45] Hammad A, Abu-Zaid R. Applications of AI in decentralized computing systems:

harnessing artificial intelligence for enhanced scalability, efficiency, and autonomous

decision-making in distributed architectures. Applied Research in Artificial Intelligence and

Cloud Computing. 2024;7(6):161-87.

[46] Pazho AD, Neff C, Noghre GA, Ardabili BR, Yao S, Baharani M, Tabkhi H. Ancilia:

Scalable intelligent video surveillance for the artificial intelligence of things. IEEE Internet

of Things Journal. 2023 Mar 31;10(17):14940-51.

[47] Sakly H, Guetari R, Kraiem N, editors. Scalable Artificial Intelligence for Healthcare:

Advancing AI Solutions for Global Health Challenges. CRC Press; 2025 May 6.

[48] Shivadekar S, Halem M, Yeah Y, Vibhute S. Edge AI cosmos blockchain distributed

network for precise ablh detection. Multimedia tools and applications. 2024

Aug;83(27):69083-109.

	Chapter 4: MLOps and Lifecycle Management
	1. Introduction to MLOps
	2. Understanding Machine Learning Lifecycle
	3. Continuous Integration and Continuous Deployment (CI/CD) for ML
	3.1. Overview of CI/CD in Machine Learning
	3.2. Setting Up CI/CD Pipelines
	3.3. Tools and Technologies for CI/CD
	3.4. Challenges in CI/CD for ML

	4. Versioning in Machine Learning
	4.1. Importance of Versioning Models
	4.2. Techniques for Versioning
	4.3. Best Practices for Model Version Control

	5. Monitoring Machine Learning Models
	5.1. Need for Monitoring in ML
	5.2. Key Metrics for Model Performance
	5.3. Tools for Monitoring ML Models
	5.4. Handling Model Drift

	6. Integration of MLOps with DevOps
	6.1. Comparing MLOps and DevOps
	6.2. Benefits of Integration

	7. Case Studies in MLOps Implementation
	7.1. Successful MLOps Deployments
	7.2. Lessons Learned from Failures

	8. Future Trends in MLOps and Lifecycle Management
	8.1. Emerging Technologies
	8.2. Predictions for the Next Decade

	9. Conclusion

