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1. Introduction to MLOps 

Companies today use increasingly more machine learning in their products and 

services. From recommendation engines to computer vision to natural language 

processing, the usage of machine learning is exploding. But while the adoption 

of machine learning continues to grow, deploying and maintaining machine 

learning systems in production remains painfully challenging [1-3]. Respondents 

to industry surveys report that deploying machine learning is harder than any 

other part of the software development lifecycle. The gap between niche research 

and core business functions threatens to hollow out investment in new ideas: a 

significant amount is spent on machine learning annually, but a large percentage 

is not delivering any value [2,4,5]. Firms are spending huge sums on machine 

learning, but the vast majority of projects are failing. Organizations that 

successfully implement strong systems to support the MLOps function should be 

rewarded with vectors of highly leveraged development teams, and a reliable 

return on their investment in large scale machine learning studies. 

The challenges lie on the operations side of the equation. Operationalizing 

machine learning is different from operationalizing regular software in several 

profound ways. A machine learning model will need retraining based on 

changing data distributions — a problem exacerbated by the pace of change of 

many of the world’s most data-dependent businesses, such as finance, retail, and 

travel. Machine learning is often user-facing, which introduces concerns from 

design and performance perspectives that require continuous commitment from 

Deep Science Publishing, 2025  

https://doi.org/10.70593/978-93-7185-753-6_4  



  

90 
 

the engineering organization. Manufacturing and deploying a piece of machine 

learning code is not simply an engineering task. Doing this well requires 

collaboration with data science, engineering, and design — in particular, 

mobilizing data scientists to work on real products while still allowing them the 

autonomy they need to find new models and techniques. Why use one framework 

over another? 

 

2. Understanding Machine Learning Lifecycle 

New technology is constantly being developed to offer automatic assistance for 

machine learning model development. The Evergreen tool allows enabling or 

managing different stages of the machine learning lifecycle. It’s important to 

clarify what stages these are and what needs to be done to manage machine 

learning workloads effectively. There’s no such data science project which passes 

through all proposed stages and approaches, and certainly not with the same 

importance [6-8]. Some workflows pass through the phases lightly and some 

workflows delegate the majority of work to specific tools. The goal is not to have 

a general guide detailing the best possible design for all projects, but to discuss 

machine learning lifecycle management in the hope of designing better tools. 
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One of the first points to elaborate on in ML system management concerns the 

organization of project data. Several machine learning tools manage projects by 

an explicit data organization based on file system structure or database record 

links. Other tools have no explicit project structure, managing different types of 

external files in the same workspace. Tools defining a project structure organize 

physically or virtually the data but doing little to additional restrictive modeling 

or resource control. Projects can be folders which only allow a specific data 

structure and types for files or database collections which have obligations or 

additional access and control features [9,10]. Data organization affects how users 

retrieve and understand the underlying machine learning process. It also 

facilitates or makes more difficult the application of data science best practices, 

increasing or decreasing the risk of unpleasant surprises. 

3. Continuous Integration and Continuous 

Deployment (CI/CD) for ML 

3. Continuous Integration and Continuous Deployment (CI/CD) for ML 

3.1. Overview of CI/CD in Machine Learning 

Continuous Integration and Continuous Deployment (CI/CD) pipelines have 

become essential for the success of Machine Learning (ML) systems. By 

automating not only testing but the risky process of deployment, well-designed 

CI/CD pipelines allow companies to publish AI products in a controlled and 

systematic manner while keeping the risk associated with executing a ML model 

under constraints [11-13]. This is the case, for example, when the trained model 

makes use of an online learning system, re-training every time some new data 

becomes available or at specified periods. Ideally, CI/CD pipelines reduce the 

time interval between when a model is trained and when it makes decisions and 

infers on users. 

However, ML is a special kind of software being that the software consists of a 

model that makes predictions on a dataset. The inherent variability present in AI 

models complicates significantly the design and implementation of CI/CD 

pipelines for ML. Indeed, datasets form probability distributions capturing the 

underlying generative process of the data. These distributions are changed 

naturally over time, in coordination and reaction to economic, social, and 
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informational events [2,14-17]. Frequent changes in the underlying distribution 

cause the variable behavior of AI products and services. Models that work well 

on the training dataset may become obsolete and perform poorly on the 

deployment dataset, also referred to as drift and, in practice, deteriorate the 

predictions made to users or clients. These events, however, are unpredictable. 

As a result, keeping the underlying distributions in check is an important and 

difficult aspect of operating successful AI deployments. 

3.1. Overview of CI/CD in Machine Learning 

Continuous integration (CI) and continuous deployment (CD) are common 

practices in modern software engineering that enable more rapid delivery of 

features and fixes, while reducing errors in production software [9,18-21]. A 

CI/CD pipeline automates the process of deploying updates to code, as well as 

any necessary actions associated with those changes. CI/CD works very well for 

many common software use cases, but the basic principles of these tools, and the 

experience and confidence they give developers about the quality and 

performance of new code changes, means that it’s natural to try to extend these 

principles into the lifecycle management of other types of code-intensive 

systems. In particular, the rapid innovation and experimental research direction 

inherent in machine learning makes it attractive to see if CI/CD can apply to ML. 

However, current ML systems can be more complex, with a larger variety of 

interhandled processing steps communicated for diverse heterogeneous data 

types, and a broader class of model evaluation metrics used to judge and monitor 

the outcome of the various steps. Early attempts to directly adopt CI/CD for ML 

have resulted in tears. 

The disparate, heterogeneous nature of ML systems means that implementing 

and using a CI/CD pipeline requires experience, understanding, and effort 

[22,23]. There is no single standard for building a CI/CD system for ML; there 

are many choices, and the core CI/CD system must be customized for each target 

ML application. Thus, the system is specific to an organization, and the people 

in the organization building and deploying the ML application. So, while the 

principles of CI/CD still apply to ML, it is both more complex to do a CI/CD 

rollout for ML than for standard software, and the results of the effort have a 

larger payback, with reduced deployment times along with increased application 

accuracy and reliability. 
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3.2. Setting Up CI/CD Pipelines 

Creating CI/CD pipelines for ML requires some specific considerations. We will 

illustrate a simple example where a few steps are outlined [24-26]. First, version 

the base environment for your ML project: languages and packages, as well as 

configuration files, datasets, and code are the typical artifacts that change. By 

using these artifacts, you’ll be able to replay any experiment later. Use your ML 

code repositories with ML code incorporated in them. Next, containerize your 

ML environment: images that combine the base environment, configuration files, 

and installation scripts for datasets and external libraries should be defined. These 

images should be tagged to reflect their version for any particular experiment. 

Then host your containers: publish these images to your internal enterprise 

repository to improve security. Finally, trigger the model training: machine 

controllers, event-based triggers, orchestrators are often used for that. Automated 

tests should validate data, environment, code, hyperparameters, and model 

quality. 

These components allow you to schedule training workflows to execute these 

training and testing phases during your project lifecycle. You might have to tune 

the completion criteria for these jobs to accurately reflect the model training and 

testing costs. Centralizing your computation resources is an important cost 

reduction practice. This area is evolving rapidly. 

3.3. Tools and Technologies for CI/CD 

Many of the MLOps frameworks and tools that are being adopted already were 

implemented for CI/CD of software in general. The main difference is the unique 

requirements of machine learning systems and their lifecycle. These specialized 

tools encapsulate best practices for CI/CD of ML. The following sections briefly 

summarize the key tools and capabilities related to CI/CD. 

Continuous integration (CI) automates the processes of testing changes and 

ensuring that a new model meets both functional and non-functional 

requirements. CI enhances testing infrastructure as well as its capabilities. Non-

functional testing of models and data has received less attention than functional 

testing in CI for ML, although it is addressed to some extent by various tools. 

However, tools for non-functional testing of ML models in production are less 

mature and tested than the vast software industry experience of functional testing 

CI tools. 
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Continuous Delivery (CD) automates the creation of ML deployment artifacts. 

Specialized workflows manage these pipelines and allow for configuration of 

multiple target environments [27,28]. CD provides iterative and versioned 

deployment of ML. These capabilities are embodied in various tools. These 

aspects are also addressed by general-purpose pipeline frameworks. The 

workflow orchestration capabilities have evolved from general-purpose 

workflow orchestration frameworks to serve machine learning users' specific 

needs. These services derive their capabilities from previous work on dedicated 

frameworks. 

3.4. Challenges in CI/CD for ML 

The CI/CD practices in MLOps go beyond just creating a continuous integration 

or delivery pipeline. While it is relatively simple to trigger a build and a set of 

tests to run on each commit, this doesn’t mean the code is ready for production 

usage. In ML, a model provides useful predictions only if it is trained correctly 

and used to make inference on data which is similar in distribution to data the 

model was trained on. Therefore, well-defined interfaces are needed between 

various components for an ML pipeline. This ensures that all teams involved in 

building an ML solution have a mutual understanding of how to interact with 

each other’s collectively built artifacts. Additionally, it’s important to version 

ML models and training surroundings and keep track of data distributions while 

iterating on model improvements. While all these requirements are met in non-

ML software development via various processes and policies defined within 

organizations, the same policies often do not get translated to MLOps CI/CD 

pipelines [19,29-31]. 

Besides, MLOps and ML CI/CD pipelines still do not have a universal set of tools 

widely used and accepted by the community for solving pitfalls uniquely present 

in ML development. As a result, experiments in different organizations are 

different due to the diversity of domain, resources, and use cases. Custom tools 

and policies therefore still need to play a part in operations pipelines, but 

preferring an open-source model that encourages collaboration between 

organizations may be a better approach. Moreover, the constant exploration-

exploitation trade-off present in ML can lead to unpredictability in performance 

if enough safeguards are not used judiciously [32,33]. Non-ML pipelines also 

struggle with certain facets of software maintenance. In particular, these are 

managing code quality, technical debt, and testing that fraudulently steals user 

feedback or is dangerous to engage with actors when the software is predicting. 
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4. Versioning in Machine Learning 

Versioning in machine learning is a vital aspect of the MLOps lifecycle that 

ensures the audibility, availability and an easy rollback to the previous state of a 

model. Versioning here does not only mean versioning a model artifact, but also 

other model-related assets such as the data, commands and the environment 

needed to reproduce the trained model [34-36]. In a machine learning project, a 

model is considered the source of truth as it is supposed to increase the 

trustworthiness of the overall ML system. A model’s utility changes with time 

and space, i.e., the input domain and the environment that the ML pipeline 

operates under changes. For all these cases, versioning is a vital aspect of the 

MLOps lifecycle. 

Versioning a model is important considering the various stages of the Model 

Lifecycle Management, such as Data Management, Model Development, Model 

Evaluation, Model Serving, and Model Deployment. Each stage requires 

artifacts, models, and configurations to be tracked. While solutions exist for 

tracking these other aspects, the model itself simply gets dropped on a centralized 

file store with a name reflecting the date and time of when it was produced. This 

practice is dangerous as the unscripted model is a black box and it is necessary 

to know how to interrogate it to find additional information. Keeping this process 

manual is completely against the basic premise of MLOps, which suggests 

automation to make it CI/CD enabled. 

Some existing Model Version Control implementations allow the user to create 

a model and upload it to a versioning system. These systems then keep track of a 

user’s interactions on the model – whether a model has been replaced, deployed 

in a production environment, and so on. Model version control allows 

organizations to more rapidly develop ML solutions, track the evolution of 

models, and deploy models that are more explainable. Version control and source 

code management systems have similar functions – script, parameterized and 

versioned model training [37-40]. However, version control serves a different 

purpose for ML engineers and teams. While source code management serves as 

a standard library of model development, version control seeks to maintain 

interactions with a model such as deployment status for explainability. Both 

version control paradigms integrate easily with CI/CD pipelines. 
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4.1. Importance of Versioning Models 

Understanding data versioning helps contextualize model versioning's 

requirements; specifically, the peculiarities of machine learning as an 

infrastructure that requires exotic digital assets as input – models are static files 

and are digital assets. Models learn from data and thus are supposed to be 

improving over time [41-43]. In practice, however, many reasons can warrant 

model versioning: from self-serving necessity of promotional aspect of creating 

better models; to collaboration in teams of practitioners, either to serve the same 

use case or techniques like ensembling; to considerations of attribution and 

oversight: such as regulatory obligations from financial services or medical 

domains; forensic investigations on malicious uses; or any scenario demanding 

explanation of outputs based on model behavior. 

In addition to flattening diversity and complexity of models into specific files, 

model versioning has to tackle some extra challenges. First, these digital assets 

are very different from static data files or other software files. They are outputs 

of proprietary procedures unique to machine learning, typically leveraging third 

party frameworks or libraries with varying quality and transparency; they require 

tuning flexible hyper-parameters with hard-to-model effects; and they learn not 

immediately, but once during production. This makes practitioners reliant on 

third-parties, with unknown use cases or horizons: particularly with respect to 

transfer learning tasks, supplying models that serve as starting point for other use 

cases. 

4.2. Techniques for Versioning 

Given their vast variety and differences, there are different types of models and 

ways to create them, which results in many kinds of model versioning 

approaches. We categorize these ways into two groups: backward-compatible 

versioning and non-backward-compatible versioning. The first category is 

basically the same as how software applications are versioned, where every 

version released is backward-compatible. The second category depends on model 

types and usage at deployment time. Some models require special usage 

considerations to ensure that different versions of that model can be called at the 

same time. 

Versioning can be applied at different levels in a pipeline. At the core of a model, 

it is usually a custom operation that embeds how to create predictions. This is the 

concept known as the “predictor.” This predictor can be called in many ways in 



  

97 
 

a pipeline, be it handmade code in a micro-service architecture or hidden inside 

commercial products. Developers spend effort creating special software libraries 

to guarantee that any code calling functions from this library can run prediction 

without knowing how to interact with the actual code implementing this 

predictor. Since any change in that implementation can generate different micro-

level predictions, it is expected that any change to the model would trigger a 

library change and possibly a new key. 

4.3. Best Practices for Model Version Control 

Below, I outline several best practices for model version control to help make it 

easier and simpler for development teams to manage machine learning model 

development and deployment pipelines. Most of these best practices come 

directly from industry experience managing machine learning models in 

production. 

1. Track the Metadata that Matters: Maintain proper metadata when versioning 

models. At a minimum, you should consider storing the following artifacts in 

association with the model: the model code details, hyperparameter settings, the 

version of the libraries with which the model was built and trained, the training 

dataset, the evaluation metrics, and model performance against those metrics 

along with a minimum threshold that the model must pass to successfully be 

validated, and the person that trained the model. Otherwise, operations teams will 

be at risk of not "knowing what they don't know," and a mysterious model could 

easily slip into production without any proper auditing, ethical, or legal 

guidelines being followed. 

2. Model Metadata as Code: If possible, place all model metadata in code. This 

way, it can be tracked, versioned, and managed the same way any other codefile 

in the project is managed. 

3. Track the Journey of a Model: There are different types of model versioning - 

each version can be anything from a modification in a single hyperparameter to 

an entirely differently designed model; a model can even have no code changes 

but simply a re-training on a different dataset and, thus, the model architecture 

may not change much. The key point here is to understand the journey of a model 

at all stages in its life cycle. 

4. Use a Centralized Repository for your Models: Model versioning must occur 

in a centralized location accessible to all engineering teams responsible for 
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particular models. It should be part of a larger tooling ecosystem that supports 

other aspects of model lifecycle management as well as tooling for the 

development and deployment pipelines. This is also a guideline for practice as it 

mandates automated workflows such as policy-based auto archiving, access 

control, comparison, and lineage visualization for models and their artifacts in 

addition to simpler storage and tracking capabilities that are important. 

5. Monitoring Machine Learning Models 

In traditional software development lifecycle, production systems are closely 

monitored for any performance degradation. Typical monitoring workflow 

detects anomalies in the execution, logs, and results, and triggers alerts that can 

go to the application team to fix any possible issue. Since Machine Learning 

based applications are different and introduce a black box model instead of rule-

based software logic, the need for monitoring is even higher for ML based 

applications due to the following reasons: 

Data Drift: Streaming data into Model inference can change the distribution of 

input and output data. The Model predictions are as good as the data fed to the 

Model. Hence, data drift can lead to bad model performance over time. 

Concept Drift: Changing relationships between input and output data can lead to 

concept drift. For example, in fraud detection, increase in fraud for a payment 

mode can lead to relationship where the Fraud = Payment Mode. If an 

organization introduces more payment modes, then the relationship is different, 

and concept drift occurs. 

Different Failure Mode: A traditional software application may fail with 

exception scenarios. Machine Learning Models have different types of failure 

modes, wherein the Model is not throwing errors or exceptions, however it is 

acting on unverified inputs or predicting outputs that are not realistic. For 

example, a customer churn Model predicting previously loyal customers to be 

frauds would be a cause for concern. 

Monitoring Machine learning Models is not straightforward and involves 

different type of metrics based on the Business domain, Model usage patterns 

and Infrastructure. Let's discuss the different types of metrics in more detail. 
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5.1. Need for Monitoring in ML 

Monitoring is an important part of any machine learning life cycle. You cannot 

simply deploy a model and forget about it. If you want your deployed model to 

run optimally, you need to continuously monitor its drift. Why is monitoring 

important? A model may be highly accurate at deployment and guarantee good 

performance. However, over time, the underlying distribution of data can change, 

which can impact model performance. This type of degradation is commonly 

referred to as drift. 

Why does drift happen? The data used to train the model is a snapshot of data 

taken at a single point in time. An assumption of the modeling process is that that 

snapshot is representative of the real world over time. For high-stakes use cases 

such as fraud detection and clinical diagnosis, this assumption does not hold 

beyond a short time and models typically do not perform well over time. In high-

stakes use cases, data changes constantly, and predictions degrade. Therefore, 

monitoring the model as data drifts is crucial. But drift can occur in multiple 

ways. A change in the data over time is termed as data drift or covariate shift. A 

change in the relationship between covariates and outcomes is termed as concept 

drift. This can happen even if there is no data shift. 

5.2. Key Metrics for Model Performance 

After going through the need for monitoring ML models, the next important 

question is about the metrics that can be used to monitor the models. Although 

several ML lifecycle management tools offer default alerts and checks, it is left 

to the data scientists and ML ops engineers to select the specific features and 

thresholds that need to be checked for monitoring. These are model specific and 

will depend on the model architecture being used in addition to the business 

problem at hand. There are several factors affecting the ML performance: the 

intended usage of the model, available external checks, degree of dependency 

needed with input data, and distribution of its output values. Below we describe 

some of the most common metrics that should be checked. 

Model Accuracy. Usually, measuring the model accuracy is the most used 

method for comparing model predictions with actual results or labels. It can be 

defined for the case of regression as 1 – MAE or 1 – MSE, where MAE or MSE 

compares the predicted values with actual values. Since this similarity 

computation is usually made for the entire test set, it can be compared to input 

data at a later point in time to check for thresholds for drift detection. A note of 
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caution here is to ensure the timing of the prediction and actual label assignment 

is matched perfectly to avoid data leakage, as prediction labels can usually be 

stringently held via derivation rules over the dependent variable. 

Data Drift Detection. Model performance drift or prediction error drift is an 

indicator of the performance of a model exposed to real-world data. Model 

monitoring should track the data stream over time to understand the underlying 

pattern and distribution of the data to capture the expected underlying pattern. 

Data drift is an indicator for ML practitioners, where prediction quality 

monitoring should be the most focus. The performance of traditional ML or 

statistical models can be monitored with their intended purpose, but modern 

supervised ML driven by neural networks have little model interpretability or 

explainability. An increasing prediction error drift information should lead to 

conducting correlation tests to understand the relationship between input data and 

performance drift. In case their correlation be significant, then the ML model 

should be retrained, repurposed, or revisited to achieve explainability. 

5.3. Tools for Monitoring ML Models 

We have discussed the importance of monitoring the performance of the ML 

models and how to measure their performance. Now, we will touch upon the tools 

that are available for monitoring the ML models. These tools are used for 

different types of monitoring, including data, model performance, data and model 

observability. Data Observability tools monitor the data pipelines, detect the 

anomalies and help alert in case of any issues in the data, including missing data, 

change in distribution of input features or target variable etc. The Model 

Performance Monitoring tools help check the performance metrics of a deployed 

ML model against the business defined thresholds and alert in case of any 

performance degradation. The Data and Model Observability tools are a 

combination of the above two capabilities. They provide a single view to monitor 

the data pipelines and deployed models. 

Here are some of the data observability tools that are available: Dagshub, 

Datakin, Databand, Datafold, Datastreams, GitHub, InfluxDB, Monte Carlo, 

PipeRite, PipelineWise, Puffin, Soda, Unpuzzle, etlworks, etleap, futureX, 

FiveTran, Grouparoo, Hevo Data, Keboola, Keen.io, Merge, Matillion. Some of 

the tools that help monitor model performance are: Albacore, Aporia, App 

Insight, Arize, Bespoke Metrics, Evidently, Fiddler, Giskard, Great Expectations, 

Human Loop, Mistral, NannyML, Neurala, MLflow, Npml, Onto, Pymetrics, 
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Shadow Mode, Superwise, Tecton, Verta, Weights and Biases, and ClearML. 

Here are some of the Data and Model observability tools that can be used: Arize, 

Clips Analytics, Datadog, DoiT, Explorium, Immuta, Metaplane, Observability, 

Ponder Policy, Sisu, Sumo Logic, and StatisticalML. 

5.4. Handling Model Drift 

In high-stakes environments, drift detection is necessary to ensure that models 

maintain their desired level of performance. Drift mitigation methods can be 

applied when drift is detected or can be added into the pipeline before a drift is 

detected, such as training based on labeled data streams or retraining periodic 

batch processing. In urgent situations, a fully retrained model may need to be 

tapped immediately, but for the majority of non-real-time predictions, drift 

correction via retraining on the most relevant data is warranted. Several solutions 

are available to build and monitor such adaptive frameworks to help mitigate 

model drift and data integrity problems. 

The first choice to handle model drift and data integrity issues is to create a fully 

automated retraining pipeline where models are retrained incrementally, or 

periodically as data becomes available without human intervention. In real-time 

systems, the models can be updated incrementally. In such solutions, solutions 

based on online learning are the preferred approach to updating existing models 

via an additional small optimal incremental update. 

Adaptive semi-supervised models that incrementally retrain library models in 

case modeling performance is below a drift detection threshold have been 

proposed. Decision trees and hierarchical relevance tree models have also been 

proposed for incrementally learning and adapting for different classes without 

retraining on previously seen data or the need for a re-initialization effort. The 

periodic retraining setup is more common in periodic batch processing pipelines. 

In the majority of these solutions, the monitored models are retrained on partial 

input data that fall within a recency threshold of the current time. 

6. Integration of MLOps with DevOps 

MLOps can be seen as extending the principles of DevOps into the realm of 

machine learning and AI development. Specifically, the integration of MLOps 

with DevOps can be understood as a natural progression of a collaborative culture 
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where developers and IT operations teams continuously work together 

interleaving multiple steps involved in the continuous delivery of applications. 

In this regard, this section seeks to first elaborate on the similarities and 

differences between MLOps and DevOps and then present the advantages of 

integrating both. 

MLOps extends the DevOps principles of agile, collaboration, automation, 

monitoring, and continuous improving, into the realms of ML development and 

deployment. MLOps provides a set of AI lifecycle management capabilities to 

address the additional complexity and challenges of moving ML systems into 

production and relying upon them for supporting business operations and 

decisions. An initial important difference between MLOps and DevOps is that in 

DevOps application releases are discrete and require code level changes, while 

in MLOps, all models need to be continuously monitored across a number of 

evaluation metrics, in order to determine drift or model degradation performance 

thresholds for automated retraining or redevelopment execution in any form of 

cycle and frequency. 

On the other hand, both worlds also look to use common technologies. In 

particular, in the first step of the CI pipeline, MLOps aims to integrate model 

training, testing, and validation, at the code and model level into the CI process. 

AutoML capabilities such as hyperparameter scaling, and bias and fairness 

checking can further promote and facilitate this integration. Furthermore, 

integration pipelines can then be spawned for the CD step executions using 

containers or with artifact storage enabling monitoring observability and 

auditability controls. 

6.1. Comparing MLOps and DevOps 

Probably the first question regarding MLOps is why do we need this concept 

instead of using our already established DevOps processes? Or better, what is the 

difference between MLOps and DevOps? To answer this question we need to go 

once more to the conceptual basis that defines MLOps. The main goal of both 

concepts is to automate the development pipeline of the products: for DevOps 

the products are primarily software, while for MLOps the products are ML 

models, but also the services or products that use these models. There are many 

differences that change the way how we can provision tools and techniques for 

production and post-implementation of products, which lead us to understand that 
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MLOps cannot yet be totally addressed within the notion of DevOps in the same 

way that we understand it for software projects. 

To be more precise, these two activities focus on the same inputs and business 

objectives: having delivers continuously done is necessary for both tasks. But in 

the case of MLOps the inputs are models and not just code. Before being put into 

production, ML models go through pre-production activities such as data pipeline 

design, data collection, exploitation, and exploratory analysis, feature 

engineering, hyper-parameters optimization, and analysis, selection, and training 

of the model itself. Through these activities, a model can go through numerous 

versions, which are selected based on statistical and business metrics, in order to 

be deployed in the production environment. And in the production phase, MLOps 

activities are not just confined to ensuring that ML code is continually supplied 

for updated. In fact, the ML models are not static entities while in the production 

environment. They demand a ceaseless cycle of evaluation against data defined 

metrics in order to understand when the model’s concept in production has 

drifted, indicating the need for a model update. 

6.2. Benefits of Integration 

Although both DevOps and MLOps are intended to enhance productivity, 

minimize time to market, and increase system reliability, to date integration has 

only occurred at the technological level, not at the organizational level. In other 

words, a company may have IT and AI teams that both use compatible tools for 

CI/CD, but are still independently managed. A cultural or leadership agreement 

or bond between the departments is not yet visible in most organizations. If this 

gap were bridged, the benefits of technological integration could be amplified. 

Businesses must learn that the problems DevOps teams face in delivering AI 

assets and adapting them to production environments differ from those that the 

teams involved in ML share. For one thing, the frequency of changes is different 

– IT applications are regularly modified, whereas, in ML applications, collation 

is much rarer. AI team efforts are more disparate than software team 

responsibilities, even if the teams work within the same framework. AI systems 

are called on to solve more complex tasks and support a larger range of use cases 

than other technological tools. IT microservices are more interconnected. What 

is more, while the only major system failure that may occur with DevOps is that 

the service is not working, AI systems can create irrevocable damage if, for 

instance, they recommend giving an overdose of fentanyl for a patient in need of 

morphine to relieve pain for terminal illness. 
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7. Case Studies in MLOps Implementation 

In the previous sections of this paper, we have outlined the need for ML teams to 

take a software engineering approach and implement a cycle of continuous 

monitoring, experimentation, and learning while serving ML systems in 

production. In this section, we provide more detail about these processes through 

a set of case studies gathered from multiple domains and teams at multiple levels 

of maturity. Sharing the stories of others helps your MLOps team both to share 

the benefits you hope to provide, as well as the challenges other companies have 

faced on their MLOps journeys. While brief, these case studies describe many 

different MLOps systems and processes, including: 

- How various teams have adopted best practices of DevOps, DataOps, and 

ModelOps and rolled those practices into their daily workflow. - The importance 

of human collaboration and communication when deploying ML into production. 

- Examples of successful MLOps deployments and ended failures along the way. 

- Various levels of MLOps expertise, including those teams who build complete 

frameworks and MLOps services utilized by other teams, as well as those who 

are just beginning their MLOps journey and offering MLOps related support to 

other teams in their organization. 

Collectively, we hope these case studies give you a taste of what other teams have 

dealt with successfully, and the benefits and lessons they have gleaned from those 

journeys. The efforts outlined are reflections of what we have seen worked at 

scale and want to help teams beginning the MLOps journey avoid the pitfalls 

along the way. 

7.1. Successful MLOps Deployments 

MLOps is actually just a natural extension of decades’ worth of software 

development and services work, and most of the internals are built on top of the 

decades’ worth of learning and investing done in enterprise-grade software. The 

lifecycle management aspects of machine learning may be new in some ways, 

but the code-centric DevOps and SRE automation patterns are very mature. Even 

the AI-specific parts of MLOps are derivative of existing work in DevOps, Chaos 

Engineering, safety, security, and the other aspects of code-centric tech. 

At least for production systems in the world today, much of what many 

companies think of as “MLOps” are capabilities already deployed in the real 

world at scale, thanks to the ongoing work on the part of both developers as well 



  

105 
 

as tooling developers. Core tenets of MLOps, such as the automation of model 

evaluation, validation, verification and monitoring for performance and 

degradation is the main focus of software in production today, often 

supplemented with tried and true code-centric production practices. We already 

have feedback loops. 

This is not to say that MLOps doesn’t need more work. Absolutely – as any 

developer in this space will attest to, there’s far more space for capabilities that 

aren’t fully fleshed out, or at least have not been productized and made accessible 

for enterprise use. True cost, performance and quality, especially in high 

stake/cost industries, are nascent right now, especially with capabilities such as 

drift detection and monitoring that tie natural variance detection approaches to 

active governance models of machine learning pipelines. 

7.2. Lessons Learned from Failures 

Both Kwan and MLOps.org focus on the lessons learned from predictive 

analytics projects which had failed to provide value due to the lack of formal 

operationalization. They stimulate projects in which value creation data products 

have been deployed but are not adequately managed in production. The lessons 

learned are reported as guidelines which are considered necessary to make 

analytics deployments more efficient and effective in practice. These guidelines 

are widely echoed within current literature as important factors to avoid failure 

in CS 2. By illustrating the history of common projects in which an algorithm 

was deployed for internal stakeholders in the company, the guidelines describe 

principles of operation and product thinking to be followed closely. 

The lessons highly relate to best practices for professional software products, 

oriented to internal users. The PO values from the product owner perspective, 

strategic alignment with the organizational business goals from the 

organizational development perspective, the PO and POA from the product 

strategy perspective, the PDP from the stakeholder perspective, and the DMP and 

EDP from the decision model perspective. The importance of the POC, or 

prototype opportunity cycle, is to highlight that development periodicity should 

be tempered with learning orientation. Additionally, exercises and examples are 

used from software practice. Using these practice and theory combinations, 

operational principles are introduced, specifically for decision products, to 

improve practice. 
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Learning is very important in business decision making. However, it also 

introduces complexities in the lesson learning. The partners may use different 

words, or even language, for operations, tactics, and strategical issues. The 

recommendation structure is also different. In MLOps, the company is solely 

responsible. In the data engineering decision model triplet, the company is 

ridiculed if the systems fail. For practitioner-oriented decision products focused 

on adding value to an organization, the product is never considered finished. The 

ownership of a product is important until it erupts as business as usual, triggering 

more formal production management. 

8. Future Trends in MLOps and Lifecycle 

Management 

Machine Learning is thriving. Tasks that were considered prohibitive a few years 

ago, or that were not yet feasible, have now been solved. Emerging technologies 

such as large language models, diffusion models, foundation models, and 

autonomy have shown what is possible with Machine Learning. As these 

technologies grow into new disciplines, such as AI for Drug Discovery, they will 

proliferate and grow in sophistication, and new use cases and business models 

will emerge in the next decade. MLOps software will need to evolve and grow 

up with them. As the MLOps toolchain matures, it takes more of its responsibility 

for the ML team, which becomes smaller. At the same time, MLOps tools must 

align with the business strategy, thereby enabling organizations to accomplish 

their broader AI objectives. Yet, while the MLOps journey can accelerate an 

organization's AI strategy execution, it cannot replace the capabilities of human 

ingenuity and expertise. 

Success in MLOps requires a plan. Defining the right strategy at the outset can 

eliminate many headaches down the road and can mean the difference between 

becoming an AI winner or a laggard. In the next decade, an increasing number of 

organizations will find themselves in the AI "winners" group, out-competing 

their peers, internalizing a cycle of continuous improvement through investment 

in AI and MLOps infrastructure and a larger AI talent pool through the expansion 

of educational infrastructures. MLOps will become embedded in investment 

banking, transportation, logistics, or manufacturing, to name just a few sectors, 
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and function as drivers of the return on investment from their AI-related 

expenditures. 

Strategically, MLOps represents a major milestone. The boundaries of MLOps 

are the boundaries of the business strategy. What happens outside of these 

boundaries can have a huge influence on what happens inside the boundaries, but 

is outside of the influence of the MLOps function per se. Thus, MLOps will have 

fewer dependencies on other functions in the organization, as the latter 

increasingly pick up the activities that are required for responsible AI and AI 

governance and hence provide impetus for the development of the associated 

solutions. 

8.1. Emerging Technologies 

In this chapter, we present what we consider the most important aspects for future 

MLOps and Lifecycle Management (LCM) trends among many open 

technologies and current hot topics in industry and academia [28,44-47]. This is, 

of course, a subjective view that will necessarily miss important considerations, 

but it can serve as a starting point for various companies and research institutions 

that plan to work in the MLOps and LCM areas. Some of these considerations 

previously appeared in a conference. 

Machine Learning Operations, or MLOps for short, is the new DevOps. It makes 

sense to take the DevOps concept as a metaphor because it shares many principles 

that were successfully applied to software development companies, and should 

work for ML and AI. That being said, AI is not just another software product; 

there are important other dimensions to be considered [6,48]. Basically, there are 

internal and external changes that companies and researchers should take into 

consideration. We point out some of these dimensions. 

The world is constantly changing. The same old strategy of collecting a set of 

data, building a model around this set of data, and deploying it to prediction for 

months or years is still successful to many verticals -- but it is becoming 

increasingly risky. In some situations, businessmen are even wiser to build a 

monitor or an analyzer of prediction problems to verify the actual behavior of 

data and models used to product predictions. If the actual predictions go to a 

certain “too predictable” area – or say, similar to hazard prediction, the 

understandable best strategy is to remove it from the deployed model, and from 

the deployed service. 
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8.2. Predictions for the Next Decade 

Machine learning is now a central part of much of tech innovation. Today’s 

LLMs are vehicles for science and technology, not just an amusement or a 

passable product. The next decade will see machine learning increasingly 

embedded within both existing and new products and services, with a focus on 

new advanced capabilities. It will be informing decisions across every industry 

and every company. It will, of course, help create the new software that runs on 

our phones and computers. It will help us with the hard parts of writing — 

inspiration, structure, and clarity — even as we write less directionally and leave 

much of the work to the model. At first, tools will augment writers. Over a 

decade, we will write less text while communicating more, better, refined by 

near-constant model assistance. In addition to helping us work, machine learning 

will also help us move. Our cars will be constantly telling us where someone is 

doing an ad-hoc test drive or how much people are willing to pay. For other tasks, 

we’ll be corrected actively by the models in our smartphones and watches. 

The LLMs of the near future will help us process text at rates unimaginable today. 

The fun text games of today will be on the outer edge of what they can do, much 

as simple adders are on the edge of usefulness — by a long shot — of a silicon 

chip, or how routing an aircraft is on the edge of what, in the late 1940s, you 

could expect from vacuum tubes. The LLMs of the next decade will have much-

improved inner products, and will be accompanied by a wave of technology 

designed to shrink them as much as possible. They will be ubiquitous, 

overwhelming in performance, and eventually easy to use, with technology 

designed to help ordinary people choose the right words to express what they 

want to say. 

9. Conclusion 

Organizations are eager to leverage state-of-the-art ML and Advanced Analytics 

technologies to enhance decision-making, enable innovation and increase 

business value. However, productionizing and scaling ML is still hindered by 

many challenges on the way from prototype to large-scale business impact, 

including technology infrastructure and orchestration, operationalization process, 

ecosystem capabilities and roles, as well as governance, monitoring and 

sustenance mechanisms. There is a need for consulting frameworks to help 
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organizations assess the current state, challenges and opportunities to enhance 

the MLOps and lifecycle management process. 

Through a MLOps Lifecycle Management framework that emphasizes on 6 key 

pillars, namely Development, Data, Governance, Model Lifecycle Management, 

Operations and Teaming alongside core activities, such as Build, Monitor, 

Governance and Automate, we discuss key activities and processes that 

organizations would need to consider from a consulting standpoint to effectively 

innovate leveraging ML. To boost time-to-value of ML, organizations need to 

invest in MLOps core capabilities, such as technology infrastructure and tooling, 

organizational capabilities and roles, ML solutions packaging, development 

process and governance, ML strategy and innovation agenda, as well as model 

health monitoring and sustenance, along with associated processes and practices. 
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