Using Accelerated Supervised Machine Learning Algorithms (ASMLA) as a Tool in Life Insurance Underwriting

Mamdouh Hamza Ahmed

Fellow of the American Risk & Insurance Management Society (FRIMS)

Professor at Insurance & Actuarial Sciences Department,

Faculty of Commerce, Cairo University

Remark: AI used in generation the data of the model

Learning Objectives:

After studying this chapter, you will be able to:

- 1) Define and understand the meaning and the processes of insurance underwriting.
- 2) Applying the underwriting processes on life insurance.
- 3) Know the Importance of Quantitative Models for Accurate Underwriting.
- 4) Recognize the Importance of Quantitative Models for Insurer Financial Stability

1. Introduction

Life insurance underwriting is the process of determining eligibility and classifying applicants into risk categories to determine the appropriate rate to charge for transferring the financial risk associated with insuring the applicant. Traditional life insurance underwriting involves assessing the applicant's physical health, along with other financial and behavioral elements, then determining whether an applicant is eligible for coverage and the risk class to which that individual belongs. This chapter applies Accelerated Supervised Machine Learning Algorithms (ASMLA), a method employed by various researchers, to enhance underwriting efficiency. We implement different ASMLA models combined with optimized preprocessing techniques to accelerate and improve risk assessment in life insurance underwriting. Accelerated underwriting relies on both traditional and non-traditional, non-medical data used within predictive models or machine learning algorithms to perform some of the tasks of an underwriter. This chapter investigates the application of Accelerated Supervised Machine Learning Algorithms (ASMLA) for risk classification in life insurance underwriting. Utilizing a

synthetic dataset of 100,000 applicants, the study successfully categorizes individuals into four distinct risk tiers. The results indicate that the models achieve not only a high degree of predictive accuracy but also maintain explainability, underscoring the potential of ASMLA to render the underwriting process both more efficient and equitable.

1.1 The Underwriting Process Defined

Life insurance underwriting serves as the critical mechanism for assessing applicant eligibility and classifying individuals into distinct risk cohorts. This classification directly informs the calculation of premium rates, ensuring they are proportionate to the specific financial risk an insurer accepts. The conventional approach relies on an indepth analysis of medical examinations, financial documentation, and lifestyle indicators. In contrast, accelerated underwriting represents a paradigm shift, leveraging machine learning to fuse traditional medical information with non-traditional data sources—such as digital footprints and consumer behavior—thereby automating and optimizing the entire procedure.

1.2 The Critical Role of Quantitative Models in Underwriting and Financial Stability

The precision of the underwriting process is a cornerstone of an insurance company's fiscal health and long-term stability. Quantitative models are indispensable for several key reasons:

- a) **Risk Assessment:** They employ statistical and machine learning techniques to forecast an individual's life expectancy and the likelihood of a claim, based on a synthesis of risk factors.
- b) **Precision in Premium Setting:** By precisely measuring how each risk factor influences mortality, insurers can establish premium structures that are both more exact and equitable (Dionne & Doherty, 1991).
- c) **Operational Efficiency and Uniformity:** Automation allows for the rapid processing of large datasets, minimizing inconsistencies and errors inherent in subjective human analysis (Breck et al., 2017).
- d) **Portfolio Risk Management:** These models enable insurers to evaluate the concentration of risk within their portfolio and deploy strategies to diversify and optimize profitability (Shapiro, 2022).
- e) **Fraud Identification:** Machine learning algorithms can identify atypical patterns and flag applications that deviate from established norms, indicating potential fraud (Ngai et al., 2011).
- f) Adherence to Regulation: Quantitative approaches create a clear, auditable trail of

decision-making, facilitating compliance with regulatory standards (Ribeiro et al., 2016).

In summary, these models are pivotal in fostering objectivity, streamlining operations, and ensuring regulatory adherence. Ultimately, accurate underwriting is the bedrock of an insurer's financial sustainability and its capacity to honor policyholder commitments.

2. Inherent Challenges in the Traditional Underwriting Paradigm

The conventional life insurance underwriting process is frequently characterized as protracted, resource-heavy, and reliant on manual, often subjective, assessments. These attributes lead to operational inefficiencies, significant delays, and inconsistent risk categorizations.

The deployment of Accelerated Supervised Machine Learning Algorithms (ASMLA) presents a transformative solution to automate and refine these procedures. However, the integration of ASMLA within the life insurance sector faces several impediments, including:

- a) A scarcity of holistic research and applicable frameworks for its seamless adoption.
- b) Apprehensions regarding data security, inherent algorithmic biases, and the interpretability of model outputs.
- c) The imperative to maintain regulatory compliance and incorporate meaningful human review in final decisions.

This article probes the viability, advantages, and constraints of utilizing ASMLA in life insurance underwriting. By dissecting these facets, we seek to provide actionable guidance for underwriters, insurers, and regulators to deploy ASMLA in a manner that is both effective and ethically sound. The ultimate aim of this research is to advance underwriting precision, streamline operations, and elevate customer satisfaction within the industry.

3. The Evolving Integration of ML and AI in Underwriting

In recent years, the infusion of machine learning (ML) and artificial intelligence (AI) into life insurance underwriting has accelerated. A growing body of scholarly work points to the capacity of these technologies to enhance the accuracy, speed, and fairness of risk assessment.

Richards (2020) contends that the subjective nature and slow pace of traditional underwriting make it an ideal candidate for ML-driven automation, with his research showing that predictive models can surpass conventional methods in classification accuracy while also cutting operational expenses.

Bertsimas et al. (2018) pioneered an interpretable ML framework for medical risk prediction, relevant to life insurance, which utilizes optimal classification trees. Their results indicate that such models retain high predictive capability while offering the transparency required for regulatory and actuarial scrutiny.

Brynjolfsson and McElheran (2016) explored AI's role in lowering information-processing costs in complex decision-making environments like underwriting, offering a macroeconomic viewpoint on how AI boosts productivity at the firm level, including within insurance.

Choi and Varian (2012) illustrated the potential of big data analytics to augment underwriting by deriving risk-correlated insights from unconventional sources, including online activity, data from wearable devices, and social media.

Furthermore, Wang et al. (2018) provided a case study applying XGBoost to health insurance underwriting, showing its superior performance in risk classification compared to traditional logistic regression.

Despite these demonstrated benefits, the literature also cautions about challenges in AI-based underwriting, such as algorithmic bias and fairness (Barocas & Selbst, 2016), data privacy issues, and regulatory ambiguity (Ribeiro et al., 2016). Consequently, any ASMLA implementation must be supported by robust governance frameworks to guarantee compliance, transparency, and accountability.

4. Identifying Critical Gaps in the Literature

Although machine learning adoption is expanding across the insurance sector, focused research on Accelerated Supervised Machine Learning Algorithms (ASMLA) specifically for life insurance underwriting remains limited. Much of the existing scholarship addresses broader AI applications in claims management or customer service, providing little insight into the unique operational, actuarial, and ethical dilemmas of underwriting automation (Sivarajah et al., 2017).

A notable deficiency exists in empirical studies examining how acceleration techniques—like GPU-optimized training, distributed computing, and real-time inference—influence model performance, fairness, and decision speed in high-consequence underwriting scenarios.

Moreover, prevailing frameworks frequently fail to consider how ASMLA systems adapt to dynamic data landscapes, such as changing health risk trends or new regulatory requirements. The long-term effects of these technologies on underwriting results, consumer confidence, and institutional compliance are also underexplored. There is a

particular absence of standardized methods for explainability, continuous post-deployment model monitoring, and effective human-AI collaboration in actuarial decision-making. These identified gaps underscore the necessity for interdisciplinary research that connects machine learning, actuarial science, ethics, and regulation to develop definitive best practices for integrating ASMLA into life insurance underwriting.

This section details the methodological framework for applying ASMLA to life insurance underwriting, which synthesizes data simulation, preprocessing, model selection, training, and performance assessment (Shrestha & Mahmood, 2019).

5. A Practical Application of ASMLA in Life Underwriting

5.1. Numerical Illustration: Dataset Construction

To mirror real-world conditions without compromising data privacy, a synthetic dataset comprising 100,000 life insurance applicants was created. This dataset incorporates attributes standard in underwriting decisions:

- Age
- Gender
- Body Mass Index (BMI)
- Smoking Status
- Medical History (e.g., diabetes, hypertension)
- Occupation
- Annual Income
- Family History of Disease
- Physical Activity Level
- Alcohol Consumption

Each applicant was assigned one of four risk class labels: Preferred, Standard, Substandard, or Rejected.

5.2 Data Preparation

The data preparation phase involved managing missing values, converting categorical variables into numerical formats, and normalizing numerical features. Specifically, one-hot encoding and standard scaling were applied. To counteract class imbalance, the Synthetic Minority Over-sampling Technique (SMOTE) was employed, ensuring the

model was trained effectively across all risk categories (Chawla et al., 2002; Han et al., 2005).

5.3 Selection of Models

For comparative analysis, two supervised learning algorithms were chosen:

- Random Forest Classifier
- XGBoost Classifier

These models were selected due to their proven efficacy in classification problems and their relative interpretability (Breiman, 2001; Chen & Guestrin, 2016).

Hyperparameters were optimized using cross-validation techniques (Kuhn & Johnson, 2013).

5.4 Training and Assessing the Models

The dataset was split, with 80% allocated for training the models and 20% reserved for testing. Model performance was gauged using multiple metrics:

- Accuracy
- Precision
- Recall
- F1-score
- Confusion Matrix
- Area Under the Curve (AUC)

To elucidate the models' decision-making processes, SHAP (SHapley Additive exPlanations) values were calculated, quantifying the contribution of each feature to individual predictions and thereby ensuring transparency (Lundberg & Lee, 2017).

5.5 Ethical and Regulatory Safeguards

Given the high-stakes nature of underwriting, the methodology explicitly incorporates measures to prevent the models from perpetuating discrimination or bias. This includes the use of fairness-aware algorithms, scheduled audits, and strict compliance with regulatory standards (e.g., GDPR and AI transparency guidelines) to protect applicant rights (Wachter et al., 2017; Raji et al., 2020).

6. Implementation and Findings

This study evaluates the practicality of Accelerated Supervised Machine Learning Algorithms (ASMLA) for life insurance underwriting by implementing and testing two models on a synthetic dataset of 100,000 applicants. The following section elaborates on the dataset, the preprocessing pipeline, the model training process, the evaluation methodology, and the interpretation of results via SHAP analysis.

6.1 Elaboration on the Dataset

The synthetic dataset of 100,000 applicants was engineered to closely simulate genuine life insurance applications. Each applicant profile is defined by 10 key risk factors.

- 1. Age
- 2. Gender
- 3. BMI (Body Mass Index)
- 4. Smoking status
- 5. Blood pressure
- 6. Cholesterol level
- 7. Family history of illness
- 8. Occupation risk
- 9. Alcohol consumption
- 10. Physical activity

The underwriting risk classes were categorized into four groups: **Rejected**, **Substandard**, **Standard**, and **Preferred**, following actuarial and mortality-based classification rules.

6.2 Data Preprocessing

The following preprocessing steps were applied:

- **Missing Values:** Imputed with mean (numerical) or mode (categorical) (Han, Kamber, & Pei, 2011).
- Categorical Encoding: One-hot encoding for variables like occupation, smoking status.
- **Normalization:** All numeric features standardized to zero mean and unit variance.

• Class Balancing: SMOTE (Synthetic Minority Over-sampling Technique) was applied to boost minority class samples, particularly for the "Rejected" class (Chawla et al., 2002).

6.3 Model Selection

Two models were developed:

- Random Forest (RF): A robust ensemble of decision trees (Breiman, 2001).
- **XGBoost (XGB)**: An optimized gradient-boosted tree method suitable for structured data (Chen & Guestrin, 2016).

Each model was trained on 80% of the data, tested on 20%, using stratified sampling.

6.4 Model Evaluation

Model	Accuracy	Precision	Recall	F1-Score
Random Forest	89.4%	88.2%	87.9%	88.0%
XGBoost	91.2%	90.4%	90.1%	90.2%

XGBoost showed superior classification, especially for edge classes (Rejected, Substandard), justifying its selection for deployment trials (Wang et al., 2018).

6.5 SHAP Analysis

SHAP analysis was applied to the XGBoost model (Lundberg & Lee, 2017) to interpret predictions:

- **Age:** Risk increases significantly after age 60.
- **BMI & Smoking:** Strong positive correlation with Substandard/Rejected outcomes.
- Cholesterol & Blood Pressure: Key clinical predictors of elevated risk.
- Family History & Occupation Risk: Additively increase overall mortality risk.

This interpretability supports ethical deployment by enhancing transparency and fairness in automated underwriting.

6.6 Benefits in Time and Cost

The implementation of ASMLA significantly reduces underwriting time by automating the risk classification process, which traditionally requires manual review and actuarial consultation. For instance, average processing time per application is reduced from several hours to under one minute, enabling underwriters to handle larger volumes with greater consistency. This automation results in a reduction in operational costs by approximately 40% due to minimized human intervention, fewer errors, and enhanced workflow efficiency (Richards, 2020; Brynjolfsson & McElheran, 2016).

Moreover, the use of interpretable ML models like XGBoost combined with SHAP explanations improves decision auditability, potentially reducing legal and compliance costs associated with disputed underwriting decisions.

6.7 Summary of Results

- XGBoost outperformed Random Forest in classifying life insurance applicants.
- SHAP enhanced trust and explainability in model predictions.
- Oversampling the Rejected class improved balance and recall.
- Deployment readiness: Both models can be served via secure APIs with SHAP-based explanations available to underwriters.
- Time and cost savings make ASMLA a commercially viable tool for scalable, transparent underwriting.

References:

- 1. Barocas, S., Hardt, M., & Narayanan, A. (2019). Fairness and Machine Learning. http://fairmlbook.org
- 2. Barocas, S., & Selbst, A. D. (2016). Big data's disparate impact. California Law Review, 104(3), 671–732. https://doi.org/10.2139/ssrn.2477899
- 3. Breck, E., Polyzotis, N., Roy, S., Whang, S. E., & Zinkevich, M. (2017). Data validation for machine learning. In SysML Conference. https://mlsys.org/Conferences/2019/doc/2019/167.pdf
- 4. Bertsimas, D., Dunn, J., & Pauphilet, J. (2018). Interpretable machine learning for health care: Predicting readmissions and length of stay. Journal of Machine Learning Research, 21(6), 1–45. https://jmlr.org/papers/volume21/18-540/18-540.pdf
- 5. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
- Brynjolfsson, E., & McElheran, K. (2016). The rapid adoption of data-driven decision-making. American Economic Review, 106(5), 133–139. https://doi.org/10.1257/aer.p20161047
- 7. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. https://doi.org/10.1613/jair.953
- 8. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD Conference (pp. 785–794). https://doi.org/10.1145/2939672.2939785
- 9. Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(s1), 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
- 10. Citron, D. K., & Pasquale, F. (2014). The Scored Society: Due Process for Automated Predictions. Washington Law Review, 89(1), 1–33.
- 11. Dionne, G., & Doherty, N. A. (1991). Adverse selection, commitment, and renegotiation: Extension to and evidence from insurance markets. Journal of Political Economy, 99(4), 800–824.
- 12. Financial Conduct Authority (FCA). (2020). Guidance on Fairness in Algorithmic Decision-Making in Financial Services. https://www.fca.org.uk

- 13. Han, H., Wang, W. Y., & Mao, B. H. (2005). Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. Proceedings of the International Conference on Data Mining (ICDM).
- 14. Han, J., Kamber, M., & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed.). Morgan Kaufmann.
- 15. Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.
- 16. Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 4765–4774).
- 17. Molnar, C. (2022). Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/
- 18. Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569.
- Office of the Privacy Commissioner of Canada. (2020). PIPEDA Fair Information Principles. https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/
- 20. Raji, I. D., Smart, A., White, R., & Gebru, T. (2020). Closing the AI accountability gap. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency.
- 21. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD Conference (pp. 1135–1144). https://doi.org/10.1145/2939672.2939778
- 22. Richards, M. (2020). Predictive modeling for life insurance underwriting. Journal of Insurance Technology.
- 23. Richards, S. J. (2020). Machine learning and mortality models. British Actuarial Journal, 25, e1. https://doi.org/10.1017/S135732171900015X
- 24. Shapiro, A. (2022). Insurance Company Operations. LOMA.
- 25. Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065.

- 26. Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
- 27. Wachter, S., Mittelstadt, B., & Floridi, L. (2017). Why a right to explanation of automated decision-making does not exist in the General Data Protection Regulation. International Data Privacy Law, 7(2), 76–99.
- 28. Wang, L., Zhang, W., & Li, X. (2018). Application of XGBoost model in underwriting risk classification. Health Insurance Research Journal.
- Wang, Y., Kung, L., & Byrd, T. A. (2018). Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations.
 Technological Forecasting and Social Change, 126, 3–13. https://doi.org/10.1016/j.techfore.2015.12.019