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Preface 

 

 

The fascinating branch of Mathematics is the Theory of Numbers in which the subject 

of Diophantine equations requiring only the integer solutions is an interesting area to 

various mathematicians and to the lovers of mathematics because it is a treasure house 

in which the search for many hidden connections is a treasure hunt. In other words, the 

theory of Diophantine equations is an ancient subject that typically involves solving, 

polynomial equation in two or more variables or a system of polynomial equations with 

the number of unknowns greater than the number of equations, in integers and occupies 

a pivotal role in the region of mathematics. It is worth to mention that the Diophantine 

problems are plenty playing a significant role in the development of mathematics 

because the beauty of Diophantine equations is that the number of equations is less than 

the number of unknowns. 

The theory of Diophantine equations provides a fertile ground for both professionals and 

amateurs. In addition to known results, the theory of Diophantine equations abounds 

with unsolved problems (Carmichael.,1959; Dickson.,1952; Mordell.,1969). In this 

context, for simplicity and brevity, one may refer (Gopalan et.al., 2012, 2015, 2021, 

2024; Mahalakshmi, Shanthi., 2023; Sathiyapriya et.al., 2024; Shanthi.,2023; 

Shanthi, Mahalakshmi.,2023; Shanthi, Gopalan.,2024; Thiruniraiselvi, Gopalan., 

2024; Vidhyalakshmi et.al., 2022) for some binary and ternary quadratic Diophantine 

equations. Although many of its results can be stated in simple and elegant terms, their 

proofs are sometimes long and complicated. Many unsolved problems that have been 

daunting mathematicians for centuries provide unlimited opportunities   to expand the 

frontiers of mathematical knowledge. The subject of Diophantine equations has 

fascinated and inspired both amateurs and mathematicians alike and so they merit 

special recognition. 

The successful completion of exhibiting all integers satisfying the requirements set forth 

in the problem add to further progress of Number Theory as they offer good applications 

in the field of Graph theory, Modular theory, Coding and Cryptography, Engineering, 

Music and so on. Integers have repeatedly played a crucial role in the evolution of the 

Natural Sciences. The theory of integers provides answers to real world problems. 

The focus in this book is on solving multivariable second-degree Diophantine equations. 

These types of equations can be challenging as they involve finding integer solutions 



that satisfy the given polynomial equation. Learning about the various techniques to 

solve these multivariable second-degree Diophantine equations in successfully deriving 

their solutions help us understand how numbers work and their significance in different 

areas of mathematics and science. This book contains a reasonable collection of special 

multivariable Quadratic Diophantine problems in three, four and five variables. The 

process of getting different sets of integer solutions to each of the quadratic Diophantine 

equations considered in this book are illustrated in an elegant manner. 

M. A. Gopalan  

J. Shanthi 

N. Thiruniraiselvi 
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1 

 

Chapter 1  

Designs of integer solutions to 

homogeneous ternary quadratic equation 

 
1.1 Method of Analysis 

The homogeneous quadratic with three unknowns   is 

222 145zyx =+        (1.1) 

The process of obtaining different choices of integer solutions to (1.1)  

is illustrated below: 

Choice 1.1 

 Substituting  

 98,89 −=+= yx
     

(1.2) 

in (1.1) , it reduces to the Pythagorean equation  

222 z=+ 
                                                                                  (1.3)

 

which is satisfied by 

0,,2 22 −== qpqpqp            (1.4) 

and 

22 qpz +=
                                                                                      (1.5)

 

In view of (1.2) , we have 

)(916,)(818 2222 qpqpyqpqpx −−=−+=
                                  (1.6)

 

Thus , (1.5) and (1.6) give the integer solutions to (1.1). 

Note 1.1 

However, apart from (1.2), one may consider the following transformations 
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,12,12

,12,12

,89,98

,89,98

,98,89











+=−=

−=+=

−=+=

+=−=

+=−=

yx

yx

yx

yx

yx

 

leading to different sets of integer solutions to (1.1). 

Choice 1.2 

 Write (1.1) as 

1*145 222 yxz =−
                                                                        (1.7)

 

Assume 

22145 bay −=
           (1.8)

 

Write the integer 1 in (1.7) as 

)12145()12145(1 −+=              (1.9)
 

Substituting (1.8) & (1.9) in (1.7) and applying factorization, consider 

2)145()12145(145 baxz ++=+  

from which we have   

ba24)ba145(z

,ba290)ba145(12x

22

22

++=

++=

                                                                      (1.10)

 

Thus, (1.8) & (1.10) represent the integer solutions to (1.1). 

Note 1.2 

  In addition to (1.9) , the following  representations to  the integer 1 in (1.7) 
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64

)9145()9145(
1

,
81

)8145()8145(
1

,
144

)1145()1145(
1

−+
=

−+
=

−+
=

 

lead to three more sets of integer solutions to (1.1). 

 

Choice 1.3 

   Rewrite (1.1)  in the form of ratio as  

0,
144

144
=

−

−
=

+

+
Q

Q

P

zx

yz

yz

zx

 

which is equivalent to the system of double equations 

  0)144(

0)144(

=+−+

=−+−

zQPyQxP

zPQyPxQ

 

Applying the method of cross-multiplication, the integer solutions to (1.1) are found to 

be 

22

22

22

,1442144

,288

PQz

QQPPy

QQPPx

+=

++−=

−+=

 

Note 1.3 

Also, (1.1) may be written in the ratio forms as below: 

,0,
144

144
=

−

+
=

−

+
Q

Q

P

zx

yz

yz

zx

 

,0,
9

8

8

9
=

−

+
=

−

+
Q

Q

P

zx

yz

yz

zx

 

 
.0,

9

8

8

9
=

−

−
=

+

+
Q

Q

P

zx

yz

yz

zx
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Following the procedure as in Choice 1.3, different sets of solutions to (1.1) are 

obtained. 

Choice  1.4 

Assume 

22 baz +=                                                                   (1.11)
 

Write  the integer 145 in (1.1) as

 
)12()12(145 ii −+=

                                                           (1.12)
 

Substituting (1.11) & (1.12) in (1.1) and employing the method of Factorization, 

consider 

2)bia()i12(yix ++=+  

On equating the real and imaginary parts in the above equation , we get 

.ba24)ba(y

,ba2)ba(12x

22

22

+−=

−−=
                                                           (1.13) 

Thus , (1.11) & (1.13) satisfy (1.1). 

Note 1.4 

In addition to (1.12) , one may have the following representations to the integer 145 : 

)i89()i89(,)i98()i98(,)i121()i121()i12()i12(145 −+−+−+−−+−=

 

Following the above procedure , some more sets of integer solutions to (1.1) are 

obtained. 

Remark  1.1 

   It is worth to mention that, apart from the above representation of the integer 145 as 

the product of complex conjugates, one may have the representation through employing 

the legs of Pythagorean triangle as illustrated below: 
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   Let 0qp,q,p   denote the generators of a Pythagorean triangle. Then, the legs of 

the corresponding Pythagorean triangle are given by qp2,qp 22 − . Consider two 

integers  g,f  such that 

)qp(d)qp2(cg

,)qp2(d)qp(cf

22

22

−−=

+−=
 

where  

22 dc145 +=  

It may be observed that 

222

22

)qp(

)gif()gif(
)dc(145

+

−+
=+=  

Following the process presented in Choice 1.4 and performing some algebra, the 

corresponding integer solutions to (1.1) are obtained. 

Choice 1.5 

   Consider (1.1) as 

1*145 222 zyx =+  

Also , the integer 1 is written as 

222

2222

)(

)2()2(
1

qp

qpiqpqpiqp

+

−−+−
=  

Following the analysis similar to Choice 1.2 , the corresponding  integer solutions to (1)  

are as below : 

)()(

,)]2)(12(2)24()[()(

,)]42(2)2)(12()[()(

22222

22222222

22222222

baqpz

qpqpbaqpqpbaqpy

qpqpbaqpqpbaqpx

++=

−−++−−+=

+−−−−−+=

 

Observation 1.1 

Let  ),,( 000 zyx   be any given solution to (1.1). Then, a formula for obtaining 

sequence of solutions to (1.1) based on the given solution is presented below: 
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,...3,2,1,

,
2

)(

1452

)(

,
2

)(145

2

)(

0

00

00

==

+
+

−
=

−
+

+
=

nyy

zxz

zxx

n

nnnn

n

nnnn

n





 

where 

14524289,14524289 −=+=   
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Chapter 2 

Patterns of integer solutions to 

homogeneous ternary quadratic equation 
 

2.1 Method of Analysis 

 

The homogeneous ternary quadratic equation to be solved is 

222 zy2yxx =+−                                                                                    (2.1) 

Different processes of solving (1) are illustrated below: 

Process  2.1 

On completing the squares , we have 

2222 )z2(z4y7)yx2( ==+−                                                                   (2.2)    

which is satisfied by 

2

sr7
z,

2

sr2sr7
x,sr2y

2222 +
=

+−
==                                                (2.3) 

As integer solutions  are  required ,  choose s,r  to be of the same parity. That is , 

consider 

 both  s,r  to be even or odd.  

Case 2.1 :  Let S2s,R2r ==  

             From (2.3) , the corresponding  integer solutions to (2.1) are given by 

2222 S2R14z,SR8y,SR4S2R14x +==+−=  

Observation : 2.1  It is seen that  0yx    when   

SR2SR7 22 −                                                                           (2.4) 

Now , taking  y,x   to be the generators of  the Pythagorean triangle )W,V,U(   with   

2222 yxW,yxV,yx2U +=−==  we have 

Deep Science Publishing  
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.)SR8()SR4S2R14(W

,)SR4S2R14()SR12S2R14(V

,)SR4S2R14(SR16U

2222

2222

22

++−=

−−+−=

+−=

 

 If  P,A  represent the area and perimeter of the above Pythagorean triangle 

respectively , then  it satisfies the relation  

P

A
2W −  is a perfect square.                                                         (2.5) 

 Illustration :  

2

2222

745476
P

A
2W

13640P,4583040A

61484862W,15404862V,595262*96U

74z,48y,62x

3S,2R

==−

==

=+==−===

===

==

 

                    In a similar manner , choosing S,R  suitably satisfying (2.4) , one obtains 

many pythagorean triangles satisfying the  relation  (2.5) . 

Observation :2.2 

           From  each of the values of  W,V,U,z,y,x , one may obtain second order 

Ramanujan numbers . 

Illustration:  

EDCBA

8*612*416*324*248*148y

=====

======
 

      From  A=B , it is seen that 

288526472249

)224()148()224()148(

2222

2222

=+=+

++−=−++
 

 In a similar manner, we have the following results: 
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260148216ED

3651413219EC

4251613819DC

6801422226EB

7401622826DB

84519221326CB

24051447249EA

24651647849DA

257019471349CA

2222

2222

2222

2222

2222

2222

2222

2222

2222

=+=+=

=+=+=

=+=+=

=+=+=

=+=+=

=+=+=

=+=+=

=+=+=

=+=+=

 

Thus , 2885,2570,2465,2405,845,740,680,425,365,260  represent second order 

Ramanujan numbers. 

Case 2.2 :       Let 1S2s,1R2r +=+=  

             From (2.3) , the corresponding  integer solutions to (2.1) are given by 

4S2S2R14R14z,2S4R4SR8y,4SR4S2R16R14x 2222 ++++=+++=++−+=  

Observation : 2.3   It is seen that  0yx    when   

222 )SR(RS2)1R3( ++++                                                                  (2.6) 

Now , taking  y,x   to be the generators of  the Pythagorean triangle )W,V,U(   with   

2222 yxW,yxV,yx2U +=−==  , 

we have 

.)2S4R4SR8()4SR4S2R16R14(W

,)2S4R4SR8()4SR4S2R16R14(V

,)2S4R4SR8()4SR4S2R16R14(2U

2222

2222

22

++++++−+=

+++−++−+=

+++++−+=

 

If  P,A  represent the area and perimeter of the above Pythagorean triangle respectively 

, then  it satisfies the relation (2.5).                 

 

 

Illustration : 
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2

2222

11212544
P

A
2W

32928P,32269440A

145047098W,47047098V,1372070*196U

112z,70y,98x

3S,2R

==−

==

=+==−===

===

==

 

                    In a similar manner , choosing S,R  suitably satisfying (2.6) , one obtains 

many pythagorean triangles satisfying the  relation  (2.5) . 

Observation :2.4 

           From  each of the values of  W,V,U,z,y,x , one may obtain second order 

Ramanujan numbers . 

Illustration:  

DCBA

10*714*535*270*170y

====

=====
 

      From  A=B , it is seen that 

613037693371

)235()170()235()170(

2222

2222

=+=+

++−=−++
 

 

 In a similar manner ,we have the following results : 

370179319DC

13781733337DB

14501933937CB

50501769371DA

51221969971CA

2222

2222

2222

2222

2222

=+=+=

=+=+=

=+=+=

=+=+=

=+=+=

 

Thus , 5122,5050,1450,1378,370  represent second order Ramanujan numbers. 

Process 2.2 

         Write (2.1) in the form of ratio as 
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0Q,
Q

P

xz

xy2

y

xz
=

+

−
=

−
                                                                     (2.7) 

Solving the above system of double equations, we have 

QPPQ2z,QP2Qy,PQ2x 22222 ++=+=−=  

Observation :2.5      

It is seen that  0yx    when                                       

22 )QP(Q2 +                                                                                       (2.8) 

Now , taking  y,x   to be the generators of  the Pythagorean  triangle )W,V,U(   with   

2222 yxW,yxV,yx2U +=−==  , 

we have 

.)QP2Q()PQ2(W

,)QP2Q()PQ2(V

,)QP2Q()PQ2(2U

22222

22222

222

++−=

+−−=

+−=

 

 If  P,A  represent the area and perimeter of the above Pythagorean triangle 

respectively , then  it satisfies the relation (2.5).                 

Illustration :  

222484
P

A
2W

1088P,32*510A

514W,64V,510U

22z,15y,17x

3Q,1P

==−

==

===

===

==

 

                In a similar manner , choosing Q,P  suitably satisfying (2.8) , one obtains 

many pythagorean triangles satisfying the  relation  (2.5) . 

Observation :2.6         

    From  each of the values of  W,V,U,z,y,x , one may obtain second order 

Ramanujan numbers . 

Illustration: 
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CBA

16*432*264*164V

===

====
 

      From  A=B , it is seen that 

512534633065

)232()164()232()164(

2222

2222

=+=+

++−=−++
 

 In a similar manner ,we have the following results : 

130020301234CB

436920631265CA

2222

2222

=+=+=

=+=+=
 

Thus  , 5125 ,4369 ,1300  represent second order Ramanujan numbers. 

Process 2.3 

         Write (2.1) in the form of ratio as 

0Q,
Q

P

xz

y

xy2

xz
=

+
=

−

−
                                                                     (2.9) 

Solving the above system of  double  equations , we have 

QPP2Qz,PQP2y,P2Qx 22222 −+=−=−=  

   Observation :2.7    It is seen that  0yx    when                                       

QP2PQ 22 −                                                                                       (2.10) 

  Now , taking  y,x   to be the generators of  the Pythagorean triangle )W,V,U(   with   

2222 yxW,yxV,yx2U +=−==  ,  we have 

.)PQP2()P2Q(W

,)PQP2()P2Q(V

,)PQP2()P2Q(2U

22222

22222

222

−+−=

−−−=

−−=

 

If  P,A  represent the area and perimeter of the above Pythagorean triangle respectively 

, then  it satisfies the relation (2.5).                 

Illustration :  
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2864
P

A
2W

168P,840A

74W,24V,70U

8z,5y,7x

3Q,1P

==−

==

===

===

==

 

                In a similar manner , choosing Q,P  suitably satisfying (2.10) , one obtains 

many pythagorean triangles satisfying the  relation  (2.5) . 

Observation :2.8         

    From  each of the values of  W,V,U,z,y,x , one may obtain second order 

Ramanujan numbers . 

Illustration:  

DCBA

6*48*312*224*124V

====

=====
 

      From  A=B , it is seen that 

72514231025

)212()124()212()124(

2222

2222

=+=+

++−=−++
 

 In a similar manner ,we have the following results : 

125105211DC

2211110514CB

6291023225DA

6501123525CA

2222

2222

2222

2222

=+=+=

=+=+=

=+=+=

=+=+=

 

Thus  , 725 ,650 ,629 ,221,125  represent second order Ramanujan numbers. 

Process 2.4 

     Write  (2.2) as 

222 )yx2(y7z4 −=−                                                                                 (2.11) 

Assume 

)b7a(4yx2 22 −=−                                                                                   (2.12) 
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Substituting (2.12) in (2.11) and applying factorization , we have 

ba78b28a4)b7a(4y7z2 222 ++=+=+  

Equating the coefficients of corresponding terms in the above equation , we get 

ba8y,b14a2z 22 =+=                                                                              (2.13) 

In view of (2.12) , we have 

ba4b14a2x 22 +−=                                                                                 (2.14) 

Observation  :2.9      It is seen that  0yx    when                                       

22 b8)ba( −                                                                                                (2.15) 

Now , taking  y,x   to be the generators of  the Pythagorean triangle )W,V,U(   with   

2222 yxW,yxV,yx2U +=−==  , 

we have 

.)ba8()ba4b14a2(W

,)ba8()ba4b14a2(V

,)ba4b14a2(ba16U

2222

2222

22

++−=

−+−=

+−=

 

If  P,A  represent the area and perimeter of the above Pythagorean trianglerespectively 

, then  it satisfies the relation (2.5).                 

 Illustration : 

2462116
P

A
2W

4488P,143616A

2180W,132V,2176U

46z,32y,34x

1b,4a

==−

==

===

===

==

 

                In a similar manner , choosing b,a  suitably satisfying (2.15) , one obtains 

many pythagorean triangles satisfying the  relation  (2.5) . 

 



15 

 

  Observation :2.10 

                   From  each of the values of  W,V,U,z,y,x , one may obtain second order 

Ramanujan numbers . 

Illustration:  

CBA

8*416*232*132y

===

====
 

      From  A=B , it is seen that 

128518311433

)216()132()216()132(

2222

2222

=+=+

++−=−++
 

 In a similar manner ,we have the following results : 

3401214418CB

11051231433CA

2222

2222

=+=+=

=+=+=
 

Thus  , 1285 ,1105 ,340  represent second order Ramanujan numbers. 

 Process 5 

     Treating (2.1) as a quadratic in x and solving for the same ,we get 

2

y7z4y
x

22 −
=                                                                                (2.16) 

It is possible to choose  y ,z  so that the square-root in (2.16)  is eliminated and obtain 

the corresponding  value to x satisfying (2.1). For simplicity and brevity ,a few 

examples are presented as below : 

Example             

1s2sx,2ssz,1s2y 22 −+=++=+=  

  It is seen that  0yx    when                                       

22 b8)ba( −                                                                                          (2.17) 

Now , taking  y,x   to be the generators of  the Pythagorean triangle )W,V,U(   with   

2222 yxW,yxV,yx2U +=−==  , 

we have 
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.)ba8()ba4b14a2(W

,)ba8()ba4b14a2(V

,)ba4b14a2(ba16U

2222

2222

22

++−=

−+−=

+−=

 

If  P,A  represent the area and perimeter of the above Pythagorean triangle respectively 

, then  it satisfies the relation (2.5).                 

Illustration :  

2462116
P

A
2W

4488P,143616A

2180W,132V,2176U

46z,32y,34x

1b,4a

==−

==

===

===

==

 

    In a similar manner , choosing b,a  suitably satisfying (2.15) , one obtains many 

pythagorean triangles satisfying the  relation  (2.5) . 

       Observation :2. 10 

                   From  each of the values of  W,V,U,z,y,x , one may obtain second order 

Ramanujan numbers . 

Illustration:  

 

CBA

8*416*232*132y

===

====
 

      From  A=B , it is seen that 

128518311433

)216()132()216()132(

2222

2222

=+=+

++−=−++
 

 In a similar manner ,we have the following results : 

3401214418CB

11051231433CA

2222

2222

=+=+=

=+=+=
 

Thus  , 1285 ,1105 ,340  represent second order Ramanujan numbers. 
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Chapter 3 

A scrutiny of integer solutions to non-

homogeneous ternary quadratic equation 

 
3.1 Method of Analysis: 

Consider the diophantine equation representing hyperboloid of one sheet given by  
2 2 22 2x y z+ − =      (3.1) 

The process of obtaining patterns of integer solutions to (1) is illustrated below: 

Pattern I 

Assuming 

1k,kyx =                                                                              (3.2) 

in  (3.1) ,it is written as  

( ) 2y2kz 222 −+=
     

(3.3) 

with the least positive integer solution  

kz,1y 00 ==  

To obtain the other solutions of (3.3) ,consider the pellian equation 

( ) 1y2kz 222 ++=  

whose general solution )z~,y~( nn  is given by 

2k2

g
y~,

2

f
z~

2

k,n

n

k,n

n

+
== in which 

1n221n22

k,n

1n221n22

k,n

)2kk1k()2kk1k(g

,)2kk1k()2kk1k(f

++

++

+−+−+++=

+−+++++=

 

Applying Brahmagupta lemma between the solutions of )z,y( 00 and )z~,y~( nn ,the 

general solution of (3) is found to be 

,2,1,0,1n,g
2

2k

2

f
kz

,g
2k2

k

2

f
y

k,n

2
k,n

1n

k,n
2

k,n

1n

−=
+

+=

+
+=

+

+

        (3.4) 
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In view of (3.2) ,we have 

]g
2k2

k

2

f
[kx k,n

2

k,n

1n

+
+=+        (3.5) 

Thus,(3.4) and (3.5) represent the integer solutions to (3.1). 

A few examples are given in Table 3.1 below: 

 

Table 3.1-Examples 

n  
1nx +  1ny +  1nz +  

-1 k  1  k  

0 )1k2(k 2 +  )1k2( 2 +  )k3k2( 3 +  

1 )1k6k4(k 24 ++  )1k6k4( 24 ++  )k5k10k4( 35 ++  

 

The recurrence relations satisfied by the values of  z,y,x  are respectively given by 

.0zz)1k(2z

,0yy)1k(2y

,0xx)1k(2x

1n2n

2

3n

1n2n

2

3n

1n2n

2

3n

=++−

=++−

=++−

+++

+++

+++

 

A few interesting properties are given below: 

(i) ]2zky)2k([6 2n22n2

2 +−+ ++ is a square multiple of 6 

(ii) ]2zky)2k([6 2n22n2

2 +−+ ++ is a cubic integer. 

(iii) ]2zky)2k([ 4n44n4

2 +−+ ++ is a perfect square. 

(iv) 4]zyk[)2k(]zky)2k([ 2

1n1n

22

1n1n

2 =−+−−+ ++++  

Pattern II 

Substitution of  

)1k(,ykz =         (3.6) 

in (3.1) leads to 

( ) 2y2kx 222 +−=                                                                             (3.7) 

with the least positive integer solution  

kx,1y 00 ==  

To obtain the other solutions of (3.7) , consider the pellian equation 

( ) 1y2kx 222 +−=  

whose general solution )x~,y~( nn  is given by 
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2k2

g
y~,

2

f
x~

2

k,n

n

k,n

n

−
== in which 

1n221n22

k,n

1n221n22

k,n

)2kk1k()2kk1k(g

,)2kk1k()2kk1k(f

++

++

−−−−−+−=

−−−+−+−=

 

Applying Brahmagupta lemma between the solutions of )x,y( 00 and )x~,y~( nn , 

the general solution of (3.7) is found to be 











−=
−

+=

−
+=

+

+

,2,1,0,1n,g
2

2k

2

f
kx

,g
2k2

k

2

f
y

k,n

2

k,n

1n

k,n
2

k,n

1n

     (3.8)                               

 

In view of (3.6) ,we have 

]g
2k2

k

2

f
[kz k,n

2

k,n

1n

−
+=+

      

(3.9) 

Thus,(3.8) and (3.9) represent the integer solutions to (3.1).                    

A few examples are given in Table 3.2 below:          

 

Table 3.2-Examples 

n  
1nx +  1ny +  1nz +  

-1 k  1  k  

0 )k3k2( 3 −  )1k2( 2 −  )kk2( 3 −  

1 )5k10k4(k 24 +−  )1k6k4( 24 +−  )kk6k4( 35 +−  

 

The recurrence relations satisfied by the values of  z,y,x   are respectively given by    

.0zz)1k(2z

,0yy)1k(2y

,0xx)1k(2x

1n2n

2

3n

1n2n

2

3n

1n2n

2

3n

=+−−

=+−−

=+−−

+++

+++

+++

 

A few interesting properties are given below: 

(v) ]2y)2k(xk[6 2n2

2

2n2 +−− ++ is a square multiple of 6 

(vi) )y)2k(xk(3y)2k(xk 1n

2

1n3n3

2

3n3 ++++ −−+−− is a cubic integer. 

(vii) 2y)2k(xk 4n4

2

4n4 +−− ++ is a perfect square. 
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(viii) 4]xyk[)2k(]y)2k(xk[ 2

1n1n

22

1n

2

1n =−−−−− ++++  

Pattern III 

Substitution of   

0vu,vux,vuz −=+=      (3.10) 

in (3.1) leads to 

1vu2y2 +=
         

(3.11) 

It is possible to choose v,u  such that the R.H.S. of (3.11) is a perfect square and taking 

its square-root ,the value of y  is obtained. Substituting the above values of v,u  in 

(3.10) ,the corresponding values of  z,x  satisfying (3.1) are found. A few   examples 

are given in Table 3.3   below : 

 

Table 3.3-examples 

u  v  x  y  z  

s2  1s+  1s−  1s2 +  1s3 +  

s2  1s−  1s+  1s2 −  1s3 −  

)1s(s +  2  2ss 2 −+  1s2 +  2ss 2 ++  

n2*6  12*3 n −  12*3 n +  12*6 n −  12*9 n −  

 

Pattern IV 

Taking 

x)3s2(z +=          (3.12)  

in (3.1) ,we have  the  well-known pellian equation 

1x)4s6s2(y 222 +++=         (3.13) 

If  )y,x( 00   is the initial solution to (3.13) ,then its general solution  )y,x( 1n1n ++  is 

given by 

4s6s22

g
x,

2

f
y

2

n
1n

n
1n

++
== ++

      

(3.14) 

where 

.)x4s6s2y()x4s6s2y(g

,)x4s6s2y()x4s6s2y(f

1n

0

2

0

1n

0

2

0n

1n

0

2

0

1n

0

2

0n

++

++

++−−+++=

++−++++=
 

In view of (12) , we have 
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4s6s22

g
)3s2(z

2

n
1n

++
+=+

      

(3.15) 

Thus, (3.14) and (3.15) represent the integer solutions to (3.1). 

The recurrence relations satisfied by the values of  z,y,x   are respectively given by    

.0zzy2z

,0yyy2y

,0xxy2x

1n2n03n

1n2n03n

1n2n03n

=+−

=+−

=+−

+++

+++

+++

 

Remarkable Observation 

Let )z,y,x( 000 be any given integer solution to (1). Then ,the triple )z,y,x( nnn  

Given by 

,...3,2,1n,zYyZ2z

,zZyYy

,xx

01n01nn

01n01nn

0n

=+=

+=

=

−−

−−

 

also satisfy (3.1) where 

)Z,Y( 1n1n −− being the solution of the pellian equation 1Z2Y 22 += . 
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Chapter 4 

A portrayal of integer solutions to 

homogeneous ternary quadratic equation 

 
4.1 Method of Analysis: 

 

The quadratic Diophantine equation with three unknowns studied for its non-zero  

distinct integer solutions is given by  

2 2 225 29x y z= +        (4.1) 

We illustrate below different sets of integral solutions of (4.1). 

Set I 

It is observed that (4.1) is of the form           

2 2 2x y Dz= +                                    (4.2) 

where D = 29. Employing the most cited solutions of (4.2), one may obtain    

( )

2 2

2 2

29

1
29

5

2 , , .

x m n

y m n

z mn m n N

= +

= −

= 

 

Since our interest centers on finding integral solutions, it is possible to choose 

m, n such that x, y and z are integers. For the sake of clear understanding, the values of 

m, n with the corresponding solutions are presented in Table 4.1 below: 
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Table 4.1: Values of m, n with solutions 

Choices m N x, y, z 

1 5M 5N 
2 2 2 2725 25 ,145 5 ,50M N M N MN+ −  

2 5 4k −  5 3k −  
2 2 2750 1190 473,140 226 91,50 70 24k k k k k k− + − + − +  

3 5 4k −  5 2k −  
2 2 2750 1180 468,140 228 92,50 60 16k k k k k k− + − + − +  

4 5 3k −  5 4k −  
2 2 2750 910 277,140 166 49,50 70 24k k k k k k− + − + − +  

5 5 3k −  5 1k −  
2 2 2750 880 262,140 172 52,50 40 6k k k k k k− + − + − +  

6 5 2k −  5 4k −  
2 2 2750 620 132,140 108 20,50 60 16k k k k k k− + − + − +  

7 5 2k −  5 1k −  
2 2 2750 590 117,140 114 23,50 30 4k k k k k k− + − + − +  

8 5 1k −  5 3k −  
2 2 2750 320 38,140 52 4,50 40 6k k k k k k− + − + − +  

9 5 1k −  5 2k −  
2 2 2750 310 33,140 54 5,50 30 4k k k k k k− + − + − +  

 

 

Set II 

Express (4.1) as the system of double equations as presented in Table 4.2 below: 

Table 4.2: System of double equations 

System I II III 

y5x +  
2z  2z29  z29  

y5x −  29 1 z  

 

 

Solving each of the above system of double equations, one obtains the 

corresponding integer solutions to (4.1) as exhibited below: 

Solutions to System I 

2

2

50 30 19

10 6 2

10 3

x k k

y k k

z k

= + +

= + −

= +
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Solutions to System II 

2

2

1450 870 131

290 174 26

10 3

x k k

y k k

z k

= + +

= + +

= +

 

Solutions to System III 

75 , 14 , 5x y z  = = =  

Set III 

Write (4.1) as 

2 2 225 29 1y z x+ =               (4.3) 

Let 
2 225 29x a b= +        (4.4) 

Write 1 on the right hand side of (4.3) as 

( )( )
2

14 29 14 29
1

15

i i+ −
=

      
(4.5) 

Substituting (4.4) and (4.5) in (4.3) and employing the factorization method, 

 define  

( )
21

5 29 5 29 (14 29)
15

y i z a i b i+ = + +  

Equating real and imaginary parts, we’ve 

2 2

2 2

1
5 350 406 290

15

1
25 29 140

5

y a b ab

z a b ab


 = − − 


 = − +        

(4.6) 
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As our interest is finding integer solutions, we choose a and b suitably so that x, y, z are 

integers, 

Replacing a by 15a and b by 15b in (4.6) and (4.4), the corresponding integer solutions 

to (4.1) are given by  

2 2

2 2

2 2

( , ) 5625 6525

( , ) 1050 1218 870

( , ) 375 435 2100

x x a b a b

y y a b a b ab

z z a b a b ab

= = +

= = − −

= = − +
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Chapter 5 

Designs of integer solutions to 

homogeneous ternary quadratic equation 

 
5.1 Method of Analysis 

The ternary quadratic equation to be solved for its integer solutions is 

( )2 2 2 22 2 22z k k x y= − + +
      (5.1) 

We present below different methods of solving (5.1): 

Method: 1 

(5.1) is written in the form of ratio as 

( )2
, 0

2 2 22

z y x r
s

z y sk k x

+
= = 

−− +
     

 

which is equivalent to the system of double equations 

( )22 2 22 0

0

k k rx sy sz

sx ry rz

− + − − =

+ − =
 

Applying the method of cross-multiplication to the above system of equations,  

( )

( ) ( )

( ) ( )

2 2 2

2 2 2

, 2

, 2 2 22

, 2 2 22

x x r s rs

y y r s k k r s

z z r s k k r s

= =

= = − + −

= = − + +

 

which satisfy (5.1) 

Note: 1 
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It is observed that (5.1) may also be represented in the form of ratio as below: 

(i) 
( )2 11

, 0
2

k k xz y r
s

x z y s

− ++
= = 

−
 

The corresponding solutions to (5.1) are given as: 

( ) ( )2 2 2 2 2 22 , 2 11 , 2 11x rs y r k k s z r k k s= = − − + = + − +  

(ii)  ( )2

2
, 0

11

z y x r
s

z y sk k x

+
= = 

−− +
 

The corresponding solutions to (5.1) are given as: 

( ) ( )2 2 2 2 2 22 , 11 2 , 11 2x rs y k k r s z k k r s= = − + − = − + +  

Method: 2 

(5.1) is written as the system of double equation in Table 5.1 as follows: 

Table 5.1: System of Double Equations 

System 1 2 3 4 

z y+  2x  ( )2 211k k x− +  ( )22 2 22k k x− +  ( )2 11k k x− +  

z y−  ( )2 11k k x− +  2  x  2x  

 

 

Solving each of the above system of double equations, the value of , &x y z satisfying 

(5.1) are obtained. For simplicity and brevity, in what follows, the integer solutions thus 

obtained are exhibited. 

Solutions for system: I 

x = 2s, y = - ( )2 9 ,k k s− + z = ( )2 13k k s− +  
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Solutions for system: II 

2 ,x s= ( )2 22 11 1y s k k= − + − , ( )2 22 11 1z s k k= − + +  

Solution for system: III 

2x s= ,
( )22 2 21 ,y k k s= − + ( )22 2 23z k k s= − +

 

Solution for system: IV 

2 ,x s= ( )2 11 2 ,y s k k s= − + − ( )2 11 2z s k k s= − + +  

Method: 3 

(5.1) is written as 

( )2 2 2 2 22 2 22 1y k k x z z+ − + = = 
     (5.2) 

Assume z as 

( )2 2 22 2 22z a k k b= + − +
      (5.3) 

Write 1 as 

1=

( ) ( )

( )( )

2 2 2 2 2 2 2 2

2
2 2 2

2 2 22 2 2 2 22 2 2 22 2 2 2 22

2 2 22

k k r s i rs k k k k r s i rs k k

k k r s

   − + − + − +  − + − − − +
   

− + +

          (5.4)

 

Using (5.3) & (5.4) in (5.2) and employing the method of factorization, consider 

( ) ( )

( )

2
2 2 2 2 2

2

2 2 2

2 2 22 2 2 22 2 2 22 2
2 2 22

2 2 22

a ib k k k k r s i k k rs
y i k k x

k k r s

 + − + − + − + − +
 

+ − + =
− + +
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Equating real & imaginary parts, it is seen that 

( )
( )  ( )   

( )
( )  ( ) 

2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

1
2 2 22 2 2 22 4 2 2 22

2 2 22

1
2 2 2 22 2 2 2 22

2 2 22

y k k r s a k k b abrs k k
k k r s

x ab k k r s rs a k k b
k k r s

 = − + − − − + − − +  − + + 

 = − + − + − − +

  − + +


          

(5.5)                                   
 

Since our interest is to find the integer solutions, replacing a by 

( )2 2 22 2 22k k r s A − + +
  &b by ( )2 2 22 2 22k k r s B − + +

   in (5.5) & (5.3), the 

corresponding integer solutions to (5.1) are given by 

( )( ) ( )( ) ( )( )

( ) ( )( )
( )( ) ( )

( )

( ) ( )( ) ( )( )

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

2
2 2 2 2 2 2

( , ) 2 2 22 2 2 22 2 2 2 2 22

2 2 22 2 2 22
, 2 2 22

4 2 2 22

, 2 2 22 2 2 22

x x A B k k r s k k B rs AB k k r s

k k k k r s
y y k k r s

ABrs k k

z z k k r s k k

 = = − + +  − − + + − + −
 

   − − +  − + −
  =   = − + +

 − − +
 

=   = − + +  + − + 

Method: 4 

(5.1) is written as 

( )2 2 2 2 22 2 22 1z k k x y y− − + = = 
     (5.6) 

Assume y  as 

( )2 2 22 2 22y a k k b= − − +
      

(5.7) 

Write 1 as  
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( )( ) ( )( )
( )( )

2 2 2 2 2 2 2 2

2
2 2 2

2 2 22 2 2 22 2 2 2 22 2 2 22 2
1

2 2 22

k k r s k k rs k k r s k k rs

k k r s

− + + + − + − + + − − +
=

− + −

 

(5.8) 

Using (5.7) & (5.8) in (5.6) and employing the method of factorization, consider 

( )
( )

( )

2 2 2

2 2 2 2

2

2

2 2 2

2 2 22
2 2 22 2 2 2 22

2 2 2 22
2 2 22

2 2 22

a k k b
k k r s rs k k

ab k k
z k k x

k k r s

 + − +
   − + + + − + 
   + − + + − + =

− + −

 

Equating rational and irrational parts, it is seen that, 

( )( ) ( )( )
( )

( )( ) ( )( ) ( )
( )

2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2

2 2 22 2 2 2 2 22

2 2 22

2 2 22 2 2 22 4 2 2 22

2 2 22

a k k b rs ab k k r s
x

k k r s

a k k b k k r s abrs k k
z

k k r s

+ − + + − + +
=
− + − 


+ − + − + + + − + 
= 

− + − 

(5.9) 

Since our interest to find the integer solution, replacing a by 

( )( )2 2 22 2 22k k r s A− + − &b by ( )( )2 2 22 2 22k k r s B− + −  in (5.7) & (5.9), the 

corresponding integer solutions to (5.1) are given by 
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( ) ( )( ) ( )( ) ( )( )

( ) ( )( ) ( )

( ) ( )( )
( )( ) ( )( )

( )

2 2 2 2 2 2 2 2 2

2
2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

2

, 2 2 22 2 2 22 2 2 2 2 22

, 2 2 22 2 2 22

2 2 22 2 2 22
, 2 2 22

4 2 2 22

x x A B k k r s k k rs k k r s

y y A B k k r s k k

k k k k r s
z z A B k k r s

ABrs k k

 = = − + −  + − +  +  − + +
 

 = = − + −  − − + 
 

  + − +  − + +
 = = − + −
 + − +
 

 

GENERATION OF SOLUTIONS 

Different formulas for generating sequence of integer solutions based on the given 

solution are presented below: 

Let ( )0 0, 0,x y z be any given solution to (5.1). 

Formula: 1 

Let ( )1, 1 1,x y z given by 

1 0 1 0 1 03 , 3 , 3 2x x y y h z z h= = + = +
     

(5.10) 

be the 2ndsolution to (5.1). Using (5.10) in (5.1) and simplifying, one obtains 

0 02 4h y z= −  

In view of (5.10), the values of 1y and 1z are written in the matrix form as  

( ) ( )1 1 0 0, ,
t t

y z M y z=  

where M = 
5 4

4 5

− 
 

− 
 

and t is the transpose 

The repetition of the above proses leads to the nth solutions ,n ny z given by 
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( ) ( )0 0, ,
t tn

n ny z M y z=  

If ,  are the distinct eigen values of M, then 

3, 3 = = −  

We know that 

( )
( )

( )
( ) ,

n n
n a

M M I M I


 
   

= − + −
− −

2 2I =  Identity matrix 

Thus, the general formulas for integer solutions to (5.1) are given by 

0

0

0

3

4 2 21

3 2 2 4

n

n

n n n n

n

n n n n
n

x x

y y

z z

   

   

=

 − − +   
=     

− − +    

 

Formula: 2 

Let ( )1 1 1, ,x y z given by 

( ) ( ) ( )2 2 2

1 0 1 0 1 02 2 23 , 2 2 23 , 2 2 23x h k k x y h k k y z k k z= − − + = − − + = − +

(5.11) 

be the 2nd solution to (5.1). Using (5.11) in (5.1) and simplifying, one obtains 

( )2

0 04 4 44 2h k k x y= − + +  

In view of (5.11), the values of 1x and 1y are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

x y M x y=  

where M = 

2

2 2

2 2 21 2

4 4 44 (2 2 21)

k k

k k k k

 − +
 

− + − − + 
 

And tis the transpose 
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The repetition of the above process leads to the nth solutions ,n nx y given by 

( ) ( )0, ,
t tn

n n ox y M x y=  

If ,  are the distinct eigen values of M, then 

( )2 22 2 23 , 2 2 23k k k k = − + = − − +  

Thus, the general formulas for integer solutions to (2.113) are given by 

( )

( )

( )( ) ( )

2

0

2 2 2
0

2 2 221

2 2 23 2 2 22 2 2 22

n n n n

n

n n n n
n

k kx x

y yk k k k k k

   

   

 − + + −   
 =   
 − + − + − + − +    

 

( )2

02 2 23
n

nz k k z= − +  

Formula: 3 

Let ( )1 1 1,x y z given by 

( ) ( ) ( )2 2 2

1 0 1 0 1 02 2 21 , 2 2 21 , 2 2 21x h k k x y k k y z k k z h= − − + = − + = − + +

(5.12) 

be the 2ndsolution to  (5.1). Using (5.12) in (5.1) and simplifying, one obtains 

( )2

0 02 4 4 44h z k k x= + − +  

In view of (5.12), the values of 1x and 1z are written in the matrix form as 

( ) ( )1 1 0 0, ,
t t

x z M x z=  
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where M = 

2

2 2

2 2 23 2

4 4 44 2 2 23

k k

k k k k

 − +
 

− + − + 
 

and t is the transpose 

The repetition of the above process leads to the nth solutions ,n nx z  given by 

( ) ( )0 0, ,
t tn

n nx z M x z=  

If ,  are the distinct eigen values of M, then 

2 2

2 2

2 2 23 2 2 2 22,

2 2 23 2 2 2 22

k k k k

k k k k





= − + + − +

= − + − − +
 

Thus, the general formulas for integer solutions to (5.1) are given by 

( )2

0

02

02

2 2 21

1
2 2 2 22

2
2 2 22( )

n

n

n n
n n

n

n n n n n

y k k y

x x
k k

z z
k k

 
 

   

= − +

 −
+    

= − +    
    

− + − + 
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Chapter 6 

Patterns of integer solutions to 

homogeneous quaternary quadratic 

equation 
                 

6.1 Method of Analysis: 

The polynomial equation of second degree with four unknowns to be solved is 

2222 wz15y6x =+−        (6.1) 

The procedure to obtain various patterns of integer solutions to (6.1) is as below:       

Procedure 1 

      The option 

z4w =         (6.2) 

in (6.1) gives 

222 zy6x +=         (6.3)   

which is satisfied by 

2222 sr6x,sr6z,sr2y +=−==      (6.4) 

From (6.2) , we get 

)sr6(4w 22 −=        (6.5)       

Thus, (6.4) & (6.5) satisfy (6.1). 

Note 6.1 

     It is seen that ,by expressing (6.3) as the system of double equations ,the following 

four patterns of integer solutions to (6.1) are obtained: 

Pattern 1 

s4w,sz,s2y,s5x ====  

Deep Science Publishing  
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Pattern 2 

s20w,s5z,s2y,s7x ====  

Pattern 3 

)3s2(4w,3s2z,s2y,3s2x 222 −=−==+=  

Pattern 4 

)1s6(4w,1s6z,s2y,1s6x 222 −=−==+=  

Note 6.2 

         Rewrite (6.3) as 

1*xy6z 222 =+        (6.6) 

Assume 

)b6a(25x 22 +=        (6.7) 

Express the integer 1 in (6.6) as 

25

)62i1()62i1(
1

−+
=       (6.8) 

Substituting (6.7) & (6.8) in (6.6) and using factorization, we have 

2)b6ia()62i1(5y6iz ++=+  

 from which, we get 

.ba10)b6a(10y

,ba120)b6a(5z

22

22

+−=

−−=
      (6.9) 

In view of (6.2) ,observe that 

ba480)b6a(20w 22 −−=
      

(6.10) 

Thus,(6.7),(6.9) and (6.10) satisfy (6.1). 

 
Remark 6.1 
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   It is to be noted that the integer 1 in (6.6) may be considered as 

222

2222

)sr6(

)6sr2isr6()6sr2isr6(
1

+

−−+−
=

 

Repeating the above process and taking different values to r& s, one obtains different 

sets of integer solutions to (6.1). 

Procedure  2 

   Consider (6.3) as  

1*zy6x 222 =−        (6.11) 

Assume 

22 b6az −=         (6.12) 

The integer 1 in (6.11) is written as 

)625()625(1 −+=       (6.13) 

Substituting (6.12) & (6.13) in (6.11) and using factorization, we have 

2)b6a()625(y6x ++=+  

 from which, we get 

.ba10)b6a(2y

,ba24)b6a(5x

22

22

++=

++=

      (6.14)

 

In view of (6.2) ,observe that 

)b6a(4w 22 −=        (6.15)   

        Thus, (6.12),(6.14) and (6.15) satisfy (6.1). 

 

Remark  6.2 

   It is to be noted that the integer 1 in (6.11) may be considered as 

222

2222

)sr6(

)6sr2sr6()6sr2sr6(
1

−

−+++
=
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Repeating the above process and taking different values to r& s, one obtains different 

sets of integer solutions to (6.1). 

Procedure 3 

           Introduction of the transformations 

=+=+== 9w,63z,153y,27x     (6.16)  

in (6.1)  leads to the Pythagorean equation 

222 +=  

Employing the most cited solutions of the above Pythagorean equation in (6.16), 

the corresponding integer solutions to (6.1) are obtained.                              

Note 6.3 

     In (6.16) ,if we choose = 9x ,then (6.1) reduces to the Pythagorean equation  

222 9+=  

which is satisfied by 

0sr3,sr9,sr9,sr2 2222 +=−==  

In this case , the corresponding integer solutions to (6.1) are given by 

)sr9(9w,sr12)sr9(3z,sr30)sr9(3y,sr18x 222222 −=++=++==  

Procedure 4 

    The option 

yxw +=         (6.17) 

in (6.1) leads to the ternary homogeneous quadratic equation  

0z15yx2y7 22 =−+        (6.18) 

Treating (6.18) as a quadratic equation in y  and solving for the same ,we have 

7

xz105x
y

22 +−
=       (6.19) 
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The square-root on the R.H.S. of (6.19) is removed when 

22 qp105x,qp2z −==       (6.20) 

Taking the negative sign before the square-root in (6.19) and from (6.17) ,we get 

222 qp75w,p30y −=−=       (6.21) 

Thus,(6.20) & (6.21) satisfy (6.1). 

Also, considering positive sign before the square-root in (6.19) & taking (6.17) , 

we, after some algebra, obtain the integer solutions to (6.1) to be 

22222 35p105w,14y,49p105x,p14z −==−==  

Note 6.4 

      In addition to the above patterns of  integer solutions ,there are some more choices 

of solutions to (6.1) which we illustrate as follows: 

Let 

222 z105x +=        (6.22) 

Represent (6.22) as the system of double equations as shown in Table 6.1: 

                           Table 6.1-System of double equations 

System I II III IV V VI VII VIII 

x+  z105  z35  z21  z15  2z105  
2z35  

2z21  
2z15  

x−  z  z3  z5  z7  1 3 5 7 

 

Solving each of the above system of double equations, the values of z,x,  are 

obtained. From (6.19) and (6.17) ,the corresponding values to w,y  satisfying (6.1) are 

found. For simplicity and brevity, the integer solutions to (6.1) obtained from each of 

the above system of double equations are exhibited. 

Solutions to 6.1) from System I:
 

           Set 1        s365w,s7z,sy,s364x ====  

           Set 2        s37w,sz,s15y,s52x ==−==  
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Solutions to (6.1) from System II:
 

           Set 3        s115w,s7z,s3y,s112x ====  

           Set 4       s11w,sz,s5y,s16x ==−==  

Solutions to (6.1) from System III:
 

           Set 5       s61w,s7z,s5y,s56x ====  

           Set 6        s9w,sz,s3y,s8x ==−==  

Solutions to (6.1) from System IV:
 

           Set 7       s13w,s7z,s15y,s28x ==−==  

Solutions to (6.1) from System V:  

Set  8     

37s150s150w,1s2z,15s60s60y,52s210s210x 222 ++=+=−−−=++=  

Solutions to (6.1) from System VI:  

Set 9    11s50s50w,1s2z,5s20s20y,16s70s70x 222 ++=+=−−−=++=  

Solutions to (6.1) from System VII:
 

Set 10    5s30s30w,1s2z,3s12s12y,8s42s42x 222 ++=+=−−−=++=  

Solutions to (6.1) from System VIII:
 

Set 11    5s30s30w,1s2z,1y,4s30s30x 22 ++=+==++=  

Set 12      
2

2

)1s2(105]4)3s7()4s7(30[w

,7s14z,)1s2(105y,4)3s7()4s7(30x

−−+−−=

−=−−=+−−=

 

Procedure 5 

The option 

z4xw −=         (6.23) 
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in (6.1) leads to the ternary homogeneous quadratic equation  

0zzx8y6 22 =+−        (6.24) 

Treating (6.24) as a quadratic equation in z  and solving for the same ,we have 

2

y24x64x8
z

22 −
=       (6.25) 

The square-root on the R.H.S. of (6.25) is removed when 

22 qp6x,qp8y +==        (6.26) 

Taking the negative sign before the square-root in (6.25) and from (6.23) ,we get 

222 q31p6w,q8z −==       (6.27) 

Thus,(6.26) & (6.27) satisfy (6.1). 

Also, considering positive sign before the square-root in (6.25) & taking (6.23) , 

we, after some algebra, obtain                    

222 qp186w,p48z +−==
      (6.28) 

Thus,(6.26) & (6.28) satisfy (6.1). 

Procedure 6 

    The substitution 

1k2w,1k2x −=+=        (6.29) 

in (6.1) gives 

22 z15y6k8 −=  

The choice 

P4z,Y4y ==        (6.30) 

in the above equation gives 

22 P30Y12k −=  

In view of (6.29) ,we get 
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.1P60Y24w

,1P60Y24x

22

22

−−=

+−=
       (6.31) 

Thus,(6.30) & (6.31) satisfy (6.1). 

Procedure 7 

  The introduction of the linear transformation 

y3w =         (6.32) 

in (6.1) leads to the homogeneous ternary quadratic equation 

222 y15z15x =+        (6.33) 

Assume 

22 b15ay +=         (6.34) 

Express the integer 15 on the R.H.S. of (6.33) as 

)15i()15i(15 −=        (6.35) 

Substituting (6.34) &(6.35) in (6.33) and applying factorization, consider 

2)b15ia()15i(z15ix +=+  

On comparing the coefficients of corresponding terms ,we get 

22 b15az,ba30x −=−=       (6.36) 

From (6.32) ,one has 

)b15a(3w 22 +=        (6.37) 

Thus, (6.34),(6.36) & (6.37) satisfy (6.1). 

Note 6.5 

  Observe that (6.33) is also written in the form of ratio as 

0Q,
Q

P

x

)zy(3

)zy(5

x
=

−
=

+
 

Solving the above system of double equations ,we have 
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2222 P5Q3z,P5Q3y,QP30x −=+==     (6.38) 

From (6.32), we get 

)P5Q3(3w 22 +=        (6.39)     

Thus, (6.38) & (6.39) satisfy (6.1).                                                                    
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Chapter 7 

A scrutiny of integer solutions to 

homogeneous quaternary quadratic 

equation 
 

7.1 Method of Analysis: 

The homogeneous quadratic equation with four unknowns to be solved for its  

integer solutions is 

2 22 3 8xy z w+ =       (7.1) 

We present below different sets of distinct integer solutions to (7.1) through employing 

linear transformations.
 

Introduction of the linear transformations 

, , , ( 0)x u v y u v z v u v= + = − =       (7.2) 

in (7.1) leads to 

2 2 22 8v u w+ =       (7.3) 

Assume 

2 22w a b= +        (7.4)
 

Set I 

Write 8 as 

8 ( 2 2)( 2 2)i i= −       (7.5) 

Deep Science Publishing  
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Using (7.4) and (7.5) in (7.3) and employing the method of factorization, 

define 

22 ( 2 2)( 2 )v i u i a i b+ = +  

On equating the real and imaginary parts,one obtains 

2 28 , 2 4v ab u a b= = −  

In view of (7.2),note that 

2 2

2 2

2 4 8

2 4 8

8

x a b ab

y a b ab

z ab

= − +


= − − 
=
      

          (7.6) 

Thus, (7.6) and (7.4) represent the distinct integer solutions to (7.1). 

Set II 

Note that 8 may be expressed as the product of complex conjugates as below: 

(8 2 2)(8 2 2)
8

9

i i+ −
=

    

          (7.7) 

Following the procedure as in Set I,the corresponding integer solutions to (7.1) are given 

below:
 

2 2

2 2

2 2

2 2

3(10 20 8 )

3( 6 12 24 )

3(8 16 8 )

9( 2 )

x a b ab

y a b ab

z a b ab

w a b

= − +

= − + +

= − −

= +

 

Set III 

(7.3) is written as 
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2 2 2 22 8 8 *1v u w w+ = =
     

(7.8) 

Consider 1 as  

(1 2 2)(1 2 2)
1

9

i i+ −
=

     

(7.9) 

Using (7.9), (7.5) and (7.4) in (7.8) and employing the method of factorization, 

define 

2 (1 2 2)
2 ( 2 2)( 2 )

3

i
v i u i a i b

+
+ = +

 

In this case,the corresponding integer solutions to (7.1) are found to be 

2 2

2 2

2 2

2 2

3( 6 12 24 )

3(10 20 8 )

3( 8 16 8 )

9( 2 )

x a b ab

y a b ab

z a b ab

w a b

= − + −

= − −

= − + −

= +

 

It is worth to note that, by substituting (7.9),(7.7) and (7.4) in (7.8) and performing  

the analysis as above,one obtains a different set of integer solutions to (7.1). 

Remark 

It is worthmentioning here that, in (7.9),1 may be represented as the 

 product of complex conjugates,in general, as exhibited below: 

2 2 2 2

2 2 2

(2 2 2 )(2 2 2 )
1

(2 )

r s i rs r s i rs

r s

− + − −
=

+  

Set IV 

Introduction of the linear transformations 
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8 6 , 8 6 , 6 , 2x X T V y X T V z V w X T= + + = + − = = +  (7.10) 

in (7.1) leads to  

2 2 216 6X T V= +       (7.11) 

After performing a few calculations,the above equation is satisfied by 

 the following threechoices of solutions: 

i. 20 , , 8X k T k V k= = =  

ii. 28 , 5 , 8X k T k V k= = =  

iii. 
2 2 2 224 4 , 6 , 8X R S T R S V RS= + = − =  

In view of (7.10),the corresponding integer solutions to (7.1) are represented  

as follows: 

Solutions for (i): 

76 , 20 , 48 , 22x k y k z k w k= = − = =
 

Solutions for (ii): 

116 , 20 , 48 , 38x k y k z k w k= = = =
 

Solutions for (iii): 

2 2 2 2 2 272 4 48 , 72 4 , 48 , 48 , 36 2x R S RS y R S V RS z RS w R S= − + = − − = = +

 

Note: Suppose,instead of (7.10),the linear transformations are taken as 

8 6 , 8 6 , 6 , 2x X T V y X T V z V w X T= − + = − − = = −
 

then,the corresponding three choices of solutions to (7.1) are as follows: 
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Solutions for (i): 

60 , 36 , 48 , 18x k y k z k w k= = − = =
 

Solutions for (ii): 

36 , 60 , 48 , 18x k y k z k w k= = − = =
 

Solutions for (iii): 

2 2 2 2 2 224 12 48 , 24 12 48 , 48 , 12 6x R S RS y R S RS z RS w R S= − + + = − + − = = +

 

Generation of solutions 

Three different formulas for generating sequence of integer solutions based on the given 

solution are presented below: 

Let ( )0 0, 0 0, ,x y z w be any given solution to (7.1) 

Formula: 1 

Let ( )1, 1 1 1, ,x y z w given by 

1 0 ,x x= 1 0y y= ,
1 02z h z= − ,

1 0w h w= +    
(7.12) 

be the 2ndsolution to (7.1). Using (7.12) in (7.1) and simplifying, one obtains 

0 03 4h z w= +  

In view of (7.12), the values of 1z and 1w are written in the matrix form as  

( ) ( )1 1 0 0, ,
t t

z w M z w=
      (7.13)

 

where 
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5 8

3 5
M

 
=  
 

and t is the transpose  

The repetition of the above process leads to the nth solutions ,n nz w given by 

( ) ( )0 0, ,
t tn

n nz w M z w=  

We know that 

( )
( )

( )
( ) ,

n n
n a

M M I M I


 
   

= − + −
− −  

2 2I =  Identity matrix and ,  are the distinct Eigen values of M. 

For M given above in (7.13), It is seen that 

5 2 6, = + 5 2 6 = −  

Thus, the generation formula to obtain sequence of integer solutions to (7.1) is given by 

0 0

0 0

0 0

,

2
( )

2 6

3
( )

24 6

n n

n n
n n

n

n n
n n

n

x x y y

z z w

w z w

 
 

 
 

= =

 +
= + − 
 

 +
= − +  

 

 

Formula: 2 

Let ( )1 1 1 1, , ,x y z w given by 

1 05 ,x x= 1 05 ,y y= 1 05 ,z z h= + 1 05w h w= −
    

(7.14) 

be the 2ndsolution to (7.1). For this choice, the generation formula for getting  

sequence of integer solutions to (7.1) is obtained as below: 
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where 

0 0

0 0

0 0

5 , 5

2
( )

2 6

6
( )

8 2

n n

n n

n n
n n

n

n n
n n

n

x x y y

z z w

w z w

 
 

 
 

= =

 +
= + − 
 

 +
= − +  

   

11 4 6, = + 11 4 6 = −  

Formula: 3 

Let ( )1 1 1 1, , ,x y z w given by 

1 03 ,x h x= − 1 0 ,y h y= − 1 0 ,z z h= − + 1 0w h w= +
   

(7.15)  

be the 2nd solution to (7.1).Using (7.15) in (7.1) and simplifying, one obtains 

0 0 0 02 6 6 16h x y z w= + + +
 

In view of (7.15), we have 

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

5 18 18 48

2 5 6 16

2 6 5 16

2 6 6 17

x x y z w

y x y z w

z x y z w

w x y z w

= + + +

= + + +

= + + +

= + + +

 

which is written in the form of matrix as 

1 1, 1 1 0 0 0 0

5 18 18 48

2 5 6 16
( , , ) ( , , , )

2 6 5 16

2 6 6 17

t tx y z w x y z w

 
 
 =
 
 
 

 

where t is the transpose. The repetition of the above process leads to the general solution 

to (7.1) as 
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1 0 0 0 0

( 1) 2
( ( 1) ) ( ( 1) ) 8

3

n
n nn

n n n n

Y
x x Y y Y z X w+

− −
= + + − + + − +  

1 0 0 0 0

( 1) ( 1) 2 ( 1) 8

9 3 3 3

n n n

n n n n
n

Y Y Y X
y x y z w+

+ − − − + −
= + + +  

1 0 0 0 0

( 1) ( 1) ( 1) 2 8

9 3 3 3

n n n

n n n n
n

Y Y Y X
z x y z w+

+ − + − − −
= + + +  

1 0 0 0 0
3

n
n n n n

X
w x X y X z Y w+ = + + +  

where 

( ) ( )( )
1 11

17 6 8 17 6 8 ,
2

n n

nY
+ +

= + + −  

( ) ( )( )
1 11

17 6 8 17 6 8 ), 0,1,2,...
2 8

n n

nX n
+ +

= + − − =
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Chapter 8 

 A portrayal of integer solutions to non-

homogeneous quaternary quadratic 

equation 
 

8.1 Method of Analysis: 

The non-homogeneous quadratic equation with four unknowns to be solved is 

. 1tzyx 2222 −=++       (8.1) 

Different patterns of solutions in integers are illustrated below: 

Pattern 1 

       The choice 

1xt +=          (8.2) 

 in (8.1) gives 

2

)zy(
x

22 +
=              (8.3)    

As our aim is to find integer solutions , observe that the values of  x are integers 

 when y,z are both odd or even and from (8.2) , the corresponding values of t are  

obtained. The two sets of integer solutions are presented explicitly below: 

Set 1 

1)sr(2t,)sr(2x,s2z,r2y 2222 ++=+===  

Set 2 

)1srsr(2t,1)srsr(2x,1s2z,1r2y 2222 ++++=++++=+=+=  

 

Pattern 2 

    The substitution 

1k2z,yxt +=+=           (8.4)  

Deep Science Publishing  
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in (8.1) leads to 

1k2k2yx 2 ++=            (8.5) 

For any given k in (8.5) , one may determine the values of x and y. In view  

of (8.4) , the corresponding values of z ,t are obtained. For the sake of clear 

understanding, a few numerical solutions are exhibited in Table 8.1 below: 

                                            Table 8.1-Numerical solutions     

k z x*y X y t 

1 3 5 5 1 6 

5 11 61 1 61 62 

8 17 145 145 1 146 

8 17 145 5 29 34 

-3 -5 13 1 13 14 

-10 -19 81 81 1 82 

-10 -19 81 27 3 30 

 

Pattern 3 

Introducing the transformations 

1u2t,v2z,vuy,vux +==−=+=                            (8.6) 

in (8.1), it simplifies to 

1v3)1u( 22 +=+                                 (8.7) 

which is satisfied by 

32

g
v,1

2

f
u n

n
n

n =−=                     (8.8) 

where 

.)32()32(g

,)32()32(f

1n1n

n

1n1n

n

++

++

−−+=

−++=
 

In view of (8.6), the non-zero distinct integer values of the quadruple )t,z,y,x( nnnn  

 aregiven by 
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.1ft,
3

g
z

,1
32

)gf3(
y

,1
32

)gf3(
x

nn
n

n

nn
n

nn
n

−==

−
−

=

−
+

=

    (8.9) 

The above values of nnn z,y,x  and nt given by (8.9) satisfy the following 

 recurrence relations 

.2tt4t

,0zz4z

,2yy4y

,2xx4x

n1n2n

n1n2n

n1n2n

n1n2n

=+−

=+−

=+−

=+−

++

++

++

++

 

Generation of solutions 

An interesting question that one often raises is: Given an initial solution,  

whether one can obtain a general formula for generating a sequence of solutions?  

The answer to this question is YES and the procedure is as follows: 

Let  )t,z,y,x( 0000 be the given non-zero distinct initial integer quadruple satisfying 

(8.1). 

Let h be any non-zero integer such that 

01010101 tht,zhz,yhy,xhx +=−=−=−=   (8.10) 

be the second solution of (8.1). Substituting (8.10) in (8.1), the value of h  is  found to 

be 

0000 tzyxh +++=
      (8.11)

 

In view of (8.10) the second solution generated from the initial solution is  

written in thematrix form as 

0 01

0 01

1 0 0

1 0 0

0 1 1 1 (1) (1) (1) (1)

1 0 1 1 (1) (1) (1) (1)

1 1 0 1 (1) (1) (1) (1)

1 1 1 2 (1) (1) (1) (1)

x xx a b b c

y yy b a b c

z z b b a c z

c c c dt t t

        
        
        = =
        
           

                      (8.12)   

 

where (1) 0, (1) 1, (1) 1, (1) 2a b c d= = = =  

The repetition of the above process leads to the general form for the generated solution 

which is written in the matrix form as follows: 
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0

0

0

0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 2

n

n

n

n

n

x x

y y

z z

t t

    
    
    =
    
       

    

=

0

0

0

0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

xa n b n b n c n

yb n a n b n c n

b n b n a n c n z

c n c n c n d n t

  
  
  
  
   

            

(8.13) 

where 

( ) 2 ( 1) ( 1)a n b n c n= − + −

 
( ) ( 1) ( 1) ( 1)b n b n c n a n= − + − + −

 
( ) 2 ( 1) ( 1)c n c n d n= − + −

 
( ) 3(2 ( 1) ( 1)) 2( 1) , 1.nd n b n c n n= − + − + −   

The above system of equation (8.13) is computed numerically using C++ 

program and a few solutions generated are presented in Table 8.2. 

Table 8.2 -SOLUTIONS OF X2 + Y2 + Z2 = T2- 1 

I a(i) b(i) c(i) d(i) x(i) y(i) z(i) t(i) 

0 - - - - 5 1 3 6 

1 0 1 1 2 10 14 12 21 

2 3 2 4 7 47 43 45 78 

3 8 9 15 26 166 170 168 291 

4 33 32 56 97 629 625 627 1086 

5 120 121 209 362 2338 2342 2340 4053 

6 451 450 780 1351 8735 8731 8733 15126 

7 1680 1681 2911 5042 32590 32594 32592 56451 

8 6273 6272 10864 18817 121637 121633 121635 210678 

9 3408 23409 40545 70226 453946 453950 453948 786261 

10 87363 87362 151316 262087 1694159 1694155 1694157 293436

6 

11 326040 326041 564719 978122 6322678 6322682 6322680 109512
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03 

12 121680

1 

121680

0 

210756

0 

365040

1 

2359656

5 

2359656

1 

2359656

3 

408704

46 

13 454116

0 

454116

1 

865521 136234

82 

8806357

0 

8806357

4 

8806357

2 

152530

581 

14 169478

43 

169478

42 

293545

24 

508435

27 

3286577

27 

3286577

23 

3286577

25 

569251

87 
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Chapter 9 

Designs of integer solutions to non-

homogeneous quaternary quadratic 

equation 
 

9.1 Method of Analysis: 

The non-homogeneous quadratic equation with four unknowns to be solved is 

. 1tzyx 2222 +=++        (9.1) 

Different patterns of solutions in integers are illustrated below: 

Pattern 1 

       The choice 

0k,ktz −=          (9.2) 

 in (9.1) gives 

k2

)1kyx(
t

222 −++
=          (9.3)    

As our aim is to find integer solutions, observe that the values of  t are integers 

 when x,y are  chosen suitably and from (9.2) , the corresponding values of z are  

obtained . For the sake of clear understanding, four sets of integer solutions are  

exhibited below: 

Set 1 

s2k)rsr(2z,ks2k)rsr(2t,1ks2y,k)1r2(x 2222 +++=++++=+=+=  

Set 2 

1s2k)ssr(2z,1s2kk)ssr(2t,1k)1s2(y,kr2x 2222 −+−+=−++−+=+−==

 

 Set 3 

1Nk)NN(z,1Nk)1NN(t,1k)1N(y,kNx 22 −+−=−++−=+−==
 

Set 4 

Deep Science Publishing  
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s2k)s2s4(z,s2k)1s2s4(t,1ks2y,k)1s2(x 22 +−=++−=+=−=  

 

Pattern 2 

    The substitution 

1k2z,yxt +=+=             (9.4)  

in (9.1) leads to 

1k,k2k2yx 2 −+=          (9.5) 

For any given k in (9.5) , one may determine the values of x and y. In view  

of (9.4) , the corresponding values of z ,t are obtained. For the sake of clear 

understanding, a few numerical solutions are exhibited in Table 9.1 below: 

                                            Table 9.1-Numerical solutions     

k z x*y x y t 

k 2 k+1 2 k (k+1) 2 k (k+1) k2+k+2 

   k 2 (k+1) 3 k+2 

   2 k k+1 3 k+1 

   k (k+1) 2 K2+k+2 

   2 k (k+1) 1 2 k2+2 k+1 

 

Pattern 3 

Introducing the transformations 

v2t,1u2z,vuy,vux =+=−=+=         (9.6) 

in (9.1), it simplifies to 

1v3)1u3( 22 +=+
     

(9.7) 

which is satisfied by 

32

g
v,

6

)2f(
u n

n
n

n =
−

=     (9.8) 

where 
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.)32()32(g

,)32()32(f

1n1n

n

1n1n

n

++

++

−−+=

−++=
 

In view of (9.6), the non-zero distinct integer values of the quadruple )t,z,y,x( nnnn  

 aregiven by 

,...3,1,1n,
3

g
t,

3

)1f(
z

,
6

)2g3f(
y

,
6

)2g3f(
x

n
n

n
n

nn
n

nn
n

−==
+

=

−−
=

−+
=

            (9.9) 

A few numerical solutions to (9.1) are given below: 

1560t,901z,330y,1230x

112t,65z,24y,88x

8t,5z,2y,6x

5555

3333

1111

==−==

==−==

==−==

 

 

The above values of nnn z,y,x  and nt given by (9.9) satisfy the following 

 recurrence relations 

.0tt14t

,4zz14z

,4yy14y

,4xx14x

n2n4n

n2n4n

n2n4n

n2n4n

=+−

−=+−

=+−

=+−

++

++

++

++

 

Pattern 4 

  Taking 

)vu(,vuz,vut,)0sr(sry,sr2x 22 −=+=−==               (9.10)  

in (9.1) ,we have 

1vu4)sr( 222 +=+          (9.11) 

It is worth to note that the values of r,s  should be of different parity as the R.H.S.  

of (9.11) is odd. The choice  
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0qp,q2s,1p2r =+=          (9.12) 

 in (9.11) gives 

)qpp()2q4p4p4(vu 2222 +++++=  

Choose 

)qpp(v,)2q4p4p4(u 2222 ++=+++=       (9.13) 

Employing (9.12) & (9.13) in (9.10) ,the corresponding integer solutions to (9.1) 

 are given by 

.q52p5p5t

,q32p3p3z

,q41p4p4y

,)1p2(q4x

22

22

22

+++=

+++=

−++=

+=

 

Pattern 5 

  The substitution 

1w2z,u2t,vuy,vux 22 +==−=+=       (9.14)  

in (9.1) leads to the Pythagorean equation 

222 uwv =+           (9.15)  

which is satisfied by 

0qp,qp2w,qpv,qpu 2222 =−=+=      (9.16) 

Substituting the value of w from (9.16) in (9.14) ,we have 

1X8z 22 +=                                                                                 (9.17)  

where  

qpX =                                                                                  (9.18) 

The general solution )z,X( nn to the pellian equation (9.17) is given by 
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nnnn f
2

1
z,g

82

1
X ==                                                                   (9.19) 

 where                   
.)83()83(g

,)83()83(f

1n1n

n

1n1n

n

++

++

−−+=

−++=

 

In view of (9.18) , we have from (9.19) 

])12()12[(
22

1
*])12()12[(

2

1

])12()12[(
24

1

])83()83[(
82

1
q*pX

1n1n1n1n

2n22n2

1n1n

nnn

++++

++

++

−−+−++=

−−+=

−−+==

 

Thus , 

.])12()12[(
22

1
q

,])12()12[(
2

1
p

1n1n

n

1n1n

n

++

++

−−+=

−++=

 

From (9.14) ,the corresponding integer solutions to (9.1) are given by 

,...3,2,1,0n,]2)12(3)12(3[
4

1
t

,])12()12[(
2

1
z

,])12()12[(
4

1
y

,])12()12[(
2

1
x

2n22n2

n

2n22n2

n

21n1n

n

21n1n

n

=+−++=

−++=

−−+=

−++=

++

++

++

++

                  (9.20) 

The above values of nnn z,y,x  and nt given by (9.20) satisfy the following 
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 recurrence relations 

.2tt6t

,0zz6z

,2yy6y

,4xx6x

n1n2n

n1n2n

n1n2n

n1n2n

−=+−

=+−

=+−

−=+−

++

++

++

++
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Chapter 10 

Patterns on integer solutions to 

homogeneous quaternary quadratic 

equation 
 

The quadratic equation with four unknowns to be solved is  

  ( )2222 2 wzyx −=+
       (10.1)

 

There are two types of integer solutions .In Section A , real integer solutions are 

 obtained. In Section B , the Gaussian integer solutions are determined. 

Section A ; Real Integer Solutions 

Introduction of the linear transformations 

  vuyvux −=+= ,         (10.2) 

in (10.1) leads to
 

   
2222 zwvu =++      (10.3) 

which is in the form of space Pythagorean equation  

The choices of solutions for (10.3) are represented below: 

i) 
22222222 ,22,22, qpnmznqmpwpqmnvqpnmu +++=+=−=+−−=

 

ii) 
22222222 ,,22,22 qpnmzqpnmwpqmnvnqmpu +++=+−−=−=+=

 

iii) 
22222222 ,22,,22 qpnmzpqmnwqpnmvnqmpu +++=−=+−−=+=

 

iv) 
222222 ,,2,2 cbazcbawacvabu ++=−−===  

v) 
222222 ,2,2, cbazabwacvcbau ++===−−=  
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In view of (10.2), one may obtain different sets of solutions to (10.1) which are 

presented below: 

Set: 1 

Considering choice (i), the general solution of (10.1) is  

pqmnqpnmx 222222 −++−−=
 

 pqmnqpnmy 222222 +−+−−=  

 
2222 qpnmz +++=  

 nqmpw 22 +=  

Set: 2 

For choice (ii), the general solution of (10.1) is  

( ) ( )pnqnpmx −++= 22  

 ( ) ( )pnqnpmy ++−= 22  

 
2222 qpnmz +++=  

 
2222 qpnmw +−−=  

Set: 3 

For choice (iii), the general solution of (10.1) is  

nqmpqpnmx 222222 +++−−=
 

 nqmpqpnmy 222222 ++−++−=  

 
2222 qpnmz +++=  

 pqmnw 22 −=  

Set: 4 
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For choice (iv), the general solution of (10.1) is 

( )cbax += 2  

 ( )cbay −= 2  

 
222 cbaz ++=  

 
222 cbaw −−=  

Set: 5 

For choice (v), the general solution of (10.1) is  

accbax 2222 +−−=
 

 accbay 2222 −−−=  

 
222 cbaz ++=  

 abw 2=  

In addition to the above sets of solutions to (10.1), there are other representations of 

solutions to (10.1) which are illustrated below: 

Representation: 1 

Write (10.3) as 

  
2222 wzvu −=+       (10.4) 

Assume  
222 wz −=         (10.5) 

Rewrite (10.5) as 

  
222 wz +=        (10.6) 

which is in the form of Pythagorean equation satisfied by the following two sets of 

solutions 
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Set: 1  0,,2, 2222 −==+= srsrrswsrz      (10.7) 

Set: 2  0,2,, 2222 =−=+= srrssrwsrz      (10.8) 

Consider (10.7). Using (10.7) in (10.4), we have 

  ( )22222 srvu −=+       (10.9) 

which is satisfied by 

  
222 hgfr ++=

 

  
222 hgfs −−=  

ghfu 28=
 

( )2224 hgfv −=
 

In view of (10.2) and (10.7), the corresponding non-zero distinct integral solutions of 

(10.1) are given by 

  ( )222 24 hgghfx −+=
 

( )222 24 hgghfy +−=  

  ( )22444 22 hghgfz +++=  

  ( )22444 22 hghgfw −−−=  

Consider (10.8). Using (10.8) in (10.4), we have 

  ( )222 2rsvu =+                  (10.10)
 

which is in the form of Pythagorean equation satisfied by  

   
22 qpu −=                  (10.11)
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   pqv 2=                  (10.12)  

  
222 qprs +=                   (10.13)  

Here, the equation (10.13) is satisfied for the following choices of r and s: 

    i) 22,1 2 ++== kkrs
 

   ii) 122,2 2 ++== kkrs
 

  iii) 442,2 2 ++== kkrs
 

Considering choice (i) and performing simplification, the corresponding solutions to 

(10.1) are given by 

  
482 2 ++= kkx

 

  
224 ky −=  

  5884 234 ++++= kkkkz
 

  3884 234 ++++= kkkkw  

Similarly for choice (ii), the general solutions to (10.1) are given by 

4168 2 ++= kkx
 

  
284 ky −=  

  54884 234 ++++= kkkkz
 

  34884 234 −+++= kkkkw  

For choice (iii), the general solutions to (10.1) are found to be 

16328 2 ++= kkx
 

  
2816 ky −=  
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  203232164 234 ++++= kkkkz
 

  123232164 234 ++++= kkkkw  

Representation: 2 

The assumption 
223 wz −=           (10.14)  

is equivalent to the following system of double equations:  

Table: 10.1 System of equations 

System wz +  wz −  

1 2    

2 3  1 

 

Considering System: 1, it is seen that there are two sets of solutions to (10.1) 

represented respectively below: 

Set: 1 

 ( ) ( )22 nmnmx ++=
 

 ( ) ( )22 nmnmy +−=
 

 ( ) ( )1
2

1 2222 +++= nmnmz
 

 ( ) ( )1
2

1 2222 −++= nmnmw  

Set: 2 

( ) ( )nmnnmmx +−+= 33 22
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 ( ) ( )nmnnmmy −−−= 33 22

 

 ( ) ( )1
2

1 2222 +++= nmnmz
 

 ( ) ( )1
2

1 2222 −++= nmnmw  

Similarly, Considering System: 2, it is seen that there are two sets of solutions to (10.1) 

represented respectively below: 

Set: 3 

 ( ) ( )22 nmnmx ++=
 

 ( ) ( )22 nmnmy +−=
 

 ( ) 1
2

1 322 ++= nmz
 

 ( ) 1
2

1 322 −+= nmw  

Set: 4 

( ) ( )nmnnmmx +−+= 33 22

 

 ( ) ( )nmnnmmy −−−= 33 22

 

 ( ) 1
2

1 322 ++= nmz
 

 ( ) 1
2

1 322 −+= nmw  

It is worth to note that m and n should be of different parity. Otherwise, the values of z 

and w are not in integers. 
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Representation: 3 

Substituting 
( )

2

1+
=


z  and 

( )
2

1−
=


w         (10.15)  

in (10.1), we get 

  
322 2=+ yx            (10.16)   

Assume 0,,22 += qpqp                        (10.17) 

Write 2 as 

( ) ( )ii −+= 112           (10.18) 

Substituting (10.17), (10.18) in (10.16) and employing the method of factorization, 

define 

  ( ) ( )31 iqpiiyx ++=+  

Equating real and imaginary parts, we have 

  






−−+=

+−−=

3223

3223

33

33

qpqqppy

qpqqppx

             (10.19) 

In view of (10.15), we have 

  

( ) ( )

( ) ( )









−++=

+++=

1
2

1

1
2

1

2222

2222

qpqpw

qpqpz

             (10.20)
 

Thus (10.19) and (10.20) represents non-zero distinct integral solutions to (10.1). 

Note: 
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Instead of (10.18), one may write 2 as 

  
( ) ( ) ( ) ( )

25

7171
2,

25

77
2

iiii −+
=

−+
=  

Following the procedure similar to above, one may obtain different sets of integral 

solutions to (10.1). 

Representation: 4 

Substituting 
2

13 +
=


z  and 
2

13 −
=


w     (10.21) 

in (10.1), we get (10.16). 

Using (10.17) in (10.21) 

  

( ) 

( ) 









−+=

++=

1
2

1

1
2

1

322

322

qpw

qpz

    (10.22)
 

Hence (10.19) and (10.22) represents non-zero distinct integral solutions to (10.1). It is 

worth to note that p and q should be of different parity. Otherwise, the values of z and w 

are not in integers.  

Section B:Gaussian integer solutions 

The substitution  

 iacwiabzicaybiax +=+=−=+= ,,2,2   (10.23) 

in (10.1) leads to  

  
222 65 bca =+       (10.24) 
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(10.24) is solved through three different methods and thus we obtain three different sets 

of Gaussian integer solutions to (10.1) 

Method: 1 

Write (10.24) in the form of ratio as 

  
( )

0,
5

=
−

−
=

+

+
n

n

m

ba

cb

cb

ba
 

  (10.25) 

which is equivalent to the system of double equations  

  
( )
( ) 0

055

=−++−

=−−+

ncbnmma

mcbmnna
 

Applying the method of cross multiplication, we get 

  mnnma 25 22 +−=      (10.26) 

  
22 5nmb +=       (10.27) 

  mnmnc 105 22 +−=      (10.28) 

In view of (10.23), the corresponding non-zero distinct Gaussian integer solutions of 

(10.1) are given by 

  ( )2222 10225 nmimnnmx +++−=   

  ( )mnmnimnnmy 1054102 2222 +−−+−=   

               ( )mnnminmz 255 2222 +−++=  

  ( )mnnmimnmnw 25105 2222 +−++−=  

Method: 2 
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Assume 0,,5 22 += qpqpb     (10.29) 

Write 6 as 

  ( )( )ii −+= 556      

 (10.30)  

Substituting (10.29), (10.30) in (10.24) and employing the method of factorization, 

define 

  ( )( )2555 iqpiica ++=+    (10.31)  

Equating real and imaginary parts, we get 

  






+−=

−−=

pqqpc

pqqpa

105

25

22

22

    (10.32) 

Using (10.29), (10.32) in (10.23), the corresponding non-zero distinct Gaussian integral 

solutions to (4.1) are found to be 

  ( )2222 21025 qpipqqpx ++−−=   

  ( )pqqpipqqpy 1054210 2222 +−−−−=   

 ( )pqqpiqpz 255 2222 −−++=  

  ( )pqqpipqqpw 25105 2222 −−++−=  

Method: 3 

One may write (10.24) as 

  
222 56 acb =−       (10.33) 

Assume 0,,6 22 −= qpqpa       (10.34) 

Write 5 as 

  ( )( )16165 −+=      (10.35)  
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Substituting (10.34), (10.35) in (10.33) and employing the method of factorization, 

define 

  ( )( )26166 qpcb ++=+     (10.36)  

Equating rational and irrational parts, we get 

  






++=

++=

pqqpc

pqqpb

126

26

22

22

    (10.37) 

In view of (10.23), the corresponding non-zero distinct Gaussian integral solutions to 

(10.1) are given by 

  ( )pqqpiqpx 42126 2222 +++−=   

  ( ) ( )pqqpiqpy 12662 2222 ++−−=   

 ( )2222 626 qpipqqpz −+++=  

  ( )2222 6126 qpipqqpw −+++=  

 

Generation of solutions: 

Let ( )000 ,, zyx  be the given integer solution to (10.1). Let ( )111 ,, zyx  be the 

second solution of (10.1) where  

01010101 ,,, whwhzzyhyxhx −=+=−=−=   (10.38) 

in which h is any non-zero integer to be determined. 

Substituting (10.38) in (10.1) and simplifying, we have 

  0000 22 wzyxh +++=  

Thus, the second solution is given in the matrix form as 

  









































=





















0

0

0

0

1

1

1

1

1211

2311

2201

2210

w

z

y

x

w

z

y

x
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Repeating the above process, the general solution to (4.1) in the matrix form as 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

,...3,2,1,

2

1~
~

4

1~

4

1~

~~

2

~

2

~

2

1~

~

4

13~

4

1~

2

1~

~

4

1~

4

13~

0

0

0

0

=



























































−+−−−−

−−
−+−−

−−
−−−+

=





















n

w

z

y

x

y
x

yy

xy
xx

y

x
yy

y

x
yy

w

z

y

x

n

n
n

n

n

n

n

nn
nn

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

 

where ( )nn yx ~,~
 is the general solution of 12 22 += xy given by 

  ( ) ( )




 −++=

++ 11

223223
2

1~ nn

ny  

  ( ) ( ) ,....2,1,0,223223
22

1~ 11

=




 −−+=

++

nx
nn

n  
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Chapter 11 

A scrutiny of integer solutions to 

homogeneous quinary quadratic 

equation 

 
11.1 Method of Analysis: 

The second degree Diophantine equation with five unknowns to be solved is 

2 2 2 2 24 16w x y z t− − + =      (11.1) 

The process of obtaining different sets of non-zero distinct integer solutions to (11.1) is 

exhibited below: 

Set 1 

The substitution of the linear transformations  

4 12 , 8 , 4( ) , 4( ) , 2x P Q y Y z P Q w P Q t T= + = = − = + =  
(11.2) 

in (11.1) leads to the space Pythagorean equation 

2 2 2 2P Q Y T= + +       (11.3) 

which is satisfied by 

2 2 2 2 2 2, , 2 , 2P a b c T a b c Q ab Y a c= + + = − − = =   (11.4) 

In view of (11.2), one has the integer solutions to (11.1) given by 

2 2 2 2 2 2

2 2 2 2 2 2

4( 6 ) ,  16 ,  4( 2 ) ,

4( 2 ) ,  2( )

x a b c ab y a c z a b c ab

w a b c ab t a b c

= + + + = = + + −

= + + + = − −
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Set 2 

Introducing the linear transformations 

2 2(8 1) , 4 , , 4 ,x a s y aY z s w a s t aT= − = = = =   (11.5) 

in (11.1), it simplifies to the Pythagorean equation 

2 2 2s Y T= +        (11.6) 

whose solutions may be taken as 

2 2 2 2, , 2s p q T p q Y p q= + = − =             (11.7) 

In view of (11.5), the integer solutions to (11.1) are given by 

2 2 2 2 2 2 2 2 2 2(8 1) ( ) , 8 , ( ) , 4 ( ) , ( )x a p q y a pq z p q w a p q t a p q= − + = = + = + = −

Note 1 

The solutions to (2.146) is also taken as  

2 2 2 2, , 2s p q Y p q T p q= + = − =
 

In this case, the integer solutions to (11.1) are given by 

2 2 2 2 2 2 2 2 2 2(8 1) ( ) , 4 ( ) , ( ), 4 ( ) , 2x a p q y a p q z p q w a p q t a p q= − + = − = + = + =

 

Set 3 

Taking 

4( ), 4( ) , 4 , 4x P Q y P Q w P z Q= + = − = =    (11.8)                         

in (11.1), it reduces to 

2 2 22Q t P+ =        (11.9) 
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After some algebra, it is seen that (11.9) is satisfied by 

2 2

2 2

2 2

2 ,

2 ,

t a b ab

Q a b ab

P a b

= − +

= − −

= +

 

In view of (11.8), it is seen that  

2 2

2 2

8 ( ) ,

8 ( ) ,

4( 2 ) ,

4( )

x a a b

y b a b

z a b ab

w a b

= −

= +

= − −

= +

 

Thus, the above values of , , , ,x y z w t satisfies (11.1). 

Note 2 

After performing a few calculations, (11.9) is also satisfied by 

2 2

2 2

2 2

2 ,

2 4 ,

2 2

t a b

Q a b a b

P a b a b

= −

= + +

= + +

 

In view of (11.8), the corresponding values of , , ,x y z w are found to be 

2 2

2 2

2 2

4(4 2 6 ),

8 ,

4(2 4 ),

4(2 2 )

x a b ab

y ab

z a b ab

w a b ab

= + +

= −

= + +

= + +

 

Set 4 

The choice 
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t4xz +=       (11.10) 

in (11.1) leads to 

tx8w4y 22 =−      (11.11) 

which is expressed as the system of double equations  as shown in Table 11.1 below: 

Table 11.1: System of double equations 

System 1 2 3 4 

2y w+  8x  4x  8t  2x  

2y w−  t  2t  x  4t  

 

Solving each of the above systems, one obtains the values of , , ,x y w t . In view of 

(11.10), the corresponding value of z is obtained. For simplicity, the integer solutions to 

the corresponding system of equations are exhibited below: 

 

Solutions to system 1 

, 4 2 , 16 , 2 , 4x s y s k z s k w s k t k= = + = + = − =  

Solutions to system 2 

, 2 2 , 8 , , 2x s y s k z s k w s k t k= = + = + = − =  

Solutions to system 3 

4 , 2 4 , 4 4 , 2 ,x s y s k z s k w k s t k= = + = + = − =  

Solutions to system 4 

2 , 2 2 , 2 4 , ,x s y s k z s k w s k t k= = + = + = − =  
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Chapter 12 

A portrayal of integer solutions to 

homogeneous quinary quadratic 

equation 
 

12.1 Method of Analysis   

The homogeneous quinary quadratic diophantine equation to be solved is 

22 w)1k2k(YXyx −+=+    .                        (12.1) 

     The process of obtaining different sets of non-zero distinct integer solutions 

     to (12.1) is illustrated below. 

Set12.1 

      Introduction  of the linear transformations 

wV)1k(Y,wV)1k(X,wU)1k(y,wU)1k(x ++=−+=++=−+=                     

(12.2)  

  in (12.1) leads to  the well-known Pythagorean equation 

222 wVU =+     ,                                                               (12.3) 

whose solutions may be taken as  

22 qpV,qp2U −==       (12.4) 

and 

22 qpw += .                      (12.5) 

Using (12.4) & (12.5)  in (12.2) ,one has 








++−+=+−−+=

+++=+−+=

)qp()qp()1k(Y,)qp()qp()1k(X

,)qp(qp)1k(2y,)qp(qp)1k(2x

22222222

2222

.  (12.6) 

Thus,(12.5) and (12.6) give the required integer solutions to (12.1). 
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Set 12.2 

Introduction of the linear transformations  

svY,svX,vuy,vux −=+=−=+=      ,                                        (12.7) 

in (12.1) leads to the ternary quadratic diophantine equation 

2222 w)1k2k(su −+=−    ,                                                          (12.8) 

which can be written in the form of ratios as  

0Q,
Q

P

su

w

w)1k2k(

su
2

=
−

=
−+

+
    .                                                   (12.9) 

 

Solving the above system of double equations (12.9) , it is seen that 

222222 QP)1k2k(s,QP)1k2k(u −−+=+−+=     ,                       (12.10) 

and 

QP2w =    .                                                                                               (12.11) 

Using  (12.10) in (12.7) ,we have 








+−+−=−−++=

−+−+=++−+=

222222

222222

QP)1k2k(vY,QP)1k2k(vX

,vQP)1k2k(y,vQP)1k2k(x
       (12.12) 

Thus,(12.11) and (12.12) give the required integer solutions to (12.1). 

Observation 12.1 

Apart from (12.9) , (12.8) may be considered in the form of ratios as 

0Q,
Q

P

su

w)1k2k(

w

su
2

=
−

−+
=

+

 

The repetition of the above process leads to a different set of integer 

 solutions to (12.1). 

Set 12.3 

Introduction of the linear transformations 

w)1k(y,w)1k(x −=+=
.
                                (12.13) 
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in (12.1) leads to the homogeneous ternary quadratic equation 

2wk2YX =  .                                                                   (12.14) 

On considering different choices of factorization in (12.14) , the respective 

sets of integer solutions to (12.1) are given by 

Set 12.3.1 wkY,w2X,w)1k(y,w)1k(x ==−=+=
,
 

Set 12.3.2 w2Y,wkX,w)1k(y,w)1k(x ==−=+=
,
 

Set 12.3.3 k2Y,wX,w)1k(y,w)1k(x 2 ==−=+=
,
 

Set 12.3.4 kY,w2X,w)1k(y,w)1k(x 2 ==−=+=
,
 

Set12.3.5 wY,kw2X,w)1k(y,w)1k(x ==−=+=
,
 

Set 12.3.6 2Y,kwX,w)1k(y,w)1k(x 2 ==−=+=
,
 

Set 12.3.7 1Y,kw2X,w)1k(y,w)1k(x 2 ==−=+=
.
 

Set12.4 

Introduction  of the linear transformations 

2,1k,Y)1k(y,X)1k(x −=+=                                (12.15) 

in (12.1) leads to the homogeneous ternary quadratic equation 

222 w)1k2k(YXk −+=        (12.16) 

On considering different choices of factorization in (12.16) , the respective 

sets of integer solutions to (12.1) are given by 

Set 12.4.1
.)1k2k(kw,)1k2k(Y,)1k2k(X

,)1k2k()1k(y,)1k2k()1k(x

s22s22

2s22

−+=−+=−+=

−+−=−++=
 

Set 12.4.2
.)1k2k(kw,Y,)1k2k(X

,)1k(y,)1k2k()1k(x

s21s22

1s22

−+==−+=

−=−++=

+

+
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Set 12.4.3
.)1k2k(kw,)1k2k(Y,)1k2k(X

,)1k2k()1k(y,)1k2k()1k(x

s2s21s2

s21s2

−+=−+=−+=

−+−=−++=

+

+
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Chapter 13 

Designs of integer solutions to 

homogeneous quinary quadratic 

equation 
 

13.1 Method of Analysis: 

The second degree diophantine equation with five unknowns to be solved is 

22222 t24)wz(4yx =+++
      

(13.1) 

The process of obtaining different sets of non-zero distinct integer solutions to (1) is 

exhibited below: 

Set 1: 

The substitution of the linear transformations  

t2y,t4x ==
        

 (13.2) 

in (13.1) leads to the  pythagorean equation 

222 wzt +=          (13.3) 

which is satisfied by 

2222 bat,ba2z,baw +==−=       (13.4) 

 In view of (13.2), one has 

)ba(2y

,)ba(4x

22

22

+=

+=
                                                                               (13.5) 

Thus,(13.4) and (13.5) represent the integer solutions to (13.1). 

Set  2: 

  Introducing the linear transformations 

vuw,vuz,v4y,u4x −=+===
     

(13.6) 
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in (13.1), it simplifies to the Pythagorean equation 

222 vut +=                (13.7) 

whose solutions may be taken as  

qp2v,qpu,qpt 2222 =−=+=             (13.8)       

In view of (13.6), the integer solutions to (13.1) are given by 

)qp(t,)pq2qp(w,)pq2qp(z,pq8y,)qp(4x 22222222 +=−−=+−==−=

 

Set 3: 

Taking 

 2w,)2z(2y,t4x =−==               (13.9)                         

in (13.1), it reduces to 

0t4z2z 222 =−+− 
      

(13.10) 

Treating (13.10) as a quadratic in z and solving for z, it is seen that (13.10) is satisfied 

by 

                               .

)sr3(sr2z

,sr2

,sr3t

22

22

−=

=

+=

  

.

n view of (13.9), it is seen that the corresponding values of w,y,x  satisfying (13.1) are 

sr4w

,)sr3(2sr4y

)sr3(4x

22

22

=

−−=

+=

 

Set 4: 

Taking 

wzt,Y2y),wz(4x +==+=               (13.11)                         

in (13.1), it reduces to 
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0Ywwz4z 222 =−++ (13.12) 

Treating (13.12) as a quadratic in z and solving for z, it is seen that (13.12) is satisfied 

by 

                               .

)sr3(sr4z

,sr2w

,sr3Y

22

22

+−=

=

−=

.

 

In view of (13.11), it is seen that the corresponding values of t,y,x  satisfying (13.1) are 

)sr3(sr2t

,)sr3(2y

)sr3(4sr8x

22

22

22

+−=

−=

+−=
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Chapter14 

A classification of integer solutions to 

quinary quadratic equation 
 

14.1 Method of analysis 

       The homogeneous quadratic equation with five unknowns under consideration is 

                            22222 t)dc(2wz2yx +=−+                                        (14.1) 

The substitution of the transformations 

              pv,vu,pvw,pvz,vuy,vux −=+=−=+=                            (14.2) 

in (14.1) leads to 

                                
22222 t)dc(pu +=+                                                              (14.3) 

Case 1:        

        Choose the values of d,c  such that  
22 dc +  is square-free. Three patterns of 

integer solutions to (14.1) are studied. 

Pattern 1 

    Assume 

                            
22 bat +=                                                                                 (14.4) 

Using (14.4) in (14.3) and employing factorization, consider 

                     
2)bia()dic(piu ++=+   

giving 

                           
.bac2)ba(dp

,bad2)ba(cu

22

22

+−=

−−=
 

In view of (14.2) ,we have 
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.bac2)ba(dvw

,bac2)ba(dvz

,vbad2)ba(cy

,vbad2)ba(cx

22

22

22

22

−−−=

+−+=

−−−=

+−−=

                                                       (14.5) 

Thus , (14.4) & (14.5) satisfy (14.1).  

Remarkable  observation 

             It is worth to  observe  that ,for suitable  values of   d,c,b,a ,the numerical 

relation for second order Ramanujan  numbers is represented by (14.3). A few examples 

are given below: 

Example 1 

               Let 1b,2a,1d,2c ====  

Then ,we obtain  11p,2u,5t ===  

From (3) ,observe that   

              125510112 2222 =+=+  

125 is the second order Ramanujan number  as it is written as the sum of  two squares in 

two different ways. 

 

Example 2 

               Let 1b,2a,2d,3c ====
 

 Then ,we obtain  18p,1u,5t ===  

 From (3) ,observe that   

              3251015181 2222 =+=+  

 325 is the second order Ramanujan number  as it is written as the sum of  two squares 

in two different ways. 

 

Example 3 

               Let 5b,2a,2d,4c −==−==  

 Then ,we obtain  38p,124u,29t −=−==  

  From (3) ,observe that   
              

 

 16820  is the second order Ramanujan number  as it is written as the sum of  two 

squares in two different ways. 

 

Pattern 2 
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    It is worth to be noted that the integer 
22 dc +  can be expressed as the product of  

complex conjugates  as exhibited below : 

                              
222

22

)qp(

)gif()gif(
dc

+

−+
=+  

where 

                               
0qp,)]qp(d)qp2(c[g

,)]qp2(d)qp(c[f

22

22

−−=

+−=
 

Following the procedure  as given in Pattern 1, the integer solutions to (1) are obtained. 

For the benefit of the readers , an illustration  is presented below: 

    Take   

                                      2d,1c,3q,2p ====  

  Now   

                                      22)5(2)12(1g,19)12(2)5(1f =−−==+−=  

Therefore , 

                                      
2

22

13

)22i19()22i19(
5dc

−+
==+                           (14.6) 

Using (14.4) & (14.6) in (14.3) and employing factorization , consider 

              ]ba2iba[
13

)22i19(
)bia(

13

)22i19(
piu 222 +−

+
=+

+
=+    

On equating the coefficients of corresponding terms , we have 

                               

.}ba38]ba[22{
13

1
p

,}ba44]ba[19{
13

1
u

22

22

+−=

−−=

 

As the main thrust is to find integer solutions, replacing a by A13 and b by B13  in the  

above equations and from (14.2) ,the integer solutions to (14.1) are given by 
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.]BA[13t

,}BA38]BA[22{13vw

,}BA38]BA[22{13vz

,v}BA44]BA[19{13y

,v}BA44]BA[19{13x

222

22

22

22

22

+=

+−−=

+−+=

+−−=

+−−=

 

Pattern 3 

     Express (3) in the ratio form as 

                                     0,
tcu

ptd

ptd

tcu





=

+

+
=

−

−
 

Solving the above system of double equations through the method of cross-

multiplication and using (14.2) , the corresponding integer solutions to (14.1) are  

given by 

                                 

.)(t

,)(dc2vw

,)(dc2vz

,v)(cd2y

,v)(cd2x

22

22

22

22

22

+=

−−−=

−++=

−−−=

+−−=

 

Case 2 

         Choose the values of d,c  such that 
22 dc +   is a perfect square.  

Consider d,c  to  be  the legs of Pythagorean triangle.  In otherwords , take 

0,2d,c 22 =−=  so that 
222 )(dc +=+ .  

The option 

                           P)(p,U)(u +=+=                                                          (14.6)  

in (14.3) gives 

                               
222 tPU =+                                                                               (14.7) 

which is Pythagorean equation satisfied by 

                         0sr,srt,srP,sr2U 2222 +=−==                                     (14.8) 

From (14.6) & (14.2) , the integer solutions to (14.1) are given by 
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)sr()(vw

,)sr()(vz

,v)(sr2y

,v)(sr2x

22

22

−+−=

−++=

−+=

++=

  

 jointly with t  given by (14.8). 
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Conclusions 

It is hoped that these problems may create an interest in the hearts of researchers and 

lovers of mathematics who approach it with pure love for its own beauty. The authors 

hope that, seeing the excitement of solving this multiple variables quadratic Diophantine 

equations, young mathematicians and researchers realize that there are lots and lots of 

other problems in Number Theory which are going to be challenging in the future. There 

is no wonder that Diophantine equations are beautiful and tricky enough to keep a 

mathematician occupied for entire life.  

It is worth to observe that Number Theory distinguishes itself through its intrinsic 

beauty, offering both enjoyment and excitement. The outstanding results in this study of 

Diophantine equation will be useful for all readers. 
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