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Preface

The fascinating branch of Mathematics is the Theory of Numbers in which the subject
of Diophantine equations requiring only the integer solutions is an interesting area to
various mathematicians and to the lovers of mathematics because it is a treasure house
in which the search for many hidden connections is a treasure hunt. In other words, the
theory of Diophantine equations is an ancient subject that typically involves solving,
polynomial equation in two or more variables or a system of polynomial equations with
the number of unknowns greater than the number of equations, in integers and occupies
a pivotal role in the region of mathematics. It is worth to mention that the Diophantine
problems are plenty playing a significant role in the development of mathematics
because the beauty of Diophantine equations is that the number of equations is less than
the number of unknowns.

The theory of Diophantine equations provides a fertile ground for both professionals and
amateurs. In addition to known results, the theory of Diophantine equations abounds
with unsolved problems (Carmichael.,1959; Dickson.,1952; Mordell.,1969). In this
context, for simplicity and brevity, one may refer (Gopalan et.al., 2012, 2015, 2021,
2024; Mahalakshmi, Shanthi., 2023; Sathiyapriya et.al., 2024; Shanthi.,2023;
Shanthi, Mahalakshmi.,2023; Shanthi, Gopalan.,2024; Thiruniraiselvi, Gopalan.,
2024; Vidhyalakshmi et.al., 2022) for some binary and ternary quadratic Diophantine
equations. Although many of its results can be stated in simple and elegant terms, their
proofs are sometimes long and complicated. Many unsolved problems that have been
daunting mathematicians for centuries provide unlimited opportunities to expand the
frontiers of mathematical knowledge. The subject of Diophantine equations has
fascinated and inspired both amateurs and mathematicians alike and so they merit
special recognition.

The successful completion of exhibiting all integers satisfying the requirements set forth
in the problem add to further progress of Number Theory as they offer good applications
in the field of Graph theory, Modular theory, Coding and Cryptography, Engineering,
Music and so on. Integers have repeatedly played a crucial role in the evolution of the
Natural Sciences. The theory of integers provides answers to real world problems.

The focus in this book is on solving multivariable second-degree Diophantine equations.
These types of equations can be challenging as they involve finding integer solutions



that satisfy the given polynomial equation. Learning about the various techniques to
solve these multivariable second-degree Diophantine equations in successfully deriving
their solutions help us understand how numbers work and their significance in different
areas of mathematics and science. This book contains a reasonable collection of special
multivariable Quadratic Diophantine problems in three, four and five variables. The
process of getting different sets of integer solutions to each of the quadratic Diophantine
equations considered in this book are illustrated in an elegant manner.

M. A. Gopalan
J. Shanthi
N. Thiruniraiselvi
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Chapter 1

Designs of integer solutions to
homogeneous ternary quadratic equation

1.1 Method of Analysis
The homogeneous quadratic with three unknowns is

x* +y?=145z7° (1.1)
The process of obtaining different choices of integer solutions to (1.1)
is illustrated below:
Choice 1.1
Substituting

Xx=9 a+84,y=8a-9p (1.2)
in (1.1) , it reduces to the Pythagorean equation

a’+pt=2° (1.3)
which is satisfied by

a=2pq,f=p"-0q°,p>q>0 (1.4)
and

z=pa L5
In view of (1.2) , we have
x=18pg+8(p°-0a’) ,y=16pq-9(p°-q’) (16)
Thus, (1.5) and (1.6) give the integer solutions to (1.1).

Note 1.1

However, apart from (1.2), one may consider the following transformations



X=9 a-88,y=8a+9p ,
X=8 a-9p,y=9a+84,
X=8 a+904,y=9a-84,
X=12a+p,y=a-1243,
X=12a-p,y=a+1243,

leading to different sets of integer solutions to (1.1).

Choice 1.2
Write (1.1) as

1452 —x*> = y**1

(1.7)
Assume

y =145a* —b? (18)
Write the integer 1 in (1.7) as
1=(V145+12) (V145-12) (L.9)
Substituting (1.8) & (1.9) in (1.7) and applying factorization, consider
V1457 + x = (145+12) (v145a +b)?
from which we have
x =12 (145a° +b*) +290ab ,
z=(145a*+b*)+24ab (1.10)

Thus, (1.8) & (1.10) represent the integer solutions to (1.1).
Note 1.2

In addition to (1.9) , the following representations to the integer 1 in (1.7)



_ (J145+1) (+145-1)

B 144 ’

_ (+/145+8) (145-8)
81 ’

_ (+/145+9) (v145-9)
64

1

1

1

lead to three more sets of integer solutions to (1.1).

Choice 1.3
Rewrite (1.1) in the form of ratio as

X+z 144z-y P

= =— 0>0
1447 +y X—2 Q Q

which is equivalent to the system of double equations
Qx-Py+(Q-144P)z=0
Px+Qy-(P+144Q)z=0

Applying the method of cross-multiplication, the integer solutions to (1.1) are found to
be

x=P?+288PQ-Q°,
y=-144P% +2PQ +144 Q% ,
z=Q%+P?

Note 1.3

Also, (1.1) may be written in the ratio forms as below:

x+z _1l44z+y P

,Q>0,
1447 -y X—2Z Q Q
x+92:82+y:E1Q>0’
8z—-y x-9z Q
x+92_82—y=E’Q>0-

82+y_x—92 Q



Following the procedure as in Choice 1.3, different sets of solutions to (1.1) are
obtained.

Choice 1.4

Assume

z=a’+b? (1.11)
Write the integer 145 in (1.1) as

145=(12+1i) (12-1) (1.12)

Substituting (1.11) & (1.12) in (1.1) and employing the method of Factorization,
consider

X+iy=(12+i) (a+ib)?
On equating the real and imaginary parts in the above equation , we get
x =12(a®* —b?*)-2ab,
. o (1.13)
y=(@“—-b“)+24ab.
Thus, (1.11) & (1.13) satisfy (1.1).
Note 1.4

In addition to (1.12) , one may have the following representations to the integer 145 :

145= (=12+i) (~12—i) (£1+12i) (x1-12i) ,(8+9i) (x8-9i) ,(£9 +8i) (+9-8i)

Following the above procedure , some more sets of integer solutions to (1.1) are
obtained.

Remark 1.1

It is worth to mention that, apart from the above representation of the integer 145 as
the product of complex conjugates, one may have the representation through employing
the legs of Pythagorean triangle as illustrated below:



Let p,q,p > q > 0 denote the generators of a Pythagorean triangle. Then, the legs of

the corresponding Pythagorean triangle are given by p2 — q2 ,2P( . Consider two
integers f,g such that

f=c(p’-q*)+d(2pa),
g=c(2pq)—d(p®-q?)
where

145=c? +d?

It may be observed that

145=(C2 +d2): (f+lzg)(f2_2|g)
(" +0%)

Following the process presented in Choice 1.4 and performing some algebra, the
corresponding integer solutions to (1.1) are obtained.

Choice 1.5
Consider (1.1) as
x> +y® =1457°*1
Also , the integer 1 is written as

1 (P*-a*+i2pa)(p°—q’ -i2pq)
(p*+0%)°

Following the analysis similar to Choice 1.2, the corresponding integer solutions to (1)
are as below :

x=(p®>+q?) [(a®*-b*) 12(p*—-q*)-2pag)-2ab (p*—q* +24 pq)],
y=(p®+q°) [(a®*-b*) (p* -q*+24pqg)+2ab (12(p*-9*)-2 pq)],
z=(p*+0q%) % (a®+b?)

Observation 1.1

Let (X,,Y,,2,) be any given solution to (1.1). Then, a formula for obtaining
sequence of solutions to (1.1) based on the given solution is presented below:



MNCARY DN LI AT O
2 2
(a"-p") (a"+p")
= X, + Z,,

" 2J145 ° 2 °
Y. =Y., N=123,..

where

o =289+ 24145 , p =289-24V145
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Chapter 2

Patterns of integer solutions to
homogeneous ternary quadratic equation

2.1 Method of Analysis

The homogeneous ternary quadratic equation to be solved is
X* —xy+2y* =2° (2.1)
Different processes of solving (1) are illustrated below:

Process 2.1

On completing the squares , we have

(2x-y)?+7y? =42> =(22)* (2.2)
which is satisfied by
7r2—s®+2rs 7r? 452
y=2rs,X= 2= (2.3)
2 2

As integer solutions are required, choose r,s to be of the same parity. That is ,
consider

both r,s to be even or odd.
Case2.1: Letr=2R,s=2S
From (2.3) , the corresponding integer solutions to (2.1) are given by
Xx=14R?-2S* +4RS,y=8RS,z=14R* +25°
Observation : 2.1 Itisseenthat X >y >0 when
7R?-S*>2RS (2.4)

Now , taking X,y to be the generators of the Pythagorean triangle (U,V,W) with
U=2xy,V=x*-y* W =x*+y* we have



U=16RS(14R*-2S°+4RYS),
V =(14R?*-2S°+12RS) (14R?-2S* —4RYS),
W =(14R?*-2S*+4RS)* +(8RS)?.

If A,P represent the area and perimeter of the above Pythagorean triangle
respectively , then it satisfies the relation

W — 2% is a perfect square. (2.5)

[lustration :
R=2,S=3
X=62,y=48,z=74
U=96*62=5952,V =62° —48° =1540,W =62° + 48° =6148
A =4583040,P =13640

W—2% =5476="74’

In a similar manner , choosing R,S suitably satisfying (2.4) , one obtains
many pythagorean triangles satisfying the relation (2.5) .

Observation :2.2

From each of the values of Xx,y,z,U,V,W , one may obtain second order
Ramanujan numbers .

Ilustration:
y=48=1*%48=2%*24=3*16=4*12=6*8
=A =B = C =D =E
From A=B, itis seen that
(48+1)° +(24-2)° = (48-1)" +(24+2)°
—49% +22° =47% + 26° =2885

In a similar manner, we have the following results:



A=C=49%+13*=47% +19* = 2570
A=D=49%+8%=47%+16° = 2465
A=E = 49%+22 =47? +14% = 2405
B=C=262+13%=222+19? =845
B=D= 26%+8%=222+16° =740
B=E = 26%+22=22%+14%> =680
C=D=19%+82=13*+16° =425
C=E=19%+2%=13%+14> =365
D=E =16°+22=82+14% =260

Thus , 2885,2570,2465,2405,845,740,680,425,365,260 represent second order
Ramanujan numbers.

Case22: Letr=2R+1,s=2S+1

From (2.3) , the corresponding integer solutions to (2.1) are given by
x=14R?+16R-2S* +4RS+4,y=8RS+4R +45+2,2=14R* +14R + 25 + 25 +4
Observation : 2.3 Itisseenthat x>y >0 when
(BR+1)*>2S+R*+(R+S)? (2.6)
Now , taking X,y to be the generators of the Pythagorean triangle (U,V,W) with
U=2xy,V=x’-y? W=x2+y?,
we have

U=2(14R?*+16R-2S*+4RS+4) (8RS+4R+4S+2),
V=(14R?*+16R -2S* +4RS+4)? —(8RS+4R +4S+2)?,
W =(14R* +16R—-2S* +4RS+4)* +(8RS+4R +4S+2)°.

If A,P represent the area and perimeter of the above Pythagorean triangle respectively
, then it satisfies the relation (2.5).

Ilustration :



R=2,S=3

x=98,y=70,z=112

U=196*70=13720,V =98> —70° = 4704, W =98 + 70> =14504
A =32269440,P =32928

W - 2% =12544=112*
In a similar manner , choosing R,S suitably satisfying (2.6) , one obtains
many pythagorean triangles satisfying the relation (2.5) .
Observation :2.4

From each of the values of Xx,y,z,U,V,W , one may obtain second order
Ramanujan numbers .

[lustration:
y=70=1*70=2*35=5*14=7*10
=A =B =C =D
From A=B, it is seen that
(70+1)° +(35-2)* =(70-1)* + (35+2)°
=71*+33* =69* +37° =6130

In a similar manner ,we have the following results :

A=C=71+9°=69° +19° =5122

A=D= 71 +3*=69°+17> =5050

B=C=37"+9°=33"+19 =1450
B=D=37"+3*=33"+17°=1378

C=D=19"+3*=9?+17° =370

Thus , 5122,5050,1450,1378,370 represent second order Ramanujan numbers.
Process 2.2

Write (2.1) in the form of ratio as

10



)
T ax _6,Q¢0 (2.7)

Solving the above system of double equations, we have
Xx=2Q*-P? y=0Q?+2PQ,z=2Q° +P*+PQ
Observation :2.5

Itisseenthat x>y >0 when

2Q° > (P+Q)? (2.8)
Now , taking X,y to be the generators of the Pythagorean triangle (U,V,W) with
U=2xy,V=x*-y* W=x*+y*,

we have

U=2(2Q%-P*)(Q*+2PQ),
V=(2Q*-P*)*—(Q* +2PQ)?,
W =(2Q%*-P*)*+(Q*+2PQ)>.

If A,P represent the area and perimeter of the above Pythagorean triangle
respectively , then it satisfies the relation (2.5).

Ilustration :
P=1,Q=3
x=17,y=15,2=22
U=510,V=64,W=514
A =510*32,P=1088
W—2%= 484=22°

In a similar manner , choosing P,Q suitably satisfying (2.8) , one obtains
many pythagorean triangles satisfying the relation (2.5) .

Observation :2.6

From each of the values of X,y,z,U,V,W, one may obtain second order
Ramanujan numbers .

Ilustration:

11



V=64=1*64=2*32=4*16
=A =B =2C

From A=B, it is seen that
(64+1)* +(32-2)* = (64-1)* + (32+2)*
=65° +30% =63” +34* =5125
In a similar manner ,we have the following results :
A=C=65"+12* =63" +20° = 4369
B=C= 34" +12° =30° + 20> =1300
Thus , 5125,4369,1300 represent second order Ramanujan numbers.

Process 2.3

Write (2.1) in the form of ratio as

2y—x:z+x Q

z=x _ ¥ _Poso 2.9)

Solving the above system of double equations , we have
x=Q*-2P?,y=2PQ-P*,z=Q* +2P*-PQ
Observation :2.7 Itisseenthat X >y >0 when
Q*-P?*>2PQ (2.10)
Now , taking X,y to be the generators of the Pythagorean triangle (U,V,W) with
U=2xy,V=x*-y* W=x*+y? we have
U=2(Q*-2P*)(2PQ-P?),
V=(Q*-2P?)*~(2PQ-P?)?,
W =(Q?-2P?)*+(2PQ-P?)°.

If A,P represent the area and perimeter of the above Pythagorean triangle respectively
, then it satisfies the relation (2.5).

Ilustration :

12



P=1Q=3
Xx=7,y=5,2=8
U=70,V=24 W=74
A=840,P =168
W—2%=64=82

In a similar manner , choosing P,Q suitably satisfying (2.10) , one obtains
many pythagorean triangles satisfying the relation (2.5) .
Observation :2.8

From each of the values of Xx,y,z,U,V,W, one may obtain second order
Ramanujan numbers .

Ilustration:
V=24=1*%24=2*12=3*8=4*6
=A =B = C=D

From A=B, it is seen that
(24+1)° +(12-2)°* =(24-1)* +(12+2)*
—25° +10* =23 +14° =725
In a similar manner ,we have the following results :
A=C=25"+5°=23+11° =650
A=D=25"+2°=23+10° =629
B=C=14° +5* =10% +11* =221
C=D=11"+2%=5°+10° =125
Thus , 725,650,629 ,221,125 represent second order Ramanujan humbers.
Process 2.4

Write (2.2) as

47° -7y° = (2x—y)? (2.11)
Assume
2x—y=4(a’-7b?) (2.12)

13



Substituting (2.12) in (2.11) and applying factorization , we have

22 +/7y=4(a++/7b)? =4a%+28b%+8+/7ab

Equating the coefficients of corresponding terms in the above equation , we get
z=2a*+14b% y=8ab (2.13)
In view of (2.12) , we have

x=2a’-14b*+4ab (2.14)
Observation :2.9  Itisseenthat X >y >0 when

(a—b)? >8b? (2.15)
Now , taking X,y to be the generators of the Pythagorean triangle (U,V,W) with
U=2xy,V=x’-y? W=x2+y?,
we have

U=16ab(2a®-14b* +4ab),

V =(2a® -14b” + 4ab)* —(8ah)?,
W = (2a® —14b” + 4ab)* + (8ab)*.

If A,P represent the area and perimeter of the above Pythagorean trianglerespectively
, then it satisfies the relation (2.5).

Ilustration :

a=4,b=1
x=34,y=32,2=46
U=2176,V =132 ,W =2180
A =143616,P =4488
W—zgz 2116=46°

In a similar manner , choosing a, b suitably satisfying (2.15) , one obtains
many pythagorean triangles satisfying the relation (2.5) .

14



Observation :2.10

From each of the values of x,y,z,U,V,W, one may obtain second order
Ramanujan numbers .

Ilustration:
y=32=1*32=2*16=4*8
=A =B =2C

From A=B, itis seen that
(32+1)%+(16-2)* =(32-1)* + (16 +2)°
=33* +14° =31° +18% =1285
In a similar manner ,we have the following results :
A=C=33+4*=31"+12°=1105
B=C =18 +4% =14% +12°* =340
Thus , 1285,1105 ,340 represent second order Ramanujan numbers.
Process 5

Treating (2.1) as a quadratic in x and solving for the same ,we get

y+.4z>-7y°

X = 5 (2.16)

It is possible to choose y ,z so that the square-root in (2.16) is eliminated and obtain
the corresponding value to x satisfying (2.1). For simplicity and brevity ,a few
examples are presented as below :

Example

y=2s+1,z=5"+5+2,Xx=5"+2s5-1

Itisseenthat x>y >0 when

(a—b)? >8b? (2.17)

Now , taking X,y to be the generators of the Pythagorean triangle (U,V,W) with
U=2xy,V=x*-y* W=x*+y*,

we have

15



U=16ab(2a®-14b* +4ab),
V =(2a® —14b* + 4ab)* —(8ah)?,
W =(2a® —14b” + 4ab)? + (8ab)?.
If A,P represent the area and perimeter of the above Pythagorean triangle respectively
, then it satisfies the relation (2.5).
Ilustration :
a=4,b=1
Xx=34,y=32,2=46
U=2176,V=132,W =2180
A =143616,P =4488

W—2% =2116=46"

In a similar manner , choosing a, b suitably satisfying (2.15) , one obtains many
pythagorean triangles satisfying the relation (2.5) .
Observation :2. 10

From each of the values of x,y,z,U,V,W, one may obtain second order
Ramanujan numbers .

Ilustration:

y=32=1*%32=2*16=4*8
=A =B = C

From A=B, itis seen that

(32+1)% +(16—2)* =(32-1)* + (16 +2)°
=332 +14% =31% +182 =1285

In a similar manner ,we have the following results :

A=C=33+4°> =31 +12° =1105
B=C=18%+42=14° +12* =340

Thus , 1285,1105 ,340 represent second order Ramanujan numbers.

16
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Chapter 3

A scrutiny of integer solutions to non-
homogeneous ternary quadratic equation

3.1 Method of Analysis:

Consider the diophantine equation representing hyperboloid of one sheet given by
X2 +2y*—72=2 (3.1)
The process of obtaining patterns of integer solutions to (1) is illustrated below:
Pattern |
Assuming
x=ky,k>1 (3.2)
in (3.1) ,it is written as
7% = (k2 + 2)y2 -2 (3.3)
with the least positive integer solution
Yo =1,2,=k
To obtain the other solutions of (3.3) ,consider the pellian equation
z° = (k2 +2)y2 +1
whose general solution (Y, ,Z,) is given by
- foe - ;
7 - nk § o= Ok
2 2vk? +2
foo=(K*+1+kvk? +2)" + (k* +1-kvk? +2)",
Ook = (K2 +1+kVk? +2)™ = (k* +1-kvk? +2)"*

Applying Brahmagupta lemma between the solutions of (Y,,Z,)and (Y, ,Z,) the

in which

general solution of (3) is found to be

Yo =K
n+l 2 2 k2 + 2 nk
; - (3.4
kK +2
Z = k nk + 1n = _11011121
n+l 2 2 gn,k

17



In view of (3.2) ,we have
k

Okl
2 Jk2+2

Thus,(3.4) and (3.5) represent the integer solutions to (3.1).
A few examples are given in Table 3.1 below:

fn,k
X, =K][ 5 + (3.5

Table 3.1-Examples

n Xn+1 yn+l Zn+1

1] k 1 k

0 | k(2k? +1) (2k? +1) (2k® +3K)

11 k(4k* +6k*+1) | (4k* +6k*>+1) | (4k® +10k® +5K)

The recurrence relations satisfied by the values of X,y,z are respectively given by
Xn+3 _2(k2 +1)Xn+2 +Xn+1 =0 !
yn+3 _2(k2 +1)yn+2 + yn+l = 0 '
Z,s—2(K*+)z,,+2,,=0.
A few interesting properties are given below:
(i) 6[(k*+2)y,,., —Kz,,,, +2]is asquare multiple of 6
(iiy 6[(kK*+2)y,,., —Kz,,., +2]is acubic integer.
(i) [(K*+2)y,,., —Kkz, ., +2]is a perfect square.
(IV) [ (k2 + 2)y n+l kz n+1]2 - (k2 + 2) [k Yo~ Zn+l]2 =4

Pattern Il
Substitution of

z=ky,(k>1) (3.6)
in (3.1) leads to

x? = (k2 - 2)y2 +2 (3.7)
with the least positive integer solution
Yo =1,X, =k

To obtain the other solutions of (3.7) , consider the pellian equation
x? = (k2 —2)y2 +1

whose general solution (Y, ,X, ) is given by
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X = o v = —Inkin which
S N O
f =K —1+kVk? —2)™ + (K2 —1-k~k? =2)™,
O, p = (K2 —1+kk? —=2)™ — (k2 ~1-k~/k? —2)™
Applying Brahmagupta lemma between the solutions of (Y, ,X,)and (Y, ,X,),
the general solution of (3.7) is found to be
foi Kk

yn+l: 2 +2mgn,k’
o +,/k2—2

X1 9.« -n=-1012,
2 2 (3.8)
In view of (3.6) ,we have
S Y TP S @9
M2 ki ™ |

Thus,(3.8) and (3.9) represent the integer solutions to (3.1).
A few examples are given in Table 3.2 below:

Table 3.2-Examples

n Xn+1 yn+l Zn+1

-1 k 1 k

0 | (2k®*-3k) (2k? -1) (2k* k)

1 | k(4k* -10k* +5) | (4k* -6k>+1) | (4k®-6k®+k)

The recurrence relations satisfied by the values of X,y,z are respectively given by
Xn+3 - 2(k2 _1)Xn+2 + Xn+1 =0 ’
Yz — 2(k2 _1) Yoz T Yo = 0 )
Zy3~ 2(k2 _1)Zn+2 +Z,0= 0.
A few interesting properties are given below:
v)  6[kX,,,, —(K*=2)y,,., +2]is asquare multiple of 6
(vi) KX5.s — (K2 =2) Y, +3(kX,., —(K* —2)y ,.,)is a cubic integer.

(vii) kX, —(k*=2)y,, ., +2 isa perfect square.
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iii) [kx ., —(K*=2)y ,1* - (k*-2)[Ky,,, —X,.,]° =4

Pattern 111
Substitution of
Z=U+V ,X=U-V,uzv=0 (3.10)
in (3.1) leads to
y?=2uv+1 (3.11)

It is possible to choose u, Vv such that the R.H.S. of (3.11) is a perfect square and taking
its square-root ,the value of y is obtained. Substituting the above values ofu,v in
(3.10) ,the corresponding values of x,z satisfying (3.1) are found. A few examples
are given in Table 3.3 below :

Table 3.3-examples

u v X y Z

2s s+1 s—-1 2s+1 3s+1
2s s-1 s+1 2s5-1 3s-1
s(s+1) |2 s?4s-2 | 2s+1 s® +5+2
6*2" 3*2" -1 | 3*2" +1 6*2" -1 | 9*2" -1

Pattern IV

Taking

z=(25+3) X (3.12)
in (3.1) ,we have the well-known pellian equation

y? =(2s* +65+4) x> +1 (3.13)

If (X,,Y,) is the initial solution to (3.13) ,then its general solution (X, .;,Y,.;) is
given by

\ g,
Yoa =5 X = (314)
2™ o 25 16544

where

(g0 I IO T )" 4 (y, (2T ES X,
gn = (yo +\/MXO)”” _(yO _\/mxo)nﬂ.

In view of (12) , we have
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g, (3.15)
2./25% +65+4

Thus, (3.14) and (3.15) represent the integer solutions to (3.1).
The recurrence relations satisfied by the values of X,y,z are respectively given by

z..,=(25+3)

Xnia =2 Yo Xpip + X5 =0,
Yoizs =2 Yo Y2 +Ynu =0,
Zy.3 _Zyo Z,,,+2,,=0.
Remarkable Observation
Let (X,,Y,2,) be any given integer solution to (1). Then ,the triple (X, ,Y, ,Z,)
Given by
X, =Xg,
Yo = Yn—l Yot Zn—l Zy,
z,=22,,Y,+Y,412,,n=123,.

also satisfy (3.1) where
(Y,.,Z, ) being the solution of the pellian equation Y? =2Z% +1.
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Chapter 4

A portrayal of integer solutions to
homogeneous ternary quadratic equation

4.1 Method of Analysis:

The quadratic Diophantine equation with three unknowns studied for its non-zero

distinct integer solutions is given by
x* = 25y% +297° (4.1)

We illustrate below different sets of integral solutions of (4.1).

Set |

It is observed that (4.1) is of the form

x* =y?+ Dz’ (4.2)
where D = 29. Employing the most cited solutions of (4.2), one may obtain

X =29m* +n?

1

y = 5(29m2 -n’)

z=2mn,m,ne N.

Since our interest centers on finding integral solutions, it is possible to choose

m, n such that x, y and z are integers. For the sake of clear understanding, the values of

m, n with the corresponding solutions are presented in Table 4.1 below:
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Table 4.1: VValues of m, n with solutions

Choices m N X, Y, 2
1 5M 5N 725M? + 25N ?,145M * ~5N* 50 MN
2 5k -4 | 5k-3 750k* —1190k +473,140k* — 226k +91,50k* — 70k + 24
3 Bk—4 | 5k—2 | 750k* —1180k +468,140k> — 228k + 92,50k * — 60K +16
4 5k —3 | 5k—4 | 750k* —910k +277,140k* —166k +49,50k* — 70k + 24
5 Bk—3 | 5k—1 | 750k*—880k +262,140k* —172k +52,50k* — 40k + 6
6 5k—2 | 5k—4 | 750k*—620k +132,140k* —108k + 20,50k * —60k +16
7 Bk—2 | 5Bk—1 | 750k*—590k +117,140k* —114k +23,50k* —30k + 4
8 5k—-1 | 5k-3 750k * —320k + 38,140k * —52k + 4,50k * — 40k +6
9 5k—-1 | 5k-2 750k * — 310k + 33,140k — 54k +5,50k* —30k + 4

Set 11
Express (4.1) as the system of double equations as presented in Table 4.2 below:

Table 4.2: System of double equations

System | 1 ]
X+5Yy z* 2972 29z
X—-5y 29 1 Z

Solving each of the above system of double equations, one obtains the

corresponding integer solutions to (4.1) as exhibited below:

Solutions to System |

X =50k? + 30k +19
y =10k? + 6K — 2
z=10k +3
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Solutions to System 11

x =1450k* +870k +131

y =290k? +174k + 26
z=10k +3

Solutions to System |11

X=75,y=14ca,Z =5«

Set 111
Write (4.1) as
25y% +297° = x> *1

Let X = 25a% + 29h?

Write 1 on the right hand side of (4.3) as

(14+iv29)(14-iv/29)

157

Substituting (4.4) and (4.5) in (4.3) and employing the factorization method,

define

5y +iv/292 =i(5a+ iV29b)" (14 +i/29)

15

Equating real and imaginary parts, we’ve

_ 1 2 2
5y—E[350a —406b” —290ab |

1
7= g[25az —29p? +140ab]

(4.3)

(4.4)

(4.5)

(4.6)
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As our interest is finding integer solutions, we choose a and b suitably so that x, y, z are

integers,
Replacing a by 15a and b by 15b in (4.6) and (4.4), the corresponding integer solutions

to (4.1) are given by

X = x(a,b) = 5625a° + 6525b°
y = y(a,b) =1050a% —1218b? —870ab
z =z(a,b) =375a —435b* + 2100ab
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Chapter 5

Designs of integer solutions to
homogeneous ternary quadratic equation

5.1 Method of Analysis

The ternary quadratic equation to be solved for its integer solutions is
2° = (2k* — 2k +22) X" + Y’ (5.1)
We present below different methods of solving (5.1):

Method: 1
(5.1) is written in the form of ratio as

Z+ X r
y = =—,5%0

(2k2—2k+22)x_ Z-y s

which is equivalent to the system of double equations

(2k* -2k +22) rx—sy —s2 =0

SX+ry—-rz=0
Applying the method of cross-multiplication to the above system of equations,

x=x(r,s)=2rs
y=y(r.s)=(2k*-2k+22)r* -’
z=z(r,s)=(2k2—2k+22)r2+s2

which satisfy (5.1)

Note: 1
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It is observed that (5.1) may also be represented in the form of ratio as below:

k? —k+11)x
(i)”y:( ) LY
2X z-y S

The corresponding solutions to (5.1) are given as:
X=2rs,y=2r? —(k2 —k+11)52, z=2r? +(k2 —k+11)s2

- Z+y _ 2 r S0
(if) (kz—k+11)x z-y s’

The corresponding solutions to (5.1) are given as:

x:2rs,y=(k2—k+11)r2—232,z =(k2 —k+11)r2 + 257

Method: 2
(5.1) is written as the system of double equation in Table 5.1 as follows:

Table 5.1: System of Double Equations

System 1 2 3 4
Z+y 2x (K*—k+11)x* | (2k* -2k +22)x (K —k+11)x
z—y (kz—k+11)x 2 X 2X

Solving each of the above system of double equations, the value of X, y & z satisfying

(5.1) are obtained. For simplicity and brevity, in what follows, the integer solutions thus

obtained are exhibited.

Solutions for system: |

X=2s,y= -(kz—k+9)s,z = (kz—k+13)s
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Solutions for system: 11

x=2s, ¥ =25 (K? =k +11)-1 7=25" (k* —k +11)+1

Solution for system: 111

X:251y=(2k2—2k+21)s, z=(2k* -2k +23)s

Solution for system: IV
x=2s, Y =5(k2 —k+11)—28, z= S(k2 —k+11)+25

Method: 3

(5.1) is written as

y2+(2k2—2k+22)x2 =7 =7%%1 (5.2)
Assume z as

z=a’+(2k* -2k + 22)b (5.3)
Write 1 as

[(2k2 ~2k+22)r? -5 +i2rsy2kE - 2K +22} *[(2k2 ~2k+22)1? - 5? —i2rsy2K7 - 2k +22}

(26 —2k+22)r2+32)2

1=

(5.4)
Using (5.3) & (5.4) in (5.2) and employing the method of factorization, consider

(a+ib\/2k2 —2k+22)2[(2k2 -2k +22) 17 -8 +in2k7 2k + 22 2rs}

(2k2 —2k +22)r2 +5°

y+iv2k? -2k +22 x =
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Equating real & imaginary parts, it is seen that

1
2k2—2k+22)r2+52
1

X= (2k2 —2k+22)r2 2 [Zab{(zk2 _2k+22)r2 _32}+2rs{a2 _(Zk2 _2k+22)b2”

& [{(24 - 2K+ 22) - {a? - (2 - 2k + 22)0°| - dabrs 2k -2k + 22} |

(5.5)

Since our interest is to find the integer solutions, replacing aby

[(2k2—2k+22)r2+sz]A&b by [(2k2—2k+22)r2+32]8 in (55) & (5.3), the
corresponding integer solutions to (5.1) are given by

X=x(A,B):((2k2—2k+22)r2+s2)[(Az—(2k2—2k+22)52)2rs+2AB((2k2—2k+22)r2_52”

2_(2k* - 2 2_ 22

Y=y(A,B)z((ZkZ—2k+22)r2+52) (A (2k? -2k +22)B )[(2k 2k-+22)r s}
~4ABrs(2k* - 2k +22)

2= 2(AB)=((2K: -2k + 22)r% +) (A2 + (2K - 2k +22)B?)
Method: 4

(5.1) is written as

2° - (2k* -2k +22)X* = y* = y**1 (5.6)
Assume Y as

y=a’—(2k* - 2k +22)b’ (5.7)
Write 1 as
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((2k2 ~2k+22)r? 457 +2k? ~ 2K+ 22 2rs) ((2k2 —2k+22)r? 5% —2k? 2k + 22 2rs)
1=

(k2 -2k +22)r? —52)2

(5.8)

Using (5.7) & (5.8) in (5.6) and employing the method of factorization, consider

(2K -2k+22)r 45" +2rs\/2k2—2k+22}{

(2|<2 ~2k +22) r?—s?

a’ +(2k" - 2 +22)b2]

2_
oK 2K e 22 = +2aby/2k* - 2k +22

Equating rational and irrational parts, it is seen that,

(a2 +(2Kk? -2k + 22)b2)2rs + 2ab((2k2 —2k+22)r? + 32)
(2|<2 —2k+22)r2 —g?

X =

(a°+(2K* 2k + 22)b) (2K — 2k + 22) r* +5 ) + 4abrs ( 2k - 2k + 22)
- (2K* -2k +22)r* - 5°

(5.9)

Since our interest to find the integer solution, replacing aby

((2k* —2k+22)r* =) A g ppy ((2° —2k+22)r*=5*)B iy (5.7) & (5.9), the

corresponding integer solutions to (5.1) are given by
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x=X(AB)=((2K" -2+ 22)r? 57 | (A% (27 - 2+ 22)B? | 2rs + 2AB( (2 -2k + 2)” + 57
2

y=y(AB)=((2~2k+22)r* 57} [ A° (2K - 2k +22)’

(A2+(2k2 —2|<+22)132)((2k2 -2k +22)r° +32)

o2(AB)=|(A -2 ) <) +4ABrs (26° -2k +22)

GENERATION OF SOLUTIONS
Different formulas for generating sequence of integer solutions based on the given

solution are presented below:

Let (XO, yo,Zo)be any given solution to (5.1).

Formula: 1
Let (X, Y;,2, ) given by
X, =3%,, Y, =3y, +h,z, =3z, +2h (5.10)
be the 2"solution to (5.1). Using (5.10) in (5.1) and simplifying, one obtains
h=2y,-4z,

In view of (5.10), the values of Y; and Z; are written in the matrix form as

(3/1’21)t =M (yO’ZO)t

5 4
where M=

and tis the transpose
The repetition of the above proses leads to the n™ solutions Y,,, Z, given by

31



t t
(YarZy) =M" (Yo, 2,)
If o, [ are the distinct eigen values of M, then
a=3,=-3

We know that

M" = (aa_nﬂ)(M —ﬁ|)+(ﬁﬂ_na)(|\/| —al), 1 =2x2 Identity matrix

Thus, the general formulas for integer solutions to (5.1) are given by

X, =3"X,
(yn)_ 1| 4a"-p"  -2a"+2B" || Y,
Z,) 3|2a"-2B" —-a"+48" || 7
Formula: 2

Let (X11 Yis Zl)given by

X =h—(2k?* -2k +23)x,, ¥, =h—(2k* 2k +23)y,, z, = (2k* — 2k +23)z,
(5.11)

be the 2" solution to (5.1). Using (5.11) in (5.1) and simplifying, one obtains

h=(4k* -4k +44)x, + 2y,
In view of (5.11), the values of X, and y, are written in the matrix form as

(X %) =M (%5, ¥)

2
where M = 2k° -2k +21 2

4k* -4k +44 —(2k* -2k +21)
And tis the transpose
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The repetition of the above process leads to the n solutions X, , Y, given by

(% ¥n) =M" (%, Yo)
If «, B are the distinct eigen values of M, then
o=2k"-2k+23, f=—(2k* -2k +23)

Thus, the general formulas for integer solutions to (2.113) are given by
(XHJ 1 (2k* -2k +22)a" + B" a" =" {XO}
Vo) (2K*—2k+23)| (2k*—2k+22)(a" - B") & +(2k? ~2k+22) 8" |L¥e

(2k* -2k +23) 7,

Zn

Formula: 3
Let (X1 ylzl) given by

X =h—(2k* =2k +21)%, , y, =(2k* -2k +21)y,, 7, =(2k* -2k +21)z, +h
(5.12)

be the 2"solution to (5.1). Using (5.12) in (5.1) and simplifying, one obtains

h =2z, +(4k* -4k +44)x,
In view of (5.12), the values of X, and Z; are written in the matrix form as

(%, Zl)t =M (%, ZO)t
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2k? -2k +23 2
where M =

4k* -4k + 44 2k? —2k +23
and tis the transpose
The repetition of the above process leads to the n™ solutions X, Z, given by
(%,2,) =M" (X, 2,)

If «, [ are the distinct eigen values of M, then

o =2K* — 2k +23+2+/2k* - 2k + 22,
B = 2k* -2k +23-2/2k* -2k +22

Thus, the general formulas for integer solutions to (5.1) are given by

Y, =(2k* -2k +21) "y,

+)-

2J2kz —2k+22 || °

an _+_ﬂn an _ﬂn |:X :'
J2K2 =2k +22(a" - ") a"+ " “

N
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Chapter 6

Patterns of integer solutions to
homogeneous quaternary guadratic
equation

6.1 Method of Analysis:

The polynomial equation of second degree with four unknowns to be solved is
x? -6y’ +152° = w? (6.1)
The procedure to obtain various patterns of integer solutions to (6.1) is as below:

Procedure 1

The option
w=4z (6.2)
in (6.1) gives
x? =6y’ +27° (6.3)

which is satisfied by

y=2rs,2=6r>-s’,x=6r>+s° (6.4)
From (6.2) , we get

w=4(6r>—s%) (6.5)
Thus, (6.4) & (6.5) satisfy (6.1).

Note 6.1

It is seen that ,by expressing (6.3) as the system of double equations ,the following
four patterns of integer solutions to (6.1) are obtained:

Pattern 1

X=58,y=25,Z2=5,W=4s
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Pattern 2
X=7s,y=2s,z=5s,w=20s
Pattern 3
X=28"+3,y=2s,2=2s"-3,w=4(2s*-3)
Pattern 4
X=65"+1,y=2s,2=68"-1,w=4(6s"-1)
Note 6.2

Rewrite (6.3) as
2’ +6y° =x**1
Assume
x =25(a’ +6b?)
Express the integer 1 in (6.6) as

L (1+i2/6)(1-i26)
- 25

Substituting (6.7) & (6.8) in (6.6) and using factorization, we have

z+iV6y=5@1+i2v6)(a+iv6h)’

from which, we get

z=5(a*-6b*)-120ab,
y=10(a* -6b*)+10ab.

In view of (6.2) ,observe that
w =20(a*-6b*)—480ab

Thus,(6.7),(6.9) and (6.10) satisfy (6.1).

Remark 6.1

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)
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It is to be noted that the integer 1 in (6.6) may be considered as

1

(617 —s?+i2rs+/6) (612 —s* —i2rs+/6)

(61% +5%)?

Repeating the above process and taking different values to r& s, one obtains different
sets of integer solutions to (6.1).

Procedure 2

Consider (6.3) as

x> -6y’

Assume

=7z**1

z=a’>-6b’

The integer 1 in (6.11) is written as

1=(5+2+6)(5-2+/6)

Substituting (6.12) & (6.13) in (6.11) and using factorization, we have

X+/6y

=(5+2v6)(a++/6b)?

from which, we get

x =5(a’
y=2(a’

+6b%) +24ab,
+6b*)+10ab.

In view of (6.2) ,observe that

w =4(a’

—6b?)

Thus, (6.12),(6.14) and (6.15) satisfy (6.1).

Remark 6.2

1

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

It is to be noted that the integer 1 in (6.11) may be considered as

_(6r*+s?+2rs/6) (61 +s*—2rs/6)

(6 I,2 _SZ)Z
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Repeating the above process and taking different values to r& s, one obtains different
sets of integer solutions to (6.1).

Procedure 3

Introduction of the transformations
Xx=27B,y=3y+15B3,z=3y+6B,w =93 (6.16)
in (6.1) leads to the Pythagorean equation
,YZ — 62 + BZ
Employing the most cited solutions of the above Pythagorean equation in (6.16),
the corresponding integer solutions to (6.1) are obtained.
Note 6.3

In (6.16) ,if we choose X =9 ,then (6.1) reduces to the Pythagorean equation
v2 =8 +9p°
which is satisfied by
B=2rs,8=9r" -5’ ,y=9r*+s*> 3r>s>0
In this case , the corresponding integer solutions to (6.1) are given by
X =18rs,y =3(9r° +5°) +30rs,z=3(9r* +s°) +12rs,w =9(9r° —s?)
Procedure 4

The option
W=X+Yy (6.17)
in (6.1) leads to the ternary homogeneous quadratic equation
7y*+2xy-152>=0 (6.18)
Treating (6.18) as a quadratic equation in y and solving for the same ,we have

| Xt \105z% + x? (6.19)

B 7
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The square-root on the R.H.S. of (6.19) is removed when

z=2pqg,x =105p° —q° (6.20)
Taking the negative sign before the square-root in (6.19) and from (6.17) ,we get
y=-30p*,w=75p° —q° (6.21)
Thus,(6.20) & (6.21) satisfy (6.1).

Also, considering positive sign before the square-root in (6.19) & taking (6.17) ,
we, after some algebra, obtain the integer solutions to (6.1) to be

z=14pa,x =105p* —49a°,y =140, w =105p° — 350°

Note 6.4

In addition to the above patterns of integer solutions ,there are some more choices
of solutions to (6.1) which we illustrate as follows:

Let
a’ =x* +105z2° (6.22)
Represent (6.22) as the system of double equations as shown in Table 6.1:

Table 6.1-System of double equations

System | | I 11 v V VI VII VIII
a+X 1105z |35z |21z |15z |1057* |357° |21z* |157°
a—X z 3z 5z 72 1 3 5 7

Solving each of the above system of double equations, the values of o,X,z are
obtained. From (6.19) and (6.17) ,the corresponding values to y,w satisfying (6.1) are

found. For simplicity and brevity, the integer solutions to (6.1) obtained from each of
the above system of double equations are exhibited.

Solutions to 6.1) from System I:

Set 1 X =364s,y=5,z=7s,w =365s

Set 2 X =52s,y=-15s,z=s,w =37s
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Solutions to (6.1) from System II:
Set 3 Xx=112s,y=3s,z=7s,w =115s

Set 4 X =16s,y =-5s,z=s,w =11s
Solutions to (6.1) from System IlI:

Set5 X =568,y =55,z=7s,w=061s

Set 6 Xx=8s,y=-3s,z=5,w =9s

Solutions to (6.1) from System IV:
Set 7 X =28s,y=-155,z=7s,w =13s

Solutions to (6.1) from System V:
Set 8

X =210s” +210s + 52,y = —60s* —60s —15,z = 25 +1,w =150s* +150s + 37

Solutions to (6.1) from System VI:

Set9 x=70s’+70s+16,y=-20s’-20s-5,z=2s+1,w=50s"+50s+11

Solutions to (6.1) from System VII:

Set10 X =425"+42s+8,y=-12s*-125-3,z=2s+1,w =30s*+30s+5

Solutions to (6.1) from System VIII:

Set1l x=30s’+30s+4,y=1,z=25+1,w=30s’+30s+5

x=30(7s—4)(7s-3)+4,y=-105(2s-1)*,z=14s -7,

Set 12
w =[30(7s—4)(7s—3) +4]-105(2s - 1)

Procedure 5
The option
W=X-4z (6.23)
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in (6.1) leads to the ternary homogeneous quadratic equation
6y’ -8xz+2°=0 (6.24)

Treating (6.24) as a quadratic equation in z and solving for the same ,we have

L 8X +./64%° —24y?

6.25
> (6.25)

The square-root on the R.H.S. of (6.25) is removed when
y=8pq,x=6p°+q’ (6.26)

Taking the negative sign before the square-root in (6.25) and from (6.23) ,we get
z=80°,w =6 p*-31q° (6.27)
Thus,(6.26) & (6.27) satisfy (6.1).

Also, considering positive sign before the square-root in (6.25) & taking (6.23) ,

we, after some algebra, obtain
z=48p°,w =-186p* +q° (6.28)
Thus,(6.26) & (6.28) satisfy (6.1).
Procedure 6
The substitution
x=2k+1l,w=2k-1 (6.29)
in (6.1) gives
8k =6y° —152°
The choice
y=4Y,z=4P (6.30)
in the above equation gives
k=12Y? -30P?

In view of (6.29) ,we get
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X =24Y? -60P? +1,

(6.31)
w=24Y? -60P% -1,

Thus,(6.30) & (6.31) satisfy (6.1).
Procedure 7

The introduction of the linear transformation

w =3y (6.32)
in (6.1) leads to the homogeneous ternary quadratic equation

x? +15z% =15y? (6.33)
Assume

y =a’ +15b’ (6.34)
Express the integer 15 on the R.H.S. of (6.33) as

15=(i+/15) (-i~/15) (6.35)
Substituting (6.34) &(6.35) in (6.33) and applying factorization, consider

X +iv/152 = (i+/15) (a +i~/15h)>
On comparing the coefficients of corresponding terms ,we get

x =-30ab,z=a®-15b’ (6.36)
From (6.32) ,one has

w =3(a* +15b%) (6.37)
Thus, (6.34),(6.36) & (6.37) satisfy (6.1).

Note 6.5

Observe that (6.33) is also written in the form of ratio as

X _3(y-2) =E,Q¢o
5(y+2) X Q

Solving the above system of double equations ,we have




X =30PQ,y=3Q°+5P%,z=3Q* -5P?
From (6.32), we get

w =3(3Q% +5P?)

Thus, (6.38) & (6.39) satisfy (6.1).

(6.38)

(6.39)
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Chapter 7

A scrutiny of integer solutions to
homogeneous quaternary guadratic
equation

7.1 Method of Analysis:

The homogeneous quadratic equation with four unknowns to be solved for its
integer solutions is
2xy +3z2° = 8w* (7.1)
We present below different sets of distinct integer solutions to (7.1) through employing
linear transformations.
Introduction of the linear transformations
X=U+V,y=u-Vv,z=V,(U=Vv=0) (7.2)

in (7.1) leads to

V2 +2u° = 8w (7.3)
Assume
A2 2
w=a"+2b (7.4)
Set |
Write 8 as
8=(i2v2)(-i2v2) (7.5)
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Using (7.4) and (7.5) in (7.3) and employing the method of factorization,

define

V+iv2u = (i242)(a+iv/2b)?

On equating the real and imaginary parts,one obtains
v =8ab,u = 2a’® — 4b”

In view of (7.2),note that

X =2a*—4b*+8ab
y =2a’ —4b* —8ab (7.6)
z=8ab

Thus, (7.6) and (7.4) represent the distinct integer solutions to (7.1).

Set |1

Note that 8 may be expressed as the product of complex conjugates as below:

_ (8+i22)(8-i242)
9

8 (7.7)

Following the procedure as in Set |,the corresponding integer solutions to (7.1) are given

below:

x = 3(10a’ — 20b* +8ab)
y =3(—6a” +12b* + 24ab)
z =3(8a* —16b’° —8ab)
w=9(a’ +2b%)

Set 111

(7.3) is written as
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V2 +2u° =8w=8w’*1 (7.8)

Consider 1 as

1

_ (1+i2\/§)9(1—i2«/§) 79)

Using (7.9), (7.5) and (7.4) in (7.8) and employing the method of factorization,

define

v+iv2u =(i2\/§)(a+i\/§b)2%

In this case,the corresponding integer solutions to (7.1) are found to be

x = 3(~6a” +12b* — 24ab)
y =3(10a° — 20b* —8ab)
z = 3(-8a” +16b*> —8ab)
w=9(a*+2b%)

It is worth to note that, by substituting (7.9),(7.7) and (7.4) in (7.8) and performing

the analysis as above,one obtains a different set of integer solutions to (7.1).

Remark
It is worthmentioning here that, in (7.9),1 may be represented as the

product of complex conjugates,in general, as exhibited below:

_(2r? —s? +i2\2rs)(2r? —s? —i2\/2rs)
(2r° +5%)?

1

Set IV

Introduction of the linear transformations
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X=X+8T +6V,y=X+8T -6V,z=6V,w= X +2T (7.10)
in (7.1) leads to

X?=16T*+6V? (7.12)
After performing a few calculations,the above equation is satisfied by

the following threechoices of solutions:

i. X =20k,T=k,V =8k

ii. X =28k, T =5k,V =8k

jii. X =24R*+4S* T =6R*-S%V =8RS
In view of (7.10),the corresponding integer solutions to (7.1) are represented
as follows:

Solutions for (i):

X =76k,y=-20k,z =48k, w =22k

Solutions for (ii):

x =116k, y =20k, z = 48k, w = 38k
Solutions for (jii):

X =T2R?—45% + 48RS, y = 72R? —4S° )V — 48RS, 7 = 48RS, w = 36R* + 2S?

Note: Suppose,instead of (7.10),the linear transformations are taken as
X=X-8T+6V,y=X-8T -6V,z=6V,w=X-2T

then,the corresponding three choices of solutions to (7.1) are as follows:
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Solutions for (i):

X =60k, y =-36k, z = 48k, w =18k
Solutions for (ii):

x =36k, y=-60k,z =48k, w =18k
Solutions for (jii):

X =—24R*+12S% + 48RS, y = —24R* +125% — 48RS, z = 48RS, w =12R* + 6S?

Generation of solutions
Three different formulas for generating sequence of integer solutions based on the given

solution are presented below:
Let( Xy, Yo, Zo, W, ) be any given solution to (7.1)
Formula: 1
Let(x, Y;,2,w,) given by
X =Xy, Vi =VYo:2, =2h—2z,,w, =h+w, (7.12)

be the 2"solution to (7.1). Using (7.12) in (7.1) and simplifying, one obtains

h =3z, + 4w,

In view of (7.12), the values of Z, and W, are written in the matrix form as

(W) =M (25, W) (7.13)

where
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5 8 i
M = andt is the transpose
3 5

The repetition of the above process leads to the n™ solutions z, , w, given by
t t
(z,,w,) =M"(z,,W,)
We know that

& -p)+ A -a
M —(a_ﬂ)(M A1) (ﬁ_a)(M ),

| =2x 2 Identity matrix and «, f are the distinct Eigen values of M.
For M given above in (7.13), It is seen that
a=5+26, B=5-26
Thus, the generation formula to obtain sequence of integer solutions to (7.1) is given by

X, =X Yn = Yo

2, [“ e jmﬁ(a A

n a"+p
W, = 4\/—(05 -p )Zo"‘[TJWo

Formula: 2

Let(X,, Y, 2, W, ) given by

X, =5%,, ¥, =9Y,, Z, =5z, +h, w, =h-5w, (7.14)

be the 2"solution to (7.1). For this choice, the generation formula for getting

sequence of integer solutions to (7.1) is obtained as below:
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X, =5"%,,Y,=5"Y,

where 7, =(an ;ﬁnjz(ﬁ%(a” - "),
w, =§(a” —ﬁ”)zo+[an ;ﬁnjwo

a=11+46, p=11-46

Formula: 3
Let(X,, Y, 2,,W, ) given by
X =3h—x,, y,=h-y,, z,=-2,+h, w, =h+w, (7.15)
be the 2" solution to (7.1).Using (7.15) in (7.1) and simplifying, one obtains
h=2x, +6Yy, + 62, +16w,
In view of (7.15), we have

X, =5X, +18y, +18z, + 48w,
Y, = 2X, +5Y, + 62, +16W,
Z, = 2X, +6Y, +5z, +16w,
W, = 2X, +6Y, +62, +17w,

which is written in the form of matrix as

5 18 18 48
2 5 6 16

(Xv yl,zl’Wl)t = 2 6 5 16 (Xo’ Yo Zo'Wo)t
2 6 6 17

where t is the transpose. The repetition of the above process leads to the general solution

to (7.1) as
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where

Y - _1n2 n n
= 7= (3 ) Xo + (Y, + (D)"Y, + (Y, +(=1)")z, +8X, w,

n+1

Y. +(-1) XO+Yn—(—1) 2 O+Yn+(—l) ZO+8xn :
9 3 3 3

yn+l =

n+1=Yn+(—1) X0+Yn+(—1) 0+\(n—(—1)220+8xn :
9 3 3 3

W :%x0 + X, Yo + X, Z, +Y, W,

n+1

Y = %((17+ 618" +(17—6\/§)M),

X, =%((1?+6\/§)M —(17—6J§)“+1)), N=0,12,..
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Chapter 8

A portrayal of integer solutions to non-
homogeneous guaternary gquadratic
equation

8.1 Method of Analysis:
The non-homogeneous quadratic equation with four unknowns to be solved is
Xy 4zt =t? -1 (8.1)

Different patterns of solutions in integers are illustrated below:

Pattern 1
The choice
t=x+1 (8.2)
in (8.1) gives
o7+ ;Zz) 83)

As our aim is to find integer solutions , observe that the values of x are integers
when y,z are both odd or even and from (8.2) , the corresponding values of t are

obtained. The two sets of integer solutions are presented explicitly below:
Setl

y=2r,z=28,x=2(r" +s%) ,t=2(r* +s°)+1
Set2

y=2r+1,2=25+1,x=2(r* +s* +r+s)+1,t=2(r> +s* +r+s+1)

Pattern 2
The substitution
t=x+y,z=2k+1 (8.4)
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in (8.1) leads to

Xxy=2k*+2k+1 (8.5)

For any given k in (8.5) , one may determine the values of x and y. In view

of (8.4) , the corresponding values of z ,t are obtained. For the sake of clear

understanding, a few numerical solutions are exhibited in Table 8.1 below:
Table 8.1-Numerical solutions

k z x*y X y t

1 3 5 5 1 6

5 11 61 1 61 62
8 17 145 145 1 146
8 17 145 5 29 34
-3 -5 13 1 13 14
-10 -19 81 81 1 82
-10 -19 81 27 3 30
Pattern 3

Introducing the transformations

X=U+V,y=Uu—-Vv,z=2V,t=2u+1

in (8.1), it simplifies to

(U+1)% =3v> +1

which is satisfied by

where

In view of (8.6), the non-zero distinct integer values of the quadruple (X,,Y,,Z,,t,)

aregiven by

fn :(2+\/§)n+1+(2_\/§)n+1'
g, =(2+3)" - (2-3)"".

(8.6)

(8.7)

(8.8)




_(Bf,+g,)

X, =———--1,
23
(\/§fn_gn)
,=—"-1, 8.9
y 23 (8.9)
g
z, =—%,t =f -1.
V3

The above values of X, ,y,,Z, and t_ given by (8.9) satisfy the following
recurrence relations

X _4Xn+1+xn=2’

n+2
Yoz =4Yna+tYn =2,
z,,-4z .,+z, =0,
t.,—4t  +t =2.
Generation of solutions
An interesting question that one often raises is: Given an initial solution,

whether one can obtain a general formula for generating a sequence of solutions?
The answer to this question is YES and the procedure is as follows:

Let (X,,Y,,Z,,t,)be the given non-zero distinct initial integer quadruple satisfying
(8.1).
Let h be any non-zero integer such that

X, =h-X,,y,=h-y,,z, =h-z,,t, =h+t, (8.10)
be the second solution of (8.1). Substituting (8.10) in (8.1), the value of h is found to
be

n+2

n+1

h=X,+Y,+2,+t, (8.11)

In view of (8.10) the second solution generated from the initial solution is
written in thematrix form as

x) (0 1 1 1\(x%) (a@) b ba) )%
| |1 01 1]y | |b® a@ b® c® | v,
z| |1 10 1]z | |b® ba) a®) c@ |z
t) 111 2t e c c@ d)lt,

(8.12)
wherea(l) =0,b(1) =1,c() =1,d@) =2
The repetition of the above process leads to the general form for the generated solution

which is written in the matrix form as follows:
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where

=)
I =

R O R
N B R

X | (a(n) b(n)
Yo |_| b(n) a(n)
Zy | | b(n) b(n)
t, c(n) c(n)

a(n)=2b(n-1)+c(n-1)
b(n)=b(n-1)+c(n-1)+a(n-1)

c(n)=2c(n-1)+d(n-1)

b(n)
b(n)
a(n)
c(n)

d(n)=3(2b(n-1)+c(n-1))+2(-1)",n>1.

c(n) \( %
c(n) 1| Yo
c(n) || z
d(n) )i t,

(8.13)

The above system of equation (8.13) is computed numerically using C++

program and a few solutions generated are presented in Table 8.2.
Table 8.2 -SOLUTIONS OF X2+ Y2+ Z72=T%1

L ad) b(i) c(i) d(i) x(i) y(0) 2(i) (i)

0 |- - - - 5 1 3 6

10 1 1 2 10 14 12 21

2 |3 2 4 7 47 43 45 78

318 9 15 26 166 170 168 291

4 |33 32 56 97 629 625 627 1086

5 | 120 121 209 362 2338 2342 2340 | 4053

6 |451 450 780 1351 | 8735 8731 8733 15126

7 11680 | 1681 | 2911 |5042 |32590 | 32594 | 32592 | 56451

8 | 6273 | 6272 | 10864 |18817 |121637 |121633 | 121635 | 210678

9 [3408 | 23409 | 40545 | 70226 |453946 | 453950 | 453948 | 786261

10 | 87363 | 87362 | 151316 | 262087 | 1694159 | 1694155 | 1694157 | 293436
6

11 | 326040 | 326041 | 564719 | 978122 | 6322678 | 6322682 | 6322680 | 109512
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03

12

121680
1

121680
0

210756
0

365040
1

2359656
5

2359656
1

2359656
3

408704
46

13

454116
0

454116
1

865521

136234
82

8806357
0

8806357
4

8806357
2

152530
581

14

169478
43

169478
42

293545
24

508435
27

3286577
27

3286577
23

3286577
25

569251
87
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Chapter 9

Designs of integer solutions to non-
homogeneous quaternary guadratic
equation

9.1 Method of Analysis:

The non-homogeneous quadratic equation with four unknowns to be solved is
X+yP+zP =t?+1 (9.1)
Different patterns of solutions in integers are illustrated below:

Pattern 1
The choice
z=t-k,k>0 (9.2)
in (9.1) gives
(o (x* +y?+k?-1)
2k

(9.3)

As our aim is to find integer solutions, observe that the values of t are integers
when x,y are chosen suitably and from (9.2) , the corresponding values of z are
obtained . For the sake of clear understanding, four sets of integer solutions are
exhibited below:

Setl

X=Q2r+Dk,y=2sk+1,t=2(r*+s*+r)k+2s+k,z=2(r* +s> +r)k +2s
Set2

x=2rk,y=(2s-1)k+1,t=2(r* +s*—s)k+k+2s-1,z=2(r* +s* —s)k +2s-1

Set 3
x:Nk,y:(N—l)k+1,t:(N2—N+1)k+N—1,z:(N2—N)k+N—1
Set 4
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X=(2s-1)k,y=2sk+1,t=(4s* -2s+1)k+2s,z=(4s* —2s)k +2s

Pattern 2

The substitution
t=x+y,z=2k+1
in (9.1) leads to
xy=2k*+2k k=-1

(9.4)

(9.5)

For any given k in (9.5) , one may determine the values of x and y. In view

of (9.4) , the corresponding values of z ,t are obtained. For the sake of clear

understanding, a few numerical solutions are exhibited in Table 9.1 below:

Table 9.1-Numerical solutions

k z xX*y X y t
2 k+1 2 k (k+1) 2 k (k+1) k2+k+2
k 2 (k+1) 3k+2
2k k+1 3k+1
k (k+1) 2 K2+k+2
2 k (k+1) 1 2 k?+2 k+1
Pattern 3
Introducing the transformations
X=U+V,y=U-V,z=2u+1,t=2v (9.6)
in (9.1), it simplifies to
(Bu+1)?=3v* +1 (9.7)
which is satisfied by
_GL-2 , _ 9 9.8)
"6 " 23

where
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fn :(2+\/§)n+1+(2_\/§)n+l,
gn :(2+\/§)n+1_(2_\/§)n+1.

In view of (9.6), the non-zero distinct integer values of the quadruple (X,,Y,,Z,,t,)

aregiven by
X = (fn +\/§gn _2)
n 6 !
nz(f”_\/ég”_z), 9.9)
6
P U RS T T

n 3 \/§
A few numerical solutions to (9.1) are given below:
X, =6,y,=-2,z, =5,t, =8
X, =88y, =-24,2, =65,t, =112
X, =1230,y, =-330,z, =901,t, =1560

The above values of X, ,Y,,Z, and t_ given by (9.9) satisfy the following
recurrence relations
X —14X,,,+X, =4,

yn+4 _14yn+2 +yn =4 J
z,.,-14z ,+z, 6 =-4,

t 14t ,+t =0.
Pattern 4
Taking
X=2rs,y=r>-s*(r>s>0),t=u+v,z=u—-v,(U#V) (9.10)

in (9.1) ,we have
(r’ +s*)* =4uv+1 (9.11)
It is worth to note that the values of r,s should be of different parity as the R.H.S.

of (9.11) is odd. The choice
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r=2p+1,s=2q,p>q>0 (9.12)
in (9.11) gives

uv=(4p° +4p+4q°+2)(p° +p+9q°)

Choose

u=(4p°+4p+49°+2), v=(p*+p+q?) (9.13)
Employing (9.12) & (9.13) in (9.10) ,the corresponding integer solutions to (9.1)
are given by

x=4q(2p+1),

y=4p° +4p+1-4q°,
z=3p*+3p+2+30?,
t=5p*+5p+2+5q°.

Pattern 5

The substitution

X=U+V,y=u-V,t=2u,z> =2w’ +1 (9.14)
in (9.1) leads to the Pythagorean equation

v +w? =u? (9.15)
which is satisfied by

u=p>+q*,v=p>*-q°,w=2pq,p>q>0 (9.16)

Substituting the value of w from (9.16) in (9.14) ,we have

72 =8X%+1 (9.17)
where
X=pq (9.18)

The general solution (X, ,z,)to the pellian equation (9.17) is given by
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1 1
X = — ,Zn :—fn 919
2\/§9n > (9.19)

here f, =(3+/8)" +(3-/8)",
g, =(3+\/§)n+1_(3_\/§)n+1.

In view of (9.18) , we have from (9.19)

X, =p,*q, =%{(3+J§>“—(3—J§)“]

L\/_[(\/E_i_l)zmz _(\/E_l)zmz]
=_[(\/_+l)n+1+(\/_ 1)n+l]* \/_ (\/_+1)n+1 (\/_ l)n+1]

Thus ,
P, =22+ + (V2 -1,

1 n+l_ _ n+l
qn—mﬁﬁﬂ) (2 -1)"].

From (9.14) ,the corresponding integer solutions to (9.1) are given by
X, = %[(\/E+l)“+l L2,

y, =7 IW2 +)7 - (2 -1,

2, =S IV2 4D + (V2 -1,

t, = %[3 2+ 43 (W2 -1)""2+2],n=0123,..

The above values of X, ,Y,,Z, and t given by (9.20) satisfy the following

(9.20)
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recurrence relations

Xpp —06X,, +X, =—4,

n+l
Y2 _6yn+1 +Y, =2 !
Z,.o _6Zn+l +Z, =O’

tn+2 _6tn+l +tn =-2.
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Chapter 10
Patterns on integer solutions to

homogeneous guaternary gquadratic
equation

The quadratic equation with four unknowns to be solved is

X2 +y?= 2(22 —WZ)

(10.1)
There are two types of integer solutions .In Section A , real integer solutions are
obtained. In Section B , the Gaussian integer solutions are determined.
Section A ; Real Integer Solutions
Introduction of the linear transformations
X=U+V, y=U-V (10.2)
in (10.1) leads to
u®+v>:+w? =2z? (10.3)

which is in the form of space Pythagorean equation

The choices of solutions for (10.3) are represented below:
i) u=m’-n*-p*+q°,v=2mn-2pq,w=2mp+2nq,z=m’+n’+ p>+q°
i) u=2mp+2ng,v=2mn-2pgq,w=m*-n°-p°+q°,z=m"+n’+p’+q°
i) u=2mp+2ng,v=m*—n°-p°+q°,w=2mn-2pq,z=m’+n’+ p°+q°
iv) u=2ab,v=2ac,w=a’-b’-c’,z=a’+b*+c’

v) u=a’-b’-c’,v=2ac,w=2ab,z=a*+b’+c’
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In view of (10.2), one may obtain different sets of solutions to (10.1) which are

presented below:
Set: 1

Considering choice (i), the general solution of (10.1) is
Xx=m>—n’—-p®+q®+2mn-2pq
y=m’-n*-p?+qg°-2mn+2pq
z=m’+n’+p*+q°
w=2mp+2nq

Set: 2

For choice (ii), the general solution of (10.1) is
x =2m(p+n)+2q(n—p)
y=2m(p—n)+2q(n+p)
z=m’+n’+ p*+q°
w=m’-n’-p°+q°

Set: 3

For choice (iii), the general solution of (10.1) is
X=m?-n’*—-p°+09° +2mp + 2nq
y=-m’+n°+ p>—q°+2mp +2nq
z=m’+n°+p*+q°
w=2mn-2pq

Set: 4
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For choice (iv), the general solution of (10.1) is
x =2a(b+c)
y =2a(b—c)
z=a’+b*+c?
w=a’—-b?-c?
Set: 5
For choice (v), the general solution of (10.1) is
x=a’-b’-c®+2ac
y=a’-b*-c*-2ac
z=a’+b?+c?
w = 2ab
In addition to the above sets of solutions to (10.1), there are other representations of
solutions to (10.1) which are illustrated below:

Representation: 1

Write (10.3) as

ul+vi=z>-w* (10.4)
Assume o’ =1z°—w? (10.5)
Rewrite (10.5) as

7 =a® + W (10.6)
which is in the form of Pythagorean equation satisfied by the following two sets of

solutions
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Set:1 z=r"+s*,w=2rs,a=r"-s*>,r>s>0
Set:2 z=r’+s*,w=r"-s*,a=2rs,r>s>0
Consider (10.7). Using (10.7) in (10.4), we have

u? +v° =(r2 —52)2
which is satisfied by

r=f>+g°+h’

s=f2-g’-h’

u=8fgh

v=412(g?—h?)

(10.7)

(10.8)

(10.9)

In view of (10.2) and (10.7), the corresponding non-zero distinct integral solutions of

(10.1) are given by
x=4f2(29h+ g° —h2)
y=4f2(29h—g2 +h2)
z =2(f4 +g*+h +292h2)
w=2(f—g*—h*-2g%?)

Consider (10.8). Using (10.8) in (10.4), we have
u? +v2 = (2rsy

which is in the form of Pythagorean equation satisfied by

u=p?-q?

(10.10)

(10.11)
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v=2pq (10.12)
2rs= p*>+q° (10.13)
Here, the equation (10.13) is satisfied for the following choices of r and s:
i)s=1,r=k*>+2k+2
i)s=2,r=2k*>+2k+1
iii)s=2,r=2k*+4k +4
Considering choice (i) and performing simplification, the corresponding solutions to
(10.1) are given by
X =2k*+8k +4
y =4-2k?
z=k*+4k®+8k*+8k +5
w=k*+4k®+8k*+8k +3
Similarly for choice (ii), the general solutions to (10.1) are given by
x =8k? +16k + 4
y = 4—8k*
z=4k* +8k®+8k*+ 4k +5
w=4k"* +8k* +8k* + 4k —3
For choice (iii), the general solutions to (10.1) are found to be
x =8k?*+32k +16
y =168k’
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z =4k* +16k® +32k* + 32k + 20
w=4k* +16k® +32k* + 32k +12
Representation: 2
The assumption a® = z° —w? (10.14)

is equivalent to the following system of double equations:

Table: 10.1 System of equations

System Z+W | Z-W

2
1 a a

Considering System: 1, it is seen that there are two sets of solutions to (10.1)

represented respectively below:

Set: 1

X

(m+n)(m2 + n2)

y (m—n)(m2 +n2)
z =%(m2 +n2)(m? +n® +1)
W=%(m2 + nz)(m2 +n? —1)
Set: 2

x=m?(m+3n)-n*(3m+n)
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y =m?(m—3n)-n?(3m-n)

i :%(m2 +n2)(m2 +n? +1)

w:%(m2 +n2)(m? +n? -1)

Similarly, Considering System: 2, it is seen that there are two sets of solutions to (10.1)
represented respectively below:

Set: 3

x = (m+n)(m?+n?)

y

z =%[(m2 +n2)3+1]
w:%[(m2 +n2)3 —1]

(m—n)(m?+n?)

Set: 4
x=m?(m+3n)-n*(3m+n)

y =m?(m—3n)-n?(3m-n)

z =%[(m2 +n2)3+1]

W:%[(m2 + nz)3 —1]

It is worth to note that m and n should be of different parity. Otherwise, the values of z

and w are not in integers.
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Representation: 3

Substituting z = a(a2+ ) and w = a(az—l) (10.15)
in (10.1), we get
X +y*=2a’ (10.16)
Assume a = p>+q*, p,q>0 (10.17)
Write 2 as
2=(1+i)@1-i) (10.18)

Substituting (10.17), (10.18) in (10.16) and employing the method of factorization,
define
x+iy =(1+i)(p+iq)’

Equating real and imaginary parts, we have

x=p*-3p’q-3pq’ +¢° }

y=p*+3p’q-3pg’° - ¢’ (10.19)
In view of (10.15), we have

7= %(p2 + qz)(p2 +0° +1)

e %(pz N qz)(pz o _1) (10.20)

Thus (10.19) and (10.20) represents non-zero distinct integral solutions to (10.1).

Note:
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Instead of (10.18), one may write 2 as

,_ +)@-i) ,_@+71)Q-7i)
25 ' 25
Following the procedure similar to above, one may obtain different sets of integral
solutions to (10.1).

Representation: 4

3 3
Substituting z = @ +1 and W= L (10.21)
in (10.1), we get (10.16).
Using (10.17) in (10.21)
z= %[(p2 + q2)3 +1]
(10.22)

w=2[or a7 -1

Hence (10.19) and (10.22) represents non-zero distinct integral solutions to (10.1). It is
worth to note that p and q should be of different parity. Otherwise, the values of z and w

are not in integers.

Section B:Gaussian integer solutions
The substitution

Xx=a+i2b,y=2a—-ic,z=b+ia,w=c+ia (10.23)
in (10.1) leads to

5a* +c? = 6b” (10.24)
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(10.24) is solved through three different methods and thus we obtain three different sets

of Gaussian integer solutions to (10.1)

Method: 1
Write (10.24) in the form of ratio as

Sa+b) _b-c_m (10.25)
b+c a-b n’

which is equivalent to the system of double equations

5na+(5n—m)o—mc =0
~ma+(m+np-nc=0

Applying the method of cross multiplication, we get

a=m?-5n°+2mn (10.26)
b =m?+5n? (10.27)
¢ =5n*—m?+10mn (10.28)

In view of (10.23), the corresponding non-zero distinct Gaussian integer solutions of
(10.1) are given by

X =m’—5n° +2mn + i(2m2 +1On2)

y =2m* —-10n* +4mn — i(5n2 —m? +10mn)

z=m"+5n + i(m2 —5n° + 2mn)

w=>5n%—m?+10mn + i(m2 —5n% + 2mn)

Method: 2
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Assume b=5p®+q*, p,q>0 (10.29)
Write 6 as
6=(v5+i)[\5-i)
(10.30)

Substituting (10.29), (10.30) in (10.24) and employing the method of factorization,

define

JBaic=(V5+i)(\Bp-+iqf (10.31)

Equating real and imaginary parts, we get

=5p*-q*-2
a=op Pd } (10.32)

c=5p*-q*+10pq

Using (10.29), (10.32) in (10.23), the corresponding non-zero distinct Gaussian integral

solutions to (4.1) are found to be
x=5p°-q? —2pq+i(10p2 +2q2)
y =10p*-29° —4pq—i(5p2 —-q° +10pq)
z=5p*+0° +i(5p2 -q° —2pq)

W=5p2—q2+10pq+i(5p2—q2—2pq)

Method: 3
One may write (10.24) as

6b® —¢® =5a° (10.33)
Assume a=6p°—q°, p,q>0 (10.34)
Write 5 as

5= (6 +1)(v6-1) (10.35)
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Substituting (10.34), (10.35) in (10.33) and employing the method of factorization,
define

\/§b+c:(\/§+l)(\/6p+q)2 (10.36)

Equating rational and irrational parts, we get
b=6p%+q>+2pq }

10.37
c=6p°+q°+12pq ( )

In view of (10.23), the corresponding non-zero distinct Gaussian integral solutions to
(10.1) are given by

X=6p°-q? +i(12p2 +29° +4pq)
y = 2(6p2 —~ qz)— i(6 p° +q° +12pq)
z=6p°+0° +2pq+i(6p2 —q2)
w=6p*+q° +12pq+i(6p2 —q2)
Generation of solutions:
Let (XO, Yo Zo) be the given integer solution to (10.1). Let (x1 Yis zl) be the
second solution of (10.1) where
X\ =h-%X,y,=h-Yy,,z,=2,+h,w,=h-w, (10.38)
in which h is any non-zero integer to be determined.
Substituting (10.38) in (10.1) and simplifying, we have
h=x,+Y,+22,+ 2w,

Thus, the second solution is given in the matrix form as

x) (01 2 2) (x
Y1 1022 Yo
2| [1 13 2] |z
w,) (1 1 21 W,
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Repeating the above process, the general solution to (4.1) in the matrix form as

n ~ n ~__1n
R A R A e
4 4 "
~ N~ n y —(=1)
8| g sty B
Wio| 4 4 Yol n=123.
Z, - - Z,
X, X, ~ .
W, B > Yn X, W,
yn_ — )" yn_ — )” X yn+(_1)n
4 " 2

where (X, ¥, ) is the general solution of y? = 2x? +1given by
J, = %[(3 #2424 3242

:T[(3+2\/_)"+1 B-242]"|, n-o012..
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Chapter 11

A scrutiny of integer solutions to
homogeneous quinary quadratic
equation

11.1 Method of Analysis:

The second degree Diophantine equation with five unknowns to be solved is
AW? — X2 —y? + 77 =16t° (11.1)
The process of obtaining different sets of non-zero distinct integer solutions to (11.1) is
exhibited below:
Setl
The substitution of the linear transformations
X=4P+12Q,y=8Y,z=4(P-Q),w=4(P+Q),t=2T (11.2)
in (11.1) leads to the space Pythagorean equation
P?=Q*+Y*+T? (11.3)
which is satisfied by
P=a’+b*+c*,T=a’-b°-c*,Q=2ab,Y =2ac (11.4)
In view of (11.2), one has the integer solutions to (11.1) given by

x=4(a’+b’+c*+6ab), y=16ac, z=4(a*+b*+c*-2ab),
w=4(a’+b’+c*+2ab), t=2(a’ —b*-c?)
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Set 2

Introducing the linear transformations

x=(8a’-1)s,y=4aY,z=s,w=4a’s,t=aT (11.5)
in (11.1), it simplifies to the Pythagorean equation

s?2=Y24+T2 (11.6)
whose solutions may be taken as

s=p*+9*,T=p°-q°,Y =2pq (11.7)

In view of (11.5), the integer solutions to (11.1) are given by

x=(Ba’-1)(p°+0q°),y=8apq,z=(p*+q°),w=4a*(p’+q°) ,t=a(p’-q°)
Note 1

The solutions to (2.146) is also taken as
s=p°+0°,Y=p°-q°,T=2pq
In this case, the integer solutions to (11.1) are given by

x=(8a’-1)(p*+9°),y=4a(p*-q*),z=(p* +q°),w=4a*(p*+q*) ,t=2apq

Set 3
Taking

x=4P+Q),y=4P-Q),w=4P,z=4Q (11.8)
in (11.1), it reduces to

Q*+t? =2P? (11.9)
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After some algebra, it is seen that (11.9) is satisfied by

t=a’-b?+2ab,
Q=a’-b*-2ab,
P=a’+b’

In view of (11.8), it is seen that

x=8a(a-h),
y=8b(a+Dh),
z=4(a*-b*-2ab),
w=4(a’+b?)

Thus, the above values of X, Y, z,w,t satisfies (11.1).
Note 2
After performing a few calculations, (11.9) is also satisfied by

t=2a?-b?,
Q=2a’+b’+4ab,
P=2a’+b?+2ab

In view of (11.8), the corresponding values of X, Y, z, ware found to be

x=4(4a*+2b?*+6ab),
y=-8ab,

z=4(2a° +b*+4ab),
w=4(2a*+b’+2ab)

Set 4

The choice
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Z=Xx+4t (11.10)
in (11.1) leads to
y? —4w? =8xt (11.12)
which is expressed as the system of double equations as shown in Table 11.1 below:

Table 11.1: System of double equations

System 1 2 3 4
y+2w 8x 4x 8t 2X
y—2w t 2t X 4t

Solving each of the above systems, one obtains the values of X,y,w,t. In view of

(11.10), the corresponding value of z is obtained. For simplicity, the integer solutions to
the corresponding system of equations are exhibited below:

Solutions to system 1
Xx=5,y=4s+2k,z=s+16k,w=2s—k,t =4k

Solutions to system 2
x=5,y=2s+2k,z=s+8k,w=s—-k,t =2k

Solutions to system 3
x=4s,y=2s+4k,z=4s+4k,w=2k —s,t =k

Solutions to system 4
Xx=2s,y=2s+2k,z=2s+4k,w=s—k,t =k
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Chapter 12

A portrayal of integer solutions to
homogeneous guinary quadratic
equation

12.1 Method of Analysis

The homogeneous quinary quadratic diophantine equation to be solved is
Xy+XY=(k*+2k-I)w? . (12.1)
The process of obtaining different sets of non-zero distinct integer solutions

to (12.1) is illustrated below.
Setl12.1

Introduction of the linear transformations

x=(k+)U-w,y=(k+)U+w,X=(k+D)V-w,Y=(k+D)V+w

(12.2)
in (12.1) leads to the well-known Pythagorean equation

U?+Vv?=w? |, (12.3)
whose solutions may be taken as
U=2pq,V=p°-¢q° (12.4)
and
w=p®+q®. (12.5)
Using (12.4) & (12.5) in (12.2) ,one has
x=2(k+Dpa-(p* +9%),y =2(k+pa+(p* +a?), J 126
X=(k+1)(p*-g*)-(p* +9°),Y =(k+D(p* -a*) + (p* +q°)

Thus,(12.5) and (12.6) give the required integer solutions to (12.1).
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Set12.2

Introduction of the linear transformations
X=U+V,y=Uu-V,X=v+s,Y=Vv-5 (12.7)
in (12.1) leads to the ternary quadratic diophantine equation

u®-s®>=(k*> +2k-Dw? | (12.8)

which can be written in the form of ratios as

u+s w P
(k*+2k-Dw u-s Q Q 129)

Solving the above system of double equations (12.9) , it is seen that

u=(k’>+2k-1DP*+Q%,s=(k*+2k-1)P*-Q* , (12.10)
and
w=2PQ . (12.11)

Using (12.10) in (12.7) ,we have

X =(k? +2k-1)P2+ Q2 +v,y = (k? + 2k —1)P? + Q2 —v,] (1212
X=v+(k?®+2k-1)P*-Q%,Y=v-(k?+2k-1)P* +Q?
Thus,(12.11) and (12.12) give the required integer solutions to (12.1).
Observation 12.1
Apart from (12.9) , (12.8) may be considered in the form of ratios as
u+s _ (k> +2k-1)w :E,Q;to
w u-s Q
The repetition of the above process leads to a different set of integer
solutions to (12.1).
Set 12.3
Introduction of the linear transformations
x=(k+1)w,y:(k—1)w. (12.13)
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in (12.1) leads to the homogeneous ternary quadratic equation
XY =2kw? . (12.14)
On considering different choices of factorization in (12.14) , the respective

sets of integer solutions to (12.1) are given by

Set123.1x=(k+)w,y=(k-Dw,X=2w,Y =kw

Set1232x=(k+)w,y=(k-Dw,X=kw,Y =2w

Set12.33x = (k+)w,y = (k-)w,X =w?,Y =2k |
Set12.3.4x = (k+)w,y=(k-Dw,X =2w?,Y =k |
Set12.3.5x:(k+1)w,y:(k—1)w,X:2Wk,Y:w,
Set12.36x = (k+D)w,y=(k-D)w,X =w? k,Y=2

set123.7x = (k+)w,y=(k-w,X=2w’k,Y =1

Setl2.4

Introduction of the linear transformations

x=(k+D)X,y=(k-1)Y, k=12 (12.15)
in (12.1) leads to the homogeneous ternary quadratic equation

k*XY =(k*+2k -1 w? (12.16)
On considering different choices of factorization in (12.16) , the respective

sets of integer solutions to (12.1) are given by

=(k+1) (k®> +2k —1)**" =(k-1
Set12.4.2X (k1) (k" + ) ay=k-1) o
X=(k*+2k-D*"a,Y= a,w=k(k*+2k-1)"°a.
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Set 12.4.3

x=(k+1) (K* +2k -1 o,y = (k1) (kK2 +2k-1)° a,
X =(k2+2k-1)""a,Y = (k? +2k-1)° o,w=Kk(k?+2k-1)°o.
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Chapter 13

Designs of integer solutions to
homogeneous gquinary guadratic
equation

13.1 Method of Analysis:
The second degree diophantine equation with five unknowns to be solved is
X2 +y° +4(z° +w?) = 24¢? (13.1)

The process of obtaining different sets of non-zero distinct integer solutions to (1) is
exhibited below:

Set 1:

The substitution of the linear transformations

x=A4t,y =2t (13.2)
in (13.1) leads to the pythagorean equation

t? =z2% +w? (13.3)
which is satisfied by

w=a’-b*,z=2ab,t=a%+b? (13.4)

In view of (13.2), one has

x=4(a’+b?),
, (13.5)
y=2(a“+b?)
Thus,(13.4) and (13.5) represent the integer solutions to (13.1).
Set 2:
Introducing the linear transformations
Xx=4u,y=4v,z=u+VvV,W=U—-V (13.6)
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in (13.1), it simplifies to the Pythagorean equation
(13.7)

t? =u®+v’

whose solutions may be taken as
(13.8)

t=p®+q°,u=p*-q*,v=2pq
In view of (13.6), the integer solutions to (13.1) are given by
x=4(p*-9*),y=8 pq,z=(p*-q*+2pq),w=(p*-q°*-2pq) ,t=(p*+9°)

Set 3:
Taking
X=4t,y=2(z-2a),wW=2a (13.9)

in (13.1), it reduces to
(13.10)

22 -2az1+4a* -t =0
Treating (13.10) as a quadratic in z and solving for z, it is seen that (13.10) is satisfied
by
t=3r° +s?,
.a=2rs,
z=2rs+(3r>-s%)

n view of (13.9), it is seen that the corresponding values of X,Y,W satisfying (13.1) are

x=4(3r*+s%)
y=—-4rs+2(3r’-s?),
w=4rs
Set 4:
Taking
(13.11)

X=4(z+w),y=2Y t=z+w

in (13.1), it reduces to



22 +4z7w+wW -Y? =0(13.12)

Treating (13.12) as a quadratic in z and solving for z, it is seen that (13.12) is satisfied
by

Y =3r? -s?,

W=2rS,

7=—4rs+(3r° +s%).
In view of (13.11), it is seen that the corresponding values of X,y,t satisfying (13.1) are
X =—8rs+4(3r° +s°)
y=2(3r° —s?),
t=—2rs+(3r* +s%)
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Chapter14

A classification of integer solutions to
guinary quadratic equation

14.1 Method of analysis
The homogeneous quadratic equation with five unknowns under consideration is
x> +y®>—2zw=2(c*+d?) t? (14.1)
The substitution of the transformations
X=U+V,y=U—-V,Z=V+pP,W=V—-P,U#V,V£]P (14.2)
in (14.1) leads to
u?+p?=(c®+d?)t (14.3)
Case 1:

Choose the values of ¢ ,d such that ¢ +d? is square-free. Three patterns of
integer solutions to (14.1) are studied.

Pattern 1

Assume
t=a’+b? (14.4)
Using (14.4) in (14.3) and employing factorization, consider
u+ip=(c+id) (a+ib)?
giving
u=c (a®*-b*)—2dab,
p=d (a®*-b%)+2cab.

In view of (14.2) ,we have
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x=c (a’ —b?*)-2dab+v,
y=c (a’ —b?)-2dab-v,
z=v+d (a®-b?*)+2cab,
w=v-d (a®>-b?)-2cab.

(14.5)

Thus, (14.4) & (14.5) satisfy (14.1).
Remarkable observation

It is worth to observe that ,for suitable values of a,b,c,d ,the numerical
relation for second order Ramanujan numbers is represented by (14.3). A few examples
are given below:

Example 1
letc=2,d=1,a=2,b=1
Then ,we obtain t=5,u=2,p=11
From (3) ,observe that
2% +11° =10% +5% =125
125 is the second order Ramanujan number as it is written as the sum of two squares in
two different ways.

Example 2
Letc=3,d=2,a=2,b=1
Then ,we obtain t=5,u=1,p=18
From (3) ,observe that
1> +18° =15% +10° =325
325 is the second order Ramanujan number as it is written as the sum of two squares
in two different ways.

Example 3
Letc=4,d=-2,a=2,b=-5

Then ,we obtain t=29,u=-124,p=-38
From (3) ,observe that

16820 is the second order Ramanujan number as it is written as the sum of two
squares in two different ways.

Pattern 2
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It is worth to be noted that the integer c? +d? can be expressed as the product of
complex conjugates as exhibited below :
oy g2 (FHi9(-ig)
(p*+a°)*

where
f=[c(p®-q*)+d(2pa)],
g=[c(2pa)—d(p*—q®)],p=q=0

Following the procedure as given in Pattern 1, the integer solutions to (1) are obtained.
For the benefit of the readers , an illustration is presented below:

Take
p=2,0=3,c=1,d=2
Now
f=1(-5)+2(12)=19,9=1(12)-2(-5) =22
Therefore

(19+i22) (19-i22)

c’+d*=5= :
13

(14.6)
Using (14.4) & (14.6) in (14.3) and employing factorization , consider
Urip=E9F122) o ipye JW9HI2D) oy ioap
13 13
On equating the coefficients of corresponding terms , we have
1
u=—{19[a*-b?*]-44ab},
13{ [ ] }
0 =%{22 [a2—b?]+38ab} .

As the main thrust is to find integer solutions, replacing a by 13Aand b by 13B in the
above equations and from (14.2) ,the integer solutions to (14.1) are given by
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x =13{19[A? —-B*]-44AB}+v,
y=13{19[A’ —-B°]-44AB}+v,
z=v+13{22[A* -B*]+38AB},
w =v-13{22[A* - B?]+38AB},
t=13*[A% + B?].

Pattern 3

Express (3) in the ratio form as

u-ct _dt+p_a
dt—p u+ct B’

B=0

Solving the above system of double equations through the method of cross-
multiplication and using (14.2) , the corresponding integer solutions to (14.1) are
given by
x=2apd—-c(a®-p?)+v,
y=2apd-c(a®-p*)-v,
z=v+2apc+d(a®-p?),
w=v-2apc—d(a’-p?),
t=(a® +p%).
Case 2
Choose the values of ¢,d such that ¢ +d?* is a perfect square.
Consider c,d to be the legs of Pythagorean triangle. In otherwords , take

c=a’-p*,d=2ap,o>p >0 sothat c*+d* = (a+P)°.

The option
u=(a+p)U,p=(a+p)P (14.6)
in (14.3) gives
U?+P2=t? (14.7)
which is Pythagorean equation satisfied by
U=2rs,P=r*-s*t=r*>+s*,r>s>0 (14.8)

From (14.6) & (14.2) , the integer solutions to (14.1) are given by
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X=2rs(a+p)+v,

y=2rs(a+p)-V,

z=v+(a+B)(r’-s%),

W =V—(o+B)(r*—s?)
jointly with t given by (14.8).
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Conclusions

It is hoped that these problems may create an interest in the hearts of researchers and
lovers of mathematics who approach it with pure love for its own beauty. The authors
hope that, seeing the excitement of solving this multiple variables quadratic Diophantine
equations, young mathematicians and researchers realize that there are lots and lots of
other problems in Number Theory which are going to be challenging in the future. There
is no wonder that Diophantine equations are beautiful and tricky enough to keep a

mathematician occupied for entire life.

It is worth to observe that Number Theory distinguishes itself through its intrinsic
beauty, offering both enjoyment and excitement. The outstanding results in this study of
Diophantine equation will be useful for all readers.
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