

https://deepscienceresearch.com 24

Chapter 3

Feature selection and machine learning

model optimization for DDoS detection

3.0 Project Implementation

3.1 Introduction

In this chapter, the Implementation design is divided into two sections, the system setup

design, and the machine learning flow process design. Both are explained in detail in the

section.

The dataset used for the experiment was obtained from the open-source database CSE-

CIC-IDS2018 (‘IDS 2018’ 2022) and the generated data set.

The open-source dataset was used to train a large data set that contained 300967

instances of benign and DDoS datasets while the generated data set contained 28, 972

instances of benign and DDoS datasets. The dataset contained many fields in which “32

out of 80” features were used for the open data set and “31 out of 84” was used for the

newly generated dataset.

A comparative study of supervised machine learning algorithms which will be used to

predict the accuracy and clarity of how DDoS attacks are detected in the cloud will be

presented and evaluated in terms of performance and accuracy.

3.2 System Setup

Figure 8 depicts the system set-up of this experiment comprising of host pc, kali Linux

VM, Owncloud Platform and Oracle Virtual Box. Table 4 shows the components needed

to set up the system for the experiment.

Deep Science Publishing

https://doi.org/10.70593/978-93-49307-78-0_3

https://deepscienceresearch.com 25

Table 4: Requirements for system setup design

S/N Components Description

1 Hardware Intel Core i7 8th Gen PC

2 Operating System Windows 10

3 Memory 34 GB RAM

4 Oracle VirtualBox Virtual Machine v 6.0

5 Owncloud VirtualBox UCS 4.4-with-owncloud 1

6 Kali Linux VirtualBox Kali-Linux-2021.4a-VirtualBox-amd64

7 Slowloris Tool Slowloris DDoS attack script

Figure 8: System Setup Design.

Brief description of the System setup elements as shown in Figure 8.

3.2.1 Network Type

A cloud network was deployed, specifically, Owncloud VirtualBox. This application

was downloaded as an ova file from the internet and imported as a VirtualBox machine

https://deepscienceresearch.com 26

in the oracle VM installed in the host machine (researchers Computer). Other resources

were configured such as setting up a graphical user interface, setting the application

package, setting up an email server, and setting up two systems shown in Figure 8 for

the collection of benign and DDoS traffics.

3.2.2 Kali Linux VM

This is a free and open-source operating system, its source code is freely accessible

online, allowing you to examine it and modify it to suit your needs.

As shown in Figure 8 the system was used as an attacker PC which was used to conduct

DDoS attacks on the targeted PC (attack pc) and for sending normal traffic to the own

cloud benign PC.

3.2.3 Oracle VirtualBox

This is a system where the Owncloud VM and kali Linux VM were hosted which helps

to experiment with a tight connection.

3.2.4 Host PC

This is the researcher’s PC where all the VMs were hosted to perform the experiment.

3.2.5 Performing of DDoS attack in Owncloud VM

The DDoS attacks were conducted on the Owncloud VirtualBox environment which is

a free and open-source platform for the generation of attacks. The attack was created in

a safe environment using the slowloris tool for eight hours daily for three days. The

attacking machine comprises Kali-Linux-2021.4a-VirtualBox-amd64, Debian 64

operating system with an IP 10.0.2.15 hosted on Oracle VirtualBox. Several terminals

were opened representing several systems as shown in Figure 9 on each of the terminals,

the slowloris script known as the bot was used with the IP address (192.168.1.36) of the

attack PC (Target system) to send attack traffic to the attack PC seen in Figure 9.

https://deepscienceresearch.com 27

The slowloris tool created traffic at the sink nodes during the execution of the DDoS

attack, and the Wireshark packet analyser captured strange traffic during this time. The

system then received the recorded traffic.

Figure 9: Performing DDoS attacks on Owncloud.

 Table 5: Specification of tools and duration of DDoS attack traffic

Attack tool Duration Attacker IP Victim IP

Slowloris

8 hours in a

day. Total

of 3 days

Kali

Linux

VM

10.0.2.15 Owncloud 192.168.1.36

3.2.6 Performing of Benign Traffic

Another system was set up in the Owncloud VM named benign PC with IP address

192.168.1.36 as shown in Figure 9 which was used to capture normal traffic. To build

normal traffic, an email service was set up in the Owncloud benign PC such that there

will be mail communication in and out of the system to create an SMTP protocol. Other

https://deepscienceresearch.com 28

tools like Nmap and ping were used to send traffic to the benign system to create varieties

of protocols for normal traffic captured by Wireshark.

Table 6: Methods for collection and duration of benign traffic

 Method Duration System IP Platform IP

Nmap,

Email,

Ping, web

browsing

6 hours a

day, a total

of 3 days

Kali

Linux

VM

10.0.2.15 Owncloud 192.168.1.22

3.2.7 Collection of Pcap Files

The DDoS and benign traffic captured by Wireshark was saved on the desktop of the

Owncloud and collected as a pcap file. The pcap file was transferred to the host system

through email configured in the Owncloud, the ones with large sizes were saved to one

drive and then transported to the host PC. Furthermore, a filtering method was used to

select real DDoS traffic from the pcap generated to ascertain that only DDoS traffic was

collected. On the other hand, Benign traffic saved as a pcap file was transferred through

email to the host PC and the large sizes were saved to one drive in the Owncloud and

finally transported to the host PC. These two pcap files (DDoS and benign) were stored

in the host PC for further processing. Machine learning process design as the second

phase will be used to explain other processes involved in the experiment setup. Figure

10 and 11 shows the sample pcap files collected for the experiment.

https://deepscienceresearch.com 29

Figure 10: Sample DDoS pcap file.

Figure 11: Sample Benign pcap file.

The next section continues with the Machine learning flow process.

https://deepscienceresearch.com 30

3.3 Machine Learning Flow Process Design

 This process was used in the second phase of the implantation process. Each flow

content has been briefly explained in how they were used in this section. The components

used to perform the ML process are seen in Table 7.

Table 7: Components Utilised

S/N Components Description

1 Hardware Intel Core i7 8th Gen PC

2 Operating System Windows 10

3 Memory 34 GB RAM

4 Libraries Pandas, Sklearn, Matplotlib

5 Storage MS Excel

 Feature extraction tool CICFlowMeter 4.0

6 Programming language Python 3.9

7 IDE (Anaconda Jupyter Notebook)

Figure 12 illustrates the ML flow process design using supervised learning models.

3.3.1 Raw Data Collection

The raw data collected as pcap files stored on the host PC is required to be transformed

into a format that is compatible with model building in machine learning. A tool named

CICFlowMeter was used to make this transformation of the raw data into a possible real

dataset CSV format as shown in Figure 13, this was stored in the host PC as an excel

file. CICFlowMeter can be accessed using this link

(https://github.com/ahlashkari/CICFlowMeter).

https://github.com/ahlashkari/CICFlowMeter

https://deepscienceresearch.com 31

Figure 12: Machine Learning Flow process design.

3.3.2 Feature Extraction

CICFlowMeter 4.0 is a network traffic flow generator and analyser. over 84 statistical

network traffic features, such as Duration, Number of packets, Number of bytes, Length

of packets, etc., can be extracted separately in the forward and backward directions when

using it to generate bidirectional flows, where the first packet determines the forward

(source to destination) and backward (destination to source) directions. Picking features

from a list of already-existing features, adding new features, and adjusting the flow

timeout period are extra functionalities in this tool (Lashkari et al. 2017; Patil et al.

2022). Figures 14 and 15 (with CICFlowMeter 3.0) show the type of features extracted

for this experiment.

https://deepscienceresearch.com 32

Figure 13: Sample of raw data transformed to CSV format.

Figure 14: 84 features extracted for a new dataset using CICFlowMeter 4.0.

https://deepscienceresearch.com 33

Figure 15: Open-source dataset 80 extracted features with CICFlowMeter 3.0.

CICFlowMeter tool was used to extract the raw data (Pcap files) to a real dataset into a

CSV format with the type of features shown in Figures 14 and 15 which is suitable for

building algorithms in an ML system. The next section describes the extracted dataset

used for this study.

3.3.2.1 Extracted Dataset Description

This research consists of a newly generated dataset and an open-source dataset CSE-

CIC-IDS2018 (‘IDS 2018’ 2022) consisting of the benign and DDoS classes that make

up the binary class label which forms up the class attribute. DDoS is an attack traffic

label, and benign is a normal traffic class. The benchmark dataset was deployed in this

study for the training of large data sizes since limited time is required to complete this

research. Therefore, generating a larger sample data size could not be achieved.

However, choosing an open-source dataset for this study was difficult due to the lack of

DDoS-specific datasets, despite being one of the most severe security attacks in cloud

computing.

https://deepscienceresearch.com 34

1. Newly Generated Dataset

This data consists of 28972 label sample sizes of benign and DDoS traffic flow and 84

features. The major tool used to perform DDoS attacks is slowloris on different terminals

seen as systems against the system in the Owncloud.

2. CSE-CIC-IDS2018 Dataset

HTTP denial of service: In this case, the major tools used are Slowloris and LOIC, which

have been shown to render Web servers fully unreachable with only one attacking

machine. The dataset includes numerous attack types, such as DoS, Infiltration, DDoS,

and brute force. Only DDoS attacks are taken into consideration for this study.

The dataset provided both normal and attack traffic consisting of 155047 benign and

DDoS labels and 80 features. The open source dataset can be accessed using this link

(https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv and

https://www.unb.ca/cic/datasets/ids-2018.html).

Two major attributes of the dataset are Class labels and class distribution

Class labels: Class labels is the target features in the features extracted from the dataset.

Each dataset element represents a momentary sample of the network activity. These

occurrences are classified based on the type of traffic, such as whether it is malicious or

benign. The new and benchmark datasets are encoded to maintain homogeneity in the

class labelling scheme. Binary classification designates Normal traffic as Benign and

malicious traffic as a DDOS attack. Table 8 depicts the class labels of the datasets.

Table 8: Class labels for the datasets

Label Scenario

Benign Normal Traffic

DDoS attack Malicious Traffic

https://www.kaggle.com/datasets/solarmainframe/ids-intrusion-csv
https://www.unb.ca/cic/datasets/ids-2018.html

https://deepscienceresearch.com 35

Class distribution records for the new dataset: Each dataset used in this study is

presented in the table with the number of records of each class label.

The main data generated for this research Figure 16 shows the number of records of each

class label. The percentage records of the class labels were represented using a pie chart

as shown in Figure 17.

Figure 16: Class distribution of the new dataset.

https://deepscienceresearch.com 36

Figure 17: New dataset class labels percentage records.

Class Distribution for CSE-CIC-IDS2018 Dataset

For the open-source dataset that is used for larger sample size training, the records of

each class label are shown in Figure 18. The percentage of class label records is

displayed in Figure 19.

Figure 18: Class distribution for Open-source dataset.

https://deepscienceresearch.com 37

Figure 19: Open-source dataset class labels percentage records.

3.3.3 Feature Selection

This involves choosing necessary features that have a greater impact on the output

variable. It implies that we should only choose characteristics (independent variables)

that have a strong relationship to the output variable. It is the step that matters the most

when building a machine learning model (Swapnilbobe 2021). Since the dataset

generated contains lots of features, training the model with those features will impact the

accuracy of the model to go down. Therefore, to tackle this issue, only the features that

have a greater impact on the dependent variable should be used (the output variable).

3.3.3.1 Correlation Coefficient

The linear relationship between two or more variables is measured using correlation. We

can forecast one variable based on another using correlation. Because the desirable

variables have a strong correlation with the target, correlation can be used to select

features. Variables should also be uncorrelated among themselves while being correlated

with the objective. One can estimate one variable from another if the two are correlated.

As a result, if two features are correlated, the model only actually requires one of them

https://deepscienceresearch.com 38

as the other does not provide any new information (Gupta 2020). The correlation

coefficient method was used to detect the features with the highest positive correlation

and highest negative correlation. These features were removed to achieve high accuracy.

3.3.3.2 Feature Selection for The New Dataset

Out of 84 features extracted from the new dataset using CICFlowMeter 4.0, 31 features

were selected for Model evaluation using correlation coefficient and its heatmap. These

features greatly impacted the results achieved in this experiment. Figure 20 illustrates

the heatmap of features selected. Also, to remove the duplicate heat map, a masking

technique was used as shown in Figure 21. Figure 22 shows the 31 features selected for

ML model training, testing and validation.

Figure 20: New dataset feature selection heat map.

https://deepscienceresearch.com 39

Figure 21: Application of Mask on the heat map.

Figure 22: 31 Features selected for new dataset ML building.

3.3.3.3 Feature Selection for the CSE-CICIDS2018 Dataset

32 features were selected for model training, testing and validation. Figure 23 and 24

(application of mask) shows the heatmap feature selection. Figure 25 depicts the main

feature of the evaluation.

https://deepscienceresearch.com 40

Figure 23: Open-source dataset feature selection heat map.

Figure 24: Application of mask on the heat map.

https://deepscienceresearch.com 41

Figure 25: 32 Main features used for ML model building.

3.3.4 Data Pre-processing

This involves transforming unusable raw data into something that can be used. Apply

label encoding to the categorical class label to transform it into discrete form (0,1), where

0 represents a class that is benign, and 1 represents a DDoS attack.

3.3.4.1 Data Cleaning and Transformation

Before using the dataset to build ML models, cleaning the data was essential. For

instance, checking strings and negative values can disrupt the smooth running of the

process. In this section, cleaning, like checking missing data and removing undefined

data, was performed to ensure that it was transformed into a smooth processing dataset.

Missing Data: In machine learning, handling missing data is essential since it can cause

any model to make inaccurate predictions. Considering this, null values are removed by

moving the most recent valid observation up the column axis. The fillna method from

the pandas’ library is used to do this (Pandas 2022), as seen in the example below.

data.fillna(method ='ffill', inplace = True)

Undefined data: Data that has null values removed may be undefinable. After

propagation, a null field with no cells on its left becomes NaN since there are no cells to

supply a value. These values are therefore decoded as 0. The Fillna approach is used for

all of this.

data=data.fillna(0)

However, no missing values and strings were found in the chosen datasets.

https://deepscienceresearch.com 42

Transformation: Modeling may not be possible given the format of the data that was

collected. In these situations, data and data types must be changed before being fed into

the models according to the CRISP-DM technique. Since models do not perform well

with strings or do not work at all, several data features were converted into numeric or

float.

3.3.5 Dataset Splitting

The datasets were divided into two subsets: training and testing also used for validation.

For ML model building, this split was done in an 80:20 ratio, respectively. Where 80%

is for training and 20% for testing and validation. The split is performed using the

train_test_split helper method from the scikit-learn library. This method divides training

into two stages: the training set and the validation set. First, the model is trained using

the training set. The model's performance on data that it has not been trained on is then

estimated using the validation set. A stratified 5-fold technique was used for validation

in the context of this study.

3.3.6 Modelling

The building of the learning model and the creation of the forecasted labels are the two

components of the classification phase. Scikit-learn, a Python toolkit for data mining,

data analysis, and machine learning, is used to carry out these tasks.

3.3.6.1 Selection of Models

Five models were selected namely Random Forest, Support Vector Machine, Naïve

Bayes, Decision Tree and K-Nearest Neighbours for training and validation of the

datasets (New and open datasets) used in this experiment. These models were selected

based on their performance in intrusion detection.

3.3.7 Training

The chosen algorithms were supplied with training data during the training phase so they

can be used to develop machine learning models. The training set is utilised for training.

https://deepscienceresearch.com 43

The target attribute was present in the input data source at this stage of the procedure

(class label). To map the input characteristics to the target attribute, patterns must be

found in the training set. A model is created based on the patterns that were observed.

New DDoS datasets and an open-source dataset were used in this study as the input data

source, and the target attribute is the nature of network traffic—either an attack or normal

traffic—DDoS attack or Benign. The open dataset (CSE-CICIDS2018 DDoS dataset)

was deployed and trained since a large sample data size ranging from 100000 to 300000

could not be generated due to the limited time assigned in this research. The data size

was extracted from the open-source dataset for training and the results were also

compared using the new data generated.

On each of the datasets provided, five algorithms are trained. A variety of techniques

from the scikit-learn library are used during training. Table 9 shows the method used for

each model. Figure 26 shows the Sample code used for training the dataset.

Table 9: Scikit-learn Python library classifiers used for building models.

Model Scikit-learn Methods & Classifiers

Random Forest sklearn.ensemble.RandomForestClassifier

SVM sklearn.svm.LinearSVC

Naive Bayes sklearn.naive_bayes.GaussianNB

K-NN sklearn.neighbor.KNeighborsClassifier

Decision Tree sklearn.tree.DecisionTreeClassifier

https://deepscienceresearch.com 44

Figure 26: Sample python code for ML model training (Wan n.d. 2019).

3.3.8 Validation

5-fold cross-validation was used to validate the model after training. To evaluate if the

model performs were fit for the dataset, cross-validation was used. This approach

lessened the overfitting mistakes that happen when a model is too closely fitted to a

variety of data samples. Cross-validation is carried out in iterations, with each iteration

requiring the division of the dataset into k subsets, or folds. As shown in Figure 27, the

model is trained on k-1 folds while the other fold is saved for testing. Up until every fold

has functioned as a test fold, this process was repeated. The process is finished by

calculating the average value, which was then used to summarise the evaluation metric.

https://deepscienceresearch.com 45

Figure 27: 5-Fold cross-validation

A stratified k-fold technique is employed in this study with the validation dataset (20%

of the whole set). A variant of k-fold cross-validation known as stratified k-fold makes

sure that the distribution of classes is uniform across all folds. Utilizing the

StratifiedKFold function with k=5 from the scikit-learn library was implemented. Figure

28 shows the sample code for ML model validation.

Figure 28: Sample python code for ML model validation (Wan n.d. 2019).

3.3.9 Testing

The models were tested with imaginary data at the end of the modelling phase. The test

set those results from the data split is the unseen data used at this point (20%). Testing

is done to evaluate a model's ability to represent data and how well it will function in the

future. This study made sure that any model modifications were made before testing,

ensuring that testing data would only be utilised once. Accuracy, precision, recall, and

https://deepscienceresearch.com 46

F-measure are the main performance metrics that were created to analyse the

performance of the DDoS datasets. Although computation time was included.

3.3.10 Evaluation

Creating performance metrics is an essential step in analysing the effectiveness of the

algorithm. Several metrics are generated for this study including:

Accuracy

The number of cases that a classification model correctly and wrongly classifies is one

approach to quantifying its performance. A confusion matrix is a popular representation

of these values. A tabulated visual representation of the effectiveness of supervised

learning systems is called a confusion matrix. Instance counts in actual classes are

represented by rows, while instance counts in predictive classes are represented by

columns where 0 is Benign traffic and 1 is attack traffic. The confusion matrix for a

binary classification task is shown in Figure 29.

Figure 29: Illustration of confusion matric for a binary classifier.

The efficiency of a single classifier can be determined using a confusion matrix.

However, combining the matrix's components into a single value is more useful and

understandable.

https://deepscienceresearch.com 47

 In this work, the accuracy measure is used to summarise the matrix and is calculated as

follows:

Accuracy = properly labelled instances/Total instances x100%

Equation 1: Computation of accuracy

Precision

Accuracy alone usually is insufficient to judge the efficiency of a learning algorithm.

Even while accuracy shows whether the model is being trained properly, it does not

provide precise information about the application. As a result, other performance criteria,

like precision, are used. The proportion of accurately categorised positives, or true

positives, is referred to as precision. There are numerous circumstances in which false

positives could have an impact. In the context of this study, a high false positive rate

suggests that legitimate traffic may be mistakenly classified as harmful. Beyond

academics, this may lead to a waste of time and resources.

Precision is calculated as follows:

Precision = True positives/True positives x False positives

Equation 2: Computation of precision

Recall

Recall is an additional performance measure. How many of the real positives were

discovered or identified is measured by recall. It is also a very crucial statistic because

undiscovered positives or false negatives may have negative impacts in specific

circumstances. For example, an algorithm that does not account for all DDoS attack

instances means that malicious network traffic will go undetected, increasing the

possibility of disruption to the system and the users. Recall is calculated as:

Recall = True positives/True positives x False negatives

Equation 3: Computation of recall

F1- Score/Measure

The F-measure is a metric that combines precision and recall giving a total accuracy

score of an algorithm. An algorithm that successfully detects threats while producing a

https://deepscienceresearch.com 48

few false alarms has a high F-measure score because it has low false positives and false

negatives. F1-score is calculated as follows:

F1-score = 2 x (Precision x Recall/ Precision + Recall)

Equation 4: Computation of F1-score

Computation Time

Processing time is the last performance metric used in this evaluation. This indicates the

length of time a model needs to train rather than being directly tied to classification. This

measure provides information about the efficiency of the algorithm being computed

within a time frame. The reported processing time was based on a windows 10 operating

system with 34GB RAM and an i7 processor.

