

Chapter 4

Evaluation and performance analysis of machine learning models for Identity and Access Management (IAM) attack detection

Esther Chinwe Eze

University of North Texas, United States

4.0 Implementation

This chapter documents how the experiment was implemented as well as a brief explanation of evaluation metrics.

4.1 Setup and Data Preparation

To begin, all libraries required to carry out the experiment and prepare the data are imported as shown in the figure below.

Figure 22: R Code: Importing Libraries

4.1.1 Loading the Data into r and Preprocessing

Here, the data generated from the server in the form of logs have been transformed into two datasets called ben_IAM and mal_IAM which are then loaded/imported into the R studio IDE for exploration.

<pre>ueilizam <- read.csv("C:/Users/esthe/Desktop/MSC PROJECT/WSO2/DefLIAM.Csv") mal_IAM <- read.csv("C:/Users/esthe/Desktop/MSC PROJECT/WSO2/mal_IAM.csv") tail(ben_IAM) tail(mal_IAM)</pre>								
data	a.frame	data.fra	me.					2 \$
6	User	TimeStamp	overflow	TimestampDelta	Action	overflow2	overflow3	ActionDelta
996	User <chr></chr>	TimeStamp <int> 44411</int>	overflow <dbl> 5757175926</dbl>	TimestampDelta	Action <chr></chr>	overflow2 <dbl> 579224537</dbl>	overflow3 <dbl> 9461342593</dbl>	ActionDelta
996 997	User <chr> Fen Fen</chr>	TimeStamp <int> 44411 44411</int>	overflow <dbi> 5757175926 5757175926</dbi>	TimestampDelta <dbb 5505150463 0</dbb 	Action <chr> logged in Get-User-List</chr>	overflow2 <dbl> 579224537 579224537</dbl>	overflow3 <dbl> 9461342593 9461342593</dbl>	ActionDelta <dbi 8882118056 8882118056</dbi
996 997 998	User <chr> Fen Fen Fen</chr>	TimeStamp <int> 44411 44411 44411</int>	overflow 5757175926 5757175926 5757175926	TimestampDelta <dbl> 5505150463 0 0</dbl>	Action <chr> logged in Get-User-List Get-Roles-of-User</chr>	overflow2 <dbl> 579224537 579224537 579224537 5841782407</dbl>	overflow3 <pre><dbl></dbl></pre> 9461342593 9461342593 9461342593	ActionDelta <dbi: 8882118056 8882118056 3619560186</dbi:
996 997 998 999	User <chr> Fen Fen Fen Fen Fen</chr>	TimeStamp <int> 44411 44411 44411 44411</int>	overflow <dbl> 5757175926 5757175926 5757175926 5757175926 5757175926</dbl>	TimestampDelta <dbl> 5505150463 0 0 0</dbl>	Action <chr> logged in Get-User-List Get-Roles-of-User Get-User-Claim-Values</chr>	overflow2 <pre><dbl></dbl></pre> 579224537 579224537 5841782407 5841782407	overflow3 <dbl> 9461342593 9461342593 9461342593 9461342593</dbl>	ActionDelta <001 8882118050 8882118050 3619560180 3619560180
996 997 998 999 1000	User <chr> Fen Fen Fen Fen Fen Fen</chr>	TimeStamp <int> 44411 44411 44411 44411 44411 44411</int>	overflow <dbi> 5757175926 5757175926 5757175926 5757175926 5757175926</dbi>	TimestampDelta <pre><dbl></dbl></pre> <pre>Comparison </pre> <pre>Compari</pre>	Action <chr> logged in Get-User-List Get-Roles-of-User Get-User-Claim-Values Get-User-List</chr>	overflow2 <dbl> 579224537 579224537 5841782407 5841782407 5841782407</dbl>	overflow3 <dbl> 9461342593 9461342593 9461342593 9461342593 9461342593</dbl>	ActionDelta <pre></pre>

Figure 23: Loading Dataset

Although the datasets were already cleaned, some basic cleaning like checking for missing values was done. There was no need to remove any feature as relevant features had already been selected during the process of data transformation. Handling missing values is as important as training because it could determine the accuracy of results. The mathematics underlying most models assumes that data is numeric and so should be free of missing values. Missing values in R codes could trigger errors while training.

Before checking for missing values, the two datasets loaded were joined together using the rbind() function. Afterward, missing values were checked using the sum() function in R. The result shows no missing value was found as presented in figure 18 below.

```
22 ****[r]

24 # #ind dataset

25 benmal_IAM << rbind(ben_IAM, mal_IAM)

26 str(benmal_IAM)

27 ****

* 'data.frame': 2002 obs. of 10 variables:

$ User : chr "Admin" "Admin" "Admin" "Admin" ...

$ Timestamp : int 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 44388 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4438 4
```

Figure 24: Handling missing values

4.1.2 Data Splitting

To split data, the CreateDataPartition () function in R was used as shown in the figure below. Before splitting, the classification label called 'Outcome' was converted to factor as data in numeric form while training. Data were split into the 80:20 ratio.

4.1.3 Machine Learning Algorithms

During the process of training, the researcher encountered errors in the R codes and was unable to continue. The researcher intended to train with four (4) Machine Learning algorithms and select the one with the best performance. For this reason, the Weka GUI Machine Learning tool was selected as an alternative to continuing the experiment.

C Weka Explorer			- 0	\times
Preprocess Classify Cluster Associate Select attributes Visualize Visualize 3D				
Open file Open URL Open DB Gene	erate Unde	o Edit	Save.	
Choose None			Apply	Stop
Current relation	Selected attribute			
Relation: IAM_dataset - Copy Attributes: 10 Instances: 2002 Sum of weights: 2002	Name: User Missing: 0 (0%)	Distinct: 49	Type: Nominal Unique: 33 (2%)	
Attributes	No. Label 1 Admin 2 Ash50 3 Eco 4 Fen 6 Eunice 7 John 9 Ian 10 Larcha Class: Outcome (Nom)	Count 201 154 70 94 97 94 124 129 101 80	Weight 2610 1540 700 940 970 970 970 970 970 970 970 970 970 970 970 970 970 970	sualize All
Remove	20 A	1 1 1 1 1 1 1 1 1 1 1 1 1 1		11111

Figure 26: Loading of IAM_dataset to Weka

Figure 27: Visualisation of All attributes

Weka Explorer									
Preprocess Classify Cluster	Associate	Select attributes	Visualize	Visu	alize 3D				
Classifier									
Choose IBk -K 1 -W 0 -A "we	ka.core.neigh	hboursearch.Linearf	NNSearch -	A \"we	ka.core.Eucli	deanDistance -	R first-last\		
Test options		Classifier output							
 Use training set 									
O Supplied test set Set.		Time taken t	o build :	model	: 0 secon	ds			
Cross-validation Folds 10 Image: Percentage split % 80		=== Stratifi === Summary	ed cross	-vali	dation ==	=			
More options		Correctly Classified Instances			1498		74.8252	8	
		Incorrectly	Classifi tic	ed In	stances	504	65	25.1748	8
		Mean absolut	e error			0.25	18		
(Nom) Outcome		Root mean squared error			0.5015				
		Relative abs	olute er	ror		50.3597 %			
Start	P	Root relativ	e square	quared error		100.2934 %			
Result list (right-click for options)		Total Number	of Inst	ances		2002			
07:24:22 - functions.LibSVM		=== Detailed	Accurac	у ву	Class ===				
07:24:31 - bayes.NaiveBayes			TP	Rate	FP Rate	Precision	Recall	F-Measure	MCC
07:25:04 - trees.RandomForest			0.7	59	0.263	0.743	0.759	0.751	0.497
07:25:16 - lazy.lBk			0.7	37	0.241	0.754	0.737	0.745	0.497
		Weighted Avg	. 0.7	48	0.252	0.748	0.748	0.748	0.497
		=== Confusio	n Matrix						
		a b < classified as							
		760 241	a = Suc	cess					
		263 738	b = Fai	led					

Figure 28: Selecting Algorithm for Testing

4.2 Evaluation Metrics: Confusion Matrix

In classification, many metrics are used for prediction and detection. Since the experiments for this project mainly distinguish normal activities from malicious activities, a confusion matrix will be used to determine the performance metrics. The confusion matrix is a table that describes in detail the results of the classification. The result from the confusion matrix be summated into four parts as shown below:

Confusion Matrix Component	Description
True Positive (TP)	This means that malicious instances are correctly classified to be malicious by the model.
True Negative (TN)	This means that benign instances are successfully identified to be benign by the model.
False Positive (FP)	This means that benign instances are wrongly classified to be malicious by the model.

False Negative (FN)

Table 4a: Confusion Matrix Table

TRUE POSITIVE	FALSE NEGATIVE
(TP)	(FN)
FALSE POSITIVE	TRUE NEGATIVE
(FP)	(TN)

Table 4b: Confusion Matrix Table

The confusion matrix scenarios include classification indications such as accuracy, precision, recall, and F1-measure score (Porwal & Mukund, 2018). The result of the experiment follows

4.3 Performance of the Classifiers

Four (4) supervised Machine Learning algorithms were used for the experiment of this project – Random forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM), and K- Nearest Neighbor (KNN). These classifiers were chosen because they are good for classification and are employed for their good performance. The evaluation was based on the accuracy of the classifiers, their F1-measure score, recall, and precision. Additional challenges encountered were having errors with the R code and for this reason, the researcher had to utilize a GUI-based ML tool called WEKA to help produce the results.

4.3.1 Random Forest Classifier (RF)

To determine the RF classifier's performance, the model ran 100 iterations. Figure 29 below shows the result and performance of the RF classifier. The RF model had an accuracy of 100%.

Figure 29: Performance Result of RF Classifier

https://deepscienceresearch.com

Figure 30 below shows the confusion matrix of the classifier. The metrics for the evaluation have already been explained in Table 4.

True Positives (TP): The Random Forest model correctly classified 1001 malicious instances to be malicious.

True Negatives (TN): The model correctly classified 1001 benign instances to be benign.

No False Positive (FP) and False Negative(FN).

Figure 30: Confusion Matrix showing the performance of the RF Classifier

4.3.2 Naïve Bayes Classifier (NB)

The NB classifier measured an accuracy of 91%.

ime taken to bu	ild model	: 0.02 se	conds						
== Stratified o	ross-vali	dation ==	=						
== Summary ===									
Correctly Classi	fied Inst	ances	1836		91.7083	÷			
incorrectly Clas	sified In	stances	166		8.2917	8			
lappa statistic			0.83	42					
Mean absolute er	ror		0.08	3					
loot mean square	d error		0.28	79					
elative absolut	e error		16.59	14 %					
Noot relative so	uared err	or	57.58	71 %					
otal Number of	Instances		2002						
== Detailed Acc	uracy By	Class ===							
	TP Rate	FP Rate	Precision	Recall	F-Measure	MCC	ROC Area	PRC Area	Cl
	1.000	0.166	0.858	1.000	0.923	0.846	0.883	0.761	Su
	0.834	0.000	1.000	0.834	0.910	0.846	0.883	0.932	Fa
Weighted Avg.	0.917	0.083	0.929	0.917	0.917	0.846	0.883	0.847	
== Confusion Ma	trix ===								
a b <	classifi	ed as							
1001 0	a = Succe	ss							
166 835	b = Faile	d							

Figure 31: Performance result of Naïve Bayes Classifier

True Positives (TP): The NB classifier model correctly identified 1001 True Positives, this indicates that 1001 successful (malicious) instances were predicted correctly.

True Negatives (TN): As observed in the performance result of Figure 31, the number of true negatives obtained is 835 which indicates the number of benign instances correctly predicted.

False Positives (FP): The model identified 166 false positives which means that 166 benign instances were wrongly classified as malicious. The false positives are also known as type 1 errors. This type of error in a real-world situation may not appear critical but in the long run, it may lead to losses while attempting to resolve what does not happen.

False Negatives (FN): As shown in the performance result, 0 false negatives were identified which indicates that no malicious instances were wrongly predicted as benign categories. False negatives are also known as type 2 errors, the implication of this type of error in an organization could result in serious damage.

4.3.3 Support Vector Machine (SVM)

The SVM model had an accuracy of 88%.


```
ime taken to build model: 0.14 seconds
 = Stratified cross-validation ===
== Summary =
prrectly Classified Instances
                                        1767
                                                            88.2617 %
acorrectly Classified Instances
                                        235
                                                            11.7383 %
appa statistic
                                          0.7652
an absolute error
                                          0 1174
oot mean squared error
slative absolute error
                                           0.3426
                                         23.4765
oot relative squared error
                                          68.5223 %
otal Number of Instances
                                       2002
== Detailed Accuracy By Class ===
                 TP Rate FP Rate Precision Recall
                                                          F-Measure MCC
                                                                                ROC Area PRC Area
                                                                                                      Clas
                          FP m.
0.000 1.000
235 0.810
205
                                    1.000 0.765
0.810 1.000
0.905 0.883
                                                          0.867
                                                                      0.787 0.883
0.787 0.883
                 0.765
                                                                                           0.883
                                                                                                      Succ
                 1.000
                          0.235
                                                                                           0.810
                                                                                                      Fail
sighted Avg.
                                                          0.881
                                                                      0.787
                 0.883
                          0.117
                                                                                0.883
                                                                                           0.846
== Confusion Matrix ===
        ь
            <-- classified as
766 235 1
              a = Success
   0 1001 |
               b = Failed
```

Figure 33: Performance result of SVM Classifier

True Positives (TP): The model identified 766 true positives which means that 766 malicious instances were correctly predicted as malicious.

True Negatives (TN): As observed in the performance result in Figure 33, the number of true negatives obtained is 1001 which indicates the number of benign instances correctly predicted.

False Positives (FP): The model identified 0 benign instances that were wrongly classified as malicious categories.

False Negatives (FN): The model identified 235 false negatives which means 235 malicious instances were wrongly classified as benign instances.

Figure 34: Confusion Matrix of SVM Classifier

4.3.4 K-NEAREST NEIGHBOR (KNN)

KNN had an accuracy of 74% which is the lowest of all 4 algorithm


```
=== Summary ===
Correctly Classified Instances
                                                                          1498
                                                                                                                 74.8252 %
Incorrectly Classified Instances
Kappa statistic
                                                                                                              25.1748 %
                                                                           504
                                                                               0.4965
                                                                               0.2518
Mean absolute error
Root mean squared error
Root mean -____
Relative absolute error
Root relative squared error
                                                                             50.3597 %
                                                                             100.2934 %
Total Number of Instances
                                                                           2002
=== Detailed Accuracy By Class ===

        TP Rate
        FP Rate
        Precision
        Recall
        F-Measure
        MCC
        ROC Area
        PRC Area
        C.

        0.759
        0.263
        0.743
        0.759
        0.751
        0.497
        0.868
        0.854
        S1

        0.737
        0.241
        0.754
        0.737
        0.745
        0.497
        0.868
        0.851
        F1

        Weighted Avg.
        0.748
        0.252
        0.748
        0.748
        0.748
        0.497
        0.868
        0.853

=== Confusion Matrix ===
     a b
                    <-- classified as
  760 241 | a = Success
 263 738 | b = Failed
```

Figure 35: Performance result of KNN Classifier

True Positives (TP): The KNN classifier correctly identified 760 True Positives, indicating the correct prediction of 760 malicious instances.

True Negatives (TN): As observed in the performance result of Figure 35, the number of true negatives obtained is 738 which indicates the number of benign instances correctly predicted.

False Positives (FP): The model identified 263 benign categories that were wrongly classified as malicious instances.

False Negatives (FN): As shown in the performance result, 241 false negatives were identified which indicates that 241 malicious categories were wrongly predicted as benign categories.

4.4 Comparison of evaluation metrics

As shown in Table 5 below, four (4) supervised Machine Learning algorithms were experimented on to test the performance of each algorithm. The evaluation metrics included the Accuracy, Precision, Recall, and F1-measure scores of each model. As seen in almost all cases, the Random Forest (RF) algorithm gave better results as compared to other algorithms. The KNN records the lowest result across the four metrics. Based on the performance result, the Random Forest algorithm was selected for the project. This proves that In terms of IAM attack detection, the Random Forest algorithm has great potential to make the IAM process more secure, efficient, robust, and resilient in dealing with IAM attacks. Research shows that it has high performance for detection especially in areas of malicious detection. From the experiment, the result shows that Random Forest was able to correctly predict normal activities from malicious activities.

iccurucy	Precision	Recall	F1-Measure
	1.00	1.00	1.00
.91	0.92	0.92	0.92
.88	0.90	0.88	0.88
0.74	0.74	0.74	0.74
))))))))	91 88 74	1.00 .91 0.92 .88 0.90 .74 0.74	1.00 1.00 .91 0.92 0.92 .88 0.90 0.88 .74 0.74 0.74

 Table 5: Accuracy, Precision, Recall & F1-Measure Metrics

4.5 Result with compliance to project requirements and objectives

This sub-section compares the result achieved to the project's functional requirement to evaluate what has been achieved and what has not.

S/N	REQUIREMENT	PRIORITIZATION	COMMENT	PASS/FAIL
	DECLARATION			
1	The model must	Must	If properly	Pass
	be able to detect		implemented,	
	IAM attacks.		the selected	
			model will help	
			detect attacks.	
2	The model should	Should	The experiment	Pass
	be able to detect		shows that	
	attacks based on		Random Forest	
	the input dataset.		was able to	
			correctly	
			predict normal	
			activities from	
			malicious	
			activities based	
			on the input	
			dataset.	
3	Achieve an	Should	The result from	Pass
	accuracy above		the experiment	
	75% in the testing		shows Random	
	phase		Forest with the	
	_		highest	
			accuracy of	
			100%.	

Table 6: Result comparison with Project Functional Requirement

S/N O	REQUIREMEN T	DESCRIPTIO N	PRIORI TIZATI ON	COMMENT	PASS/FA IL
1	Reproducible	The result and code should be reproducible and accessible for reproducing the result. Therefore, the code will be written in R programming to ensure that it can be reusable.	Should	During the implementati on stage, the R codes developed some errors and remained unsolved. The researcher opted to use an alternative to save time. The alternative tool used was WEKA (a GUI-based ML tool). However, the result is still	Pass
2	Adaptability	The proposed detection model should be able to adjust to modifications in terms of features.	Could	The chosen algorithm is flexible and open for future improvement for optimum performance. Modification s can also be made to the	Pass

				dataset	
				features.	
3	Security	The model	Must	The aspect of	Pass
	Necessities	should be able		user	
		to detect		authenticatio	
		unauthorized		n was	
		access		focused on	
				and the result	
				showed that	
				the algorithm	
				was able to	
				predict	
				normal	
				activities	
				from	
				malicious	
				activities.	
4	Compatibility	It should be	should	Model is	Pass
		compatible with		compatible	
		either desktop or			
		laptop Windows			
		operating			
_		system.			_
5	Performance	Should work as	Must	Upon	Pass
		expected.		implementati	
				on,	
				the model	
				will work as	
				intended i.e	
				for the	
(T 60°		01 11	detection	D
0	Efficiency	The output is	Should	This was	Pass
		required to be		achieved as	
		more accurate		the RF	
		and should have		algorithm	
		a low false-		had no false	
		positives (FP)		positives or	

Table 8: Evaluation of Aim & Objectives

OBJECTIVES	COMMENT
Review various types of attacks targeted against	Achieved in the investigation
IAM.	report.
Review existing Machine Learning (ML) approaches, techniques, and tools in IAM attack detection.	Achieved in the investigation report.
Collect data by Setting up a testbed that mimics normal and malicious activities.	Achieved
Use data to train machine learning algorithms that distinguish normal activities from malicious activities.	Achieved
Select the best Machine Learning (ML) algorithm that predicts normal from malicious activities.	Achieved