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Preface

A vast and fascinating field of mathematics in number theory is the subject of
Diophantine equations consisting of the study of polynomial equations usually involving
two or more parameters such that only solutions in integers are concentrated. The
mathematical study of Diophantine problems that Diophantus initiated is Diophantine
analysis. Diophantine problems have fewer equations than unknown variables and
involve finding integers that work correctly for all equations.

In studies of Diophantine equations of degrees higher than two, significant success was
attained only in the 20th century. There has been interest in determining all integer
solutions to multi variables and higher degree Diophantine equations among
mathematicians. In this context, for simplicity and brevity, one may refer
(Carmichael., 1959, Dickson.,1952, Mordell.,1969, Gopalan et.al., 2012a, Gopalan et.al.,
2015b, Gopalan etal., 2024c, Mahalakshmi, Shanthi.,2023a, Mahalakshmi,
Shanthi.,2023b, Mahalakshmi, Shanthi.,2023c, Sathiyapriya et.al., 2024a, Sathiyapriya
et.al., 2024b, Shanthi.,2023a, Shanthi.,2023b, Shanthi, Mahalakshmi.,2023a, Shanthi,
Mahalakshmi.,2023b, Shanthi, Mahalakshmi.,2023c, Shanthi, Gopalan.,2024a, Shanthi,
Gopalan.,2024b, Thiruniraiselvi, Gopalan., 2024a, Vidhyalakshmi et.al., 2022a) for
some binary and ternary quadratic Diophantine equations.

Note that, the non-algebraic equations can be solved by transforming it into an equivalent
polynomial equation. Some transcendental equation in more than one unknown can be
solved by separation of the unknowns reducing them to polynomial equations
(Thiruniraiselvi, Gopalan., 2024b; Vidhyalakshmi et.al., 2021b).

The focus in this book is on solving multivariable higher degree Diophantine equations
along with transcendental equations. These types of equations are significant since they
concentrate on obtaining solutions in integers which satisfy the considered algebraic and
transcendental equations. These solutions play a vital role in different area of
mathematics & science and help us in understanding the significance of number patterns.
This book contains a reasonable collection of special multivariable higher degree
Diophantine problems & transcendental equations with three and five unknowns. The
procedure in obtaining varieties of solutions in integers for the polynomial and
transcendental Diophantine equations considered in this book are illustrated in an elegant
manner.
Dr. M. A. Gopalan,
Dr. N. Thiruniraiselvi,
Dr. S. Devibala,
Dr. Sharadha Kumar.
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Chapter 1

A PEER SEARCH ON BINARY
QUADRATIC DIOPHANTINE
EQUATION

1.1 Technical Procedure

The non-homogeneous binary quadratic equation for finding its integer solutions is
represented by

x> +bxy+cy’ =1 (1.1)
where b, c are any given non-zero integers such that
b® —4c>0 and square-free (1.2)

The technical process of solving (1.1) is illustrated below:
Process 1

Treating (1.1) as a quadratic in X and solving for the same , we have the pellian
equation

X?=Dy’ +4 (1.3)
where

D=b*-4c
and

X=2x+by (1.4)

The smallest positive integer solutions to (1.3) are denoted by



Y=Y,
X=X,

To obtain the other solutions to (1.3) , consider the equation
X?=Dy* +1 (1.5)

whose general solutions are denoted by

- 1
y_yn_Z\/Bgn'
x:kn=1n

2

Where
fn :(;(o "'\/Byo)ml + ()20 _\/Byo)nﬂa
g, =(5'(0 _l_\/Byo)ml _(5'(0 _\/Byo)ml

in which Y, ,)~(0 represent the least positive integer solutions to (1.5).

Employing the lemma of Brahmagupta between the solutions (y, ,X,)&(Y, ,)~(n) :
the other solutions to (1.3) are given by

= ~ 1 1
yn+ =y )(n—'_>< yn ==Y fn +—=X gn (16)
1 0 0 2 0 2\/6 0
and
S ~ 1 1
X =X X, +DYy, yn=§X0fn +Eyo \/Bgn (1.7)
In view of (1.4) ,we have from (1.6) & (1.7)
1
Xn+1 =E[Xn+l - byn+l]
1 (1.8)

1
==(X,-b f +—Dy,-bX
4( 0 yO) n+4\/5( yO 0)gn



Thus, (1.6) & (1.8) satisfy (1.1) .

The recurrence relations satisfied by the values of X, ,y,_, aregiven below:
Xnig =2 Xo Xppp + Xy =0,

A (L.9)
Ynizs — 2 XO Yoo T Yna = O'n :_1!0’1!-"

To analyze the nature of solutions, one has to go in for solutions of (1.1) when b& ¢
take particular values. A few examples are exhibited below:

Example 1

Let b=9,c=15 .Note that (1.2) is satisfied and D =21.
Further , observe that

Yo=1,X;,=5
Vo =12,X, =55
It is seen that the general solutions to

x> +9xy+15y° =1 (1.10)
from (1.6) & (1.8) are given by

Xyy=—T1 —ig
n+1 n \/ﬁ n?

Vs =1ty + g
n+1 2 n 2\/2_1 n

where

f =(55+12/21)"" + (55-12/21)"*,
g, =(55+12~/21)™* — (55-12/21)"*.

A few numerical solutions to (1.10) are presented below:

Xog==2,Y,=1
X, =—254,y, =115
X, =—27938,y, =12649



The recurrence relations satisfied by the solutions to (1.10) are presented below:

Xni3 _110Xn+2 +Xhn =0 J
Yoz —110y,., +Y,, =0,n=-101...

Example 2
Let b=1,c=-1 .Note that (1.2) is satisfied and D=5.

Further , observe that

Yo=1,X,=3

Vo=4,X,=9
It is seen that the general solutions to

x?+xy-y’=1 (1.11)
From (1.6) & (1.8) are given by

X :l f, +ign ,
2" 245

Yo,==F +ig
n+1 2 n 2\/% n

where
f. =(9+45)" +(9-4.5)",
g, = (9+4/5)" —(9-4.5)",
A few numerical solutions to (11) are presented below:
Xo=1,y,=1
X, =13,y, =21
X, =233,y, =377

The recurrence relations satisfied by the solutions to (1.11) are presented below:

Xoi3 _18Xn+2 +Xp =0 J
yn+3 _18yn+2 + yn+l :O’ n= _110111"'



Note 1

It is worth to observe that the lemma of Brahmagupta presented in (1.6) & (1.7) may
also be considered as below:

Yo =Yo Xn _XO yn !
Xn+l =)<0 Xn _DyO yn '
Following the process presented above, another set of solutions to (1.1) are obtained.

Process 2

Treating (1.1) as a quadratic in Y and solving for the same, we have the pellian
equation

Y?=Dx? +4c (1.12)
where

Y=2cy+bx (1.13)
The smallest positive integer solutions to (1.12) are denoted by

X=X,
Y=Y,

For getting more solutions to (1.12) , write
Y?=Dx*+1 (1.14)

Which is satisfied by

- 1
X=X,=—=0,,
2J/D
Y=?n=1n
2

where

f,=(Y, +VDX,)" + (Y, —/D %)™,
9, = (Y, + VD X)"™ = (Y, —VD X,)"*



In which \?0 , X, represent the least positive integer solutions to (1.14).

Employing the lemma of Brahmagupta between the solutions (X, , Y,) & (X, , \?n) , the
other solutions to (1.12) are given by

S ~ 1 1
Xoag =X Yo+ Yo X, ==X, f, +—=Y, 0, (1.15)
1 0 0 2 0 2\/6 0
and
v - 1 1
le:Yan+Dx0xn=EY0fn+§x0\/5gn (1.16)
In view of (1.13) ,we have from (1.15) & (1.16)
1
Yia :Z_C[Yn+l - bXn+1]
1 1 (1.17)
=— (Y, -bxy) f, +——=(D x,-bY,) g,
Ac 0 0 4C\/B 0 0
Thus, (1.15) & (1.17) satisfy (1.1) .
The recurrence relations satisfied by the values of X ., ,y,, are given below:
X5 =2 Yo X,y + X, =0,
n+3 0 ™n+2 n+l (118)

Ynis — 2 vo Yoz T Yo =0,n=-101,...

To analyze the nature of solutions, one has to go in for solutions of (1.1) when b& ¢
take particular values. A few examples are exhibited below:

Example 3
Let b=9,c=15 .Note that (1.2) is satisfied and D =21.
Further, observe that
Xo=1,Y,=9
X, =12,Y, =55

It is seen that the general solutions to (1.10) from (1.15) & (1.17) are given by



1 9

X  ==f +——q_,
n+l1 2 n ngn

1
Yna = _Egn
where
f =(55+124/21)"" + (55-12~/21)",
g, = (55+12+/21)™ — (55-12+/21)"".
A few numerical solutions to (1.10) are presented below:

X, =1,y,=0
X, =163,y, =-24
X, =17929,y, =-2640

The recurrence relations satisfied by the solutions to (1.10) are presented below:

Xni3 _110Xn+2 +Xpa =0 J
Y. —110y,., +Y,, =0,n=-101...

Example 4
Let b=1,c=-1 .Note that (1.2) is satisfied and D =5.

Further, observe that

1
4

1
9

Xo = ’Yo
Xy = ’Yo

It is seen that the general solutions to (1.11) from (1.15) & (1.17) are given by

X —if +Lg
n+1 2 n 2\/5 n1?

1
You :_Egn

where



f, =(9+45)™ +(9-45)",
g, =(9+45)" —(9-45)".
A few numerical solutions to (1.11) are presented below:
X,=1,y,=0
X, =13,y,=-8
X, =233y, =-144
The recurrence relations satisfied by the solutions to (1.11) are presented below:
X3 —18X,., +X,, =0,
Yoz 18y, +Y,.,.=0,n=-101,...
Process 3
It is worth to remind that, if X=X, ,Y=Y, represent the smallest positive integer
solutions to the pellian equation X> =Dy* +1 | then X =0X,,Y=0Y, give the
integer solutions to the pellian equationX® =D y* + .
In view of the above result, the general solutions y=y, ,X=X_ to(1.3) aregiven
by
X, +Dy, =2(X, +vD¥,)"™ ,n=012,. (1.19)
where (Y, ,)~(0) is the smallest positive integer solution of the pellian equation given
by (1.5).
Comparing the coefficients of corresponding terms in (19) , we have

Xn :(Xo +\/Byo)n+l +(;(0 _\/Byo)n+la

1  ~ N ~ N (1.20)
- X /D n+l X _ ID n+l .
yn \/B [( 0 + yO) ( 0 yO) ]

In view of (1.4) , we get



Xy :%[Xn _byn]
:;[{\E—b JD+b

2= Jp VD

Thus, the values of X, ,y, given by (1.20) & (1.21) satisfy (1.1).

(1.21)

}X, + VD ¥o)" +{ }(X, =D ¥o)"]

The values of y , X, satisfy respectively, the following difference equations

Yoo — 2X0yn+1 +Y, :0,
Xy — 2)~(0xn+1 +X,=0,n=012,..
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Chapter 2

On Finding Integer Solutions to
Homogeneous Ternary Quadratic
Diophantine Equation

2.1 Technical Procedure

The homogeneous second degree equation in three unknowns to be solved is
x>+ (2k+1) y? = (k +1)? z* 2.1)
To start with, (2.1) is satisfied by
x=4k®+6k* +3k,y =2k +1,z=4k* +2k +1

However, there are many more integer solutions and the process of obtaining various
solution patterns is illustrated below:

Process 1
Taking

x=(k+1) X,y=(k+1Y 2.2)
in (2.1) ,it gives

XZ+(2k+1)Y? =27 (2.3)
which is satisfied by

Y=2pg,X=(2k+])p°-q’ (2.4)

and

z=02k+D)p*+q° (2.5)

Using (2.4) in (2.2) ,we have

10



x=(k+D[(2k+1D p*-9°],
y=2(k+1)pq. (2.6)
Thus ,(2.5) & (2.6) represent the integer solutions to (2.1).
Process 2
Consider (2.3) as the system of double equations as shown below
z+X=Y?
z-X=2k+1
Solving the above pair of equations, we have

Y =2s+1,X =2s*+2s—k 27)

and
2=2s*+2s+k+1 (2.8)
From (2.7) and (2.2) ,we get

x=(k+1) (2s°+2s—k), 2.9)
y=(k+1)(2s+1).

Thus, (2.8) & (2.9) satisfy (2.1).

Note 1

It is to be noted that, one may write (2.3) as the pair of equations as follows:
Z+X=02k+1) Y?* z-X=1
In this case, the solutions to (2.1) are obtained as

Xx=(k+1) [K(2s+1)* +2s*+29],

y=(k+1) (2s+1),

z=[k(2s+1)*+2s* +2s+1].
Process 3

The substitution of the transformations

X=k(k+D)X,z=(K+D)P+2k+D)B,y=(k+)P+(k+1)* S (2.10)

11



in (2.1) leads to the ternary quadratic equation
P> =X?+(2k+1) p?
which is satisfied by
B=2pq,X =2k+1)p°-q°,P=(2k+1) p*+q?
In view of (2.10) , the integer solutions to (2.1) are given by

x=k(k+1[(2k +1) p2 _qz] ,

y=(k+D[(2k +1) p*+9*]+2pq (k+1)?,

z=(k+D[(2k+1) p* +q°]+2pq (2k +1).
Note 2

Apart from (2.10), one may consider the transformations as

(2.11)

(2.12)

(2.13)

x=k(k+D)X,z=(k+)P-(2k+1) g,y=K+)P—(k+1)>2 5 .

In this case, (2.1) is satisfied by

x=kk+D[(2k+1) p*-q°],
y=(k+D[(2k+1) p* +9°]-2pq (k +1)*,
z=(k+D)[(2k+1) p* +9°]-2pq (2k +1).

Process 4

Assume
z=a’+(2k +1)b?
Consider
(k+1)% = (k+i/2k +1) (k —i~/2k +1)

Using (2.14) & (2.15) in (2.1) & utilizing technique of factorization gives

X+i/2k+1y =(K+iy2k+1) (@a+i,2k +1b)°

On comparing the coefficients of corresponding terms, consider

(2.14)

(2.15)

12



x=k[a? —(2k +1)b?]-2(2k +1)ab,
y=2kab+[a*—-(2k +1)b?]. (2.16)

Observe that (2.14) & (2.16) satisfy (2.1) .

Process 5

Write (2.1) as

X*+(2k+1) y* =(k+1?z**1

(2.17)
Express the integer 1 on the R.H.S. of (2.17) as
(kK+iy2k+1) (k—i2k +1)
1= - (2.18)
(k+1)
Assume
z=(k+1°[a*+(2k +1)b?] (2.19)

Substituting (2.15) ,(2.18) & (2.19) in (2.17) and following the procedure as in Process 4
, we get

x = (k +D{(k? -2k —1) [a% - (2k +1)b?]— 4k (2k + 1) ab},

y=(k+D{2k[a* - (2k +1)b*]+2(k* -2k —1)ab}. (220
Thus, (2.19) & (2.20) satisfy (2.1).
Process 6
It is to be observed that, choosing the values of k to be
k=2s"+2s

in (2.1) and employing the transformations

X=(2s+1)(2s*+2s+1D) X ,y=(2s°+2s+1) Y,z=(2s+D)w (2.21)
in (2.1) , it reduces to the Pythagorean equation given by

XE+YE=w (2.22)

Considering the most cited solutions of (2.22) and utilizing (2.21) , the solutions in
integer for (2.1) are determined.

13
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Chapter 3

A Peer Search on Quaternary Quadratic
Diophantine Equation

3.1 Technical Procedure

The homogeneous polynomial equation of degree two with four unknowns to be solved
is given by

X? —Xy+y’=4(z" —-zw+w?) (3.1)
The process of obtaining patterns of integer solutions to (3.1) are illustrated below:

Process 1

Multiplying both sides of (3.1) by 4 and completing the squares, we have
2x-y)* +3y* =4[(2z - w)* +3w?]

3.2
=(4z-2w)* +3(2w)? (32)

Rewrite (3.2) as
2x-y)* - (4z-2w)* =3[(2w)* ~y’] (3:3)
Employing factorization and choosing two non-zero integers o, ,we write (3.3) as
the system of double equations as shown below:
al2x—-y+4z-2w]=B[6wW +3Y],
B2x—-y—-4z+2w]=a[2wW-Y].
Applying the method of cross-multiplication , the integer solutions to (3.1) are given by
X=8ap+12B* -4 a?,
y=—8 a’-24p?,
z=-8aPf-12B* +4 a’,
w=2a’+6 %,

Process 2

14



Taking x=2X,y=2Y in(3.1) ,itis written as
X2 -XY+Y?=z"—zw+w?
Following the analysis of Process 1, (3.1) is satisfied by

X=8ap+12p> -4 o?,
y=—4a®-12p?,
zZ=—4aB-6p°+2a’,
w=2a’+6p?,
Process 3
The option
X=p+0,y=p—-Q,Z=r+s,w=r—-s,p=xq#r=s=0
in (3.1) leads to
p?+3q° =4(r* +3s?)
Consider
p+iv3q=+iv3)(r+iv3s)
Comparing the coefficients of corresponding terms , we have
p=r—-3s,q=r+s
In view of (3.4) ,it is seen that
X=2(r—s),y=-4s
Thus, (3.6) & (3.4) satisfy (3.1) .

Process 4
Choosing

X=p+Qq,y=p—Q,Z2=p+sS,w=p-s5,pxq=#s=0

(3.1) represents Pythagorean equation
g’ =p° +(2s)°
After some algebra, (3.1) is satisfied by

x=2a’,y=-2b*,z=a’ -b*+ab,w=a’-b*-ab

Note 1
It is observed that (3.8) is also satisfied by

s=2(a’ -b?) ,p=8ab,q=4(a*+b?
In view of (3.7) , the integer solutions to (3.1) are given by

Xx=8ab+4(a’+b%),y=8ab-4(a*+b*),z=8ab+2(@*-b?),

w=8ab-2(a’*-b?)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

15



Process 5

Choosing
X=p+Q,y=p-—-Q,z=r+q,w=r—-q,p=zq=r=0 (3.9
in (3.1) ,it reduces to Pythagorean equation
p*=(30)* +(2n)° (3.10)
satisfied by

r=9ab,q=3(@°-b?),p=9@°+b?),a=zb=0
After simplification, (3.1) is satisfied by
x=12a’ +6b*,y=6a® +12b*,z=9ab+3(a* —b?),w=9ab-3(a* - b?)
Note 2
It is observed that (3.10) is also satisfied by
r=18(a’ —b*) ,q=24ab,p=36(a’ + b?)
Using (3.9), (3.1) is satisfied by
X =24ab+36(a®+b?),y=-24ab+36(a’*+b%),z=24ab+18(a’ -b?),
w =-24ab+18(a’ —b?)
Process 6
Choosing
x=16c+160d,y=-8c—-16d,z=8R+4c+72d,w=8R -4c-72d (3.11)
in (3.1) ,it reduces to the ternary quadratic equation
¢’ =R? +132d° (3.12)
which is satisfied by
d=2ab,R=132a* -b*,c=132a° +b°
From (3.11) , the integer solutions to (3.1) are represented by
x=16(132a% + b?)+320ab ,y=-8 (132a°® + b?)-32ab ,
z=144ab+12*132a° —4b* ,w=-144ab+4*132a* —12b?

Other patterns of integer solutions for (3.1) are as follows:
Express (3.12) as presented in Table 1:

The pair of euations in Table 1:

System | 1 i | v \Y VI VI | VI IX X XI | Xl

c+R= d? | 2d* | 3d* | 6d® | 33d* | 66d® | 132d | 66d | 44d | 33d | 22d | 12d

c-R= 132 ]| 66 |44 | 22 4 2 d 2d | 3d | 4d | 6d | 1i1d

After solving the pair of equations for R, c,d and using (3.11), the respective values of
X, Y, z, w satisfying (3.1) are shown as follows:

16




Solutions from System |

d=2s,c=2s°+66,R=25*—-66
X =16(2s° + 66) +320s ,y =—8(2s” + 66) —32s,z=8(2s* — 66) + 4(2s” + 66) +144s,
w=8(2s? —66) —4(2s? + 66) —144s

Solutions from System Il

c=d? +33,R=d?-33
x =16 (d° +33) +160d,y =-8(d? +33) -16d,z=8(d* — 33) + 4(d? + 33) + 72d,
w=8(d? —33)—4(d? +33) - 72d

Solutions from System IlI

d=2s,c=6s”> +22,R=65°>-22
X =16(65° +22) +320s,y=-8(6s* +22) —32s,z=8(65" — 22) + 4(65° + 22) + 144s,
W =8(6s” —22) — 4(6s* + 22) —144s

Solutions from System IV

c=3d*+11,R=3d"-11
Xx=16(3d* +11)+160d,y=-8(3d* +11)-16d,z=8(3d* -11)+4(3d* +11) +72d,
w=8(3d*-11)-4(3d* +11)-72d

Solutions from System V

d=2s,c=66s” +2,R =66s" —2
X =16(66s° +2) +320s,y =—8 (66s* + 2) — 325,z =8(665" — 2) + 4(665° + 2) +144s,
W =8(66s* —2) —4(66s* +2) —144s

Solutions from System VI
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c=33d?+1,R=33d?-1
X =16(33d% +1)+160d,y =-8(33d? +1)-16d,z =8(33d? -1)+ 4 8(33d* +1)+72d,
w =8(33d?-1)-4 (33d* +1)-72d

Solutions from System VI
d=2s,c=133s,R =131s

X =2448s,y =-1096s,z=1724s,w =372s

Solutions from System VI
c=34d,R=32d

x=704d,y=-288d,z=464d,w=48d

Solutions from System 1X
d=2s,c=47s,R=41s

x=1072s,y =—408s,z =660s,w =—4s

Solutions from System X
d=2s,c=37s,R=29s

X=912s,y=-328s,z=524s,w =—-60s

Solutions from System XI
c=14d,R =8d

x =384d,y=-128d,z=192d,w = —64d

Solutions from System XII
d=2s,c=23s,R=s

X =688s,y=-216s,z =244s,w =—-228s
Note 3
Apart from (3.11) , there are three more choices of transformations reducing (3.1)
to (3.12) which are exhibited below:
Choice 1

x=-12¢+104d,y=+8c+16d,z=8R -2c+60d,w=8R +2 c-60d

Choice 2

x=16¢-160d,y=-8c+16d,z=8R +4c-72d,w=8R -4 c+72d
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Choice 3

Xx=-12¢-104d,y=8c-16d,z=8R -2c-60d,w=8R +2 c+60d

Further, it is seen after some algebra that there are four more choices of transformations

reducing (3.1) to ¢* = X* +132 d* which are exhibited below:
Choice 4

X=X+5c+56d,y=-X-3c-32d,z=X+4c+45d,w=X+2c+21d
Choice 5

Xx=X+5c-56d,y=-X-3c+32d,z=X+4c-45d,w=X+2c-21d
Choice 6
Xx=X-3c+32d,y=-X+5c-56d,z=X-2c+21d,w=X—-4c+45d
Choice 7
Xx=X-3c-32d,y=-X+5c+56d,z=X-2c-21d,w=X-4c—-45d

Following the analysis as presented above in Process 6, many more sets of integer
solutions to (3.1) are determined.
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Chapter 4

On Non-Homogeneous Ternary Cubic
Equation

4.1 Technical Procedure

Consider, the non-homogeneous ternary cubic equation
x> +x+y*+y=47° (4.1)
The option
X=U+V,y=u-Vv,z=Uu,u=Vv=0 (4.2)
in (4.1) leads to the binary quadratic equation
u?=3v>+1 (4.3)

It is to be noted that (4.3) is the well-known pellian equation whose smallest positive
integer solution is

Vo =1,u, =2

If (u,,Vv,) represents the general solution to (4.3), then it is given by

u, ++/3 v, =(2+~3)" n>0 (4.4)
Also,
u, —3v, =(2-3)™ (4.5)
Solving (4.4) & (4.5) ,we have
u :Ef vV :Lg
n =tV =5
where
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fn :(2+\/§)n+l+(2_\/§)n+l’
9, =(2+3)" - (2-3)"",

From (4.2), (4.1) is satisfied by

1
Xy _m[\/gfn +gn] 1

v, =5 5 0,1, @6)
zZ, :2l f,,n=012,..
The recurrence relations satisfied by the solutions to (4.1) are given by
G,,-4G, ,+G,=0,n=012,.
where
G =x,y,z inturn.
The following results are worth to mention:

l. The integer triple (Y, ,Z,,X,) forms an arithmetic progression
. Replacing n by n+1in (4.6) , we see that

1
X, =——[3+/3f, +59,1,

1
yn+l_ 2\/§

1
Zn+1=5[2 fn +\/§gn]'

[V3f, +9,],

The following relations are observed:
@ X, =Ynu

0) Xpa ¥y —YnaX, =2

©) ZpaYn—YnuZ, =1

(d X,n2z,-Z,,X%X,=1

n+l “n n+1

I1. Consider u, +2V,,V, to be the generators of a Pythagorean triangle PT.



VI.

VII.

Then , it is observed that the difference between its hypotenuse and four
times the product of its generators is always equal to 1.

x +y +6x.y.z =8z°
8z, =3(x,2+y,’)+2
4'an +3(Xnyn _Znyn _ann) =1

3x,°—6x,z,+22,° =-1
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Chapter 5

A Peer Search on Ternary Cubic
Diophantine Equation

5.1 Technical Procedure

The non-homogeneous Diophantine equation of degree three with three unknowns
to be solved is

5x*-3y*=2° (5.1)

The process of obtaining various sets of integer solutions to (5.1) through different ways
is illustrated below:

Way 1
The choice
x=Kky,k>1 (5.2)
in (5.1) leads to
(5k*-3)y* =7°
which is satisfied by
y=(k?-3)t*,z=(5k* -3)t* (5.3)
In view of (5.2) , we have
x =k (5k* -3)t* (5.4)
Thus (5.3) and (5.4) satisfy (5.1).
Way 2
Assumption

y=kx,k>1 (5.5)
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in (5.1) leads to

(5-3k*)x*=z2°

which is satisfied by

In view of (5.5) , we have

Thus, (5.6) and (5.7) represent the integer solutions to (5.1).

Way 3

Taking

in (1) , we get

X =(5-3k?)t*,z = (5-3k?)t>

X=2X+6kw,y=2X+10kw,z=2w

y =k (5-3k?)t*

X% =w?(w +15k?)

which is satisfied by

W =(s*> +65—6) k*, X =(s+3) (s> +65-6) k*

In view of (5.8) , one obtains

which give the integer solutions to (5.1).

Some numerical examples are exhibited in the following Table:

Table- Numerical examples

x=k*(2s+12) (s* +65-6),
y=k*(2s+16) (s* +65-6),
z=2(s* +6s-6)k?

k S X y z

1 1 14 18 2

2 3 3024 3696 168
3 4 18360 22032 612
1 2 160 200 20

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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2 10 39424 44352 1232
2 12 60480 67200 1680
A few interesting relations among the solutions are presented below:

1. x*+6kxyz+8k’z°=y°®
2. The choice

s=a’+40-3
gives
y? =x* +[(2a+4)kz]?
which is similar to the well-known Pythagorean equation.
3. =Y

k?z?

is one less than a perfect square.

4. Each of the expressions
(y-x)y (y2)
k?z> ' 2k
is a perfect square when s=2a° +8a..
5. Each of the expressions

(y-x)x (x2z)
k?z*> 2k
is a perfect square when s=2a’ +4a—4.
6. (y+x)?=4(y—-kz)* =4(x+kz)?

Way 4

The choice

X =X+48kw,y=X+80kw,z=8w (5.11)
in (5.1), we get
X? =256 w?(w +15k?) (5.12)
which is satisfied by
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W =(s® +65—6) k?,X =16 (s+3) (s* +65—-6) k*

In view of (5.11) , one obtains
X =16 k®(s+6) (s*° +65-6),
y=16k*®(s+8) (s* +65-6),
z=8(s*+65-6)k’
which give the integer solutions to (5.1).
Way 5
Taking
X=2X+6T,y=2X+10T,z=2w
in (5.1) , we get
X?-15T?=w?®
Assume
w=a’-15b”
Substituting (5.15) in (5.14) and applying factorization ,we consider

X ++/15T = (a++/15b)°
from which we get
X=1(a,b),T=g(,b)
where
f(a,b) =a® +45ab?,
g(a,b) =3a*b+15b°
In view of (5.13) ,we have

x =2f(a,b)+6g(a,b),
y =2f(a,b)+10g(a,b) ,
z=2(a’ -15b?%)

(5.13)

(5.14)

(5.15)
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which satisfy (5.1).
Way 6
Rewrite (5.14) as
X?-15T% =w’*1 (5.16)
Consider the integer 1 on the R.H.S. of (5.16) as

1=(4++/15) (4—+/15) (5.17)

Substituting (5.15) & (5.17) in (5.16) and employing the factorization ,one has

X ++/15T = (4 ++/15) (a++15b)°
from which we get
X =4f(a,b)+15g(a,b) , T =f(a,b)+4g(a,b)

In view of (5.13) , the corresponding integer solutions to (5.1) are given by
x =14f(a,b) +54g(a,b) ,
y =18f(a,b) +70g(a,b) ,
z=2(a®-15b%) .

Note 1

It is worth to mention that ,in addition to (5.17) ,the following representations for the
integer 1 may be considered as shown below:

1=(31+8V15) (31-8415),

_ (8++/15) (8—+15)
49

1

The above process leads to two more sets of integer solutions to (5.1).
Generation of solutions

Let (X,,Y,,2,) beany given integer solution to (5.1).
Assume the second solution to (5.1) as

X, =h-X,,y,=h+y,,z, =2, (5.18)
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Substituting (5.18) in (5.1) and simplifying, we have

h=5x,+3Y,

Substituting the above value of N in (5.18), we get
X, =4 X,+3Y,,Y, =5X,+4Y,

The repetition similarly gives n" solution to (5.1)
an +Bn 3(an _Bn)
X, = X, + Yo o
2 % 2y15 77
5(an _Bn) an +Bn
N = X, + Yo
2415 ° 2 °°

z,=2,,n=123,..

n

Vv

where o =4++/15 ,B:4—\/1_5
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Chapter 6

On Non-Homogeneous Quaternary
Quartic Equation

6.1 Technical Procedure

The quaternary quartic equation under consideration is
x®+y®=62zw? (6.1)
The option
X=U+V,y=u-Vv,z=U,uz#v=0 (6.2)
in (6.1) leads to non-homogeneous ternary cubic equation
u? +3v? =31w’° (6.3)

The process of solving (6.3) is illustrated below and utilizing (6.2), corresponding
solutions to (6.1) are obtained.

Process 1

Assume
w=a’+3b? (6.4)
Express the integer 31 in (6.3) as the product of complex conjugates as below:
31=(2+i3+/3) (2-i3+/3) (6.5)
Substituting (6.4) & (6.5) in (6.3) and employing factorization ,consider
U+iv3v=(2+i3v3) @+iv3b)* =(2+i3v3) [f(a b)+iv3g@b)]  (6.6)

where
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f(a,b)=a®-9ab?,
g(a,b)=3a’b—3b°.
On comparing the coefficients of corresponding terms in (6.6) ,one obtains
u=2f(a,b)—9g(a,b)
v=3Tf(a,b)+2g(a,b)
In view of (6.2) ,we have
x=5f(a,b)-79(a,b),
y=—f(a,b)-11g(a,b), (6.7)
z=2f(a,b)-9g(a,b).
Thus, (6.4) & (6.7) satisfy (6.1).
Note 1

It is to be noted that ,in addition to (6.5), the other representations to 31 are presented
below:

_(7+i5+3) (7-i5+3)

31 .
a1 (11+i\/§):11—i 3

In a similar manner, two choices of solutions for (6.1) are found.
Process 2
Taking
v=3kw (6.8)
in (6.3) , it is written as
u?=w? (31w - 27k?) (6.9)
After some algebra , it is seen that the R.H.S. of (6.9) is a perfect square for
w=31n% +4kn +k? (6.10)

Applying (6.10) in (6.8) ,we have
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v=3k(31n? +4kn +k?) (6.11)
and from (6.9) , it is seen that

u=(31n?+4kn+k?) (31n+2k) (6.12)
Substituting (6.11) & (6.12) in (6.2) ,one obtains

X =(31n%* +4kn+k?) (31n +5k) ,
y=(31n° +4kn+k?) (31n -k) , (6.13)
z=(31n° +4kn+k?) (31n+2k).

Thus, (6.13) & (6.10) satisfy (6.1) .

Note 2

It is to be noted that, the R.H.S. of (6.9) is also a perfect square when
w=31n* —4kn+k’

For this choice , (6.1) is satisfied by

X =(31n° —4kn+k?) (31n+Kk),
y=(31n* —4kn+k?) (31n-5Kk),
z=(31n* —4kn+k?) (31n - 2K).

Process 3

Write (6.3) as
2 2 3 %
u®+3v-=31lw’*1 (6.14)
Express the integer 1 in (6.14) as

_(1+i4/3) (1-i43)
4

1 (6.15)

Inserting (6.4) , (6.5) & (6.15) in (6.14) and employing factorization ,consider
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UtiBv=(2+i3+3) (a+i\/§b)3—(1+;‘/§)

=(_7+—;5\/§)(a+i\/§b)3

On equating the coefficients of corresponding terms , we get
u :%[—7f(a, b) —15g(a,b)],
1
v :5[5 f(a,b)-79(a,b)].

In view of (6.2) , we have
x=—f(a,b)-11g(a,b) ,
y=-6 f(a,b)-4 g(a,b) , (6.16)

z:%[—Y f(a,b)—15 g(a,b)] .

Replacing a by 2A and b by 2B in (6.4) & (6.16), the lattice points for (6.1) are

x =8 [-f(A,B)-11g(A,B)],
y=8[-6 f(A,B)—4g(A,B)],
z=4[-7f(A,B)-15¢g(A,B)],
w=4[A’ +3B%].

Note 3

It is worth to observe that , apart from (6.15) , the integer 1 in (6.14) may be
represented as below:

_(3r’ —s* +i3(2rs)) (3r° —s* —i+/3(2rs))

! (3r? +s?)?
(1 =38’ +iv3(2rs)) (r? —3s? —iv/3(2rs))
- (r? +3s%)? '

Following the above procedure, two more sets of integer solutions to (6.1) are obtained.

Process 4
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By inspection, it is seen that (6.3) is satisfied by

u=31>m(m?+3n?%),
v=31*n(m? +3n?)

and
w =31(m’ +3n?)
Using (6.17) in (6.2) ,we have

x=31(m? +3n%) (m+n),
y=31*(m?+3n?) (m-n),
z=31"m(m* +3n?).
Thus, (6.18) & (6.19) satisfy (6.1).
Process 5
Insertion of

X=U+W,y=U-w,z=2U

in (6.1) leads to the binary cubic equation
u?=w? (62w -23)

After some algebra , it is seen that the R.H.S. of (6.21) is a perfect square for

W=62n°+22n+2
Applying (6.22) in (6.21) ,we have

u=(62n°+22n+2) (62n+11)

Substituting (6.22) & (6.23) in (6.20) ,one obtains

Xx=(62n*+22n+2) (62n+12) ,
y=(62n2 +22n +2) (62n +10) ,
z=2(62n%+22n+2) (62n+11).

Thus, (6.22) & (6.24) satisfy (6.1) .

(6.17)

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

(6.24)

33



Note 4
It is to be noted that , the R.H.S. of (6. 21) is also a perfect square when
W=62n*-22n+2
For this choice, (6.1) is satisfied by
X =(62n° —22n+2) (62n -10),

y=(62n? —22n+2) (62n-12),
z=2(62n? —22n+2) (62n-11)

Process 6
Insertion of
X=U+V,y=u-vVv,z=3U
in (6.1) gives
u®+3v>=93w’
Assume

93=(9+i2+/3) (9-i2+/3)
Substituting (6.4) & (6.27) in (6.26) and using factorization , consider
u+iv/3v=(9+i2+3) (f(a,b) +i/39(a,b))

from which we have
u=9f(a,b)-6g(a,b),
v=2 f(a,b)+9g(a,b)
In view of (6.2) , one has
x =11f(a,b) +3g(a,b),
y=7f(a,b)-159(a,b),
z=27f(a,b)-18g(a,b).
Thus, (6.4) & (6.28) satisfy (6.1).

Process 7

(6.25)

(6.26)

(6.27)

(6.28)
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Choosing
X=Uu+2wW,y=u-2w,z=3U (6.29)
in (6.1) , it gives
u?=w?(93w-12) (6.30)
After some algebra , it is seen that the R.H.S. of (6.30) is a perfect square for
w=93n°+18n+1 (6.31)
Applying (6.31) in (6.30) ,we have
u=(93n° +18n+1) (93n+9) (6.32)
Substituting (6.31) & (6.32) in (6.29) ,one obtains

Xx=(93n% +18n+1) (93n +11) ,
y=(93n° +18n+1) (93n+7) , (6.33)
z=3(93n% +18n +1) (93n +9) .

Thus , (6.31) & (6.33) satisfy (6.1) .

Note 5

It is to be noted that , the R.H.S. of (6.30) is also a perfect square when
w=93n° -18n+1
For this choice , the solutions to (6.1) are

x=(93n? -18n+1) (93n-7),
y=(93n%* -18n+1) (93n -11),
z=3(93n%? —18n+1) (93n-9)

Process 8
The option
X=U+V,y=U-V,z=4uU (6.34)
in (6.1) gives
2 2 3
u®+3v- =124 w (6.35)
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Assume
124=(11+i+/3) (11-i +/3) (6.36)
Substituting (6.4) & (6.36) in (6.35) and using factorization, considering
u+i/3v=(11+i /3) (f(a,b) +i~/3g(a b))
we have

u=11f(a,b)-3g(a,b),
v=f(a,b)+11g(a,b)

In view of (6.2) , one has

x =12 f(a,b) +8 g(a,b),
y=10 f(a,b) -14 g(a,b), (6.37)
z=441f(a,b)-12 g(a,b).

Thus, (6.4) & (6.37) satisfy (6.1).
Process 9
Choosing
X=U+2W,y=U—-2W,z=4u (6.38)
in (6.1) , it gives
u?=4w? (31w -3) (6.39)
After some algebra , it is seen that the R.H.S. of (6.39) is a perfect square for
w=31n?+22n+4 (6.40)
Applying (6.40) in (6.39) ,we have
u=2(31n° +22n+4) (31 n+11) (6.41)

Substituting (6.40) & (6.41) in (6.38) ,one obtains
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x=2(31n?+22n+4) (31 n+12) ,
y=2(31n*+22n+4) (31 n+10), (6.42)
z=8 (31n* +22n+4) (31 n+11).
Thus , (6.40) & (6.42) satisfy (6.1) .
Note 6
It is to be noted that , the R.H.S. of (6.39) is also a perfect square when
w=31n°-22n+4
For this choice, (6.1) is satisfied by
Xx=2(31n*-22n+4) (31n-10),
y=2(31n*-22n+4) (31n-12),
z=8 (31n* —=22n+4) (31 n-11).

37



Deep Science Publishing

https://doi.org/10.70593/978-93-49307-38-4 Open Access Books

Chapter 7

A Peer Search on Quinary Cubic
Equation

7.1 Technical Procedure

Consider the homogeneous quinary cubic equation
X*—yi+z2®+w =kt® k>0 (7.1)
The substitution
X=Q—-p,y=0q+p,Z2=p+r,w=p-r,t=p,q#p=#r (7.2)
in (7.1) gives
6r’=6q9°>+kp’ (7.3)

In what follows, the integer solutions to (7.3) are determined when k takes particular
values. In view of (7.2), the corresponding integer solutions to (7.1) are obtained.

Choice 1

The option
k=6s" (7.4)
in (7.3) leads to the Pythagorean equation
r’=q’ +(sp)’ (7.5)
which is satisfied by
r=a’+b%*,q=2ab,sp=a’*-b*,a>b>0 (7.6)
As integer solutions are required, replacing a by s A and b by s B in (7.6), we have

r=s’(A>+B?),q=2s"AB,p=s(A”-B?) (7.7)
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From (7.2), the solutions for (7.1) are

x=2s> AB-s(A*-B?),
y=2s*> AB+s(A*-B?),

z=s(A*-B?)+ s*(A*+B?), (7.8)
w=s(A?—B?)-s? (A2 + B?),
p=s(A*-B?).

Note 1
It is worth to mention that (7.5) is also satisfied by
r=a’+b®,q=a’-b*,sp=2ab,a>b>0
Replacing a by sA in the above equation, we have
r=s’A>+b%,q=s?A*-b*, p=2Ab,sA>b>0
In this case, the corresponding integer solutions to (7.1) are given by
X=s’A’-b* -2Ab,
y=s?A*-b* +2Ab,
z=2Ab+(s’A’+b%),
w=2Ab—(s?A%+b?),

t=2Ab.
Note 2
Write (7.5) as
(sp)® +0°=r**1 (7.9)
Assume
r=(sa)®+b’ (7.10)

Express the integer 1 on the R.H.S. of (7.9) as

m* —n®+i2mn) (m* —=n* —i2mn)

1:(
(m? +n?)?

(7.11)
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Substituting (7.10) & (7.11) in (7.9) and utilizing factorization, we consider

2 2k
sp+iq:(sa+ib)2(m n"+i2mn)

(m® +n?)

. (m* =n%+i2mn) (712

=(s*a® -b* +i2sab) —

(m“+n°)

Equating the real and imaginary parts, we have
_ (s*a’-b*) (m*-n?)—4sabmn
(m? +n?) ’
_2sab (m*-n?)+2mn (s’a® -b?) (7.13)
- (m? +n?) '

Replacing aby (m? +n?) A andbby (m? +n?) Bs in (7.13) & (7.10), we get
p=(m?+n®)s{(A*-B?)(m*-n?)-4ABmn},
q=2(m*+n?)s’{ AB(m* —n®)+(A* -~B*)mn},
r=(m?+n%)? s*(A*+B?).

From (7.2), one obtains solutions to (7.1).

Choice 2

Let

k=6D (7.14)
where D is a non-zero square-free integer. Using (7.14) in (7.3), it becomes
r’=q*+Dp? (7.15)
which is satisfied by
p=2ab,q=Da’-b?,r=Da®+b?

In view of (7.2), the integer solutions to (7.1) are given by
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x=Da’-b*-2ab,
y=Da’-b*+2ab,
z=2ab+Da’+b?,
w=2ab-Da’-b?,
t=2ab.
Note 3
It is to be noted that (7.15) is satisfied by
p=2k,g=(D-Dk,r=(D+1)k ,D>1
In this case , the integer solutions to (7.1) are given by
x=(D-3)k,y=(D+1)k,z=(D+3)k,w=—-(D-1Dk,t =2k
Note 4
Express (7.15) as the system of double equations given by
r+q=Dp?,
r-g=1.
Solving the above system of double equations ,we have
D=2m+1,p=2n+1,
r=22m+1) (n>+n)+m+1,
qg=22m+1) (n* +n)+m
Employing (7.2) ,the corresponding integer solutions to (7.1) are obtained.
Note 5
One may also write (7.15) as the system of double equations as below:
r+q=p°,
r-g=D.
The above system of double equations has two sets of solutions represented by
(i) D=2u,p=2k,r=2k*+u,q=2k*-u
(ii) D=2u+1,p=2k+1,r=2k*+2k+u+1,q=2k* +2k —u
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Utilizing (7.2), we get two more sets of integer solutions to (7.1).

Choice 3
Taking
k=3in(7.3),
we have
p*=2(r"-g?)

which is satisfied by
r=2b’*+a’,q=2b’-a*,p=4ab
In view of (7.2), the integer solutions to (7.1) are given by
Xx=2b*-a*-4ab,
y=2b*-a’+4ab,
z=4ab+2b*+a?,
w=4ab-2b*-a?,

t=4ab.
Choice 4
Rewrite (7.16) as
2r’—p*=2¢°
Assume
q=2a’-b?

The integer 2 on the R.H.S. of (7.17) is expressed as
2=3v2+4) (3V2-29)
Substituting (7.18) & (7.19) in (7.17) and applying factorization, we consider
V2r+p=(3vJ2+4) (\V2a+b)?

Equating the coefficients of corresponding terms, we get

(7.16)

(7.17)

(7.18)

(7.19)
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p=4(2a’*+b%)+12ab,

(7.20)
r=3(2a*+b*)+8ab
From (7.2), (7.1) is satisfied by

x=2a’-b*-4(2a’+b?*)-12ab,
y=2a’-b*+4(2a*+b?*)+12ab,
z=7(2a’ +b*)+20ab,
w=(2a’+b*)+4 ab,

t=4(2a* +b*)+12ab.

Choice 5
Write (7.17) as
2r2—p?=2qg°*1 (7.21)
Consider the integer 1 in (7.21) to be
1=(V2+)(2-1) (7.22)
Substituting (7.18), (7.19) &(7.22) in (7.21) and applying factorization ,consider

J2r+p=(3vJ2+4) (V2a+b)? (V2 +1)

= (10+7+/2) (2a% +b% +2+/2ab) (729
Equating the coefficients of corresponding terms, we get
p=10(2a’® +b?) +28ab,
r=7(2a®>+b%)+20ab (7.24)

From (7.2)

x = (2a2 —b?)—10 (2a® + b?) - 28ab,
y=(2a*-b*)+10 (2a® +b?*)+28ab,
z=17 (2a® +b*)+48ab

w =3 (2a’+b*)+8ab,

t=10 (2a° +b*)+28ab
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satisfies (7.1).
Note 6

In addition to (7.22), the integer 1 on the R.H.S. of (7.21) may be expressed as
follows:

1=(5+2+7) 542-7)

_(5v2+1) (5v2-1)
- 49

1

In a similar manner, two more patterns of solutions to (7.1) are found.
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Chapter 8

Techniques to Solve Non-homogeneous
Quaternary Quartic Diophantine
Equation

8.1 Technical Procedure

The non-homogeneous quaternary quartic diophantine equation to be solved is

(XZ _y2)2 +(22 _8)2 — W4 (81)
Assuming
x® —y?=2ab,
72 _8-a%2_p? (8.2)

in (8.1) , it reduces to the pythagorean equation
a’+b” =w? (8.3)
Considering the solutions to (8.3) as
a=r’-1,b=2rw=r?+1 (8.4)
we get from (8.2)
z=r"-3 (8.5)
From (8.2) & (8.4) , we obtain
x> —y? =4r(r* -1 (8.6)
Utilizing the identity
(A+2s)> — A% =4s(A+5)

in (8.6) ,we get
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r(r’-1)-s°

A 5 ©8.7)

For A to be an integer ,choose
F=os (8.8)
giving
A=a(a’s’-1)-s
Thus , we obtain the integer solutions to (8.1) as
X=o(a’s’-D+s,y=a(a’s*-1)-s,
z=(a’s*-3),w=(a’s*+1).
Note 1
Apart from (8) ,we may have

From (8.7) , one obtains
A=(astl) a(as*+2)-s
Thus , we obtain the integer solutions to (8.1) as
X=(astl) a(as+2)+s,
y=(as*l) a(ast2)-s,
z=as (as+2)-2,
w=as (ast2)+2

In addition to the above two solutions, there are other choices of integer solutions to
(8.6) that are illustrated below:

Express (8.6) as Table 1:

Table 1-Simultaneous equations

System I 1 Il v V
X+y ré-r 4r(r+1) r’-1 2 (r*-r) r (r+1)
X-y 4 r-1 4r 2 4 (r-1)
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Consider System | . Solving the system of double equations, we get

2 2

X =

which satisfy (8.1) jointly with z & w given by (8.4) & (8.5) for all values of r.
Consider System Il. Solving the system of double equations, we get

(5r-1 (Br+1)
2

X=2r°+ Y =212+

As the aim is to obtain integer solutions, takingr = 2s+1, the corresponding integer

solutions to (8.1) are given by
X =85> +13s+4 ,y=8s? +11s+ 4,
2=4s* +4s—-2,Ww=4s* +4s5+2.

Consider System I11. Solving the pair of equations , we get

2_ 2_
X:2r+u'y:_2r+u
2 2

Taking r = 2s+1 ,the corresponding integer solutions to (8.1) are given by
X=28"4+6S+2,y=2s"-25-2,
2=4s? +45—-2,W =45 +45+2
Consider System IV. Solving the pair of equations, we get
X=r’-r+l,y=r’-r-1
which satisfy (8.1) jointly with the values of z & w given by (8.4) & (8.5).
Consider System V. Solving the system of double equations, we get

X_(r2 +5r—4)  (r*-3r+4)

2 2
which satisfy (8.1) jointly with z & w given by (8.4) & (8.5) for all values of r.
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Chapter 9

On Quaternary Sextic Equation

9.1 Technical Procedure

The quaternary sextic equation under consideration is

® DeepScience
, Open Access Books

Xy (X +y) = 8zw?® (9.1)
Different ways of solving (9.1) are presented below:
Way 1.
Insertion of

X=U+V,y=uU-V,Z=U (9.2)

in (9.1) gives

u?—v?=4w’ (9.3)
Express (9.3) as in Table 1:

Table 1: Dual equations

Pair | | Il v V VI VII VI
U+Vviiow® | w® | w* 2w’ | 4w* | 4w® |2w® | w®
u-—vVv |2 4 4w 2W w W2 2 W2 L

After a few calculations, the solutions satisfying (9.1) are as follows:

Pair |

x=2k>,y=2,z=k>+1,w=k
Pair Il

x=32k’>,y=4,z=16k>+2,w = 2Kk
Pair I1I:
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Pair 1V:

Pair V:

Pair VI:

Pair VII:

Pair VIII:

Note 1:
Taking

x =16k*,y =8k,z=8k"* +4k,w = 2k

x =2k, y=2k,z=k* +k,w=k

X =64k*,y =2k,z=32k" +k,w =2k

x =32k®,y=4k*,z=16k*+2k*,w = 2k

x=2k® y=2k?,z=k®+k*,w =k

x =8k?,y=16k?,z = 4k®+8k*,w = 2k

v=w?

in (9.3) ,we get after some algebra

x=2K? (k+1)°,y =2k (k+1)?,2 = (2K + D) k? (k+1)*, w =k (K +1)

which satisfy (1).
Way 2 .
The option

in (9.1) gives

Express (9.5) as in Table 2:

Table 2: Dual equations

X=2U+VvV,y=2U-Vv,Z=U

4u-v?=2w

5

System

2U+V

w

4

2w

4

2w

2w

(9.4)

(9.5)
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2U—-V 2w

After a few calculations, the solutions satisfying (9.1) are as follows:

Pair |

x=16k* ,y=4k,z=4k" +k,w =2k

Pair 11 :

x =512k*,y=4k,z=128k"* +k,w =4k

Pair 111 :

x =16k®,y=4k?,z=4K>+k*,w =2k

Pair IV :

x =8k?,y=8k®z=2k*+2k*,w =2k

Way 3:

Introduction of the transformations

X=2p,y=20q,z=K(p+0)

in (9.1) leads to

pg=kw®

(9.6)

(9.7)

Solving (9.7) through different choices and using (9.6), the solutions for (9.1) thus

obtained are presented in Table 3 below:

Table 3 : Integer solutions

p q W I x(=2p) | y(=20) | z(=k(p+0))
ko® |1 o 2k o’ 2 k(ka® +1)
ka* | & a 2k o 20, k(ka*+a)
ka® | a? a 2k o’ 20’ k(ka®+a?)
kao® | ob a 2k o’ 20’ k(ka?+ob)
Ko o' % |2ka |20 K(Koo+ o)
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Ka® | kK |Ko |2ka® | 2K° K(Ko® + k)

ka* | Ka |kao |2ka* 2k’a | kka'+k®a)
k o’ K°a? |[ka |2ka® 2k’a® | k(ka®+k®a?)
ka?> | k®a® |[ka |2ka? 2k’ a’® | k(ka®+k®a®)
K a Ka' | Ka |2ka 2k’a’ | k(ka+k®a®)

Some more solution patterns for (9.1) are given below:

Choice 1:

x=Bk+1)°-1,y=1,z=8"*k> +5*8° *k* + 640k*® +80k* + 5k, w =8k +1

Choice 2:
Xx=32k>-4,y=4,z=16k>-2,w =2k
Choice 3:

x =16k* —4k,y=4k,z=4k* -k, w =2k
Choice 4:

x =16k* —8k,y=8k,z=8k" —4k,w =2k
Choice 5:

x =8k®-8k*,y=8k*,z=2k?-2k?*,w =2k
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Open Access Books

On Non-Homogeneous Ternary Heptic

Diophantine Equation

10.1 Technical Procedure

The non-homogeneous heptic Diophantine equation with three unknowns to be solved

is given by
5(x*+y*)-9xy =352’
Different ways of solving (10.1) are illustrated below:
Way 1.
Taking
x=Kky
in (10.1) , it is written as
(5k* -9k +5)y* =352’
which is satisfied by
y=35"(5k®> -9k +5)°s’,z=35 (5k* -9k +5) s*
In view of (10.2) , we get
x =35k (5k* -9k +5)°s’
Thus,(10.3) & (10.4) represent the integer solutions to (10.1).
Way 2:

Introduction of the linear transformations

(10.1)

(10.2)

(10.3)

(10.4)
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X=(Tk-2)v,y=(7Tk—-4)v (10.5)
in (10.1) leads to
(49k* —42k +28) v =352’ (10.6)
which is satisfied by

v=35"(49k> —42k + 28)°s’ ,z =35 (49k® — 42k + 28) s°

(10.7)
In view of (10.5) , we have
x =35 (Tk—2) (49k* —42k +28)°s’ , 108)
y =35 (7Tk—4) (49k> —42k +28)°s’
Thus, (10.7) & (10.8) satisfy (10.1).
Way 3:
Choosing
x=u+2z',y=u-2° (10.9)
in (10.1) , it gives
u?=z°(35z-19) (10.10)
After some algebra , it is observed that the R.H.S. of (10.10) is a perfect square
when
z=2(n)=35n%+20a,n+2, (10.11)
where (o, ,Z,) satisfy the equation
a’=35z-19
From (10.10) , we get
u=(35n+ay,)z*(n)
In view of (10.9) , we have
x=x(n)=z°(n)(35n +a, +1) , 10.12)

y=y(n)=z*(n)(35n+a, -1) .
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It is seen that (10.11) & (10.12) satisfy (10.1) . A few examples are presented in the

below Table 10.1:
Table 10.1-Examples

z(0) x (0) y(0)
1 5 3
4 12* 4° 10*4°
17 25*17° 23*17°
28 32*28° 30*28°

Way 4

Choosing

x=5*(Uu+v),y=5'(u-v),z=5w
in (10.1) ,it gives

u? +19v> =7w’
Case (i) :
The option

in (10.14) leads to
u?=w® (7w -19)
The R.H.S. of (10.16) is a perfect square when
w=w(n)=7n*+2no, +W,
where (o, ,W,) satisfy the equation
a’=7w-19
From (10.16) ,we get
u=(7n+o,)w(n)

In view of (10.13) , we have

(10.13)

(10.14)

(10.15)

(10.16)

(10.17)
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x=x(n)=5*w*(n)(7n+a, +1),
y=y(n)=5"w*(n)(7n+a, -1, (10.18)
z=12z(n)=5w(n).

It is seen that (10.18) satisfies (10.1). A few examples are presented in the below

Table 10.2:
Table 10.2-Examples

z(0) x(0) y (0)
5*4 54 *44 54*43*2
52 58 5*3
52%4 54%20°*12 5%20°*10
Case (ii) :
The option
u=2w? (10.19)

in (10.14) leads to
19v? =w® (7w —4) (10.20)
The R.H.S. of (10.20) is a perfect square when
w=w(n)=7*19 n* —8*19n+ 44 (10.21)
From (10.20) ,we get
v=w?(7n-4)
In view of (10.13) ,we have

x=x(n)=5"w*n)(7n-2),
y=y(n)=5*w3(n)(6-7n), (10.22)
z=z(n)=5w(n).

It is seen that (10.22) satisfies (10.1). A few examples are presented in the below Table
10.3:

Table 10.3-Examples
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n z(n) x(n) y(n)
0 5*44 -2%443*5* 6*44°*5"
1 5*25 5*25%*54 -25°*54
2 5*272 12*272%*5* -8*272%*5"
Case (iii)
The R.H.S. of (10.20) is a perfect square when
w=w(n)=7*19n*-6*19n+25 (10.23)
From (10.20) ,we get
v=w?®(7n-3)
In view of (10.13) ,we have
x=x(n)=5"w*(n)(7n-1),
y=y(n)=5"w?n)(B-7n), (10.24)

z=z(n)=5w(n).

It is seen that (10.24) satisfies (10.1). A few examples are presented in the below Table

10.4:
Table 10.4-Examples
n z(n) x(n) y(n)
0 5*25 -25°*5¢ 5*25%*5*
1 5*44 6*44°*5* -2*44%%54
2 5*329 13*329%*5* -9*329°*5*
Way 5
Choosing
X=7"(U+Vv),y=7"(U-v),z=7w (10.25)
in (10.1) ,it gives
u? +19v? =5w’ (10.26)

Case (iv) :
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The option (10.19) in (10.26) leads to
19v? =w® (5w —4)
The R.H.S. of (10.27) is a perfect square when
w=w(n)=5*19n° —-6*19n+35
From (10.27) ,we get
v=w?(5n-3)
In view of (10.25) ,we have
x=x(n)=7*w?n)(Bn-1),

y=y(n)=7"w?(n)(5-5n),
z=z(n)=7w(n).

(10.27)

(10.28)

(10.29)

It is seen that (10.29) satisfies (10.1). A few examples are presented in the below Table

10.5:
Table 10.5-Examples
n z(n) x(n) y(n)
0 7*35 -35%*74 5*35°*7*
1 7*16 4*16%*7* 0
2 7*187 9*187%*7* -5*1873*7*
Case (V)

The R.H.S. of (10.27) is a perfect square when
w=w(n)=5*%19n* —4*19n+16
From (10.27) ,we get
v=w?(5Gn-2)
In view of (10.25) ,we have

x=x(n)=7*w*(n)(5n),
y=y(n)=7"w?(n)(4-5n),
z=z(n)=7w(n).

(10.30)

(10.31)
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It is seen that (10.31) satisfies (10.1). A few examples are presented in the below Table
10.6:

Table 10.6-Examples

n z(n) x(n) y(n)

0 7*16 0 4%16%*74

1 7*35 5*353*74 -353*74

2 7*244 10%244%*74 -6*2443*7*
Case 6

The option (10.15) in (10.26) leads to
u?=w® (5w -19) (10.32)
The R.H.S. of (10.32) is a perfect square when
w=w(n)=5n*>-8n+7 (10.33)
From (10.32) , we have
u=w?(5n-4)
In view of (10.25) ,we have
x=x(n)=7*w?n)(BGn-3),

y=y(n)=7"w*(n)(5n-5), (10.34)
z=2z(n)=7w(n).

It is seen that (10.34) satisfies (10.1). A few examples are presented in the below Table
10.7:

Table 10.7-Examples

n z(n) x(n) y(n)

0 7*7 -3*77 -5*77

1 7*4 2*43%T74 0

2 7*11 7*11%*74 5*113*74

Case 7
The R.H.S. of (10.32) is a perfect square when
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w=w(n)=5n*-2n+4

From (10.32) , we have
u=w?(Gn-1)

In view of (10.25) ,we have

x=x(n)=7*w*(n)(5n),
y=y(n)=7"w’(n)(5n-2),

z=2z(n)=7w(n).

(10.35)

(10.36)

It is seen that (10.36) satisfies (10.1). A few examples are presented in the below Table

10.8:
Table 10.8-Examples
n z(n) x(n) y(n)
0 7*4 0 % g3wTh
1 7*7 B*75*71 3*77
2 7*20 10*20%*7* 8*20°*7*
Way 6
Choosing
x=35%(u+Vv),y=35*(u—-v),z=35w (10.37)
in (10.1) ,we have
u? +19vi =w’ (10.38)
Assume
w=a’+19b? (10.39)
Using (10.39) in (10.38) and applying factorization , consider
u+iv19v=(a+iv19b)’" =f(a,b)+i/19g(a,b) (10.40)

where
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f(a,b)=a’ —21*19a° b® +35*19%a’b* —7*19°b°®,
g(a,b)=7a’b—-35*19a*b® + 21*19%a’b® —19°b" .
Equating the real and imaginary parts in (10.40) & from (10.37), (10.1) is satisfied by
x =35*[f(a,b) + g(a, b)],

y =35°[f(a,b) - g(a,h)],
z=35(a% +19b?).

Way 7
Write (10.38) as
u? +19v: =w’*1 (10.41)

The integer 1 on the R.H.S. of (10.41) is written as the product of complex conjugates
as below:

_[(2k* -2k -9) +i(2k ~1)v19] [(2k* — 2k —9) —i (2k —1)/19]

1 10.42
(2k?* =2k +10)? ( )
Utilizing (10.39) & (10.42) in (10.41) and employing factorization ,consider
2 _ H _
u-+i 19v=(a+i\/Eb)7 [(2k” -2k > 9) +i(2k 1)@]
(2k° -2k +10)
2 — f— i —
_[f(a.b)+ i VI3 (2. b)] [(2k? - 2k : 9) +i(2k —1)+19]
2k -2k +10)
Equating the real and imaginary parts in the above equation ,we have
1
u= 2k?* -2k -9)f(a,b)-19(2k -1)g(a,b)],
G —2krig )f(a,b)~19(2k~1)g(a,b)]
L (10.43)

[(2k —1)f(a,b) +(2k? -2k —9) g(a,b)].

V=—0
(2k* -2k +10)
As the aim is to obtain integer solutions, replacing a by (2k* —2k +10) A and

bby (2k* —2k +10)B in (10.43),(10.39) and using (10.37), the corresponding
integer solutions to (10.1) are obtained.
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It is worth to mention here that, in addition to (10.42) ,one may consider the integer 1 as
below

1

[19r% —s? +i419(2rs)] 19r% —s? —i4/19(2rs)]
- (19r2 +52)2 '
I r2 —19s? +iv19(2rs)] r? —19s2 —i19(2rs)]

1
(r?+19s?)?

Following the procedure as above, one obtains solutions to (10.1).
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Chapter 11

On Non-Homogeneous Quinary Heptic
Equation

11.1 Technical Procedure

Consider the quinary heptic equation

X4 _ y4 — 41(22 _WZ) p5

(11.1)
Introducing the linear transformations
X=U+V,y=U-V,Z=2u+V and W=2U—V (11.2)
in (11.1), it leads to
2 2 5
us+v-=41p (11.3)
PATTERN-1
Assume p = a’ +b? (11.4)
where a and b are non-zero distinct integers.
Write 41as 41=(4+5i)(4-5i) (11.5)

Using (11.4) & (11.5) in (11.3) and employing the method of factorization, define

u+iv=(4+5i)(a+ib)° (11.6)

Equating the real and imaginary parts of (11.6), we get
u=4a° —25a’b—40a’h* +50a°’b® + 20ab* —5b°
v =5a’ +20a’h —50a’? — 40a’b* + 25ab* + 4b°

(11.7)

Substituting (11.7) in (11.2), we have
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x(a,b) =9a° —5a*h —90a’h? +10a°b® + 45ab* —b°
y(a,b) =—-a® —45a’b+10a°b” + 90a’h® —5ab* — 9b°
z(a,b) =13a° —30a‘b —130a°b? + 60a’b® + 65ab* — 6b°
w(a,b) = 3a° —70a*h —30a’b” +140a°b® +15ab* —14b°

p(a,b) =a’ +b?
satisfying (11.1)

PROPERTIES:

e a[x(a,a)+y(a,a)+z(a,a)+w(a,a)] is a Nasty number.

e Xx(al+ y(a,l,)—100t3'a2 +150t, , =-10(mod8)

(11.8)

e —Xx(a,a)+y(a,a)+z(a,a)—w(a,a)+2p(a,a)is a perfect square.

Remark 1:
Choosing
z=2uv+1l,w=2uv-1
In (11.2), one obtains
z(a,b) = 2(4a° — 25a*b—40a°b* +50a°b® + 20ab* —5b°)
*(5a° +20a*b—50a°b® +40a°b® +25ab* + 4b°) +1
w(a, b) = 2(4a° —25a*b—40a°b? +50a’b® + 20ab* —5b°)
*(5a° +20a*b—50a°b® +40a’b® +25ab* + 4b°) -1
satisfying (11.1) jointly with (11.8).
Remark 2:
Taking Z=UV+2,W=uUv-2
In (11.2), one obtains
z(a,b) = (4a° —25a*b—40a°b” +50a°b® + 20ab* —5b°)
*(5a° +20a*b—50a°b? +40a’b® + 25ab* +4b°) + 2
w(a, b) = (4a°® — 25a*b—40a°b® +50a°b* + 20ab* —5b°)
*(5a° +20a*b—50a°b® +40a’b® + 25ab* +4b°) -2

(11.9)

(11.10)

(11.11)

(11.12)
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satisfying (11.1) jointly with (11.8).

PATTERN-2:

Instead of (11.5),

41 can also be written as 41=(5+41)(5-4i)

By using (11.4) and (11.13) in (11.3) and applying the same procedure in pattern - 1, the
corresponding integer solutions to (11.1) are found to be

x(a,b) =9a° +5a*h —90a’h® —10a°b® + 45ab* +b°
y(a,b) =a° —45a’b-10a’b” + 90a°b® + 5ab* —9b°
z(a,b) =14a° —15a'b—140a°b* + 30a’b® + 70ab* — 3b°
w(a,b) = 6a° —65a‘b—60a’h* +130a°b* + 30ab* —13b°
p(a,b) =a’ +b?

PROPERTIES:

e 324x(a,a)+y(a,a)+z(a,a)+w(a,a)] is a quintic integer.
o x(a,b)+y(a,b)-10(pr,)* = 2(mod10)

e —Xx(a,a)+y(a,a)+z(a,a)—w(a,a)=0.

Remark 3:

Considering (11.9) & (11.11), we have

SET I:

z(a,b) = 2(5a° —20a“b—50a°b? + 40a°b® + 25ab* —4b°)
*(4a° +25a*b—40a°b* —50a°b® +20ab* +5b°) +1

w(a, b) = 2(5a° —20a*b—50a°b? +40a’b? + 25ab* —4b°)
*(4a° +25a*b—40a°b? —50a°b® +20ab* +5b°) -1

SET II:
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z(a,b) = (5a° —20a*b—50a°b? + 40a2b® + 25ab* —4b°®)
*(4a° +25a*b—40a°b? —50a’b® +20ab* +5b°) +2

w(a,b) = (5a° —20a“b—50a°b* + 40a’b® + 25ab* — 4b°)
*(4a° +25a*b—40a°b* —50a°b® +20ab* +5b°) -2

Considering (11.2) together with sets I and Il in turn, one obtains two more patterns of
solutions to (11.1).

PATTERN-3:
One may write (11.3) as u’+v?=41p°*1 (11.13)
Write 1 as 1= (L=4+31)(-3)

25 (11.14)

Using (11.4), (11.5) & (11.14) in (11.13) and applying the method of factorization,
define

u+iv=m5m+5i)(a+ib)5

Equating the real and imaginary parts, we get

(a° —160a‘b —10a%b* +320a°b° +5ab* —32b°)
5
, _ (322° +5a*b ~320a°b? ~10a’h° +160ab* +b°) (11.15)
5

As our interest is on finding integer solutions, choose a =5A,b =5B in (11.15), one
obtains

X(A, B) = 20625A° —96875A°B — 206250A°B? +193750A%B* +103125AB* —193758°
y(A,B)=-1937A° ~103125A“B +193750A°B? + 206250A°B* — 96875AB* + 200258°
(A, B) =21250A° — 203125A°B — 215200A°B? + 393750A%B® +106250AB* — 39375B°
w(A,B) =-18750A° — 203125A“B —187500A°B? + 406250A°B* —93750AB* - 40625B°

(A, B) = 25A7 + 25B7
(11.16)
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satisfying (11.1).

Remark 4:

Considering (11.9) & (11.11), we have

SET I

z(A, B) = 2(625A° —100000A‘B — 6250A°B* + 200000A°B® + 3125AB* — 2000(0°)
(20000A° +3125A*B — 200000A°B? —6250A%B® +100000AB* + 625B°) +1

W(A, B) = 2(625A° —~100000A‘B — 6250A°B* + 200000A*B® + 3125AB* — 2000(b°)
(20000A° +3125A"B —200000A°B? —6250A°B* +100000AB* +625B°) —1

SET II:

z(A, B) = (625A° —100000A*B — 6250A°B* + 200000A°B® +3125AB* —2000(h°)
(20000A° +3125A*B — 200000A°B? — 6250A°B* +100000AB* + 625B°) + 2

w(A, B) = (625A° —~100000A‘B — 6250A°B? + 200000A”B® +3125AB* — 2000b°)
(20000A° +3125A'B — 200000A°B* —6250A°B* +100000AB* +625B°) — 2

Considering (11.16) together with sets | and Il in turn, one obtains two more patterns of
solutions to (11.1).

PATTERN-4:
Introduction of the transformations
x=ky,z=kw ,k>1 (11.18)
in (11.1) leads to
(k*+1) y* =41w* P° (11.19)
which is satisfied by
y=41*(k*+1)° o,
w=41k*+1)*?a’, (11.20)
P=41(k*+1)a*" ,a>1,5s>1

In view of (11.18) , we have
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x=41"k(k?+1)° o,

s e b (11.21)
z=41k(k? +1)* 2 q

Thus, (11.20) and (11.21) represent the integer solutions to (11.1).
3. REMARKABLE OBSERVATIONS:

Employing the integral solutions of (11.1) and (11.3) the following expressions among
the special polygonal & pyramidal numbers are given below

3 2 12 5 2
1 {i} {—pyl} — 0(mod41).

t3,x+l Sy+l

apt,, | ([3pe T [es T 4P T
2| 37| A | | | is a bi quadratic integer.
Pls tyn| [tBW] [ct, -1

3 2 r 2 P5 4
3.4 6F - 4P§W‘3 [4Prp+l]2+ —Y_ 1 is a perfect square.
Pr272 L PW—3 t3,y
5 2 5 2
g | AR 12200 | gimodat).
Ct,, -1 Spa—1

v+1

32, [P
5. 41%9| =u=2 —{—V} is a quintic integer.

3,u-2 Pr

\'
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Chapter 12

On The Ternary Surd Equation

12.1 Technical Procedure

Consider the ternary surd equation
X+ X + y+ \/§ =z+z

The substitution

x=u?y=v?z=w?

in (12.1) leads to the ternary quadratic equation
W +u+viev=w?+w
Two different methods of solving (12.3) are illustrated below:
Method 1
Write (12.3) as
(2u +1)2 + (2v+1)2 = (2W+1)2 +1= [2W+1)2 +1]*1
Assume

_ (3+4i) (3—4i)
Bl 25

1

Substituting (12.5) in (12.4) and applying factorization, consider

Qu+D)+i(2v+D) =[2w+1)+ i 2D

Equating the coefficients of corresponding terms and taking

w=>5s+1,

(12.1)

(12.2)

(12.3)

(12.4)

(12.5)
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one obtains

X =X(s)=9s%,y=y(s) = (4s+1)?,z=z(s) = (55 +1)° (12.6)

satisfying (12.1).

A few interesting relations satisfied by the solutions (12.6) of (12.1) are shown below:

[2(s)—X(5) —y(s) +1]° =8t5 s +1.

s=t’+t= Y(S) is an integer raised to 4™ power.

s=5k’>F2k = Z(S) is a biquadratic integer.

[y(s) —1]* =16(z—x—y)? (83 +1).

9(z—x—y)2 = (432)9 = 4X

12x(z—x-y) = 21653 a cubical integer.

SX + 5y —4z —1is a perfect square.

OX +10y—8z—2 =415 =52 + 452 + 3652 is a sum of three squares.

9x+10y—-8z—-2= 41s° = (48)2 + (5S)2 is a sum of two squares.

From the given solutions, one may generate second order Ramanujan numbers.

Ilustration:

X =X(s) =98’ *1=9s*s=5"*9

Let
I I 11l

I, 1= (95 +1)* + (9s —s)* = (9s* —1)* + (9s +s)* =81s* +82° +1
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o |, = (95" +1)* +(s* —9)° =(9s* —1)* + (s* +9)* =82s"* + 82

o L= (95+8)*+(s°—9)°=(9s—5)* +(s*° +9)° =s* +825s° + 81

Thus, 81s* +82% +1, 825" +82,s" +82s* +81 represent second order Ramanujan
Numbers.

Method 2
Taking
U=2u+1,V=2v+1l W=2w+1 (12.7)

in (4) , we have

U2 +V2=W?2+1 (12.8)
Choosing

W=kV, k>1 (12.9)
in (12.8) ,we get

U?=(k?-1) v2+1

which is the well-known Pell equation whose general solution (U, ,V,,) is given by

f g
U, =2V, =——2— 12.10
RPN e

where

fo=(k+vk? —1)™ 4 (k—Vk2 -1)",
gn =(k+ /k2_1)n+1_(k_ ;kz_l)n+1

In view of (12.7), it is seen that

70



_(f-2) _@n-2Vk-1) o (kgy—2VkE-1)

n
4k? =1

n n
4 44k? -1

After some algebra, it is observed that the above values of u,,v,,w,are

integers when n is even & K is odd and substituting in (12.2), the solutions for (12.1)
are obtained.
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Chapter 13

On The Quinary Surd Equation

13.1 Technical Procedure

The quinary surd equation under consideration is

u%/x2+y2+v X% 4y?2 :(k2+s’1)R2 'k,s#0 (13.1)
The assumption

P =x"+y? (13.2)
is satisfied by

x=m(m2+n2), y=n(m2+n2). (13.3)

Similarly, the choices

X=m(m2—3n2), Y =n(3m2—n2) (13.4)

satisfy
T =X?+Y?
On substituting (13.3), (13.4) in (13.1), we obtain
(u+v)(m? +n?)=(k? +s?)R?, (13.5)
Various choices of solutions in integers to (13.5) are illustrated as follows. Using (13.3)
& (13.4), one obtains solutions for (13.1).

Set 1.
Choose u & v such that

u+v=a? (13.6)

write
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R=0S. (13.7)

The substitution of (13.6), (13.7) in (13.5) leads to,
(m2+n2):(k2+52)52 (138)

Let
S=A*+B? (13.9)

Using (13.9) in (13.8) and applying the method of factorization, consider
m+in=(k +isA+iB).
From which, observe

m=k(A? —B?)-2sAB n=k(A?—B?)-2kAB. (13.10)

Using (13.9) and (13.10) in (13.8), (13.3) & (13.4), the positive solutions in integer
solutions of (13.1) are represented by

x=[k(A? —B?)-2sAB][(k* +5? )( A’ +B? )],
y = [s(A? —B? )+ 2kABI[(K? +5% )( A® +B? )],
X = [k(A? —B?)—2sAB][(k? —3s? )( A’ — B?)? + 4A’B?(s? — 3k? )— 16ksAB(A? — B2 ]

Y- [s(A? —B?)+ 2KAB][(3K? —s? )( A% — B2 )? + 4A%B?(3s2 —k? )— 16ksAB(A® — B2 ]
R =a(A? +B?).

Properties.

1) x(k —2a’ A, A) is expressed as sum of two squares.

2) X (k 3u? A, A)— x(k 3u? A, A) represents the area of Pythagorean Triangle.

3) X (k —3u?, A, A)+ 3x(k —3u? A, A) represents a Nasty number.

4) X(k,k +1,A,A)—x(k,k +1,A,A) represent a square multiple of Pentagonal
Pyramidal number of rank k.

5) X(1,3n2 - n,A,A)— x(1,3n2 - n,A,A)+16A6 represents a square multiple of star
number of rank n.

6)2[y(2n—1,s,A,A)+Y(2n—1,s,A, A)|represents a square multiple of Gnomonic
number of rank n.

7) y(?;k2 .S, A, A)+Y(3k2 S, A, A)represents a Nasty number.

Set 2.
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Choose u and v such that
u+v=a’+p° (13.11)

Substituting (13.11) in (13.5), we get

2

(oz2 +,82)(m2+n2):(k2 +SZ)R : (13.12)
Take

R=A"+B". (13.13)
Using (13.13) in (13.12) and employing factorization, one has
(a+ig)Xm+in)=(k +is\A+iB)® = (k +is)\A2 — B2 +i2AB).
Comparing the corresponding terms, one has

ma —ng = k(A% - B?)-25AB.
na +mp = s(A? — B? )+ 2kAB.
Solving the above two equations,

m(a? + B%)= BLs(A’ — B?)+ 2kAB] + a [ k(A? — B?)- 25AB],

n(a? + p?) = a[s(A? - B?)+ 2kAB] — B[k(A? — B?)— 25AB. (13.14)

Choosing A= (a2 + B )P and B = (a2 +,82)Q in (13.13) and (13.14), one has
R=(a?+42f(P?+Q?) (13.15)

m=(a? + 526 (P.Q.k.5)+ag(P.Q.k.s))
n=(a®+ 4 fof (P.Q.k,5)- AY(P.Q.k,5))

Substituting the values of m and n in (13.3) and (13.4), we have
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x=(a?+p2) (B (P.Q.k.5)+ag(P.Q.k )I(F2(P.Q.k.5)+g%(P.Q.k.S))]
y=(a?+52) (of (P.Q.k,5)- B(P.Q.k,S)I(F2(P,Q.k,5)+ g% (P.Q.k,5))]
f2 Pka)(ﬁ2 ~3a?) (13.16)
+9%(P,Q,k,s a? -387 )J
f2(P,Q,k,sX38% -a?)
+9%(P,Q,k,s)3a? ﬂZ)J

X =(a?+ 2 (8 (P.Q.k,5)+ag(P,Q.k s)[[

Y =(a? + %) (of (P.Q.k,5)— B(P.Q .k, [(

where
f(P,Q,k,s)=s(P?—Q?)+2kPQ. g(P,Q.k,s)=k(P? —Q?)-2sPQ.
Note that (13.1) is satisfied by (13.15) and (13.16).

Set 3.

(13.8) can be written as

(m?+n?)=(k?+52)s?*1 (13.17)
Assume 1 as
st

Using (13.18) and (13.9) in (13.17) and applying method of factorization,
consider

m+in=(k+ is)(Ioz (;‘j:zif)pq)(Az —B?+i2AB).

m+in = ngzil;z [{(p2 —~ qZXA2 —~ Bz)—4quB}+ i{2 pq(A2 - Bz)+ 2AB(p2 —qz)}].

Following the procedure as in set 2, (13.1) is satisfied by
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where

X=(p*+q°)’(kf —sg)(f*+g")(k* +5),
y=(p*+0q° Y(sf +kg)( 7 +9°)(k* +5%),

X =(p*+q" )’ (kf —sg)[ F7(k* =35 )+g°(s* -3k*)],
Y =(p®+a")(sf +kg)[ f*(3k* —s%)+g*(3s" —k*)],
R=a(p’+q°)'(a®+b*),

f(a,b,p,)=(p* —a” Ja* —b*)—4abpq ;
g(a,b,p,q) = 2pqg(a® —b? )+ 2ab(p — g°).
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Conclusion:

The authors have taken care to present the process of obtaining real integer solutions in
an elegant way for special multivariable quadratic Diophantine equations. The
researchers in this field may improve their ability to specialize and generalize, to pose
and solve meaningful problems, to look for patterns and relations and to apply the
logical thinking behind mathematical process. The readers in this field may be
motivated in determining other patterns of solutions to the considered problems.
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