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Abstract: In order to enable edge artificial intelligence (AI) in Internet of Things (IoT) 

ecosystems, federated learning (FL) has emerged as a game-changing technique that addresses 

important issues like data privacy, security, robustness, and personalization. In contrast to 

conventional AI models that depend on centralized data gathering, FL allows edge devices to work 

together to jointly learn a shared model while maintaining localized data, greatly improving 

privacy and lowering transmission overhead. However, there are special difficulties when 

integrating FL with IoT, including heterogeneity in edge devices, a lack of computational power, 

and susceptibility to security breaches. This research investigates state-of-the-art developments in 

FL for edge AI, with an emphasis on strengthening security and resilience against adversarial 

attacks like model inversion and data poisoning. To guarantee that private information is kept safe, 

privacy-preserving methods like homomorphic encryption and differential privacy are examined. 

Furthermore, the study explores personalization techniques that enable FL models to adjust to the 

unique needs of individual IoT devices, enhancing system performance and user experience. The 

research also discusses how blockchain technology can be integrated into FL systems to improve 

their security and reliability.  
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3.1 Introduction  

Artificial intelligence (AI) and edge computing are becoming essential in the quickly 

changing Internet of Things (IoT) landscape to enable real-time data processing and 

decision-making at the edge of the network (Wang et al., 2019; Lim et al., 2020; Mills et 

al., 2019). Federated -Learning (FL) is a game-changing technique that addresses 

important issues like data privacy, communication efficiency, and latency by enabling 

decentralized machine learning models to be trained across multiple devices (Mills et al., 

2019; Hao et al., 2019; Lim et al., 2021; Yang et al., 2022). FL is especially relevant for 

applications involving sensitive or personal data, as it removes the need to transmit 

sensitive data to a centralized server by distributing model training to edge devices 

(Abreha et al., 2022; Nguyen et al., 2021). The dynamics of IoT are changing as a result 

of FL and Edge AI integrating to provide more effective, individualized, and secure AI 

solutions at the device level. Though FL has many benefits, it also brings with it a number 

of securities, robustness, and privacy-related complications. Federated systems are by 

their very nature distributed, making them susceptible to malicious attacks like data 

inference and model poisoning. Moreover, it is still difficult to maintain model robustness 

and accuracy across heterogeneous devices with different computing capacities and 

network configurations. Because personal data is frequently involved in edge 

environments, privacy concerns are especially important (Nguyen et al., 2021; Trindade 

et al., 2022). Traditional centralized machine learning paradigms may put users at higher 

risk of data breaches and unauthorized access. 

An increasingly popular view is that blockchain technology, with its transparent, tamper-

proof, and decentralized architecture, can be used in conjunction with FL to improve 

security and auditability in distributed systems (Zhang et al., 2021; Doku & Rawat, 2020; 

Kang et al., 2022). Federated learning and blockchain integration can guarantee 

traceability, allow immutable logging of model updates, and lower the danger of 

adversarial attacks. Furthermore, while maintaining data privacy, blockchain-based 

incentive systems can promote user involvement in federated learning (Lim et al., 2021; 

Xia et al., 2021). As the field develops, more and more people are interested in using 

blockchain to improve federated learning applications across a range of IoT domains, 

including smart cities, industrial IoT, autonomous vehicles, and healthcare. With an 

emphasis on improving security, robustness, privacy, and personalization in Internet of 

Things environments, this research investigates the integration of federated learning with 

edge AI and blockchain technologies to address the aforementioned challenges. Our study 

adds to a better understanding of this developing field by offering a thorough analysis of 

current trends, constraints, and opportunities. 

Contributions:  
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1) A comprehensive literature analysis of current advancements in edge AI, blockchain, 

and federated learning, identifying gaps and outlining future directions for research. 

2) A thorough examination of keyword trends and co-occurrence patterns in previous 

studies, exposing prevailing themes and cutting-edge technologies. 

3) Cluster analysis of publications to determine key areas of research, areas of 

collaboration, and changes in the field of edge AI federated learning in IoT scenarios. 

3.2 Methodology 

In order to better understand the latest developments in Federated Learning (FL) for Edge 

Artificial Intelligence (AI), this study uses a systematic literature review (SLR). Its main 

goals are to improve security, robustness, privacy, personalization, and blockchain 

integration in the Internet of Things (IoT). Through a cluster analysis to identify major 

themes and research gaps, and an examination of keyword co-occurrence, the 

methodology aims to provide a thorough understanding of the research landscape. 

Procedure for Literature Reviews 

The first step in the literature review was a comprehensive search of scholarly databases, 

with a focus on articles published, including IEEE Xplore, Springer, Elsevier, and ACM 

Digital Library. Search terms included "Federated Learning," "Edge AI," "IoT Security," 

"Privacy in FL," "Blockchain Integration in IoT," "Robustness in Edge AI," and 

"Personalization in Federated Learning." The search was restricted to English review 

papers, conference proceedings, and peer-reviewed articles. The research had to touch on 

at least one of the following subjects to meet the inclusion criteria: blockchain-enhanced 

FL, privacy-preserving methods, federated learning in edge AI, and IoT system design. 

Duplicate entries were eliminated after the first search, and titles and abstracts were 

examined to see if the papers warranted a more thorough examination. Based on how well 

each article addressed the main areas of interest, a final set was chosen. Following 

selection, data on methodology, results, and contributions to the improvement of FL for 

Edge AI in IoT were extracted from the selected papers. 

Extraction of Keywords and Co-occurrence Analysis 

To find the main themes in the literature, keywords were taken out of the chosen papers. 

The most common and pertinent keywords were noted for every article. Co-occurrence 

analysis was then used to map these keywords and visualize their relationships. This 

approach computes the frequency with which keyword pairs occur together in all of the 

reviewed papers. To quantify these relationships, a co-occurrence matrix was created. 

Next, a network graph was made to show the connections between the various themes. 

VOSviewer, a program for building and visualizing bibliometric networks, was used to 
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visualize the co-occurrence network. Keywords are represented by nodes in the network, 

and their co-occurrence in the literature is shown by the edges connecting them. The 

strength of the relationship between two nodes is indicated by the thickness of the edges, 

whereas the size of each node represents the frequency of the keyword. The field's hot 

topics and new developments are identified with the aid of this analysis, with a focus on 

security, privacy, personalization, resilience, and blockchain integration in the Internet of 

Things. 

Group Examination 

Using the co-occurrence data, a cluster analysis was carried out to investigate the structure 

of the research landscape in more detail. Grouping related keywords into discrete clusters 

that represent subfields or new research directions within the larger context of FL for Edge 

AI was the aim of the cluster analysis. Based on their proximity in the co-occurrence 

network, keywords were grouped using the clustering algorithm built into VOSviewer. 

With a unique set of related themes, each cluster denotes a different research focus. For 

example, one cluster might concentrate on federated learning privacy-preserving 

strategies, while another might focus on integrating blockchain technology to improve 

security in IoT environments. The cluster analysis's findings shed light on the various 

facets of FL for Edge AI that are being investigated as well as the connections between 

these themes. 

Interpretation of Results 

An overview of the state of the field's research was produced by interpreting the findings 

of the co-occurrence and cluster analyses. To better understand the significance of the 

identified clusters in terms of improving federated learning for Edge AI, a thorough 

analysis was conducted, with a focus on security, privacy, robustness, and blockchain 

integration. In order to identify potential research synergies, gaps in the literature, and 

areas of overlap, the relationships between the clusters were also analyzed. This 

methodology allows for a systematic exploration of the major trends and new areas of 

interest in federated learning for Edge AI in IoT by combining keyword co-occurrence 

and cluster analysis. The knowledge gathered from this analysis serves as a basis for 

determining future lines of inquiry and useful applications in this quickly developing 

field. 

3.3 Results and discussions 

Co-occurrence and cluster analysis of the keywords 

The network diagram (Fig. 3.1) highlights the intricate connections and co-occurrences 

of different keywords within the field of federated learning (FL). Within this framework, 
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the network visualization functions as an analytical tool to comprehend topic clustering, 

the strength of relationships between various keywords, and the frequency with which 

particular terms occur together in academic publications or conversations about edge AI, 

privacy, federated learning, and related topics. 

An overview of Edge AI and Federated Learning (FL) 

Federated Learning (FL) is a decentralized type of machine learning in which data is not 

centralized in a single server but instead stays on local devices, also known as edge nodes. 

This idea is essential for improving user data security, cutting latency, and preserving 

privacy, particularly in Internet of Things (IoT) applications. Federated learning is one of 

the most popular methods for training AI models in edge AI environments, which refers 

to the application of AI algorithms closer to the data generation point (such as in IoT 

devices). The research paper's implies that it will concentrate on important federated 

learning opportunities and challenges, such as security, robustness, privacy, 

personalization, and blockchain integration. The diagram illustrates the connections 

between these ideas and a range of other fields, including adversarial machine learning, 

deep learning, and reinforcement learning, through the use of different clusters and 

keyword relationships. 

Group Examination 

1. Federated learning and learning systems comprise the Central Cluster (Red Cluster). 

The network diagram's "federated learning" and "learning systems" hubs, both 

highlighted in red, are at its core. The fact that these nodes are the most noticeable 

suggests how important they are to the conversation. These nodes' connections show a 

broad range of related subjects, including distributed learning, global models, machine 

learning, and data privacy. This cluster's close ties show how federated learning is closely 

related to conventional learning systems and frequently functions as an advanced 

offshoot. 

Important Nodes and Links: 

Learning Systems: The phrase "learning systems" has strong ties to both the emerging 

decentralized methods like federated learning and the established machine learning 

paradigms. 

Federated Education (FE): FL is the main topic, as the paper's title implies. It has links to 

other subjects like personalization, distributed learning, and data privacy. The close 

relationship between FL and IoT in the diagram indicates how relevant FL is for IoT 

because it allows models to be trained across decentralized devices. 
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This central cluster illustrates how FL sits at the nexus of distributed AI and privacy-

preserving machine learning, enabling decentralized data processing. Furthermore, the 

prominent co-occurrence of terms like "local models," "global models," and "privacy" 

highlights the main issues in FL: striking a balance between local data protection and 

global model performance. 

 
Fig. 3.1 Co-occurrence analysis of the keywords in literature 

2. The Yellow Cluster, or Privacy and Security Cluster 

Another prominent cluster, represented in yellow, is related to terms like "privacy-

preserving techniques," "privacy protection," and "homomorphic encryption." It is the 

privacy and security cluster. The cluster in question is closely related to federated learning 

because data security is a fundamental requirement of decentralized systems. 

Important Nodes and Links: 
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Techniques for Preserving Privacy: These methods, which include differential privacy 

and homomorphic encryption, are essential for making sure that sensitive data is not 

exposed during federated learning while still allowing for robust learning. The fact that 

these keywords are brought up frequently indicates how important they are to FL research 

and development. 

Blockchain: In order to improve security in FL systems, blockchain integration is 

becoming more and more crucial. This cluster demonstrates the use of blockchain 

technology, which offers an immutable ledger that enables model updates in a 

decentralized learning framework to be validated without the assistance of a reliable third 

party. The relationship between privacy-preserving techniques and blockchain highlights 

the need for more research into developing safe and impenetrable federated systems. 

All things considered, this cluster emphasizes the critical components needed to guarantee 

data security, privacy, and integrity in federated learning environments, especially in IoT 

applications where devices are frequently targets of cyberattacks. 

3. Green Cluster: Efficiency and Computational Modeling 

The green representation of another distinct cluster is centered on computational modeling 

and efficiency. In the context of FL and IoT, issues related to system performance, 

optimization, and scalability are addressed by this section of the network. 

Important Nodes and Links: 

Energy Efficiency: Resource constraints like battery life and processing power frequently 

limit federated learning, particularly in IoT and edge AI settings. For this reason, links to 

energy consumption and utilization as well as the idea of energy efficiency are prominent 

nodes in this cluster. 

Wireless Networks: Since most IoT system communication is wireless, maintaining the 

effectiveness of these networks is essential to preserving FL system performance. Phrases 

such as "convergence," "wireless communications," and "stochastic systems" describe the 

efforts being made to optimize the communication needs and computational load of 

distributed learning models. 

This green cluster demonstrates that the goal of FL research is not only to enhance the 

learning algorithm but also to make these systems effective and feasible for use in real-

world scenarios, particularly those in which resource limitations play a major role. 

4. Adversarial Machine Learning and Deep Learning in the Blue Cluster 
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The blue cluster is primarily concerned with the intersection of adversarial machine 

learning and deep learning with federated learning. 

Important Nodes and Links: 

Deep Learning: To handle complicated data, like text or images, many FL systems employ 

deep learning architectures. Deep learning's prominence in both centralized and 

decentralized learning approaches is reflected in its relationship with neural networks and 

convolutional neural networks (CNNs). The connection to transfer learning highlights the 

significance of applying acquired knowledge to various FL domains. 

Adversarial Machine Learning: Because hostile entities have the ability to influence the 

learning process, adversarial attacks in federated learning pose a serious risk. The 

necessity of protecting FL systems from these risks is highlighted by the co-occurrence 

of adversarial machine learning, intrusion detection, and anomaly detection in this cluster. 

The dual challenge of developing strong, deep learning-based models and making sure 

they withstand adversarial attacks is reflected in this blue cluster. This is important in 

Internet of Things systems where devices might be compromised by malevolent actors. 

Applications of Federated Learning in Edge Artificial Intelligence 

In recent years, the emergence of edge computing and artificial intelligence (AI) has 

revolutionized data processing, analysis, and utilization, especially in real-time 

applications (Al-Quraan et al., 2023; Lim et al., 2021). Edge AI, the implementation of 

AI models directly on devices at the network's periphery, has created new opportunities 

for efficient data processing (Ye et al., 2020; Banabilah et al., 2022; Tonellotto et al., 

2021). Federated learning (FL) is a distributed machine learning framework that facilitates 

collaborative model training across decentralized devices while preserving raw data 

privacy. It has proven to be an effective solution for enhancing privacy, minimizing 

bandwidth usage, and optimizing computational resources (Al-Quraan et al., 2023; Lim 

et al., 2021; Xia et al., 2021). The integration of federated learning and edge AI is 

facilitating a multitude of innovative applications across various industries. We examine 

the most pertinent and popular applications of federated learning in edge AI. 

1. Intelligent Healthcare and Wearable Technology 

Federated learning's most notable application in edge AI is in healthcare, especially via 

wearable devices like smartwatches, fitness trackers, and other health-monitoring 

instruments. These devices produce extensive quantities of sensitive and personal health 

information, including heart rate, blood pressure, oxygen saturation, and sleep patterns. 

Conventionally, this data would require transmission to centralized servers for analysis, 

eliciting concerns regarding data privacy and security. Federated learning enables the 
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training of AI models directly on edge devices, guaranteeing that the raw data remains on 

the user's device. For example, corporations such as Google have investigated the 

utilization of federated learning in domains like predictive health monitoring and tailored 

fitness recommendations. In healthcare, federated learning can facilitate more precise 

predictions for conditions such as diabetes, arrhythmia, and sleep apnea by analyzing 

patterns from various devices while safeguarding sensitive health information. This 

decentralized methodology complies with rigorous regulations such as HIPAA and 

GDPR, rendering federated learning an effective solution for safeguarding patient 

privacy. 

2. Intelligent Urban Areas and Internet of Things (IoT) 

The advancement of smart cities is significantly dependent on IoT devices, which are 

strategically deployed to oversee traffic, energy consumption, public safety, and 

environmental parameters. Federated learning in edge AI augments the functionality of 

these devices by facilitating collective training of machine learning models without the 

need to transmit substantial volumes of raw data to central servers. This is especially 

beneficial for smart cities, where network bandwidth frequently constitutes a limiting 

factor and latency must be reduced. In traffic management, edge AI devices, including 

cameras and sensors at intersections, can utilize federated learning collaboratively to 

enhance traffic flow in real time by forecasting congestion patterns and adjusting traffic 

signals accordingly. In the realm of public safety, FL can be utilized in edge devices, such 

as surveillance cameras and emergency systems, to identify anomalous activities, 

including accidents or potential security threats, without necessitating real-time data 

transmission to a central database. This method improves operational efficiency and 

bolsters data security by maintaining sensitive information in a localized manner. 

3. Self-Driving Vehicles and Networked Automobiles 

The automotive sector is swiftly incorporating AI into vehicles to actualize autonomous 

driving. Connected vehicles, outfitted with sensors, cameras, and various edge AI 

technologies, produce substantial volumes of data crucial for enhancing navigation, object 

recognition, and driving decision-making systems. Federated learning is essential in this 

domain, enabling vehicles to learn collaboratively without exchanging raw data, which is 

particularly important due to the competitive dynamics of the automotive industry and the 

sensitive nature of driving data. Federated learning enables autonomous vehicles to share 

insights regarding driving patterns, road conditions, and potential hazards without the 

necessity of transmitting sensitive sensor data to a central server. This expedites the 

advancement of resilient autonomous driving AI systems by leveraging insights from 

diverse driving environments and conditions. It also tackles the substantial bandwidth 
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challenges linked to the transmission of high-resolution video data from autonomous 

vehicles, enabling cars to enhance their models at the edge. 

4. Customized Suggestions on Mobile Devices 

One prominent consumer-oriented application of federated learning is the provision of 

personalized recommendations on smartphones and other mobile devices. Applications 

like keyboard suggestions, personalized news feeds, and targeted advertisements 

significantly depend on AI models that evaluate user behavior. These models generally 

necessitate extensive quantities of personal data, encompassing text input, browsing 

behaviors, and application usage patterns. Federated learning enables the updating and 

personalization of AI models on individual devices without transmitting user data to a 

central server, thus safeguarding user privacy. Google's Gboard employs federated 

learning to enhance its text prediction and auto-correction functionalities by analyzing 

individual user behavior, all while safeguarding user data from being transmitted to the 

cloud. Likewise, social media platforms and video streaming services are implementing 

federated learning to enhance their recommendation systems, providing highly 

personalized content while safeguarding users' data privacy rights. 

5. Industrial Internet of Things and Predictive Maintenance 

In industrial environments, edge AI and IoT devices are essential instruments for 

enhancing operational efficiency and minimizing downtime. Industrial IoT devices assess 

the condition and functionality of machinery in factories, oil rigs, power plants, and other 

industrial settings. Predictive maintenance, which entails forecasting potential machine 

failures and arranging prompt repairs, is a crucial application in this context. Federated 

learning facilitates the training of AI models across numerous devices or factories, 

permitting each device to acquire knowledge from a wider array of operational scenarios 

without necessitating the exchange of proprietary or sensitive operational data. In a 

manufacturing facility, various machines can collectively learn failure patterns through 

Federated Learning (FL) without sending raw sensor data to a centralized server, thus 

enhancing prediction accuracy. This decentralized method is especially advantageous in 

settings where connection to a central server may be inconsistent or where delays in data 

transmission could hinder timely decision-making. 

6. Natural Language Processing (NLP) on Edge Devices 

Applications of Natural Language Processing (NLP), including speech recognition, 

language translation, and voice assistants, have become increasingly prevalent on 

smartphones, smart speakers, and various edge devices. These applications frequently 

necessitate the analysis of extensive volumes of user-specific voice data to enhance 
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precision and customization. Federated learning provides a solution by enabling the 

training of NLP models across various devices while preserving user privacy. Voice 

assistants such as Siri, Alexa, and Google Assistant can utilize federated learning to 

enhance their speech recognition algorithms by analyzing varied users’ speech patterns 

and accents, while ensuring that sensitive voice data is retained on the users' devices. This 

method not only improves the efficacy of NLP systems but also bolsters user confidence, 

as the likelihood of sensitive audio data being compromised or misappropriated is 

markedly diminished. 

7. Federated Learning in Edge Artificial Intelligence for Financial Services 

In the financial services sector, where privacy and security are critical, federated learning 

has become prominent in fraud detection, credit scoring, and tailored financial guidance. 

Banks and financial institutions can employ federated learning to collaboratively develop 

AI models that identify fraudulent transactions by analyzing data dispersed across 

multiple sources, including ATMs, mobile banking applications, and credit card systems, 

while maintaining the confidentiality of sensitive customer information among 

institutions. Edge AI devices implemented at ATMs or point-of-sale systems can locally 

process transaction data and enhance fraud detection algorithms through federated 

learning. Likewise, mobile banking applications can employ federated learning to deliver 

tailored financial advice without transmitting sensitive financial information to 

centralized servers. 

8. Privacy-Preserving AI in Smart Homes 

Smart home devices, such as smart speakers, thermostats, cameras, and appliances, have 

become prevalent in contemporary residences. These devices frequently manage sensitive 

personal information, including voice commands and video recordings, which raises 

considerable privacy issues. Federated learning allows these devices to collaborate in 

enhancing AI algorithms, including those utilized in voice recognition, home automation, 

and security surveillance, while safeguarding user privacy. Smart home systems can 

employ federated learning to enhance their ability to identify household members, predict 

user preferences, and detect intrusions by utilizing data collected from sensors and 

cameras. The data is retained within the household, guaranteeing a significant degree of 

user privacy. 

9. Edge AI for Environmental Surveillance and Agriculture 

Federated learning is increasingly being utilized in environmental monitoring and 

agriculture. In these sectors, extensive implementations of IoT sensors and edge AI 

devices are utilized to gather data concerning weather, soil conditions, water levels, 



  

104 

 

pollution, and crop health. Conventionally, data from these sensors is relayed to 

centralized cloud servers for processing, which can be problematic due to restricted 

connectivity in rural or remote regions. Federated learning facilitates the training of AI 

models on edge devices, permitting real-time decision-making without continuous 

communication with central servers. In precision agriculture, IoT sensors can assess soil 

moisture, temperature, and nutrient concentrations across various fields. Through 

federated learning, these sensors can jointly train machine learning models to forecast 

optimal irrigation and fertilization techniques for various crops, resulting in enhanced 

yield and diminished resource wastage. Likewise, edge devices can assess environmental 

variables such as air quality, deforestation, and wildlife migration, enhancing 

conservation initiatives without necessitating extensive data transmission. In 

environmental monitoring, federated learning can assist in managing distributed sensors 

that monitor pollution levels in urban areas or water quality in lakes and rivers. Federated 

learning minimizes bandwidth usage by analyzing data locally, thereby safeguarding 

sensitive environmental information. 

10. Edge Artificial Intelligence in Retail and Intelligent Stores 

The retail sector is experiencing a transformation due to the emergence of smart stores 

that utilize AI-driven systems for personalized shopping experiences, inventory 

management, and automated checkout processes. Edge AI integrated with federated 

learning allows intelligent retail systems to analyze extensive customer data, including 

browsing patterns, purchasing behaviors, and product interactions, while ensuring privacy 

and security. Federated learning can be utilized in edge devices, including smart shelves, 

cameras, and payment terminals. These devices can assess customer preferences 

instantaneously and assist retailers in optimizing inventory levels, pricing strategies, and 

product placements. Federated learning enables various stores within a chain to exchange 

insights regarding customer preferences and sales trends without disclosing raw 

transaction data, thereby safeguarding customer privacy while enhancing sales 

forecasting. In the realm of checkout automation, AI systems employ image recognition 

and sensor data to identify products in a customer's cart and facilitate the payment process 

without requiring a conventional cashier. Federated learning allows these systems to 

consistently enhance their accuracy by acquiring knowledge from various sources without 

sending customer data to a central server, thereby improving security and efficiency. 

11. Edge Artificial Intelligence for Energy Management and Intelligent Grids 

The implementation of smart grids and edge AI devices in the energy sector has resulted 

in enhanced efficiency in energy distribution and consumption monitoring. Smart grids 

employ AI-driven devices to oversee electricity consumption, regulate load distribution, 
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and identify network faults. Transmitting the substantial volume of data produced by 

smart meters and other edge devices to central servers for analysis can be expensive and 

inefficient. Federated learning mitigates this challenge by enabling AI models to be 

trained directly on edge devices. Smart meters in residential and commercial settings can 

employ federated learning to locally analyze energy consumption patterns, identifying 

trends such as peak usage periods and anomalous fluctuations. These insights may be 

disseminated to energy providers to enhance load balancing and avert blackouts, while 

safeguarding sensitive consumption data confidentiality. Federated learning can enhance 

the optimization of integrating renewable energy sources, such as solar and wind power, 

into the grid. Edge devices deployed at solar farms or wind turbines can assess 

performance data in real time, modifying energy output according to local weather 

conditions. Federated learning enables various energy sources to cooperate in optimizing 

energy production while safeguarding proprietary data, thereby improving the reliability 

of renewable energy systems. 

12. Intelligent Manufacturing and Collaborative Robotics (Cobots) 

In manufacturing, edge AI is utilized to enhance production efficiency, automate quality 

control, and improve collaboration between human workers and robots, commonly known 

as collaborative robots or "cobots." Federated learning is essential for facilitating 

collaboration among these systems while preserving data privacy and reducing network 

overhead. Cobots are engineered to collaborate with humans, aiding in tasks such as 

assembly, welding, and material handling. These robots utilize AI models to comprehend 

and react to their surroundings, enabling real-time modifications to their behavior. 

Federated learning enables collaborative robots in various factories to exchange insights 

on optimizing their tasks according to diverse operational conditions. This enables each 

robot to enhance its performance while safeguarding proprietary manufacturing 

information, including production methods and material specifications. Furthermore, 

federated learning can facilitate the training of AI models for predictive maintenance 

within manufacturing settings. Sensors affixed to machinery can assess data concerning 

vibrations, temperatures, and operational speeds to identify indications of deterioration. 

Through the implementation of federated learning, these sensors can collectively 

construct models that forecast equipment failures across various factories, enhancing 

operational uptime and minimizing maintenance expenses without disclosing sensitive 

operational information. 

13. Edge AI in Financial Trading and Stock Market Evaluation 

Financial trading, especially in high-frequency trading (HFT) and algorithmic trading, 

necessitates real-time data processing and analysis for instantaneous decision-making. 
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Edge AI is increasingly utilized in trading systems to process market data directly at the 

trading venue, thereby minimizing latency and facilitating expedited decision-making. 

Federated learning improves these systems by enabling various trading algorithms to learn 

from market trends while safeguarding sensitive trading strategies and proprietary 

financial information. For example, trading firms can implement edge AI systems that 

evaluate market data, including stock prices and trading volumes, across various financial 

exchanges. Through federated learning, these systems can enhance their predictive 

models by leveraging aggregated insights from various markets while maintaining the 

confidentiality of each firm's trading algorithms. This collaborative learning methodology 

enables traders to make more informed decisions and swiftly adapt to market fluctuations, 

thereby enhancing trading results. 

14. Federated Learning in Edge Artificial Intelligence for Cybersecurity 

Cybersecurity represents a vital application domain for federated learning in edge AI. The 

proliferation of connected devices in networks has rendered the security of the data they 

generate a significant concern. Edge AI devices, including firewalls, intrusion detection 

systems (IDS), and endpoint security solutions, can employ federated learning to improve 

their capacity for real-time detection and prevention of cyber threats. Federated learning 

facilitates the collaboration of distributed security systems in detecting emerging threats, 

such as malware or phishing attacks, while preserving the confidentiality of sensitive 

security logs and network data. Training AI models on edge devices enables organizations 

to identify suspicious activities at the network's periphery and counteract threats prior to 

their proliferation throughout the system. In decentralized settings such as enterprise 

networks or smart homes, federated learning can facilitate the creation of resilient AI-

driven security models that safeguard data on edge devices, including laptops, 

smartphones, and IoT devices. This diminishes the necessity for continuous data 

transmission to centralized servers, which may pose a potential security risk. 

15. Federated Learning for Distributed Cloud and Edge Artificial Intelligence 

Infrastructure 

With the expansion of edge computing, federated learning is employed to enhance the 

efficiency of distributed cloud and edge infrastructure. In this context, edge AI devices 

are implemented across various cloud regions or data centers, processing data nearer to 

the source to minimize latency and bandwidth usage. Federated learning allows 

distributed systems to exchange insights and enhance their models collaboratively, 

ensuring that edge devices function effectively without centralizing data processing. 

Cloud providers such as Google and AWS are investigating federated learning to improve 

the efficacy of their edge computing platforms. Federated learning enhances the efficiency 
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of cloud services by enabling edge servers to collaborate on tasks such as load balancing, 

resource allocation, and fault detection, thereby reducing the necessary data transmission 

between various cloud regions. This method is especially advantageous for extensive 

cloud applications, including content delivery networks (CDNs) and video streaming 

services, where minimal latency is crucial. 

Federated Learning for Edge AI in IoT 

Particularly in the context of the Internet of Things (IoT), federated learning (FL) has 

become a vital enabler for artificial intelligence (AI) applications on edge devices. With 

billions of devices connected, IoT ecosystems are growing in size, making data processing 

and security across decentralized systems a more complex challenge. With federated 

learning, devices can jointly learn from shared models without centralizing sensitive data, 

providing a decentralized approach to machine learning. This is perfect for edge AI 

applications in Internet of Things environments because it not only maintains privacy but 

also improves efficiency and scalability. Here, FL changes the way edge devices use AI, 

allowing for more intelligent, safe, and self-sufficient IoT systems. 

The IoT's Edge AI Evolution 

The demand for low-latency decision-making and real-time data processing in Internet of 

Things networks is driving the emergence of edge AI. IoT device data was previously 

processed by sending it to centralized cloud servers, which resulted in latency problems, 

bandwidth constraints, and privacy concerns. Edge AI enables computation to happen 

closer to the data source, allowing edge devices—like wearables, smartphones, sensors, 

and cameras—to process data locally. However, there are issues with computational 

power, energy consumption, and model accuracy when training AI models on edge 

devices, especially when working with big datasets. By facilitating distributed learning 

across numerous edge devices, federated learning helps to overcome these difficulties. 

Edge devices in a federated learning system use their own data to train AI models locally. 

They only share model updates, such as gradients or parameters, with a central server. By 

repeating this process on numerous devices, the central model can become more and more 

accurate over time without requiring direct access to the raw data from every device. This 

strategy conforms with data privacy laws like the General Data Protection Regulation 

(GDPR) and significantly lowers the risk of data breaches. 

Federated Learning's Principal Benefits for IoT 

In the context of the Internet of Things, where devices are frequently dispersed across 

various environments and networks, federated learning offers several significant 

advantages:  
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Improved Data Security and Privacy: Internet of Things (IoT) systems frequently gather 

private and sensitive data, including financial transactions, location data, and health 

information. This data must be transferred to centralized servers in order to use traditional 

cloud-based machine learning models, which raises the possibility of data breaches. In 

contrast, federated learning makes sure that only model updates are shared, meaning that 

data never leaves the edge device. This reduces the possibility of sensitive data being 

exposed and aids in adhering to strict privacy regulations. 

Decreased Latency and Bandwidth Usage: Sending the vast amounts of data generated by 

IoT systems to the cloud for processing can cause a major latency and strain on network 

bandwidth. Federated learning optimizes bandwidth utilization by reducing the 

requirement for continuous communication with central servers by carrying out model 

training locally on edge devices. This is especially significant for real-time applications 

where low latency is essential, like industrial IoT, smart cities, and autonomous cars. 

Scalability in Decentralized Networks: Internet of Things (IoT) networks are diverse and 

large-scale, with a wide range of devices with different amounts of energy, connectivity, 

and processing power. Such decentralized environments are ideal for federated learning 

because it lets every device participate in model training without needing constant 

connectivity or consistent data distribution. When they are available, even devices with 

sporadic network access can take part in federated learning processes. 

Compliance with Regulatory Requirements: Strict regulatory frameworks governing data 

privacy and protection must be followed by many industries that rely on IoT devices, 

including manufacturing, healthcare, and finance. Because data stays on the device and 

never crosses jurisdictional boundaries, federated learning offers a way to train AI models 

while guaranteeing compliance with laws like the GDPR in Europe and the HIPAA 

(Health Insurance Portability and Accountability Act) in the healthcare industry. 

Problems and Solutions for Federated Learning in the Internet of Things 

Federated learning has enormous potential for edge AI in the Internet of Things, but in 

order to reach its full potential, a number of issues still need to be resolved. These include: 

IoT device heterogeneity: IoT ecosystems are made up of a variety of devices with 

different capacities, ranging from potent smartphones and edge servers to low-power 

sensors with constrained processing power. It is challenging to apply a federated learning 

solution that is appropriate for every situation due to this heterogeneity. Methods like 

resource-aware training, quantization, and model compression are being investigated as 

solutions to this problem. AI models can be made more energy- and computational-

efficient for devices with constrained resources thanks to these techniques. 
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Efficiency of Communication: In federated learning, model updates are transferred from 

edge devices to a central server. This can result in significant communication overhead in 

large-scale IoT deployments, especially in environments with limited bandwidth. 

Federated learning becomes more feasible for Internet of Things applications by 

minimizing the amount of data exchanged during model updates through the use of 

techniques like gradient compression, sparsification, and federated averaging. 

Non-IID Data: Non-independent and identically distributed data produced by various 

devices is a common feature of Internet of Things applications (non-IID). For instance, 

the information gathered by a smart home sensor and a wearable fitness tracker may not 

be at all similar. This non-uniformity can cause AI models that were trained with federated 

learning to perform worse. In order to overcome this, scientists are investigating 

techniques for personalized federated learning, in which models are adjusted to the unique 

data distributions of individual devices while still reaping the benefits of collective 

knowledge. 

Security and Reliability: Federated learning protects privacy by retaining data locally, but 

it is not impervious to security threats. Adversarial attacks or tainted updates could be 

introduced by malicious devices to reduce the global model's performance. To maintain 

the integrity of federated learning processes in Internet of Things environments, solutions 

like blockchain-based consensus mechanisms, secure aggregation, and differential 

privacy are being developed. 

Current Progress and Applications 

Adoption of federated learning is being propelled by recent developments in a variety of 

Internet of Things applications. For instance, without jeopardizing user privacy, Google's 

federated learning implementation on Android devices allows AI models to enhance text 

predictions and keyboard suggestions. Similar to this, healthcare companies are training 

AI models on dispersed patient data from medical sensors and wearables through 

federated learning, which allows for more individualized care while maintaining data 

privacy. Federated learning is being used in smart city applications to optimize traffic 

management systems by utilizing information from roadside sensors, connected cars, and 

traffic cameras. As a result, traffic is lessened and overall efficiency is increased through 

the use of more flexible and responsive urban infrastructure. Federated learning, which 

uses machine learning to train AI models on machine data from several manufacturing 

facilities, is assisting industrial IoT (IIoT) in improving predictive maintenance systems. 

This method prolongs the life of costly industrial equipment and decreases downtime. 

Autonomous systems, including robots and drones, present a promising opportunity for 

federated learning in the Internet of Things. These systems need to be able to make 
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decisions in real time, and federated learning enables them to do so by continuously 

enhancing their AI models with the help of data gathered from operations. This makes it 

possible to perform tasks, navigate, and recognize objects with greater accuracy—even in 

dynamic, unstructured environments. 

Federated Learning's Future for IoT 

Federated learning is going to be essential for creating intelligent and autonomous systems 

as edge devices get more powerful and IoT networks expand. Hardware innovations like 

edge AI chips will increase the computational power of IoT devices and allow for the 

local training of increasingly complex AI models. Concurrently, advancements in 

communication technologies, including 5G and beyond, will lower latency and facilitate 

more effective device collaboration in federated learning frameworks. Furthermore, 

federated learning may be combined with other cutting-edge technologies, like 

blockchain, to improve the security and openness of distributed AI systems in the Internet 

of Things. By offering a decentralized and impenetrable ledger for monitoring model 

updates and confirming the legitimacy of involved devices, blockchain can reduce the 

possibility of malevolent actors undermining the federated learning procedure. 

Security and Privacy Challenges in Federated Learning for Edge AI in IoT 

Federated Learning (FL) has drawn interest due to its capacity to mitigate privacy issues 

in applications involving artificial intelligence (AI), particularly in contexts involving the 

Internet of Things (IoT) (Li et al., 2021; Lu et al., 2020). FL reduces the need to send 

sensitive data to centralized servers by enabling decentralized learning, in which edge 

devices—such as sensors, cellphones, or connected appliances—train AI models locally 

and share only updates (Su et al., 2021; Akter et al., 2022; Feng et al., 2021). Nevertheless, 

FL presents a new set of security and privacy challenges despite its advantages, especially 

in the complex and heterogeneous IoT environment. The decentralized structure of FL, 

the resource limitations of IoT devices, and the variety of possible attack vectors that 

jeopardize the integrity of data and models are the main causes of these difficulties. 

1. Data Breach via Updates to Models 

Although FL strives to maintain privacy by guaranteeing that raw data stays local on edge 

devices, privacy breaches can still occur due to model updates. Devices send model 

parameters—like gradients or weights—to a central server for aggregation during 

training. Even though these updates don't include raw data, they may unintentionally 

reveal details about the training data that underlie them, especially when different 

inference attacks are used. 

a) Attacks with Gradient Leakage 
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Adversaries can use gradients or updates sent by the edge devices to reassemble portions 

of the original data in gradient leakage attacks. Studies have indicated that gradients carry 

important information about the data that went into computing them. An attacker might, 

for instance, reverse-engineer a gradient to extract private information, medical records, 

or images. This is especially problematic in Internet of Things systems where devices 

gather extremely private data, such as location or health statistics. Even though raw data 

is never explicitly shared, its disclosure may result in privacy violations. 

b) Attacks by Model Inversion 

Sensitive data can also be extracted from model updates using model inversion attacks. 

Adversaries try to reverse the model in these attacks in order to deduce specific training 

data samples. When there are few devices involved in FL, this attack can be particularly 

successful because it increases the chance of successfully correlating updates with 

individual users. Model inversion poses serious privacy risks in Internet of Things 

environments where devices frequently generate contextual or personal data. 

2. Counterattacks and Simulated Toxins 

Due to FL's decentralized structure and the vast number of IoT devices taking part in 

training, vulnerabilities are created that adversaries can take advantage of. The limited 

visibility of the central server into the local training process can be exploited by attackers 

to corrupt the model through malicious updates. Backdoor and poisoning attacks are the 

two main categories of adversarial attacks in Florida. 

a) Model and Data Poisoning 

The intentional introduction of tainted data or deceptive model updates by malevolent 

edge devices constitutes poisoning attacks. These attacks can be classified as untargeted 

(which lowers overall model performance) or targeted (affecting particular tasks or data 

points). Poisoning attacks are a serious threat in the context of IoT, where devices may be 

compromised due to inadequate security protections. For instance, in a smart city's traffic 

monitoring system, an attacker could alter the data gathered by a compromised sensor to 

skew the predictions made by the global model, possibly leading to traffic jams or 

erroneous routing choices. Because many IoT devices are challenging to secure and may 

be impossible to update or patch, the widespread deployment of IoT devices increases this 

risk. Moreover, IoT devices are frequently installed in physically unsafe settings, which 

leaves them open to manipulation or compromise. 

b) Intrusion Through Backdoors 
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A more advanced kind of model poisoning is known as a backdoor attack, in which the 

adversary introduces undiscovered vulnerabilities into the global model. These 

weaknesses, sometimes known as "backdoors," are intended to go unnoticed while the 

model is operating normally, but they can be triggered by particular events. An IoT device 

with malicious intent, for example, could train its local model to identify a specific input 

pattern that opens the backdoor. Upon updating the global model with the tainted input, 

the adversary can utilize the backdoor in practical situations, like controlling image 

recognition systems or circumventing authentication in intelligent security systems. 

Because these attacks can go unnoticed until they are triggered, making it challenging to 

identify them during training, they are especially dangerous. 

3. Intricate Errors and Assaults 

Federated Learning systems need to be resistant to Byzantine failures, which occur when 

malicious activity or hardware/software issues cause devices to act erratically. A 

Byzantine attack can cause the training process to be disrupted by one or more edge 

devices sending inaccurate or inconsistent updates. IoT devices that have been 

compromised may launch these attacks, which can be hard to identify because of their 

inconsistent or random behavior. 

a) Tolerance for Byzantine 

FL systems need to include Byzantine fault tolerance mechanisms in order to handle 

Byzantine failures. The goal of these mechanisms is to guarantee that in the event of 

malicious or flawed updates, the global model will still be able to converge. However, 

because edge devices are diverse and resource-constrained, this becomes difficult in 

Internet of Things environments. To validate updates and weed out malicious 

contributions, byzantine resilience frequently needs more processing power, which low-

power Internet of Things devices with constrained processing power may not be able to 

provide. The trade-off between resource efficiency and security is a major obstacle to FL 

deployment in IoT systems. 

4. Resource and Communication Restraints 

The communication and resource constraints of edge devices are two of the inherent 

challenges of FL in Internet of Things environments. Many Internet of Things devices 

have low processing power, little memory, and restricted energy budgets. These 

limitations make it extremely difficult to implement privacy- and security-preserving 

measures in FL. 

a) Safe Combination 



  

113 

 

Ensuring that the central server is unable to reconstruct individual model updates is crucial 

for safeguarding participating devices' privacy through secure aggregation. Nevertheless, 

a lot of secure aggregation protocols cost a lot of computational power and necessitate 

repeated communication cycles between the server and the devices. Within Internet of 

Things networks, where devices might depend on low-power communication protocols 

like LoRa or Zigbee, the additional communication overhead resulting from secure 

aggregation can swiftly deplete battery life and compromise functionality. Enabling 

secure FL in IoT environments requires finding secure aggregation techniques that are 

both robust and lightweight. 

b) Restrictions on Bandwidth 

Many IoT networks have constrained bandwidth, which makes it possible for the available 

communication infrastructure to become overwhelmed by the frequent transmission of 

model updates. This not only reduces the FL process's effectiveness but also opens the 

door for denial-of-service (DoS) attacks. To stop genuine devices from taking part in the 

training process, adversaries may purposefully overload the network with excessive 

model updates. Research on addressing bandwidth limitations for IoT in Florida while 

preserving security and privacy is still ongoing. 

5. Issues with Verification and Trust 

Since a single entity manages all data and processes in traditional centralized systems, 

trust is comparatively easy. However, trust is shared among a large number of participants 

in FL, which poses special difficulties in guaranteeing that every device acts honorably 

and contributes valid updates. 

a) Malevolent Entities 

Ensuring that every edge device in a FL system is operating in good faith can be 

challenging, particularly in open IoT networks where devices may be owned by various 

individuals or companies. Malicious players can conduct poisoning attacks, inject false 

updates, or influence the aggregation process in order to gain an advantage if proper 

verification mechanisms aren't in place. One crucial area of concern is the development 

of efficient techniques for confirming the legitimacy and integrity of model updates in a 

decentralized system. 

b) Models of Trust 

Researchers are investigating a range of consensus mechanisms and trust models, 

including reputation systems and blockchain-based verification, in order to tackle the trust 

challenge in FL. By requiring participants to establish a certain level of accountability, 
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these systems make sure that malicious devices can be identified and removed from the 

training process. These methods, however, frequently call for extra resources, which can 

be very taxing on IoT devices with limited resources. 

 
Fig. 3.2 Sankey diagram structure for federated learning for edge artificial intelligence 

Fig. 3.2 illustrates the interrelationships and flow of technologies, data, and improvements 

in the context of edge AI federated learning (FL) in Internet of Things environments. It 

demonstrates how important areas like security, robustness, privacy, personalization, and 

blockchain integration—all essential to contemporary IoT systems—are advanced 

through the central idea of federated learning, which is powered by data from edge and 

IoT devices. Federated Learning, a decentralized machine learning technique that 

processes data locally on edge devices or Internet of Things endpoints to ensure that 

sensitive data stays on the device and that only model updates are shared, is at the center 

of the diagram. This strategy is particularly pertinent to the Internet of Things (IoT), as 

devices are frequently dispersed and manage enormous volumes of data that may raise 

privacy issues. The primary sources of data feeding into federated learning are highlighted 

in the first part of the diagram: edge devices, IoT devices, and data collection. The 

federated learning process is predicated on the continuous collection of data from various 

sources, including sensors in Internet of Things devices. These nodes demonstrate this. 

These devices reduce latency and bandwidth consumption, which is critical for real-time 

Internet of Things applications. They do this by operating on the edge, close to the data 

source, enabling real-time processing and decision-making without depending on a 

centralized cloud system. 
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The diagram then divides into five main categories—Blockchain Integration, Privacy 

Protection, Security Enhancement, and Robustness Enhancement—where federated 

learning significantly contributes. In the context of edge AI and IoT, each of these 

branches represents a fundamental area that federated learning enhances. By encouraging 

decentralized data processing, federated learning's architecture not only naturally solves 

a number of IoT vulnerabilities and inefficiencies, but it also creates opportunities for 

improving other crucial aspects. This pathway examines how federated learning 

strengthens the security framework of Internet of Things systems, starting with Security 

Enhancement. The flow demonstrates how advances in data encryption, secure 

aggregation, and authentication—all essential elements in guaranteeing data integrity and 

secure communications in Internet of Things networks—come from federated learning. 

By ensuring that any model updates shared between devices are secure, data encryption 

helps to prevent unauthorized access to private data. An additional layer of anonymity is 

added by secure aggregation, which makes sure that updates sent from different devices 

cannot be linked to particular devices. By confirming a device's identity prior to any 

communication, authentication mechanisms stop malicious or unauthorized devices from 

interfering with the system. When combined, these steps guarantee that federated learning 

enhances Internet of Things security, resolving one of the major obstacles to 

implementing AI across a vast array of dispersed, frequently low-power devices. 

The following branch, Robustness Enhancement, discusses how federated learning 

increases the IoT systems' resilience. The main results of the robustness gains in federated 

learning are stated as anomaly detection and fault tolerance. Fault tolerance is the ability 

of an IoT system to continue operating normally even in the event that a few devices 

malfunction or fail, while anomaly detection guarantees that IoT systems can recognize 

anomalous behaviors or threats in the data, such as cyberattacks or malfunctioning 

devices. These improvements are necessary to keep the system operating steadily and 

dependably given the variety and quantity of IoT devices that could be included. 

Federated learning makes it possible to detect anomalies in a distributed manner. Every 

device adds to a global understanding of possible failures or threats, increasing the 

device's adaptability to different situations. The diagram illustrates how methods like 

Differential Privacy, Secure Multiparty Computation, and Homomorphic Encryption are 

essential to accomplishing Privacy Protection, another critical area enhanced by federated 

learning. Privacy concerns are critical in the Internet of Things (IoT), since it may collect 

sensitive data like location data or personal health metrics. Federated learning allays these 

worries by preserving localized data on the device, and methods such as differential 

privacy guarantee that individual data points cannot be reverse-engineered, even in cases 

where aggregate data is shared. Devices can also compute over encrypted data thanks to 

secure multiparty computation and homomorphic encryption, which guarantees that the 
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data is protected even during processing. In Internet of Things applications where user 

data must be protected at all costs, such as healthcare, smart homes, and autonomous 

vehicles, these privacy-preserving mechanisms are critical. The diagram's Personalization 

pathway exemplifies how federated learning can accommodate unique user preferences 

and adaptive models while maintaining security and privacy. Personalization is essential 

in Internet of Things environments to provide better user experiences, like individually 

designed smart home environments or healthcare monitoring systems. The diagram's 

personalization branch feeds into User Preferences and Adaptive Models, demonstrating 

how federated learning makes it possible to refine models using data from specific devices 

without requiring centralized access to that data. IoT systems can change and adapt to 

individual users thanks to this local model training capability, which improves the overall 

experience and efficiency. 

Lastly, blockchain integration is a major technological development that advances the 

Internet of Things through federated learning. The illustration shows how blockchain can 

be used in conjunction with Immutable Ledger, Decentralized Consensus, and Smart 

Contracts to guarantee openness and confidence in Internet of Things systems. Blockchain 

technology can guarantee tamper-proof and verifiable updates and model aggregations in 

federated learning, which is particularly crucial in large-scale Internet of Things 

deployments where trust between devices or networks may be lacking. Trust-based 

agreements between devices are automated by smart contracts, and the network is kept 

decentralized by means of decentralized consensus. All transactions are recorded in the 

immutable ledger, guaranteeing an open and unchangeable history. The decentralized 

nature of federated learning is enhanced by these blockchain features, which give the 

system an additional degree of security and reliability. The Sankey diagram's last 

connections illustrate how these improved areas relate to fundamental IoT issues like IoT 

security, reliability, privacy, and trust. Examples of how federated learning and 

blockchain integration strengthen the security of IoT systems are Data Encryption, 

Authentication, and Smart Contracts. In a similar vein, fault tolerance and anomaly 

detection increase IoT reliability by guaranteeing that systems continue to operate 

normally even in the face of mistakes or intrusions. IoT privacy is preserved even in 

complicated settings thanks to privacy strategies like differential privacy, and IoT trust is 

established through blockchain technologies, which produce a transparent and verifiable 

system. 

Robustness and Resilience of Federated Learning Models 

Due to its decentralized method of training machine learning models without transferring 

data to a central server, federated learning, or FL, has drawn a lot of attention (Akter et 

al., 2022; Feng et al., 2021). This is particularly important in industries where data privacy 
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is a major concern, like healthcare, finance, and mobile applications Tonellotto et al., 

2021; Khan et al., 2020; Li et al., 2021; Lu et al., 2020). FL's main feature is that it lets 

multiple clients—like institutions or mobile devices—train a model together while 

maintaining local data. Federated learning has many benefits, but it also presents certain 

difficulties, especially when it comes to guaranteeing the resilience and robustness of the 

models created in this kind of setting. 

Sturdiness in Federated Education 

In machine learning, robustness generally refers to the model's capacity to function 

consistently and dependably in a variety of scenarios, such as those involving adversarial 

attacks, noisy data, and distribution shifts. Because federated learning involves multiple, 

possibly malicious, or unreliable participants, and the data is decentralized, ensuring 

robustness is more complicated than in centralized systems. 

Adversarial Attacks: Protecting against adversarial attacks is one of the main issues with 

federated learning robustness. Adversarial attacks in centralized machine learning entail 

slightly modifying input data to trick a model into generating false predictions. 

Adversaries can directly alter local models or data in federated learning before providing 

updates to the global model. The aggregation of updates from potentially compromised 

clients by the global model gives rise to a more severe form of vulnerability. Attacks 

known as poisoning, in which a malevolent client sends false updates on purpose, can 

cause the model to perform poorly or become biased toward the attacker's goals. To lessen 

the impact of outliers or anomalous updates, strategies like robust aggregation have been 

suggested as ways to reduce this risk. 

Heterogeneous Data: Another issue that threatens the resilience of federated learning 

models is data heterogeneity, which occurs when clients have data distributions that are 

radically different from one another. In a mobile network, for example, users may behave 

differently depending on where they are in the world. This can result in non-identical, 

non-independent (non-IID) data across clients. Because the global model overfits to 

dominant client data distributions, this data divergence may result in poor performance 

on particular subsets of the data. To address this problem, strong federated learning 

approaches are being investigated, such as personalized FL (where models are customized 

for each client's data) or algorithms that modify the weighting of updates according to the 

similarity of data distributions. 

Communication Failures: Robustness problems resulting from unstable communication 

networks can also affect federated learning models. The training process of the entire 

model may be hampered by network outages, delays, or packet losses because the process 

entails clients and a central server exchanging updates. Although there is a limit to how 
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well the model can handle client dropouts, frequent or persistent failures may cause 

incomplete or inaccurate client update aggregation, which would weaken the overall 

model. One tactic to increase robustness in these circumstances is asynchronous federated 

learning, in which updates are transmitted and aggregated non-synchronistically. 

Resilience in Federated Learning 

In federated learning, resilience is the system's capacity to bounce back from setbacks or 

disturbances and sustain steady operation over an extended period of time. Resilience in 

a federated learning environment refers to the system's ability to tolerate system-level 

failures like client dropouts, model drift, or communication breakdowns in addition to its 

ability to withstand adversarial attacks. 

Client Dropouts: Because federated learning depends on a network of clients, these clients 

may occasionally stop working as a result of hardware malfunctions, network problems, 

or simple decision to stop participating in the training. It is necessary for a resilient FL 

system to be able to carry on training in spite of these dropouts. Strategies like redundant 

client participation—in which a greater number of clients participate in each training 

round than is strictly necessary—help guarantee that there are enough updates provided 

even in the event that some clients choose not to participate. Algorithms that can estimate 

missing updates or adapt to a particular client's absence are additional factors that enhance 

system resilience. 

Byzantine Resilience: When certain clients behave maliciously or erratically, it poses a 

serious risk to federated learning. Byzantine-resilient algorithms are designed to 

guarantee that the global model can continue to advance in the event that a portion of its 

clients exhibits illogical or malevolent behavior. Strong aggregation techniques, like 

trimmed-mean or median-based methods, are often used in these algorithms to lessen the 

effect of extreme or irregular updates on the overall model. 

Resilience to Model Drift: As a result of alterations in user behavior, industry trends, or 

outside influences, data distributions on the clients may change over time. If model drift 

is not addressed, it can lead to a decline in the federated model's performance. 

Mechanisms for identifying and reacting to model drift are essential components of a 

robust federated learning architecture. Retraining the model with updated client data on a 

regular basis or implementing continuous learning strategies—where the model is updated 

incrementally to reflect new patterns in the data—are two possible solutions. Furthermore, 

approaches like drift-aware aggregation techniques or federated continual learning are 

being investigated to improve resilience to changing data distributions. 

Techniques Enhancing Robustness and Resilience 
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In order to make federated learning models more resilient to challenges like data 

heterogeneity and adversarial environments, a number of trending techniques have been 

developed. 

Differential Privacy and Secure Aggregation: Protecting personal information is a 

fundamental tenet of federated learning. Differential privacy (DP) is frequently utilized 

to ensure that the aggregated updates cannot be used to reverse-engineer individual data 

points. Without gaining access to specific client updates, the server can compute a global 

model thanks to secure aggregation protocols. By incorporating noise into updates while 

preserving model performance, these methods improve the system's resilience against 

adversarial attacks while simultaneously safeguarding privacy. 

Robust Federated Averaging (RFA): Adapting the federated averaging (FedAvg) 

algorithm is a promising strategy to improve robustness. Robust Federated Averaging 

(RFA) integrates techniques for identifying and reducing the effect of malicious or 

unusual updates from clients that have been compromised. This may entail removing 

extreme updates, evaluating updates in light of the client's reputation, or spotting 

potentially dangerous updates ahead of time through anomaly detection methods. 

Federated Adversarial Training (FAT): This is a rapidly developing field in which clients 

train models using adversarial examples in addition to their local data. This method 

strengthens the global model's resilience by getting it ready to detect and fend off hostile 

attacks. Through training on worst-case scenarios, the global model gains resilience 

against adversarial inputs encountered in real life during inference. 

Federated Meta-Learning: To improve resilience and robustness, federated environments 

are increasingly using meta-learning, or learning to learn. Federated meta-learning helps 

models to generalize more effectively across heterogeneous clients by training models 

that can quickly adapt to new tasks or data distributions. This flexibility is essential in 

situations where clients encounter notable alterations to their local data or surroundings. 

Table 3.1 shows the federated learning in IoT with its impact. Table 3.2 shows the 

robustness and resilience of federated learning models. 

 

Table 3.1 Federated Learning in IoT 

Sr. 

No. 

Aspect Key Features Impact on Federated Learning 

in IoT 

1 Federated 

Learning (FL) 

Decentralized model training 

where edge devices 

collaboratively train a shared 

Improves scalability and real-

time decision-making in IoT 

systems, reducing latency by 
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model without centralizing 

data. 

leveraging edge computing 

resources. 

2 Edge Artificial 

Intelligence (AI) 

AI deployed on edge devices 

(e.g., IoT sensors, 

smartphones) for real-time 

processing and decision-

making. 

Reduces reliance on cloud-based 

processing, minimizing latency, 

bandwidth, and energy 

consumption, enhancing real-

time performance. 

3 Security Data encryption, homomorphic 

encryption, secure aggregation 

techniques. 

Enhances protection against 

cyberattacks, ensuring data 

integrity and confidentiality in 

distributed learning 

environments. 

4 Privacy Differential privacy, data 

anonymization, privacy-

preserving data sharing. 

Ensures that sensitive user data 

remains local, preventing data 

exposure during training, crucial 

for personal and health-related 

IoT data. 

5 Robustness Fault tolerance, adversarial 

attack mitigation, Byzantine 

fault resilience. 

Increases system reliability in 

hostile environments where 

devices may fail or adversarial 

inputs may corrupt learning. 

6 Personalization Local model fine-tuning, on-

device training, user-specific 

models. 

Allows edge devices to 

customize global models to suit 

local data and user preferences, 

enhancing individual user 

experiences. 

7 Blockchain 

Integration 

Decentralized ledger for 

secure, immutable, and 

transparent record-keeping of 

training processes. 

Ensures traceability, 

accountability, and security in FL 

processes, preventing tampering 

and promoting trust in multi-

party collaborations. 

8 IoT IoT devices (sensors, smart 

devices) generate vast amounts 

of data that can be used to 

improve AI models. 

FL enables real-time and 

resource-efficient AI model 

training directly on IoT devices, 

improving automation and smart 

service delivery. 

9 Energy Efficiency Optimizing energy 

consumption through 

lightweight models, sparse 

training, and model 

compression techniques. 

Ensures IoT devices with limited 

battery power can still contribute 

to the learning process without 

excessive energy drain. 
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10 Communication 

Efficiency 

Communication reduction 

techniques such as model 

quantization, sparsification, 

and asynchronous updates. 

Minimizes bandwidth usage and 

reduces the overall 

communication burden, allowing 

for more efficient model updates 

across distributed nodes. 

11 Scalability Enabling FL to handle large 

numbers of IoT devices 

through decentralized 

architectures and hierarchical 

FL models. 

Allows the system to manage 

vast IoT networks without 

significant increases in latency or 

resource usage, enhancing 

network performance. 

12 Interoperability Cross-device and cross-

platform collaboration, 

enabling heterogeneous IoT 

devices to participate in FL 

processes. 

Increases the range of IoT 

devices that can contribute to 

learning, from sensors to 

smartphones, improving the 

model’s generalizability. 

13 Data 

Heterogeneity 

Managing non-IID (non-

identically distributed) data by 

using personalized models and 

adaptive training techniques. 

Allows FL models to perform 

better in scenarios where data 

distributions differ across IoT 

devices, ensuring model 

robustness and accuracy. 

14 Latency 

Optimization 

Reducing the time for model 

training and inference through 

edge computing, decentralized 

learning, and efficient model 

updates. 

Reduces the delay in generating 

insights from IoT data, essential 

for real-time applications like 

autonomous vehicles and smart 

cities. 

15 Fault Tolerance Mechanisms to handle device 

failures, network 

disconnections, and unreliable 

data transmission. 

Improves the resilience of the FL 

system, allowing it to continue 

learning and functioning even 

when edge devices drop out or 

malfunction. 

 

Personalization of Federated Learning Models for IoT 

Machine learning models that can handle the diversity and complexity of these devices 

are becoming more and more necessary as the Internet of Things (IoT) grows and changes 

many industries (Mammen, 2021; Al-Quraan et al., 2023; Su et al., 2021). Federated 

Learning (FL), a decentralized model training technique, provides an answer by allowing 

Internet of Things (IoT) devices to train models together cooperatively without 

exchanging raw data. Nevertheless, the heterogeneity present in IoT systems is frequently 

too much for the conventional FL paradigm to handle, which results in less-than-ideal 

performance. Federated Learning model personalization aims to overcome these obstacles 
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by modifying global models to suit the unique requirements and data distributions of 

individual Internet of Things devices. 

Challenges of IoT in Federated Learning 

Devices in the Internet of Things (IoT) ecosystem come in a wide range of hardware 

capabilities, communication protocols, data distribution methods, and use cases. For 

traditional machine learning models, which usually rely on sizable, centralized datasets 

from homogeneous sources, this heterogeneity poses a significant challenge. The goal of 

FL is to train a global model by aggregating updates from distributed devices; however, 

due to differences in device capabilities and local data distributions, the global model may 

perform poorly on some devices but well on average. For instance, due to variations in 

the data patterns, a global model trained across several devices might function well on 

temperature sensors in a smart building but might have trouble predicting the future on a 

wearable medical device. IoT devices are frequently limited by low levels of network 

connectivity, processing power, and energy. It is challenging for IoT devices to take an 

equal part in the federated training process because of these limitations. While some 

devices might have trouble processing and uploading model updates, others might have 

bad connectivity, which would prevent them from fully participating in the model 

aggregation process. The ability of each device to modify the global model to fit its 

capabilities and the characteristics of its local data depends on personalization strategies. 

The Role of Personalization in Federated Learning for IoT 

Federated Learning for IoT uses personalization primarily to adjust the global model to 

the unique requirements of individual devices or groups of devices, enhancing 

performance without sacrificing privacy or necessitating centralized data aggregation. 

Personalization improves federated models' efficacy in a number of ways. 

Managing Non-IID Data: The non-identically distributed (non-IID) nature of the data 

gathered by various devices presents one of the biggest obstacles to IoT-based federated 

learning. Through personalization, every device can adjust the global model to better fit 

its unique local data distribution, which may vary greatly from the average over the entire 

globe. 

Table 3.2 Robustness and Resilience of Federated Learning Models 

Sr. 

No. 

Category Robustness Resilience 

1 Definition Ability of a model to withstand 

various types of adversarial 

Ability to recover from failures 

or adapt to changes in the 
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attacks, noise, or fluctuations in 

data during the learning process. 

environment, maintaining 

performance over time. 

2 Key Challenges Adversarial attacks, data 

poisoning, noisy or corrupted 

data, device and network 

heterogeneity 

Node or device dropout, 

changes in data distribution, 

system failures such as server 

crashes or network disruptions 

3 Approaches Robust aggregation methods such 

as median or trimmed mean, 

Byzantine-resilient algorithms, 

adversarial training, differential 

privacy 

Fault-tolerant protocols, 

adaptive learning rates, 

dynamic client selection, 

redundancy in communication 

channels 

4 Common 

Algorithms 

Byzantine-tolerant SGD, 

RobustFed, Krum, Multi-Krum 

Federated Averaging (FedAvg) 

with dropout resilience, backup 

server strategies, incremental 

and on-device learning 

5 Data Perspective Noise-resilient data handling, 

outlier detection, privacy-

preserving methods to handle data 

poisoning 

Support for non-IID (Non-

Independent and Identically 

Distributed) data, resilience to 

shifts in data distributions over 

time 

6 Communication Resilient communication 

protocols, protection against 

unreliable network connections 

Graceful degradation in 

network failures, efficient 

handling of bandwidth 

constraints or asynchronous 

updates 

7 Security 

Measures 

Homomorphic encryption, secure 

multiparty computation, 

robustness to model inversion 

attacks 

Backup and recovery 

mechanisms for lost data, 

resilience to man-in-the-middle 

attacks and server-side threats 

8 Model 

Aggregation 

Robust aggregation against 

malicious or noisy clients such as 

Trimmed Mean, Median, or Krum 

Redundant aggregation nodes, 

asynchronous model updates 

for handling dropout clients 

9 Client 

Participation 

Handling malicious clients 

through adversarial training, 

identifying and isolating outliers 

Tolerating client dropouts, 

adapting to dynamic client 

participation and availability 

10 Model 

Convergence 

Stable model convergence despite 

adversarial noise, tolerance to 

poisoning attacks 

Maintaining model 

convergence in case of client or 

node failures, adjusting to real-

time changes in client 

availability 
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11 Client Selection Selecting clients with minimal 

noise for stable performance 

Dynamically adapting to 

available clients based on 

system state and failures 

12 Energy 

Efficiency 

Handling adversarial interference 

without compromising energy use 

Energy-efficient resilience 

strategies, such as minimizing 

retries after node failures 

13 Key Metrics Accuracy under attack, stability 

of model parameters, attack 

success rate reduction 

Recovery time after failure, 

performance degradation, 

tolerance to client failures 

14 Example 

Scenarios 

Adversarial attack on training 

data, data tampering by malicious 

clients 

Device dropouts in a federated 

network, sudden loss of 

connectivity in a subset of 

nodes 

 

 

Resource Constraints: The processing speed, memory, and battery life of IoT devices 

differ significantly. In order to enable lightweight versions of the model to be used on 

resource-constrained devices without sacrificing too much accuracy, personalization 

strategies can be used to optimize model size and complexity based on the capabilities of 

each device. 

Enhancing User-Specific Performance: A lot of Internet of Things applications, especially 

in the healthcare and smart home sectors, call for highly customized models that adjust to 

the needs or preferences of specific users. For instance, in order to monitor a patient's 

health metrics—like heart rate or blood pressure—more precisely and individually, a 

healthcare wearable might need to modify a global model. 

Personalization Techniques in Federated Learning for IoT 

Diverse personalization strategies have been put forth to tackle the particular difficulties 

associated with federated learning in Internet of Things contexts. These methods seek to 

improve the model's accuracy, efficiency, and adaptability on different devices by striking 

a balance between the advantages of a globally trained model and the requirement for 

local optimization. 

1. Fine-Tuning 

One of the simplest methods for personalization in federated learning is fine-tuning. Each 

IoT device can use its local data to conduct additional training rounds after a global model 

has been trained. The device's data contains particular patterns that the global model can 

adapt to with the aid of this local fine-tuning. A smart thermostat in a house, for example, 

might gather temperature data that is distributed differently from other devices' data, and 
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fine-tuning enables it to modify the model to offer more precise temperature control. 

Although local performance can be enhanced by fine-tuning, it is imperative to prevent 

overfitting to the device's local data. This is particularly crucial for Internet of Things 

applications where devices might gradually see changes in the distribution of data. 

Therefore, to strike a balance between generalization and personalization, careful 

calibration of the fine-tuning process is required. 

2. Model Personalization via Meta-Learning 

A sophisticated method known as "learning to learn," or meta-learning, allows federated 

models to quickly adjust to new environments with little to no updates. Meta-learning 

methods such as Model-Agnostic Meta-Learning (MAML) can be applied in the Internet 

of Things domain to train a global model optimized for fast personalization. Because each 

IoT device can carry out a few more gradient updates to customize the model for its local 

data, meta-learning works especially well in settings where devices gather a variety of 

non-IID data. Applications where IoT devices frequently encounter new tasks or data 

distributions are a good fit for meta-learning. An industrial Internet of things system 

might, for instance, include sensors located in various factories, each of which would 

gather data with a unique set of features. A federated model based on meta-learning can 

swiftly adjust to the distinct data of each factory, enhancing system performance as a 

whole. 

3. Cluster-Based Personalization 

Devices in certain IoT environments might be similar to one another in terms of 

functionality, geographic locations, or data distributions. By assembling devices into 

clusters and building a customized model for each cluster rather than for each individual 

device, cluster-based personalization takes advantage of these commonalities. This 

method offers a level of personalization that can enhance performance while lowering the 

computational and communication costs related to training fully customized models for 

every device. For instance, in a smart city application, sensors placed in various areas 

might gather data on the environment or traffic in patterns that are similar. A federated 

learning system can train customized models for every district by grouping sensors 

according to these patterns, increasing accuracy without sacrificing scalability. 

4. FMTL, or Federated Multi-Task Learning 

The technique known as Federated Multi-Task Learning (FMTL) views the training of 

models for various devices as distinct but connected tasks. Within Internet of Things 

systems, devices frequently carry out distinct functions or possess distinct goals, despite 

sharing certain fundamental data patterns. The federated learning model can now capture 



  

126 

 

the distinctive features of every task in addition to the shared information between them 

thanks to FMTL. This is especially helpful in Internet of Things systems that have a large 

number of devices that are all part of the same federated learning framework, like 

wearables, environmental sensors, and smart home devices. When various IoT devices, 

like thermostats, security cameras, and smart speakers, are installed in a smart home, 

FMTL can be used. While every device is assigned a specific task, they also exchange 

certain common data distributions, like user preferences or ambient conditions. With 

FMTL, these devices can retain their task-specific models for optimal performance and 

still take advantage of shared knowledge. 

Problems with Customizing Federated Learning for Internet of Things 

Implementing personalization for federated learning in IoT environments presents a 

number of challenges despite the potential benefits: 

Communication Overhead: Creating customized models for individual devices or groups 

necessitates more data transfer between the devices and the central server. In Internet of 

Things networks with constrained bandwidth or sporadic connectivity, this may cause 

federated learning to proceed slowly or fails. 

Concerns about privacy: While federated learning maintains privacy by storing data on 

the devices, personalization methods that share model updates or device-specific 

parameters run the risk of unintentionally disclosing private information about a device's 

data. Maintaining privacy while customizing models is still a major problem, especially 

for applications like smart cities or healthcare. 

Scalability: Managing model updates effectively and requiring a substantial amount of 

computational power are necessary when customizing models for thousands or millions 

of IoT devices. For IoT networks to become widely used, scalable personalization 

methods that can manage a high volume of devices without sacrificing precision or 

effectiveness must be designed. 

 

Integrating FL, Edge AI, and Blockchain in IoT 

With the creation of enormous networks of interconnected devices that constantly collect 

and exchange data, the Internet of Things, or IoT, has grown to be a crucial component of 

the digital ecosystem (Hazra et al., 2022; Ye et al., 2020; Wu et al., 2020). Traditional 

centralized systems frequently struggle to handle the unprecedented volume of data being 

generated by billions of devices, which causes bottlenecks in data management, latency, 

and security (Wang et al., 2019; Breko et al., 2022; Qu et al., 2021). Federated Learning 

(FL), Edge AI, and Blockchain integration into IoT networks is quickly becoming a potent 
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solution to these problems. By enhancing data privacy, computational efficiency, and 

decentralized security, this synergy builds a more scalable and resilient Internet of Things 

infrastructure. 

Federated Learning: Decentralized AI for IoT 

Federated Learning (FL) is a novel machine learning technique in which only model 

updates (gradients) are shared with a central server, and data stays localized on devices. 

By not sharing raw data, this enables IoT devices to learn collaboratively from shared 

models, protecting data privacy and using less bandwidth. FL stands in stark contrast to 

conventional centralized AI models, which frequently find it difficult and unsafe to 

transfer massive volumes of data to central servers within IoT networks. FL is a perfect 

fit in the context of IoT because of how many devices are involved. Every device, be it 

wearable, smart home appliance, or sensor, can use its own data to locally train a subset 

of a global model. A coordinating server receives the local updates from these devices 

and compiles them to improve the global model. By repeating this process iteratively, a 

centralized dataset is not necessary for the system to continuously improve. Crucially, 

sensitive data privacy is maintained, including user personal information, because the raw 

data never leaves the edge devices. Moreover, FL lowers the bandwidth expenses related 

to sending big amounts of unprocessed data over networks. This is especially helpful in 

Internet of Things environments where high data transfer rates may not be supported by 

the network infrastructure or where connectivity can be patchy. FL guarantees that 

devices can continue operating and contributing to the system even with restricted 

network access by keeping data processing local. When combined with Edge AI, FL 

eliminates the need to wait for central processing to deliver real-time insights and actions 

based on localized data. 

Edge AI: Processing Intelligence at the Source 

The term "edge AI" describes the direct application of artificial intelligence models to 

edge devices, such as wearable technology, smart cameras, and Internet of Things sensors, 

enabling data processing at or close to the point of generation. This is in contrast to 

traditional AI systems, which process data by sending it to centralized cloud servers. Edge 

AI dramatically improves real-time data processing and response capabilities in IoT 

ecosystems, lowering latency and boosting application responsiveness. IoT devices can 

become capable of autonomously making intelligent decisions by pushing AI algorithms 

to their limits. Edge AI, for instance, might allow robotic systems in a smart factory to 

identify abnormalities in equipment or production lines instantly, averting expensive 

malfunctions or delays in output. In a similar vein, Edge AI-enabled smart cameras could 

identify and react to security threats without requiring video to be sent to a central server 
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for analysis, significantly speeding up reaction times in urgent circumstances. The limited 

processing power and storage capacity of IoT devices is one of the main obstacles to 

implementing AI on edge devices. However, sophisticated AI models can now be 

operated on low-power hardware thanks to recent developments in model compression 

techniques like quantization and pruning. Furthermore, specialized edge hardware is 

being developed to speed up AI processing on the edge, enabling more effective and 

scalable deployments. Examples of this hardware include NVIDIA's Jetson and Google's 

Edge TPU. Edge AI can train AI models locally on edge devices when used in conjunction 

with Federated Learning, which eliminates the need to send data to centralized systems 

for model training. With this hybrid approach, IoT systems can continuously learn from 

localized data to improve their decision-making capabilities, in addition to making 

decisions in real-time. 

Blockchain: Using Decentralized Trust to Secure IoT 

Although scalability and data processing issues are addressed by both Federated Learning 

and Edge AI, security is still a major worry in Internet of Things environments. The 

likelihood of cyberattacks, data breaches, and unauthorized access rises sharply with the 

number of connected devices. Large, dispersed IoT networks do not scale well for 

traditional centralized security architectures, which are based on a single point of trust 

and are susceptible to hacking. These problems are addressed by blockchain technology, 

which creates an immutable, decentralized ledger that protects data and IoT devices. 

Blockchain works by having several nodes maintain a distributed ledger, which is 

essentially a collection of cryptographically connected blocks. Data integrity is ensured 

by the fact that once it is written to the blockchain, it cannot be changed without the 

network's approval. This decentralized architecture is perfect for securing IoT networks 

that span multiple organizations or jurisdictions because it does away with the need for a 

central authority to verify transactions. Blockchain can improve the security of data 

transactions and device communications in the context of the Internet of Things. It can be 

used, for instance, to authenticate devices, guaranteeing that only approved devices are 

allowed to connect to the network. Additionally, it can offer a transparent and safe way 

to record device interactions and data exchanges, which is crucial in sectors where data 

integrity is crucial, like healthcare and finance. Additionally, blockchain is ideally suited 

for handling the enormous volumes of data produced by Internet of Things devices. IoT 

networks can automate transactions and enforce data-sharing agreements without the need 

for middlemen by using smart contracts, which are self-executing contracts with 

predefined rules encoded into the blockchain. This lowers the possibility of fraud or 

tampering in addition to increasing system efficiency. 

Convergence: A Comprehensive Strategy for IoT 
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When blockchain, edge AI, and federated learning come together to form a decentralized, 

intelligent ecosystem, the full potential of the Internet of Things is realized. While each 

technology tackles a particular IoT challenge, when used together, they offer a complete 

solution that improves security, scalability, and performance. IoT networks can train AI 

models in a decentralized way by utilizing Federated Learning, which enables devices to 

advance in functionality without jeopardizing user privacy. This is especially crucial for 

sectors like healthcare, where it is necessary to protect patient data while still utilizing AI-

powered diagnosis and treatment suggestions. By facilitating real-time decision-making 

and guaranteeing that IoT devices can function independently in mission-critical 

applications, the use of Edge AI enhances this model even further. Blockchain enhances 

this by introducing a further degree of trust and security. Blockchain ensures that all 

transactions are verified, transparent, and immutable in a network where devices are 

continuously exchanging data, greatly lowering the risk of malicious activity. This is 

particularly important in industries like supply chain management, where it's crucial to 

ensure that products are authentic and traceable for all parties involved. Smart cities are 

one area where the convergence of these technologies is being actively investigated. Cities 

are depending more and more on IoT to manage their energy, transportation, and 

infrastructure systems as a result of increased urbanization. Smart cities can create 

intelligent, real-time systems that optimize resource usage while preserving data security 

and integrity by integrating Blockchain, Edge AI, and FL. For instance, traffic 

management systems could make use of Blockchain to guarantee data security and 

transparency amongst various city agencies, FL to continuously improve algorithms based 

on localized conditions, and Edge AI to optimize traffic flow. 

 

Challenges and Open Research Directions 

1. Data Heterogeneity 

A fundamental challenge in federated learning is data heterogeneity. In contrast to 

conventional centralized training, which consolidates data in a central repository, 

federated learning (FL) depends on distributed data across numerous devices. This 

presents non-IID (non-independent and identically distributed) data, wherein the data 

distribution on each device may differ markedly. In an IoT network, various sensors may 

produce data with distinct distributions based on their geographic location, usage, or 

operational environment. This heterogeneity complicates model training and may 

adversely impact convergence, resulting in less accurate models. The non-IID 

characteristics of data present obstacles to attaining fairness in federated learning. Certain 

devices may provide more valuable data to the global model than others, resulting in 
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biased models. Formulating methods to equilibrate and synchronize this disparate data 

distribution continues to be a persistent challenge. 

2. Communication Efficiency 

Federated learning depends on regular communication between edge devices and a central 

server for the aggregation of model updates. Edge devices frequently possess restricted 

computational and communication capabilities, often functioning over constrained 

networks like 4G or low-power wireless systems. Elevated communication overheads 

constitute a substantial impediment in Federated Learning, particularly in applications 

necessitating real-time model updates. Model update compression, communication 

frequency reduction, and the development of more efficient aggregation protocols are 

essential research domains. Techniques such as model pruning, quantization, and gradient 

compression have been suggested; however, achieving an optimal equilibrium between 

communication efficiency and model accuracy continues to be a challenge. To enable 

efficient scaling of FL across numerous devices, additional advancements are required in 

these domains. 

3. Privacy and Security 

One of the primary benefits of federated learning is its capacity to safeguard privacy, as 

unprocessed data remains on the local device. Nonetheless, despite its privacy-preserving 

characteristics, FL is susceptible to privacy risks. Model updates disseminated by devices 

may unintentionally disclose sensitive information via gradient leakage or membership 

inference attacks. Furthermore, edge devices typically exhibit lower security compared to 

centralized cloud servers, rendering them more susceptible to adversarial attacks. 

Methods like differential privacy and secure multi-party computation have been utilized 

to improve privacy in federated learning. Nevertheless, these techniques frequently 

compromise model precision and computational efficiency. Furthermore, maintaining 

strong security across various and distributed edge devices continues to be a significant 

challenge, particularly in situations where certain devices may be compromised or display 

malicious behavior. Developing effective mechanisms to identify and counteract 

adversarial attacks is a crucial domain for future investigation. 

4. Scalability and Resource Constraints 

Edge devices exhibit considerable variation in computational power, battery longevity, 

and network connectivity. In a federated learning framework, these resource limitations 

pose difficulties in guaranteeing equitable participation and effective contributions from 

all devices to the global model. Devices with constrained computational capabilities may 

encounter difficulties in executing intricate model training, while those with unreliable 
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network connections may disengage from the training process. Initiatives to tackle these 

challenges involve developing lightweight models and formulating adaptive algorithms 

that modify model complexity according to the resources accessible on each device. 

Nonetheless, reconciling computational efficiency with model performance is a pivotal 

focus of ongoing research, particularly as the proliferation of connected devices 

accelerates exponentially. 

5. Incentive Mechanisms 

In federated learning, especially in contexts involving personal devices such as 

smartphones or IoT devices owned by various stakeholders, guaranteeing user 

participation presents a significant challenge. Users may hesitate to allocate their 

computational resources, particularly in the absence of direct advantages to themselves. 

Furthermore, the incentive framework for participation can influence both the overall 

efficacy and equity of the learning process. Developing incentive mechanisms that 

compensate users for their contributions, while guaranteeing alignment with the 

overarching objectives of the learning system, remains a nascent research domain. 

Diverse economic models and game-theoretic methodologies are being investigated to 

establish effective incentive mechanisms that promote continuous engagement in 

federated learning. 

6. Personalization and Model Adaptation 

A uniform approach is ineffective in federated learning because of the heterogeneity of 

edge devices and the data they produce. Various devices may require models customized 

for their particular applications. A personalized health application on a smartphone may 

require a model tailored to the user's specific health data, while simultaneously leveraging 

the collective insights of other users. Federated learning presents the opportunity for 

model personalization; however, reconciling global model training with local model 

adaptation poses a significant challenge. Recent research has begun investigating methods 

such as federated meta-learning and multi-task learning to enhance personalization in 

federated learning; however, these domains necessitate additional examination to 

adequately meet the demand for adaptable models across varied devices and 

environments. 

Open Research Directions in Federated Learning for Edge AI 

1. Efficient Aggregation Algorithms 

The development of aggregation algorithms that can effectively integrate updates from 

diverse devices with varying data distributions and computational capacities is a 

significant focus for future research. Current methodologies, such as Federated Averaging 
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(FedAvg), presuppose uniform contributions from all devices, which is often unrealistic 

in numerous edge AI contexts. Algorithms capable of accommodating varying degrees of 

device participation, ensuring model update reliability, and assessing data quality are 

essential for enhancing model convergence and fairness. 

2. Decentralized Federated Learning 

Many federated learning frameworks depend on a central server for the aggregation of 

model updates, thereby creating potential single points of failure and privacy 

vulnerabilities. Decentralized federated learning, characterized by direct peer-to-peer 

communication and collaboration among devices, has emerged as a promising alternative. 

This method may diminish dependence on central servers; however, it simultaneously 

introduces new challenges regarding coordination, trust, and network efficiency. 

Blockchain technology has been suggested as a remedy for certain challenges, offering a 

decentralized and secure method for managing federated learning across distributed edge 

devices. Nevertheless, the integration of blockchain with federated learning is still 

nascent, necessitating additional research to tackle scalability, energy efficiency, and real-

time performance issues. 

3. Privacy-Enhancing Technologies 

Although federated learning alleviates certain privacy concerns by retaining data on local 

devices, the model updates may still expose sensitive information. Subsequent research 

ought to concentrate on improving current privacy-preserving methodologies, including 

differential privacy and homomorphic encryption, while reducing their effects on model 

accuracy and efficiency. Furthermore, investigating innovative techniques for 

anonymizing or obfuscating model updates without compromising performance will be 

essential for enhancing privacy in federated learning. 

4. Green AI and Sustainability 

The increasing prevalence of edge devices in federated learning raises concerns regarding 

the environmental impact of training large-scale models. Creating energy-efficient 

algorithms and minimizing the computational demands of federated learning on resource-

limited devices is essential for the sustainability of this technology. Future research ought 

to concentrate on developing "green AI" methodologies for federated learning that 

enhance energy efficiency without compromising performance. 

5. Cross-Device and Cross-Silo Federated Learning 

Federated learning is generally classified into cross-device and cross-silo frameworks. 

Cross-device federated learning entails training across numerous personal devices, 



  

133 

 

whereas cross-silo federated learning involves a limited number of institutions or 

organizations. Investigating the integration of both paradigms may yield more adaptable 

and resilient learning systems. Edge devices could integrate with organizational data silos, 

leveraging the advantages of both environments to enhance model accuracy and 

robustness. 

3.4 Conclusions 

In the context of the Internet of Things (IoT), federated learning (FL) is emerging as a 

transformative approach for edge artificial intelligence (AI), providing notable 

improvements in security, robustness, privacy, personalization, and blockchain 

integration. The enormous volumes of data produced by edge devices present a challenge 

for traditional centralized AI models as IoT ecosystems grow. In order to mitigate privacy 

concerns and reduce latency, FL addresses this by decentralizing model training, which 

enables edge devices to cooperatively improve AI models without transmitting raw data 

to central servers. In Internet of Things applications, where private and sensitive data is 

constantly transferred between devices, data privacy is especially important. FL maintains 

localization of data, addressing important privacy and data ownership concerns and 

adhering to strict regulations such as the General Data Protection Regulation (GDPR). 

Data privacy protection while preserving AI performance becomes increasingly important 

as IoT applications expand in industries like healthcare, driverless cars, and smart cities. 

FL lowers the attack surface linked to centralized data processing and storage, protecting 

privacy while also improving security. Another important benefit of FL in IoT is 

robustness, since the distributed nature of the model provides fault tolerance and 

resilience to disruptions in the network or failure of individual devices. This decentralized 

strategy makes sure that the system keeps running even in the event that some nodes are 

taken down or compromised. FL can lessen the effects of adversarial attacks and increase 

the general robustness of AI models in dynamic and heterogeneous IoT environments by 

depending on multiple edge devices for training. Furthermore, FL greatly improves 

personalization in Internet of Things applications by allowing models to be adjusted to 

particular user data while maintaining device-to-device generalization. This is especially 

helpful in fields like healthcare, where customized models can increase diagnostic 

precision without disclosing private medical information. Last but not least, the 

combination of blockchain technology and FL offers a potent remedy for enhancing IoT 

network security, trust, and transparency. Immutable, decentralized ledgers for managing 

model updates and guaranteeing data integrity can be provided by blockchain technology, 

preventing malicious tampering with the models. The combination of blockchain 

technology and FL's ongoing development has the potential to further improve edge AI 

systems' security and reliability. 
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